ring_buffer.c 130 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ftrace_event.h>
  7. #include <linux/ring_buffer.h>
  8. #include <linux/trace_clock.h>
  9. #include <linux/trace_seq.h>
  10. #include <linux/spinlock.h>
  11. #include <linux/irq_work.h>
  12. #include <linux/uaccess.h>
  13. #include <linux/hardirq.h>
  14. #include <linux/kthread.h> /* for self test */
  15. #include <linux/kmemcheck.h>
  16. #include <linux/module.h>
  17. #include <linux/percpu.h>
  18. #include <linux/mutex.h>
  19. #include <linux/delay.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/hash.h>
  23. #include <linux/list.h>
  24. #include <linux/cpu.h>
  25. #include <asm/local.h>
  26. static void update_pages_handler(struct work_struct *work);
  27. /*
  28. * The ring buffer header is special. We must manually up keep it.
  29. */
  30. int ring_buffer_print_entry_header(struct trace_seq *s)
  31. {
  32. trace_seq_puts(s, "# compressed entry header\n");
  33. trace_seq_puts(s, "\ttype_len : 5 bits\n");
  34. trace_seq_puts(s, "\ttime_delta : 27 bits\n");
  35. trace_seq_puts(s, "\tarray : 32 bits\n");
  36. trace_seq_putc(s, '\n');
  37. trace_seq_printf(s, "\tpadding : type == %d\n",
  38. RINGBUF_TYPE_PADDING);
  39. trace_seq_printf(s, "\ttime_extend : type == %d\n",
  40. RINGBUF_TYPE_TIME_EXTEND);
  41. trace_seq_printf(s, "\tdata max type_len == %d\n",
  42. RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  43. return !trace_seq_has_overflowed(s);
  44. }
  45. /*
  46. * The ring buffer is made up of a list of pages. A separate list of pages is
  47. * allocated for each CPU. A writer may only write to a buffer that is
  48. * associated with the CPU it is currently executing on. A reader may read
  49. * from any per cpu buffer.
  50. *
  51. * The reader is special. For each per cpu buffer, the reader has its own
  52. * reader page. When a reader has read the entire reader page, this reader
  53. * page is swapped with another page in the ring buffer.
  54. *
  55. * Now, as long as the writer is off the reader page, the reader can do what
  56. * ever it wants with that page. The writer will never write to that page
  57. * again (as long as it is out of the ring buffer).
  58. *
  59. * Here's some silly ASCII art.
  60. *
  61. * +------+
  62. * |reader| RING BUFFER
  63. * |page |
  64. * +------+ +---+ +---+ +---+
  65. * | |-->| |-->| |
  66. * +---+ +---+ +---+
  67. * ^ |
  68. * | |
  69. * +---------------+
  70. *
  71. *
  72. * +------+
  73. * |reader| RING BUFFER
  74. * |page |------------------v
  75. * +------+ +---+ +---+ +---+
  76. * | |-->| |-->| |
  77. * +---+ +---+ +---+
  78. * ^ |
  79. * | |
  80. * +---------------+
  81. *
  82. *
  83. * +------+
  84. * |reader| RING BUFFER
  85. * |page |------------------v
  86. * +------+ +---+ +---+ +---+
  87. * ^ | |-->| |-->| |
  88. * | +---+ +---+ +---+
  89. * | |
  90. * | |
  91. * +------------------------------+
  92. *
  93. *
  94. * +------+
  95. * |buffer| RING BUFFER
  96. * |page |------------------v
  97. * +------+ +---+ +---+ +---+
  98. * ^ | | | |-->| |
  99. * | New +---+ +---+ +---+
  100. * | Reader------^ |
  101. * | page |
  102. * +------------------------------+
  103. *
  104. *
  105. * After we make this swap, the reader can hand this page off to the splice
  106. * code and be done with it. It can even allocate a new page if it needs to
  107. * and swap that into the ring buffer.
  108. *
  109. * We will be using cmpxchg soon to make all this lockless.
  110. *
  111. */
  112. /*
  113. * A fast way to enable or disable all ring buffers is to
  114. * call tracing_on or tracing_off. Turning off the ring buffers
  115. * prevents all ring buffers from being recorded to.
  116. * Turning this switch on, makes it OK to write to the
  117. * ring buffer, if the ring buffer is enabled itself.
  118. *
  119. * There's three layers that must be on in order to write
  120. * to the ring buffer.
  121. *
  122. * 1) This global flag must be set.
  123. * 2) The ring buffer must be enabled for recording.
  124. * 3) The per cpu buffer must be enabled for recording.
  125. *
  126. * In case of an anomaly, this global flag has a bit set that
  127. * will permantly disable all ring buffers.
  128. */
  129. /*
  130. * Global flag to disable all recording to ring buffers
  131. * This has two bits: ON, DISABLED
  132. *
  133. * ON DISABLED
  134. * ---- ----------
  135. * 0 0 : ring buffers are off
  136. * 1 0 : ring buffers are on
  137. * X 1 : ring buffers are permanently disabled
  138. */
  139. enum {
  140. RB_BUFFERS_ON_BIT = 0,
  141. RB_BUFFERS_DISABLED_BIT = 1,
  142. };
  143. enum {
  144. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  145. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  146. };
  147. static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  148. /* Used for individual buffers (after the counter) */
  149. #define RB_BUFFER_OFF (1 << 20)
  150. #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
  151. /**
  152. * tracing_off_permanent - permanently disable ring buffers
  153. *
  154. * This function, once called, will disable all ring buffers
  155. * permanently.
  156. */
  157. void tracing_off_permanent(void)
  158. {
  159. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  160. }
  161. #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
  162. #define RB_ALIGNMENT 4U
  163. #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  164. #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
  165. #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
  166. # define RB_FORCE_8BYTE_ALIGNMENT 0
  167. # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
  168. #else
  169. # define RB_FORCE_8BYTE_ALIGNMENT 1
  170. # define RB_ARCH_ALIGNMENT 8U
  171. #endif
  172. #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
  173. /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
  174. #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
  175. enum {
  176. RB_LEN_TIME_EXTEND = 8,
  177. RB_LEN_TIME_STAMP = 16,
  178. };
  179. #define skip_time_extend(event) \
  180. ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
  181. static inline int rb_null_event(struct ring_buffer_event *event)
  182. {
  183. return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
  184. }
  185. static void rb_event_set_padding(struct ring_buffer_event *event)
  186. {
  187. /* padding has a NULL time_delta */
  188. event->type_len = RINGBUF_TYPE_PADDING;
  189. event->time_delta = 0;
  190. }
  191. static unsigned
  192. rb_event_data_length(struct ring_buffer_event *event)
  193. {
  194. unsigned length;
  195. if (event->type_len)
  196. length = event->type_len * RB_ALIGNMENT;
  197. else
  198. length = event->array[0];
  199. return length + RB_EVNT_HDR_SIZE;
  200. }
  201. /*
  202. * Return the length of the given event. Will return
  203. * the length of the time extend if the event is a
  204. * time extend.
  205. */
  206. static inline unsigned
  207. rb_event_length(struct ring_buffer_event *event)
  208. {
  209. switch (event->type_len) {
  210. case RINGBUF_TYPE_PADDING:
  211. if (rb_null_event(event))
  212. /* undefined */
  213. return -1;
  214. return event->array[0] + RB_EVNT_HDR_SIZE;
  215. case RINGBUF_TYPE_TIME_EXTEND:
  216. return RB_LEN_TIME_EXTEND;
  217. case RINGBUF_TYPE_TIME_STAMP:
  218. return RB_LEN_TIME_STAMP;
  219. case RINGBUF_TYPE_DATA:
  220. return rb_event_data_length(event);
  221. default:
  222. BUG();
  223. }
  224. /* not hit */
  225. return 0;
  226. }
  227. /*
  228. * Return total length of time extend and data,
  229. * or just the event length for all other events.
  230. */
  231. static inline unsigned
  232. rb_event_ts_length(struct ring_buffer_event *event)
  233. {
  234. unsigned len = 0;
  235. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  236. /* time extends include the data event after it */
  237. len = RB_LEN_TIME_EXTEND;
  238. event = skip_time_extend(event);
  239. }
  240. return len + rb_event_length(event);
  241. }
  242. /**
  243. * ring_buffer_event_length - return the length of the event
  244. * @event: the event to get the length of
  245. *
  246. * Returns the size of the data load of a data event.
  247. * If the event is something other than a data event, it
  248. * returns the size of the event itself. With the exception
  249. * of a TIME EXTEND, where it still returns the size of the
  250. * data load of the data event after it.
  251. */
  252. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  253. {
  254. unsigned length;
  255. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  256. event = skip_time_extend(event);
  257. length = rb_event_length(event);
  258. if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  259. return length;
  260. length -= RB_EVNT_HDR_SIZE;
  261. if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
  262. length -= sizeof(event->array[0]);
  263. return length;
  264. }
  265. EXPORT_SYMBOL_GPL(ring_buffer_event_length);
  266. /* inline for ring buffer fast paths */
  267. static void *
  268. rb_event_data(struct ring_buffer_event *event)
  269. {
  270. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  271. event = skip_time_extend(event);
  272. BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  273. /* If length is in len field, then array[0] has the data */
  274. if (event->type_len)
  275. return (void *)&event->array[0];
  276. /* Otherwise length is in array[0] and array[1] has the data */
  277. return (void *)&event->array[1];
  278. }
  279. /**
  280. * ring_buffer_event_data - return the data of the event
  281. * @event: the event to get the data from
  282. */
  283. void *ring_buffer_event_data(struct ring_buffer_event *event)
  284. {
  285. return rb_event_data(event);
  286. }
  287. EXPORT_SYMBOL_GPL(ring_buffer_event_data);
  288. #define for_each_buffer_cpu(buffer, cpu) \
  289. for_each_cpu(cpu, buffer->cpumask)
  290. #define TS_SHIFT 27
  291. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  292. #define TS_DELTA_TEST (~TS_MASK)
  293. /* Flag when events were overwritten */
  294. #define RB_MISSED_EVENTS (1 << 31)
  295. /* Missed count stored at end */
  296. #define RB_MISSED_STORED (1 << 30)
  297. struct buffer_data_page {
  298. u64 time_stamp; /* page time stamp */
  299. local_t commit; /* write committed index */
  300. unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
  301. };
  302. /*
  303. * Note, the buffer_page list must be first. The buffer pages
  304. * are allocated in cache lines, which means that each buffer
  305. * page will be at the beginning of a cache line, and thus
  306. * the least significant bits will be zero. We use this to
  307. * add flags in the list struct pointers, to make the ring buffer
  308. * lockless.
  309. */
  310. struct buffer_page {
  311. struct list_head list; /* list of buffer pages */
  312. local_t write; /* index for next write */
  313. unsigned read; /* index for next read */
  314. local_t entries; /* entries on this page */
  315. unsigned long real_end; /* real end of data */
  316. struct buffer_data_page *page; /* Actual data page */
  317. };
  318. /*
  319. * The buffer page counters, write and entries, must be reset
  320. * atomically when crossing page boundaries. To synchronize this
  321. * update, two counters are inserted into the number. One is
  322. * the actual counter for the write position or count on the page.
  323. *
  324. * The other is a counter of updaters. Before an update happens
  325. * the update partition of the counter is incremented. This will
  326. * allow the updater to update the counter atomically.
  327. *
  328. * The counter is 20 bits, and the state data is 12.
  329. */
  330. #define RB_WRITE_MASK 0xfffff
  331. #define RB_WRITE_INTCNT (1 << 20)
  332. static void rb_init_page(struct buffer_data_page *bpage)
  333. {
  334. local_set(&bpage->commit, 0);
  335. }
  336. /**
  337. * ring_buffer_page_len - the size of data on the page.
  338. * @page: The page to read
  339. *
  340. * Returns the amount of data on the page, including buffer page header.
  341. */
  342. size_t ring_buffer_page_len(void *page)
  343. {
  344. return local_read(&((struct buffer_data_page *)page)->commit)
  345. + BUF_PAGE_HDR_SIZE;
  346. }
  347. /*
  348. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  349. * this issue out.
  350. */
  351. static void free_buffer_page(struct buffer_page *bpage)
  352. {
  353. free_page((unsigned long)bpage->page);
  354. kfree(bpage);
  355. }
  356. /*
  357. * We need to fit the time_stamp delta into 27 bits.
  358. */
  359. static inline int test_time_stamp(u64 delta)
  360. {
  361. if (delta & TS_DELTA_TEST)
  362. return 1;
  363. return 0;
  364. }
  365. #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
  366. /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
  367. #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
  368. int ring_buffer_print_page_header(struct trace_seq *s)
  369. {
  370. struct buffer_data_page field;
  371. trace_seq_printf(s, "\tfield: u64 timestamp;\t"
  372. "offset:0;\tsize:%u;\tsigned:%u;\n",
  373. (unsigned int)sizeof(field.time_stamp),
  374. (unsigned int)is_signed_type(u64));
  375. trace_seq_printf(s, "\tfield: local_t commit;\t"
  376. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  377. (unsigned int)offsetof(typeof(field), commit),
  378. (unsigned int)sizeof(field.commit),
  379. (unsigned int)is_signed_type(long));
  380. trace_seq_printf(s, "\tfield: int overwrite;\t"
  381. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  382. (unsigned int)offsetof(typeof(field), commit),
  383. 1,
  384. (unsigned int)is_signed_type(long));
  385. trace_seq_printf(s, "\tfield: char data;\t"
  386. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  387. (unsigned int)offsetof(typeof(field), data),
  388. (unsigned int)BUF_PAGE_SIZE,
  389. (unsigned int)is_signed_type(char));
  390. return !trace_seq_has_overflowed(s);
  391. }
  392. struct rb_irq_work {
  393. struct irq_work work;
  394. wait_queue_head_t waiters;
  395. wait_queue_head_t full_waiters;
  396. bool waiters_pending;
  397. bool full_waiters_pending;
  398. bool wakeup_full;
  399. };
  400. /*
  401. * head_page == tail_page && head == tail then buffer is empty.
  402. */
  403. struct ring_buffer_per_cpu {
  404. int cpu;
  405. atomic_t record_disabled;
  406. struct ring_buffer *buffer;
  407. raw_spinlock_t reader_lock; /* serialize readers */
  408. arch_spinlock_t lock;
  409. struct lock_class_key lock_key;
  410. unsigned int nr_pages;
  411. struct list_head *pages;
  412. struct buffer_page *head_page; /* read from head */
  413. struct buffer_page *tail_page; /* write to tail */
  414. struct buffer_page *commit_page; /* committed pages */
  415. struct buffer_page *reader_page;
  416. unsigned long lost_events;
  417. unsigned long last_overrun;
  418. local_t entries_bytes;
  419. local_t entries;
  420. local_t overrun;
  421. local_t commit_overrun;
  422. local_t dropped_events;
  423. local_t committing;
  424. local_t commits;
  425. unsigned long read;
  426. unsigned long read_bytes;
  427. u64 write_stamp;
  428. u64 read_stamp;
  429. /* ring buffer pages to update, > 0 to add, < 0 to remove */
  430. int nr_pages_to_update;
  431. struct list_head new_pages; /* new pages to add */
  432. struct work_struct update_pages_work;
  433. struct completion update_done;
  434. struct rb_irq_work irq_work;
  435. };
  436. struct ring_buffer {
  437. unsigned flags;
  438. int cpus;
  439. atomic_t record_disabled;
  440. atomic_t resize_disabled;
  441. cpumask_var_t cpumask;
  442. struct lock_class_key *reader_lock_key;
  443. struct mutex mutex;
  444. struct ring_buffer_per_cpu **buffers;
  445. #ifdef CONFIG_HOTPLUG_CPU
  446. struct notifier_block cpu_notify;
  447. #endif
  448. u64 (*clock)(void);
  449. struct rb_irq_work irq_work;
  450. };
  451. struct ring_buffer_iter {
  452. struct ring_buffer_per_cpu *cpu_buffer;
  453. unsigned long head;
  454. struct buffer_page *head_page;
  455. struct buffer_page *cache_reader_page;
  456. unsigned long cache_read;
  457. u64 read_stamp;
  458. };
  459. /*
  460. * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
  461. *
  462. * Schedules a delayed work to wake up any task that is blocked on the
  463. * ring buffer waiters queue.
  464. */
  465. static void rb_wake_up_waiters(struct irq_work *work)
  466. {
  467. struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
  468. wake_up_all(&rbwork->waiters);
  469. if (rbwork->wakeup_full) {
  470. rbwork->wakeup_full = false;
  471. wake_up_all(&rbwork->full_waiters);
  472. }
  473. }
  474. /**
  475. * ring_buffer_wait - wait for input to the ring buffer
  476. * @buffer: buffer to wait on
  477. * @cpu: the cpu buffer to wait on
  478. * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
  479. *
  480. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  481. * as data is added to any of the @buffer's cpu buffers. Otherwise
  482. * it will wait for data to be added to a specific cpu buffer.
  483. */
  484. int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
  485. {
  486. struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
  487. DEFINE_WAIT(wait);
  488. struct rb_irq_work *work;
  489. int ret = 0;
  490. /*
  491. * Depending on what the caller is waiting for, either any
  492. * data in any cpu buffer, or a specific buffer, put the
  493. * caller on the appropriate wait queue.
  494. */
  495. if (cpu == RING_BUFFER_ALL_CPUS) {
  496. work = &buffer->irq_work;
  497. /* Full only makes sense on per cpu reads */
  498. full = false;
  499. } else {
  500. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  501. return -ENODEV;
  502. cpu_buffer = buffer->buffers[cpu];
  503. work = &cpu_buffer->irq_work;
  504. }
  505. while (true) {
  506. if (full)
  507. prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
  508. else
  509. prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
  510. /*
  511. * The events can happen in critical sections where
  512. * checking a work queue can cause deadlocks.
  513. * After adding a task to the queue, this flag is set
  514. * only to notify events to try to wake up the queue
  515. * using irq_work.
  516. *
  517. * We don't clear it even if the buffer is no longer
  518. * empty. The flag only causes the next event to run
  519. * irq_work to do the work queue wake up. The worse
  520. * that can happen if we race with !trace_empty() is that
  521. * an event will cause an irq_work to try to wake up
  522. * an empty queue.
  523. *
  524. * There's no reason to protect this flag either, as
  525. * the work queue and irq_work logic will do the necessary
  526. * synchronization for the wake ups. The only thing
  527. * that is necessary is that the wake up happens after
  528. * a task has been queued. It's OK for spurious wake ups.
  529. */
  530. if (full)
  531. work->full_waiters_pending = true;
  532. else
  533. work->waiters_pending = true;
  534. if (signal_pending(current)) {
  535. ret = -EINTR;
  536. break;
  537. }
  538. if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
  539. break;
  540. if (cpu != RING_BUFFER_ALL_CPUS &&
  541. !ring_buffer_empty_cpu(buffer, cpu)) {
  542. unsigned long flags;
  543. bool pagebusy;
  544. if (!full)
  545. break;
  546. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  547. pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
  548. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  549. if (!pagebusy)
  550. break;
  551. }
  552. schedule();
  553. }
  554. if (full)
  555. finish_wait(&work->full_waiters, &wait);
  556. else
  557. finish_wait(&work->waiters, &wait);
  558. return ret;
  559. }
  560. /**
  561. * ring_buffer_poll_wait - poll on buffer input
  562. * @buffer: buffer to wait on
  563. * @cpu: the cpu buffer to wait on
  564. * @filp: the file descriptor
  565. * @poll_table: The poll descriptor
  566. *
  567. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  568. * as data is added to any of the @buffer's cpu buffers. Otherwise
  569. * it will wait for data to be added to a specific cpu buffer.
  570. *
  571. * Returns POLLIN | POLLRDNORM if data exists in the buffers,
  572. * zero otherwise.
  573. */
  574. int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
  575. struct file *filp, poll_table *poll_table)
  576. {
  577. struct ring_buffer_per_cpu *cpu_buffer;
  578. struct rb_irq_work *work;
  579. if (cpu == RING_BUFFER_ALL_CPUS)
  580. work = &buffer->irq_work;
  581. else {
  582. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  583. return -EINVAL;
  584. cpu_buffer = buffer->buffers[cpu];
  585. work = &cpu_buffer->irq_work;
  586. }
  587. poll_wait(filp, &work->waiters, poll_table);
  588. work->waiters_pending = true;
  589. /*
  590. * There's a tight race between setting the waiters_pending and
  591. * checking if the ring buffer is empty. Once the waiters_pending bit
  592. * is set, the next event will wake the task up, but we can get stuck
  593. * if there's only a single event in.
  594. *
  595. * FIXME: Ideally, we need a memory barrier on the writer side as well,
  596. * but adding a memory barrier to all events will cause too much of a
  597. * performance hit in the fast path. We only need a memory barrier when
  598. * the buffer goes from empty to having content. But as this race is
  599. * extremely small, and it's not a problem if another event comes in, we
  600. * will fix it later.
  601. */
  602. smp_mb();
  603. if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
  604. (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
  605. return POLLIN | POLLRDNORM;
  606. return 0;
  607. }
  608. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  609. #define RB_WARN_ON(b, cond) \
  610. ({ \
  611. int _____ret = unlikely(cond); \
  612. if (_____ret) { \
  613. if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
  614. struct ring_buffer_per_cpu *__b = \
  615. (void *)b; \
  616. atomic_inc(&__b->buffer->record_disabled); \
  617. } else \
  618. atomic_inc(&b->record_disabled); \
  619. WARN_ON(1); \
  620. } \
  621. _____ret; \
  622. })
  623. /* Up this if you want to test the TIME_EXTENTS and normalization */
  624. #define DEBUG_SHIFT 0
  625. static inline u64 rb_time_stamp(struct ring_buffer *buffer)
  626. {
  627. /* shift to debug/test normalization and TIME_EXTENTS */
  628. return buffer->clock() << DEBUG_SHIFT;
  629. }
  630. u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
  631. {
  632. u64 time;
  633. preempt_disable_notrace();
  634. time = rb_time_stamp(buffer);
  635. preempt_enable_no_resched_notrace();
  636. return time;
  637. }
  638. EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
  639. void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
  640. int cpu, u64 *ts)
  641. {
  642. /* Just stupid testing the normalize function and deltas */
  643. *ts >>= DEBUG_SHIFT;
  644. }
  645. EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
  646. /*
  647. * Making the ring buffer lockless makes things tricky.
  648. * Although writes only happen on the CPU that they are on,
  649. * and they only need to worry about interrupts. Reads can
  650. * happen on any CPU.
  651. *
  652. * The reader page is always off the ring buffer, but when the
  653. * reader finishes with a page, it needs to swap its page with
  654. * a new one from the buffer. The reader needs to take from
  655. * the head (writes go to the tail). But if a writer is in overwrite
  656. * mode and wraps, it must push the head page forward.
  657. *
  658. * Here lies the problem.
  659. *
  660. * The reader must be careful to replace only the head page, and
  661. * not another one. As described at the top of the file in the
  662. * ASCII art, the reader sets its old page to point to the next
  663. * page after head. It then sets the page after head to point to
  664. * the old reader page. But if the writer moves the head page
  665. * during this operation, the reader could end up with the tail.
  666. *
  667. * We use cmpxchg to help prevent this race. We also do something
  668. * special with the page before head. We set the LSB to 1.
  669. *
  670. * When the writer must push the page forward, it will clear the
  671. * bit that points to the head page, move the head, and then set
  672. * the bit that points to the new head page.
  673. *
  674. * We also don't want an interrupt coming in and moving the head
  675. * page on another writer. Thus we use the second LSB to catch
  676. * that too. Thus:
  677. *
  678. * head->list->prev->next bit 1 bit 0
  679. * ------- -------
  680. * Normal page 0 0
  681. * Points to head page 0 1
  682. * New head page 1 0
  683. *
  684. * Note we can not trust the prev pointer of the head page, because:
  685. *
  686. * +----+ +-----+ +-----+
  687. * | |------>| T |---X--->| N |
  688. * | |<------| | | |
  689. * +----+ +-----+ +-----+
  690. * ^ ^ |
  691. * | +-----+ | |
  692. * +----------| R |----------+ |
  693. * | |<-----------+
  694. * +-----+
  695. *
  696. * Key: ---X--> HEAD flag set in pointer
  697. * T Tail page
  698. * R Reader page
  699. * N Next page
  700. *
  701. * (see __rb_reserve_next() to see where this happens)
  702. *
  703. * What the above shows is that the reader just swapped out
  704. * the reader page with a page in the buffer, but before it
  705. * could make the new header point back to the new page added
  706. * it was preempted by a writer. The writer moved forward onto
  707. * the new page added by the reader and is about to move forward
  708. * again.
  709. *
  710. * You can see, it is legitimate for the previous pointer of
  711. * the head (or any page) not to point back to itself. But only
  712. * temporarially.
  713. */
  714. #define RB_PAGE_NORMAL 0UL
  715. #define RB_PAGE_HEAD 1UL
  716. #define RB_PAGE_UPDATE 2UL
  717. #define RB_FLAG_MASK 3UL
  718. /* PAGE_MOVED is not part of the mask */
  719. #define RB_PAGE_MOVED 4UL
  720. /*
  721. * rb_list_head - remove any bit
  722. */
  723. static struct list_head *rb_list_head(struct list_head *list)
  724. {
  725. unsigned long val = (unsigned long)list;
  726. return (struct list_head *)(val & ~RB_FLAG_MASK);
  727. }
  728. /*
  729. * rb_is_head_page - test if the given page is the head page
  730. *
  731. * Because the reader may move the head_page pointer, we can
  732. * not trust what the head page is (it may be pointing to
  733. * the reader page). But if the next page is a header page,
  734. * its flags will be non zero.
  735. */
  736. static inline int
  737. rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  738. struct buffer_page *page, struct list_head *list)
  739. {
  740. unsigned long val;
  741. val = (unsigned long)list->next;
  742. if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
  743. return RB_PAGE_MOVED;
  744. return val & RB_FLAG_MASK;
  745. }
  746. /*
  747. * rb_is_reader_page
  748. *
  749. * The unique thing about the reader page, is that, if the
  750. * writer is ever on it, the previous pointer never points
  751. * back to the reader page.
  752. */
  753. static int rb_is_reader_page(struct buffer_page *page)
  754. {
  755. struct list_head *list = page->list.prev;
  756. return rb_list_head(list->next) != &page->list;
  757. }
  758. /*
  759. * rb_set_list_to_head - set a list_head to be pointing to head.
  760. */
  761. static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
  762. struct list_head *list)
  763. {
  764. unsigned long *ptr;
  765. ptr = (unsigned long *)&list->next;
  766. *ptr |= RB_PAGE_HEAD;
  767. *ptr &= ~RB_PAGE_UPDATE;
  768. }
  769. /*
  770. * rb_head_page_activate - sets up head page
  771. */
  772. static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
  773. {
  774. struct buffer_page *head;
  775. head = cpu_buffer->head_page;
  776. if (!head)
  777. return;
  778. /*
  779. * Set the previous list pointer to have the HEAD flag.
  780. */
  781. rb_set_list_to_head(cpu_buffer, head->list.prev);
  782. }
  783. static void rb_list_head_clear(struct list_head *list)
  784. {
  785. unsigned long *ptr = (unsigned long *)&list->next;
  786. *ptr &= ~RB_FLAG_MASK;
  787. }
  788. /*
  789. * rb_head_page_dactivate - clears head page ptr (for free list)
  790. */
  791. static void
  792. rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
  793. {
  794. struct list_head *hd;
  795. /* Go through the whole list and clear any pointers found. */
  796. rb_list_head_clear(cpu_buffer->pages);
  797. list_for_each(hd, cpu_buffer->pages)
  798. rb_list_head_clear(hd);
  799. }
  800. static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
  801. struct buffer_page *head,
  802. struct buffer_page *prev,
  803. int old_flag, int new_flag)
  804. {
  805. struct list_head *list;
  806. unsigned long val = (unsigned long)&head->list;
  807. unsigned long ret;
  808. list = &prev->list;
  809. val &= ~RB_FLAG_MASK;
  810. ret = cmpxchg((unsigned long *)&list->next,
  811. val | old_flag, val | new_flag);
  812. /* check if the reader took the page */
  813. if ((ret & ~RB_FLAG_MASK) != val)
  814. return RB_PAGE_MOVED;
  815. return ret & RB_FLAG_MASK;
  816. }
  817. static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
  818. struct buffer_page *head,
  819. struct buffer_page *prev,
  820. int old_flag)
  821. {
  822. return rb_head_page_set(cpu_buffer, head, prev,
  823. old_flag, RB_PAGE_UPDATE);
  824. }
  825. static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
  826. struct buffer_page *head,
  827. struct buffer_page *prev,
  828. int old_flag)
  829. {
  830. return rb_head_page_set(cpu_buffer, head, prev,
  831. old_flag, RB_PAGE_HEAD);
  832. }
  833. static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
  834. struct buffer_page *head,
  835. struct buffer_page *prev,
  836. int old_flag)
  837. {
  838. return rb_head_page_set(cpu_buffer, head, prev,
  839. old_flag, RB_PAGE_NORMAL);
  840. }
  841. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  842. struct buffer_page **bpage)
  843. {
  844. struct list_head *p = rb_list_head((*bpage)->list.next);
  845. *bpage = list_entry(p, struct buffer_page, list);
  846. }
  847. static struct buffer_page *
  848. rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
  849. {
  850. struct buffer_page *head;
  851. struct buffer_page *page;
  852. struct list_head *list;
  853. int i;
  854. if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
  855. return NULL;
  856. /* sanity check */
  857. list = cpu_buffer->pages;
  858. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
  859. return NULL;
  860. page = head = cpu_buffer->head_page;
  861. /*
  862. * It is possible that the writer moves the header behind
  863. * where we started, and we miss in one loop.
  864. * A second loop should grab the header, but we'll do
  865. * three loops just because I'm paranoid.
  866. */
  867. for (i = 0; i < 3; i++) {
  868. do {
  869. if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
  870. cpu_buffer->head_page = page;
  871. return page;
  872. }
  873. rb_inc_page(cpu_buffer, &page);
  874. } while (page != head);
  875. }
  876. RB_WARN_ON(cpu_buffer, 1);
  877. return NULL;
  878. }
  879. static int rb_head_page_replace(struct buffer_page *old,
  880. struct buffer_page *new)
  881. {
  882. unsigned long *ptr = (unsigned long *)&old->list.prev->next;
  883. unsigned long val;
  884. unsigned long ret;
  885. val = *ptr & ~RB_FLAG_MASK;
  886. val |= RB_PAGE_HEAD;
  887. ret = cmpxchg(ptr, val, (unsigned long)&new->list);
  888. return ret == val;
  889. }
  890. /*
  891. * rb_tail_page_update - move the tail page forward
  892. *
  893. * Returns 1 if moved tail page, 0 if someone else did.
  894. */
  895. static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
  896. struct buffer_page *tail_page,
  897. struct buffer_page *next_page)
  898. {
  899. struct buffer_page *old_tail;
  900. unsigned long old_entries;
  901. unsigned long old_write;
  902. int ret = 0;
  903. /*
  904. * The tail page now needs to be moved forward.
  905. *
  906. * We need to reset the tail page, but without messing
  907. * with possible erasing of data brought in by interrupts
  908. * that have moved the tail page and are currently on it.
  909. *
  910. * We add a counter to the write field to denote this.
  911. */
  912. old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
  913. old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
  914. /*
  915. * Just make sure we have seen our old_write and synchronize
  916. * with any interrupts that come in.
  917. */
  918. barrier();
  919. /*
  920. * If the tail page is still the same as what we think
  921. * it is, then it is up to us to update the tail
  922. * pointer.
  923. */
  924. if (tail_page == cpu_buffer->tail_page) {
  925. /* Zero the write counter */
  926. unsigned long val = old_write & ~RB_WRITE_MASK;
  927. unsigned long eval = old_entries & ~RB_WRITE_MASK;
  928. /*
  929. * This will only succeed if an interrupt did
  930. * not come in and change it. In which case, we
  931. * do not want to modify it.
  932. *
  933. * We add (void) to let the compiler know that we do not care
  934. * about the return value of these functions. We use the
  935. * cmpxchg to only update if an interrupt did not already
  936. * do it for us. If the cmpxchg fails, we don't care.
  937. */
  938. (void)local_cmpxchg(&next_page->write, old_write, val);
  939. (void)local_cmpxchg(&next_page->entries, old_entries, eval);
  940. /*
  941. * No need to worry about races with clearing out the commit.
  942. * it only can increment when a commit takes place. But that
  943. * only happens in the outer most nested commit.
  944. */
  945. local_set(&next_page->page->commit, 0);
  946. old_tail = cmpxchg(&cpu_buffer->tail_page,
  947. tail_page, next_page);
  948. if (old_tail == tail_page)
  949. ret = 1;
  950. }
  951. return ret;
  952. }
  953. static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
  954. struct buffer_page *bpage)
  955. {
  956. unsigned long val = (unsigned long)bpage;
  957. if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
  958. return 1;
  959. return 0;
  960. }
  961. /**
  962. * rb_check_list - make sure a pointer to a list has the last bits zero
  963. */
  964. static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
  965. struct list_head *list)
  966. {
  967. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
  968. return 1;
  969. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
  970. return 1;
  971. return 0;
  972. }
  973. /**
  974. * rb_check_pages - integrity check of buffer pages
  975. * @cpu_buffer: CPU buffer with pages to test
  976. *
  977. * As a safety measure we check to make sure the data pages have not
  978. * been corrupted.
  979. */
  980. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  981. {
  982. struct list_head *head = cpu_buffer->pages;
  983. struct buffer_page *bpage, *tmp;
  984. /* Reset the head page if it exists */
  985. if (cpu_buffer->head_page)
  986. rb_set_head_page(cpu_buffer);
  987. rb_head_page_deactivate(cpu_buffer);
  988. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  989. return -1;
  990. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  991. return -1;
  992. if (rb_check_list(cpu_buffer, head))
  993. return -1;
  994. list_for_each_entry_safe(bpage, tmp, head, list) {
  995. if (RB_WARN_ON(cpu_buffer,
  996. bpage->list.next->prev != &bpage->list))
  997. return -1;
  998. if (RB_WARN_ON(cpu_buffer,
  999. bpage->list.prev->next != &bpage->list))
  1000. return -1;
  1001. if (rb_check_list(cpu_buffer, &bpage->list))
  1002. return -1;
  1003. }
  1004. rb_head_page_activate(cpu_buffer);
  1005. return 0;
  1006. }
  1007. static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
  1008. {
  1009. int i;
  1010. struct buffer_page *bpage, *tmp;
  1011. for (i = 0; i < nr_pages; i++) {
  1012. struct page *page;
  1013. /*
  1014. * __GFP_NORETRY flag makes sure that the allocation fails
  1015. * gracefully without invoking oom-killer and the system is
  1016. * not destabilized.
  1017. */
  1018. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  1019. GFP_KERNEL | __GFP_NORETRY,
  1020. cpu_to_node(cpu));
  1021. if (!bpage)
  1022. goto free_pages;
  1023. list_add(&bpage->list, pages);
  1024. page = alloc_pages_node(cpu_to_node(cpu),
  1025. GFP_KERNEL | __GFP_NORETRY, 0);
  1026. if (!page)
  1027. goto free_pages;
  1028. bpage->page = page_address(page);
  1029. rb_init_page(bpage->page);
  1030. }
  1031. return 0;
  1032. free_pages:
  1033. list_for_each_entry_safe(bpage, tmp, pages, list) {
  1034. list_del_init(&bpage->list);
  1035. free_buffer_page(bpage);
  1036. }
  1037. return -ENOMEM;
  1038. }
  1039. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  1040. unsigned nr_pages)
  1041. {
  1042. LIST_HEAD(pages);
  1043. WARN_ON(!nr_pages);
  1044. if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
  1045. return -ENOMEM;
  1046. /*
  1047. * The ring buffer page list is a circular list that does not
  1048. * start and end with a list head. All page list items point to
  1049. * other pages.
  1050. */
  1051. cpu_buffer->pages = pages.next;
  1052. list_del(&pages);
  1053. cpu_buffer->nr_pages = nr_pages;
  1054. rb_check_pages(cpu_buffer);
  1055. return 0;
  1056. }
  1057. static struct ring_buffer_per_cpu *
  1058. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
  1059. {
  1060. struct ring_buffer_per_cpu *cpu_buffer;
  1061. struct buffer_page *bpage;
  1062. struct page *page;
  1063. int ret;
  1064. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  1065. GFP_KERNEL, cpu_to_node(cpu));
  1066. if (!cpu_buffer)
  1067. return NULL;
  1068. cpu_buffer->cpu = cpu;
  1069. cpu_buffer->buffer = buffer;
  1070. raw_spin_lock_init(&cpu_buffer->reader_lock);
  1071. lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
  1072. cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
  1073. INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
  1074. init_completion(&cpu_buffer->update_done);
  1075. init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
  1076. init_waitqueue_head(&cpu_buffer->irq_work.waiters);
  1077. init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
  1078. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  1079. GFP_KERNEL, cpu_to_node(cpu));
  1080. if (!bpage)
  1081. goto fail_free_buffer;
  1082. rb_check_bpage(cpu_buffer, bpage);
  1083. cpu_buffer->reader_page = bpage;
  1084. page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
  1085. if (!page)
  1086. goto fail_free_reader;
  1087. bpage->page = page_address(page);
  1088. rb_init_page(bpage->page);
  1089. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1090. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1091. ret = rb_allocate_pages(cpu_buffer, nr_pages);
  1092. if (ret < 0)
  1093. goto fail_free_reader;
  1094. cpu_buffer->head_page
  1095. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  1096. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  1097. rb_head_page_activate(cpu_buffer);
  1098. return cpu_buffer;
  1099. fail_free_reader:
  1100. free_buffer_page(cpu_buffer->reader_page);
  1101. fail_free_buffer:
  1102. kfree(cpu_buffer);
  1103. return NULL;
  1104. }
  1105. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  1106. {
  1107. struct list_head *head = cpu_buffer->pages;
  1108. struct buffer_page *bpage, *tmp;
  1109. free_buffer_page(cpu_buffer->reader_page);
  1110. rb_head_page_deactivate(cpu_buffer);
  1111. if (head) {
  1112. list_for_each_entry_safe(bpage, tmp, head, list) {
  1113. list_del_init(&bpage->list);
  1114. free_buffer_page(bpage);
  1115. }
  1116. bpage = list_entry(head, struct buffer_page, list);
  1117. free_buffer_page(bpage);
  1118. }
  1119. kfree(cpu_buffer);
  1120. }
  1121. #ifdef CONFIG_HOTPLUG_CPU
  1122. static int rb_cpu_notify(struct notifier_block *self,
  1123. unsigned long action, void *hcpu);
  1124. #endif
  1125. /**
  1126. * __ring_buffer_alloc - allocate a new ring_buffer
  1127. * @size: the size in bytes per cpu that is needed.
  1128. * @flags: attributes to set for the ring buffer.
  1129. *
  1130. * Currently the only flag that is available is the RB_FL_OVERWRITE
  1131. * flag. This flag means that the buffer will overwrite old data
  1132. * when the buffer wraps. If this flag is not set, the buffer will
  1133. * drop data when the tail hits the head.
  1134. */
  1135. struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
  1136. struct lock_class_key *key)
  1137. {
  1138. struct ring_buffer *buffer;
  1139. int bsize;
  1140. int cpu, nr_pages;
  1141. /* keep it in its own cache line */
  1142. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  1143. GFP_KERNEL);
  1144. if (!buffer)
  1145. return NULL;
  1146. if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
  1147. goto fail_free_buffer;
  1148. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1149. buffer->flags = flags;
  1150. buffer->clock = trace_clock_local;
  1151. buffer->reader_lock_key = key;
  1152. init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
  1153. init_waitqueue_head(&buffer->irq_work.waiters);
  1154. /* need at least two pages */
  1155. if (nr_pages < 2)
  1156. nr_pages = 2;
  1157. /*
  1158. * In case of non-hotplug cpu, if the ring-buffer is allocated
  1159. * in early initcall, it will not be notified of secondary cpus.
  1160. * In that off case, we need to allocate for all possible cpus.
  1161. */
  1162. #ifdef CONFIG_HOTPLUG_CPU
  1163. cpu_notifier_register_begin();
  1164. cpumask_copy(buffer->cpumask, cpu_online_mask);
  1165. #else
  1166. cpumask_copy(buffer->cpumask, cpu_possible_mask);
  1167. #endif
  1168. buffer->cpus = nr_cpu_ids;
  1169. bsize = sizeof(void *) * nr_cpu_ids;
  1170. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  1171. GFP_KERNEL);
  1172. if (!buffer->buffers)
  1173. goto fail_free_cpumask;
  1174. for_each_buffer_cpu(buffer, cpu) {
  1175. buffer->buffers[cpu] =
  1176. rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  1177. if (!buffer->buffers[cpu])
  1178. goto fail_free_buffers;
  1179. }
  1180. #ifdef CONFIG_HOTPLUG_CPU
  1181. buffer->cpu_notify.notifier_call = rb_cpu_notify;
  1182. buffer->cpu_notify.priority = 0;
  1183. __register_cpu_notifier(&buffer->cpu_notify);
  1184. cpu_notifier_register_done();
  1185. #endif
  1186. mutex_init(&buffer->mutex);
  1187. return buffer;
  1188. fail_free_buffers:
  1189. for_each_buffer_cpu(buffer, cpu) {
  1190. if (buffer->buffers[cpu])
  1191. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1192. }
  1193. kfree(buffer->buffers);
  1194. fail_free_cpumask:
  1195. free_cpumask_var(buffer->cpumask);
  1196. #ifdef CONFIG_HOTPLUG_CPU
  1197. cpu_notifier_register_done();
  1198. #endif
  1199. fail_free_buffer:
  1200. kfree(buffer);
  1201. return NULL;
  1202. }
  1203. EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
  1204. /**
  1205. * ring_buffer_free - free a ring buffer.
  1206. * @buffer: the buffer to free.
  1207. */
  1208. void
  1209. ring_buffer_free(struct ring_buffer *buffer)
  1210. {
  1211. int cpu;
  1212. #ifdef CONFIG_HOTPLUG_CPU
  1213. cpu_notifier_register_begin();
  1214. __unregister_cpu_notifier(&buffer->cpu_notify);
  1215. #endif
  1216. for_each_buffer_cpu(buffer, cpu)
  1217. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1218. #ifdef CONFIG_HOTPLUG_CPU
  1219. cpu_notifier_register_done();
  1220. #endif
  1221. kfree(buffer->buffers);
  1222. free_cpumask_var(buffer->cpumask);
  1223. kfree(buffer);
  1224. }
  1225. EXPORT_SYMBOL_GPL(ring_buffer_free);
  1226. void ring_buffer_set_clock(struct ring_buffer *buffer,
  1227. u64 (*clock)(void))
  1228. {
  1229. buffer->clock = clock;
  1230. }
  1231. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  1232. static inline unsigned long rb_page_entries(struct buffer_page *bpage)
  1233. {
  1234. return local_read(&bpage->entries) & RB_WRITE_MASK;
  1235. }
  1236. static inline unsigned long rb_page_write(struct buffer_page *bpage)
  1237. {
  1238. return local_read(&bpage->write) & RB_WRITE_MASK;
  1239. }
  1240. static int
  1241. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
  1242. {
  1243. struct list_head *tail_page, *to_remove, *next_page;
  1244. struct buffer_page *to_remove_page, *tmp_iter_page;
  1245. struct buffer_page *last_page, *first_page;
  1246. unsigned int nr_removed;
  1247. unsigned long head_bit;
  1248. int page_entries;
  1249. head_bit = 0;
  1250. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1251. atomic_inc(&cpu_buffer->record_disabled);
  1252. /*
  1253. * We don't race with the readers since we have acquired the reader
  1254. * lock. We also don't race with writers after disabling recording.
  1255. * This makes it easy to figure out the first and the last page to be
  1256. * removed from the list. We unlink all the pages in between including
  1257. * the first and last pages. This is done in a busy loop so that we
  1258. * lose the least number of traces.
  1259. * The pages are freed after we restart recording and unlock readers.
  1260. */
  1261. tail_page = &cpu_buffer->tail_page->list;
  1262. /*
  1263. * tail page might be on reader page, we remove the next page
  1264. * from the ring buffer
  1265. */
  1266. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  1267. tail_page = rb_list_head(tail_page->next);
  1268. to_remove = tail_page;
  1269. /* start of pages to remove */
  1270. first_page = list_entry(rb_list_head(to_remove->next),
  1271. struct buffer_page, list);
  1272. for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
  1273. to_remove = rb_list_head(to_remove)->next;
  1274. head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
  1275. }
  1276. next_page = rb_list_head(to_remove)->next;
  1277. /*
  1278. * Now we remove all pages between tail_page and next_page.
  1279. * Make sure that we have head_bit value preserved for the
  1280. * next page
  1281. */
  1282. tail_page->next = (struct list_head *)((unsigned long)next_page |
  1283. head_bit);
  1284. next_page = rb_list_head(next_page);
  1285. next_page->prev = tail_page;
  1286. /* make sure pages points to a valid page in the ring buffer */
  1287. cpu_buffer->pages = next_page;
  1288. /* update head page */
  1289. if (head_bit)
  1290. cpu_buffer->head_page = list_entry(next_page,
  1291. struct buffer_page, list);
  1292. /*
  1293. * change read pointer to make sure any read iterators reset
  1294. * themselves
  1295. */
  1296. cpu_buffer->read = 0;
  1297. /* pages are removed, resume tracing and then free the pages */
  1298. atomic_dec(&cpu_buffer->record_disabled);
  1299. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1300. RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
  1301. /* last buffer page to remove */
  1302. last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
  1303. list);
  1304. tmp_iter_page = first_page;
  1305. do {
  1306. to_remove_page = tmp_iter_page;
  1307. rb_inc_page(cpu_buffer, &tmp_iter_page);
  1308. /* update the counters */
  1309. page_entries = rb_page_entries(to_remove_page);
  1310. if (page_entries) {
  1311. /*
  1312. * If something was added to this page, it was full
  1313. * since it is not the tail page. So we deduct the
  1314. * bytes consumed in ring buffer from here.
  1315. * Increment overrun to account for the lost events.
  1316. */
  1317. local_add(page_entries, &cpu_buffer->overrun);
  1318. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1319. }
  1320. /*
  1321. * We have already removed references to this list item, just
  1322. * free up the buffer_page and its page
  1323. */
  1324. free_buffer_page(to_remove_page);
  1325. nr_removed--;
  1326. } while (to_remove_page != last_page);
  1327. RB_WARN_ON(cpu_buffer, nr_removed);
  1328. return nr_removed == 0;
  1329. }
  1330. static int
  1331. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1332. {
  1333. struct list_head *pages = &cpu_buffer->new_pages;
  1334. int retries, success;
  1335. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1336. /*
  1337. * We are holding the reader lock, so the reader page won't be swapped
  1338. * in the ring buffer. Now we are racing with the writer trying to
  1339. * move head page and the tail page.
  1340. * We are going to adapt the reader page update process where:
  1341. * 1. We first splice the start and end of list of new pages between
  1342. * the head page and its previous page.
  1343. * 2. We cmpxchg the prev_page->next to point from head page to the
  1344. * start of new pages list.
  1345. * 3. Finally, we update the head->prev to the end of new list.
  1346. *
  1347. * We will try this process 10 times, to make sure that we don't keep
  1348. * spinning.
  1349. */
  1350. retries = 10;
  1351. success = 0;
  1352. while (retries--) {
  1353. struct list_head *head_page, *prev_page, *r;
  1354. struct list_head *last_page, *first_page;
  1355. struct list_head *head_page_with_bit;
  1356. head_page = &rb_set_head_page(cpu_buffer)->list;
  1357. if (!head_page)
  1358. break;
  1359. prev_page = head_page->prev;
  1360. first_page = pages->next;
  1361. last_page = pages->prev;
  1362. head_page_with_bit = (struct list_head *)
  1363. ((unsigned long)head_page | RB_PAGE_HEAD);
  1364. last_page->next = head_page_with_bit;
  1365. first_page->prev = prev_page;
  1366. r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
  1367. if (r == head_page_with_bit) {
  1368. /*
  1369. * yay, we replaced the page pointer to our new list,
  1370. * now, we just have to update to head page's prev
  1371. * pointer to point to end of list
  1372. */
  1373. head_page->prev = last_page;
  1374. success = 1;
  1375. break;
  1376. }
  1377. }
  1378. if (success)
  1379. INIT_LIST_HEAD(pages);
  1380. /*
  1381. * If we weren't successful in adding in new pages, warn and stop
  1382. * tracing
  1383. */
  1384. RB_WARN_ON(cpu_buffer, !success);
  1385. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1386. /* free pages if they weren't inserted */
  1387. if (!success) {
  1388. struct buffer_page *bpage, *tmp;
  1389. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1390. list) {
  1391. list_del_init(&bpage->list);
  1392. free_buffer_page(bpage);
  1393. }
  1394. }
  1395. return success;
  1396. }
  1397. static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1398. {
  1399. int success;
  1400. if (cpu_buffer->nr_pages_to_update > 0)
  1401. success = rb_insert_pages(cpu_buffer);
  1402. else
  1403. success = rb_remove_pages(cpu_buffer,
  1404. -cpu_buffer->nr_pages_to_update);
  1405. if (success)
  1406. cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
  1407. }
  1408. static void update_pages_handler(struct work_struct *work)
  1409. {
  1410. struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
  1411. struct ring_buffer_per_cpu, update_pages_work);
  1412. rb_update_pages(cpu_buffer);
  1413. complete(&cpu_buffer->update_done);
  1414. }
  1415. /**
  1416. * ring_buffer_resize - resize the ring buffer
  1417. * @buffer: the buffer to resize.
  1418. * @size: the new size.
  1419. * @cpu_id: the cpu buffer to resize
  1420. *
  1421. * Minimum size is 2 * BUF_PAGE_SIZE.
  1422. *
  1423. * Returns 0 on success and < 0 on failure.
  1424. */
  1425. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
  1426. int cpu_id)
  1427. {
  1428. struct ring_buffer_per_cpu *cpu_buffer;
  1429. unsigned nr_pages;
  1430. int cpu, err = 0;
  1431. /*
  1432. * Always succeed at resizing a non-existent buffer:
  1433. */
  1434. if (!buffer)
  1435. return size;
  1436. /* Make sure the requested buffer exists */
  1437. if (cpu_id != RING_BUFFER_ALL_CPUS &&
  1438. !cpumask_test_cpu(cpu_id, buffer->cpumask))
  1439. return size;
  1440. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1441. size *= BUF_PAGE_SIZE;
  1442. /* we need a minimum of two pages */
  1443. if (size < BUF_PAGE_SIZE * 2)
  1444. size = BUF_PAGE_SIZE * 2;
  1445. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1446. /*
  1447. * Don't succeed if resizing is disabled, as a reader might be
  1448. * manipulating the ring buffer and is expecting a sane state while
  1449. * this is true.
  1450. */
  1451. if (atomic_read(&buffer->resize_disabled))
  1452. return -EBUSY;
  1453. /* prevent another thread from changing buffer sizes */
  1454. mutex_lock(&buffer->mutex);
  1455. if (cpu_id == RING_BUFFER_ALL_CPUS) {
  1456. /* calculate the pages to update */
  1457. for_each_buffer_cpu(buffer, cpu) {
  1458. cpu_buffer = buffer->buffers[cpu];
  1459. cpu_buffer->nr_pages_to_update = nr_pages -
  1460. cpu_buffer->nr_pages;
  1461. /*
  1462. * nothing more to do for removing pages or no update
  1463. */
  1464. if (cpu_buffer->nr_pages_to_update <= 0)
  1465. continue;
  1466. /*
  1467. * to add pages, make sure all new pages can be
  1468. * allocated without receiving ENOMEM
  1469. */
  1470. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1471. if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1472. &cpu_buffer->new_pages, cpu)) {
  1473. /* not enough memory for new pages */
  1474. err = -ENOMEM;
  1475. goto out_err;
  1476. }
  1477. }
  1478. get_online_cpus();
  1479. /*
  1480. * Fire off all the required work handlers
  1481. * We can't schedule on offline CPUs, but it's not necessary
  1482. * since we can change their buffer sizes without any race.
  1483. */
  1484. for_each_buffer_cpu(buffer, cpu) {
  1485. cpu_buffer = buffer->buffers[cpu];
  1486. if (!cpu_buffer->nr_pages_to_update)
  1487. continue;
  1488. /* Can't run something on an offline CPU. */
  1489. if (!cpu_online(cpu)) {
  1490. rb_update_pages(cpu_buffer);
  1491. cpu_buffer->nr_pages_to_update = 0;
  1492. } else {
  1493. schedule_work_on(cpu,
  1494. &cpu_buffer->update_pages_work);
  1495. }
  1496. }
  1497. /* wait for all the updates to complete */
  1498. for_each_buffer_cpu(buffer, cpu) {
  1499. cpu_buffer = buffer->buffers[cpu];
  1500. if (!cpu_buffer->nr_pages_to_update)
  1501. continue;
  1502. if (cpu_online(cpu))
  1503. wait_for_completion(&cpu_buffer->update_done);
  1504. cpu_buffer->nr_pages_to_update = 0;
  1505. }
  1506. put_online_cpus();
  1507. } else {
  1508. /* Make sure this CPU has been intitialized */
  1509. if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
  1510. goto out;
  1511. cpu_buffer = buffer->buffers[cpu_id];
  1512. if (nr_pages == cpu_buffer->nr_pages)
  1513. goto out;
  1514. cpu_buffer->nr_pages_to_update = nr_pages -
  1515. cpu_buffer->nr_pages;
  1516. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1517. if (cpu_buffer->nr_pages_to_update > 0 &&
  1518. __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1519. &cpu_buffer->new_pages, cpu_id)) {
  1520. err = -ENOMEM;
  1521. goto out_err;
  1522. }
  1523. get_online_cpus();
  1524. /* Can't run something on an offline CPU. */
  1525. if (!cpu_online(cpu_id))
  1526. rb_update_pages(cpu_buffer);
  1527. else {
  1528. schedule_work_on(cpu_id,
  1529. &cpu_buffer->update_pages_work);
  1530. wait_for_completion(&cpu_buffer->update_done);
  1531. }
  1532. cpu_buffer->nr_pages_to_update = 0;
  1533. put_online_cpus();
  1534. }
  1535. out:
  1536. /*
  1537. * The ring buffer resize can happen with the ring buffer
  1538. * enabled, so that the update disturbs the tracing as little
  1539. * as possible. But if the buffer is disabled, we do not need
  1540. * to worry about that, and we can take the time to verify
  1541. * that the buffer is not corrupt.
  1542. */
  1543. if (atomic_read(&buffer->record_disabled)) {
  1544. atomic_inc(&buffer->record_disabled);
  1545. /*
  1546. * Even though the buffer was disabled, we must make sure
  1547. * that it is truly disabled before calling rb_check_pages.
  1548. * There could have been a race between checking
  1549. * record_disable and incrementing it.
  1550. */
  1551. synchronize_sched();
  1552. for_each_buffer_cpu(buffer, cpu) {
  1553. cpu_buffer = buffer->buffers[cpu];
  1554. rb_check_pages(cpu_buffer);
  1555. }
  1556. atomic_dec(&buffer->record_disabled);
  1557. }
  1558. mutex_unlock(&buffer->mutex);
  1559. return size;
  1560. out_err:
  1561. for_each_buffer_cpu(buffer, cpu) {
  1562. struct buffer_page *bpage, *tmp;
  1563. cpu_buffer = buffer->buffers[cpu];
  1564. cpu_buffer->nr_pages_to_update = 0;
  1565. if (list_empty(&cpu_buffer->new_pages))
  1566. continue;
  1567. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1568. list) {
  1569. list_del_init(&bpage->list);
  1570. free_buffer_page(bpage);
  1571. }
  1572. }
  1573. mutex_unlock(&buffer->mutex);
  1574. return err;
  1575. }
  1576. EXPORT_SYMBOL_GPL(ring_buffer_resize);
  1577. void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
  1578. {
  1579. mutex_lock(&buffer->mutex);
  1580. if (val)
  1581. buffer->flags |= RB_FL_OVERWRITE;
  1582. else
  1583. buffer->flags &= ~RB_FL_OVERWRITE;
  1584. mutex_unlock(&buffer->mutex);
  1585. }
  1586. EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
  1587. static inline void *
  1588. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  1589. {
  1590. return bpage->data + index;
  1591. }
  1592. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  1593. {
  1594. return bpage->page->data + index;
  1595. }
  1596. static inline struct ring_buffer_event *
  1597. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  1598. {
  1599. return __rb_page_index(cpu_buffer->reader_page,
  1600. cpu_buffer->reader_page->read);
  1601. }
  1602. static inline struct ring_buffer_event *
  1603. rb_iter_head_event(struct ring_buffer_iter *iter)
  1604. {
  1605. return __rb_page_index(iter->head_page, iter->head);
  1606. }
  1607. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  1608. {
  1609. return local_read(&bpage->page->commit);
  1610. }
  1611. /* Size is determined by what has been committed */
  1612. static inline unsigned rb_page_size(struct buffer_page *bpage)
  1613. {
  1614. return rb_page_commit(bpage);
  1615. }
  1616. static inline unsigned
  1617. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  1618. {
  1619. return rb_page_commit(cpu_buffer->commit_page);
  1620. }
  1621. static inline unsigned
  1622. rb_event_index(struct ring_buffer_event *event)
  1623. {
  1624. unsigned long addr = (unsigned long)event;
  1625. return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
  1626. }
  1627. static inline int
  1628. rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1629. struct ring_buffer_event *event)
  1630. {
  1631. unsigned long addr = (unsigned long)event;
  1632. unsigned long index;
  1633. index = rb_event_index(event);
  1634. addr &= PAGE_MASK;
  1635. return cpu_buffer->commit_page->page == (void *)addr &&
  1636. rb_commit_index(cpu_buffer) == index;
  1637. }
  1638. static void
  1639. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  1640. {
  1641. unsigned long max_count;
  1642. /*
  1643. * We only race with interrupts and NMIs on this CPU.
  1644. * If we own the commit event, then we can commit
  1645. * all others that interrupted us, since the interruptions
  1646. * are in stack format (they finish before they come
  1647. * back to us). This allows us to do a simple loop to
  1648. * assign the commit to the tail.
  1649. */
  1650. again:
  1651. max_count = cpu_buffer->nr_pages * 100;
  1652. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  1653. if (RB_WARN_ON(cpu_buffer, !(--max_count)))
  1654. return;
  1655. if (RB_WARN_ON(cpu_buffer,
  1656. rb_is_reader_page(cpu_buffer->tail_page)))
  1657. return;
  1658. local_set(&cpu_buffer->commit_page->page->commit,
  1659. rb_page_write(cpu_buffer->commit_page));
  1660. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  1661. cpu_buffer->write_stamp =
  1662. cpu_buffer->commit_page->page->time_stamp;
  1663. /* add barrier to keep gcc from optimizing too much */
  1664. barrier();
  1665. }
  1666. while (rb_commit_index(cpu_buffer) !=
  1667. rb_page_write(cpu_buffer->commit_page)) {
  1668. local_set(&cpu_buffer->commit_page->page->commit,
  1669. rb_page_write(cpu_buffer->commit_page));
  1670. RB_WARN_ON(cpu_buffer,
  1671. local_read(&cpu_buffer->commit_page->page->commit) &
  1672. ~RB_WRITE_MASK);
  1673. barrier();
  1674. }
  1675. /* again, keep gcc from optimizing */
  1676. barrier();
  1677. /*
  1678. * If an interrupt came in just after the first while loop
  1679. * and pushed the tail page forward, we will be left with
  1680. * a dangling commit that will never go forward.
  1681. */
  1682. if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
  1683. goto again;
  1684. }
  1685. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1686. {
  1687. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  1688. cpu_buffer->reader_page->read = 0;
  1689. }
  1690. static void rb_inc_iter(struct ring_buffer_iter *iter)
  1691. {
  1692. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1693. /*
  1694. * The iterator could be on the reader page (it starts there).
  1695. * But the head could have moved, since the reader was
  1696. * found. Check for this case and assign the iterator
  1697. * to the head page instead of next.
  1698. */
  1699. if (iter->head_page == cpu_buffer->reader_page)
  1700. iter->head_page = rb_set_head_page(cpu_buffer);
  1701. else
  1702. rb_inc_page(cpu_buffer, &iter->head_page);
  1703. iter->read_stamp = iter->head_page->page->time_stamp;
  1704. iter->head = 0;
  1705. }
  1706. /* Slow path, do not inline */
  1707. static noinline struct ring_buffer_event *
  1708. rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
  1709. {
  1710. event->type_len = RINGBUF_TYPE_TIME_EXTEND;
  1711. /* Not the first event on the page? */
  1712. if (rb_event_index(event)) {
  1713. event->time_delta = delta & TS_MASK;
  1714. event->array[0] = delta >> TS_SHIFT;
  1715. } else {
  1716. /* nope, just zero it */
  1717. event->time_delta = 0;
  1718. event->array[0] = 0;
  1719. }
  1720. return skip_time_extend(event);
  1721. }
  1722. /**
  1723. * rb_update_event - update event type and data
  1724. * @event: the event to update
  1725. * @type: the type of event
  1726. * @length: the size of the event field in the ring buffer
  1727. *
  1728. * Update the type and data fields of the event. The length
  1729. * is the actual size that is written to the ring buffer,
  1730. * and with this, we can determine what to place into the
  1731. * data field.
  1732. */
  1733. static void
  1734. rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
  1735. struct ring_buffer_event *event, unsigned length,
  1736. int add_timestamp, u64 delta)
  1737. {
  1738. /* Only a commit updates the timestamp */
  1739. if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
  1740. delta = 0;
  1741. /*
  1742. * If we need to add a timestamp, then we
  1743. * add it to the start of the resevered space.
  1744. */
  1745. if (unlikely(add_timestamp)) {
  1746. event = rb_add_time_stamp(event, delta);
  1747. length -= RB_LEN_TIME_EXTEND;
  1748. delta = 0;
  1749. }
  1750. event->time_delta = delta;
  1751. length -= RB_EVNT_HDR_SIZE;
  1752. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
  1753. event->type_len = 0;
  1754. event->array[0] = length;
  1755. } else
  1756. event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
  1757. }
  1758. /*
  1759. * rb_handle_head_page - writer hit the head page
  1760. *
  1761. * Returns: +1 to retry page
  1762. * 0 to continue
  1763. * -1 on error
  1764. */
  1765. static int
  1766. rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  1767. struct buffer_page *tail_page,
  1768. struct buffer_page *next_page)
  1769. {
  1770. struct buffer_page *new_head;
  1771. int entries;
  1772. int type;
  1773. int ret;
  1774. entries = rb_page_entries(next_page);
  1775. /*
  1776. * The hard part is here. We need to move the head
  1777. * forward, and protect against both readers on
  1778. * other CPUs and writers coming in via interrupts.
  1779. */
  1780. type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
  1781. RB_PAGE_HEAD);
  1782. /*
  1783. * type can be one of four:
  1784. * NORMAL - an interrupt already moved it for us
  1785. * HEAD - we are the first to get here.
  1786. * UPDATE - we are the interrupt interrupting
  1787. * a current move.
  1788. * MOVED - a reader on another CPU moved the next
  1789. * pointer to its reader page. Give up
  1790. * and try again.
  1791. */
  1792. switch (type) {
  1793. case RB_PAGE_HEAD:
  1794. /*
  1795. * We changed the head to UPDATE, thus
  1796. * it is our responsibility to update
  1797. * the counters.
  1798. */
  1799. local_add(entries, &cpu_buffer->overrun);
  1800. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1801. /*
  1802. * The entries will be zeroed out when we move the
  1803. * tail page.
  1804. */
  1805. /* still more to do */
  1806. break;
  1807. case RB_PAGE_UPDATE:
  1808. /*
  1809. * This is an interrupt that interrupt the
  1810. * previous update. Still more to do.
  1811. */
  1812. break;
  1813. case RB_PAGE_NORMAL:
  1814. /*
  1815. * An interrupt came in before the update
  1816. * and processed this for us.
  1817. * Nothing left to do.
  1818. */
  1819. return 1;
  1820. case RB_PAGE_MOVED:
  1821. /*
  1822. * The reader is on another CPU and just did
  1823. * a swap with our next_page.
  1824. * Try again.
  1825. */
  1826. return 1;
  1827. default:
  1828. RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
  1829. return -1;
  1830. }
  1831. /*
  1832. * Now that we are here, the old head pointer is
  1833. * set to UPDATE. This will keep the reader from
  1834. * swapping the head page with the reader page.
  1835. * The reader (on another CPU) will spin till
  1836. * we are finished.
  1837. *
  1838. * We just need to protect against interrupts
  1839. * doing the job. We will set the next pointer
  1840. * to HEAD. After that, we set the old pointer
  1841. * to NORMAL, but only if it was HEAD before.
  1842. * otherwise we are an interrupt, and only
  1843. * want the outer most commit to reset it.
  1844. */
  1845. new_head = next_page;
  1846. rb_inc_page(cpu_buffer, &new_head);
  1847. ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
  1848. RB_PAGE_NORMAL);
  1849. /*
  1850. * Valid returns are:
  1851. * HEAD - an interrupt came in and already set it.
  1852. * NORMAL - One of two things:
  1853. * 1) We really set it.
  1854. * 2) A bunch of interrupts came in and moved
  1855. * the page forward again.
  1856. */
  1857. switch (ret) {
  1858. case RB_PAGE_HEAD:
  1859. case RB_PAGE_NORMAL:
  1860. /* OK */
  1861. break;
  1862. default:
  1863. RB_WARN_ON(cpu_buffer, 1);
  1864. return -1;
  1865. }
  1866. /*
  1867. * It is possible that an interrupt came in,
  1868. * set the head up, then more interrupts came in
  1869. * and moved it again. When we get back here,
  1870. * the page would have been set to NORMAL but we
  1871. * just set it back to HEAD.
  1872. *
  1873. * How do you detect this? Well, if that happened
  1874. * the tail page would have moved.
  1875. */
  1876. if (ret == RB_PAGE_NORMAL) {
  1877. /*
  1878. * If the tail had moved passed next, then we need
  1879. * to reset the pointer.
  1880. */
  1881. if (cpu_buffer->tail_page != tail_page &&
  1882. cpu_buffer->tail_page != next_page)
  1883. rb_head_page_set_normal(cpu_buffer, new_head,
  1884. next_page,
  1885. RB_PAGE_HEAD);
  1886. }
  1887. /*
  1888. * If this was the outer most commit (the one that
  1889. * changed the original pointer from HEAD to UPDATE),
  1890. * then it is up to us to reset it to NORMAL.
  1891. */
  1892. if (type == RB_PAGE_HEAD) {
  1893. ret = rb_head_page_set_normal(cpu_buffer, next_page,
  1894. tail_page,
  1895. RB_PAGE_UPDATE);
  1896. if (RB_WARN_ON(cpu_buffer,
  1897. ret != RB_PAGE_UPDATE))
  1898. return -1;
  1899. }
  1900. return 0;
  1901. }
  1902. static unsigned rb_calculate_event_length(unsigned length)
  1903. {
  1904. struct ring_buffer_event event; /* Used only for sizeof array */
  1905. /* zero length can cause confusions */
  1906. if (!length)
  1907. length = 1;
  1908. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
  1909. length += sizeof(event.array[0]);
  1910. length += RB_EVNT_HDR_SIZE;
  1911. length = ALIGN(length, RB_ARCH_ALIGNMENT);
  1912. return length;
  1913. }
  1914. static inline void
  1915. rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1916. struct buffer_page *tail_page,
  1917. unsigned long tail, unsigned long length)
  1918. {
  1919. struct ring_buffer_event *event;
  1920. /*
  1921. * Only the event that crossed the page boundary
  1922. * must fill the old tail_page with padding.
  1923. */
  1924. if (tail >= BUF_PAGE_SIZE) {
  1925. /*
  1926. * If the page was filled, then we still need
  1927. * to update the real_end. Reset it to zero
  1928. * and the reader will ignore it.
  1929. */
  1930. if (tail == BUF_PAGE_SIZE)
  1931. tail_page->real_end = 0;
  1932. local_sub(length, &tail_page->write);
  1933. return;
  1934. }
  1935. event = __rb_page_index(tail_page, tail);
  1936. kmemcheck_annotate_bitfield(event, bitfield);
  1937. /* account for padding bytes */
  1938. local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
  1939. /*
  1940. * Save the original length to the meta data.
  1941. * This will be used by the reader to add lost event
  1942. * counter.
  1943. */
  1944. tail_page->real_end = tail;
  1945. /*
  1946. * If this event is bigger than the minimum size, then
  1947. * we need to be careful that we don't subtract the
  1948. * write counter enough to allow another writer to slip
  1949. * in on this page.
  1950. * We put in a discarded commit instead, to make sure
  1951. * that this space is not used again.
  1952. *
  1953. * If we are less than the minimum size, we don't need to
  1954. * worry about it.
  1955. */
  1956. if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
  1957. /* No room for any events */
  1958. /* Mark the rest of the page with padding */
  1959. rb_event_set_padding(event);
  1960. /* Set the write back to the previous setting */
  1961. local_sub(length, &tail_page->write);
  1962. return;
  1963. }
  1964. /* Put in a discarded event */
  1965. event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
  1966. event->type_len = RINGBUF_TYPE_PADDING;
  1967. /* time delta must be non zero */
  1968. event->time_delta = 1;
  1969. /* Set write to end of buffer */
  1970. length = (tail + length) - BUF_PAGE_SIZE;
  1971. local_sub(length, &tail_page->write);
  1972. }
  1973. /*
  1974. * This is the slow path, force gcc not to inline it.
  1975. */
  1976. static noinline struct ring_buffer_event *
  1977. rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1978. unsigned long length, unsigned long tail,
  1979. struct buffer_page *tail_page, u64 ts)
  1980. {
  1981. struct buffer_page *commit_page = cpu_buffer->commit_page;
  1982. struct ring_buffer *buffer = cpu_buffer->buffer;
  1983. struct buffer_page *next_page;
  1984. int ret;
  1985. next_page = tail_page;
  1986. rb_inc_page(cpu_buffer, &next_page);
  1987. /*
  1988. * If for some reason, we had an interrupt storm that made
  1989. * it all the way around the buffer, bail, and warn
  1990. * about it.
  1991. */
  1992. if (unlikely(next_page == commit_page)) {
  1993. local_inc(&cpu_buffer->commit_overrun);
  1994. goto out_reset;
  1995. }
  1996. /*
  1997. * This is where the fun begins!
  1998. *
  1999. * We are fighting against races between a reader that
  2000. * could be on another CPU trying to swap its reader
  2001. * page with the buffer head.
  2002. *
  2003. * We are also fighting against interrupts coming in and
  2004. * moving the head or tail on us as well.
  2005. *
  2006. * If the next page is the head page then we have filled
  2007. * the buffer, unless the commit page is still on the
  2008. * reader page.
  2009. */
  2010. if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
  2011. /*
  2012. * If the commit is not on the reader page, then
  2013. * move the header page.
  2014. */
  2015. if (!rb_is_reader_page(cpu_buffer->commit_page)) {
  2016. /*
  2017. * If we are not in overwrite mode,
  2018. * this is easy, just stop here.
  2019. */
  2020. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  2021. local_inc(&cpu_buffer->dropped_events);
  2022. goto out_reset;
  2023. }
  2024. ret = rb_handle_head_page(cpu_buffer,
  2025. tail_page,
  2026. next_page);
  2027. if (ret < 0)
  2028. goto out_reset;
  2029. if (ret)
  2030. goto out_again;
  2031. } else {
  2032. /*
  2033. * We need to be careful here too. The
  2034. * commit page could still be on the reader
  2035. * page. We could have a small buffer, and
  2036. * have filled up the buffer with events
  2037. * from interrupts and such, and wrapped.
  2038. *
  2039. * Note, if the tail page is also the on the
  2040. * reader_page, we let it move out.
  2041. */
  2042. if (unlikely((cpu_buffer->commit_page !=
  2043. cpu_buffer->tail_page) &&
  2044. (cpu_buffer->commit_page ==
  2045. cpu_buffer->reader_page))) {
  2046. local_inc(&cpu_buffer->commit_overrun);
  2047. goto out_reset;
  2048. }
  2049. }
  2050. }
  2051. ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
  2052. if (ret) {
  2053. /*
  2054. * Nested commits always have zero deltas, so
  2055. * just reread the time stamp
  2056. */
  2057. ts = rb_time_stamp(buffer);
  2058. next_page->page->time_stamp = ts;
  2059. }
  2060. out_again:
  2061. rb_reset_tail(cpu_buffer, tail_page, tail, length);
  2062. /* fail and let the caller try again */
  2063. return ERR_PTR(-EAGAIN);
  2064. out_reset:
  2065. /* reset write */
  2066. rb_reset_tail(cpu_buffer, tail_page, tail, length);
  2067. return NULL;
  2068. }
  2069. static struct ring_buffer_event *
  2070. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  2071. unsigned long length, u64 ts,
  2072. u64 delta, int add_timestamp)
  2073. {
  2074. struct buffer_page *tail_page;
  2075. struct ring_buffer_event *event;
  2076. unsigned long tail, write;
  2077. /*
  2078. * If the time delta since the last event is too big to
  2079. * hold in the time field of the event, then we append a
  2080. * TIME EXTEND event ahead of the data event.
  2081. */
  2082. if (unlikely(add_timestamp))
  2083. length += RB_LEN_TIME_EXTEND;
  2084. tail_page = cpu_buffer->tail_page;
  2085. write = local_add_return(length, &tail_page->write);
  2086. /* set write to only the index of the write */
  2087. write &= RB_WRITE_MASK;
  2088. tail = write - length;
  2089. /*
  2090. * If this is the first commit on the page, then it has the same
  2091. * timestamp as the page itself.
  2092. */
  2093. if (!tail)
  2094. delta = 0;
  2095. /* See if we shot pass the end of this buffer page */
  2096. if (unlikely(write > BUF_PAGE_SIZE))
  2097. return rb_move_tail(cpu_buffer, length, tail,
  2098. tail_page, ts);
  2099. /* We reserved something on the buffer */
  2100. event = __rb_page_index(tail_page, tail);
  2101. kmemcheck_annotate_bitfield(event, bitfield);
  2102. rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
  2103. local_inc(&tail_page->entries);
  2104. /*
  2105. * If this is the first commit on the page, then update
  2106. * its timestamp.
  2107. */
  2108. if (!tail)
  2109. tail_page->page->time_stamp = ts;
  2110. /* account for these added bytes */
  2111. local_add(length, &cpu_buffer->entries_bytes);
  2112. return event;
  2113. }
  2114. static inline int
  2115. rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
  2116. struct ring_buffer_event *event)
  2117. {
  2118. unsigned long new_index, old_index;
  2119. struct buffer_page *bpage;
  2120. unsigned long index;
  2121. unsigned long addr;
  2122. new_index = rb_event_index(event);
  2123. old_index = new_index + rb_event_ts_length(event);
  2124. addr = (unsigned long)event;
  2125. addr &= PAGE_MASK;
  2126. bpage = cpu_buffer->tail_page;
  2127. if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
  2128. unsigned long write_mask =
  2129. local_read(&bpage->write) & ~RB_WRITE_MASK;
  2130. unsigned long event_length = rb_event_length(event);
  2131. /*
  2132. * This is on the tail page. It is possible that
  2133. * a write could come in and move the tail page
  2134. * and write to the next page. That is fine
  2135. * because we just shorten what is on this page.
  2136. */
  2137. old_index += write_mask;
  2138. new_index += write_mask;
  2139. index = local_cmpxchg(&bpage->write, old_index, new_index);
  2140. if (index == old_index) {
  2141. /* update counters */
  2142. local_sub(event_length, &cpu_buffer->entries_bytes);
  2143. return 1;
  2144. }
  2145. }
  2146. /* could not discard */
  2147. return 0;
  2148. }
  2149. static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2150. {
  2151. local_inc(&cpu_buffer->committing);
  2152. local_inc(&cpu_buffer->commits);
  2153. }
  2154. static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2155. {
  2156. unsigned long commits;
  2157. if (RB_WARN_ON(cpu_buffer,
  2158. !local_read(&cpu_buffer->committing)))
  2159. return;
  2160. again:
  2161. commits = local_read(&cpu_buffer->commits);
  2162. /* synchronize with interrupts */
  2163. barrier();
  2164. if (local_read(&cpu_buffer->committing) == 1)
  2165. rb_set_commit_to_write(cpu_buffer);
  2166. local_dec(&cpu_buffer->committing);
  2167. /* synchronize with interrupts */
  2168. barrier();
  2169. /*
  2170. * Need to account for interrupts coming in between the
  2171. * updating of the commit page and the clearing of the
  2172. * committing counter.
  2173. */
  2174. if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
  2175. !local_read(&cpu_buffer->committing)) {
  2176. local_inc(&cpu_buffer->committing);
  2177. goto again;
  2178. }
  2179. }
  2180. static struct ring_buffer_event *
  2181. rb_reserve_next_event(struct ring_buffer *buffer,
  2182. struct ring_buffer_per_cpu *cpu_buffer,
  2183. unsigned long length)
  2184. {
  2185. struct ring_buffer_event *event;
  2186. u64 ts, delta;
  2187. int nr_loops = 0;
  2188. int add_timestamp;
  2189. u64 diff;
  2190. rb_start_commit(cpu_buffer);
  2191. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  2192. /*
  2193. * Due to the ability to swap a cpu buffer from a buffer
  2194. * it is possible it was swapped before we committed.
  2195. * (committing stops a swap). We check for it here and
  2196. * if it happened, we have to fail the write.
  2197. */
  2198. barrier();
  2199. if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
  2200. local_dec(&cpu_buffer->committing);
  2201. local_dec(&cpu_buffer->commits);
  2202. return NULL;
  2203. }
  2204. #endif
  2205. length = rb_calculate_event_length(length);
  2206. again:
  2207. add_timestamp = 0;
  2208. delta = 0;
  2209. /*
  2210. * We allow for interrupts to reenter here and do a trace.
  2211. * If one does, it will cause this original code to loop
  2212. * back here. Even with heavy interrupts happening, this
  2213. * should only happen a few times in a row. If this happens
  2214. * 1000 times in a row, there must be either an interrupt
  2215. * storm or we have something buggy.
  2216. * Bail!
  2217. */
  2218. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  2219. goto out_fail;
  2220. ts = rb_time_stamp(cpu_buffer->buffer);
  2221. diff = ts - cpu_buffer->write_stamp;
  2222. /* make sure this diff is calculated here */
  2223. barrier();
  2224. /* Did the write stamp get updated already? */
  2225. if (likely(ts >= cpu_buffer->write_stamp)) {
  2226. delta = diff;
  2227. if (unlikely(test_time_stamp(delta))) {
  2228. int local_clock_stable = 1;
  2229. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  2230. local_clock_stable = sched_clock_stable();
  2231. #endif
  2232. WARN_ONCE(delta > (1ULL << 59),
  2233. KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
  2234. (unsigned long long)delta,
  2235. (unsigned long long)ts,
  2236. (unsigned long long)cpu_buffer->write_stamp,
  2237. local_clock_stable ? "" :
  2238. "If you just came from a suspend/resume,\n"
  2239. "please switch to the trace global clock:\n"
  2240. " echo global > /sys/kernel/debug/tracing/trace_clock\n");
  2241. add_timestamp = 1;
  2242. }
  2243. }
  2244. event = __rb_reserve_next(cpu_buffer, length, ts,
  2245. delta, add_timestamp);
  2246. if (unlikely(PTR_ERR(event) == -EAGAIN))
  2247. goto again;
  2248. if (!event)
  2249. goto out_fail;
  2250. return event;
  2251. out_fail:
  2252. rb_end_commit(cpu_buffer);
  2253. return NULL;
  2254. }
  2255. #ifdef CONFIG_TRACING
  2256. /*
  2257. * The lock and unlock are done within a preempt disable section.
  2258. * The current_context per_cpu variable can only be modified
  2259. * by the current task between lock and unlock. But it can
  2260. * be modified more than once via an interrupt. To pass this
  2261. * information from the lock to the unlock without having to
  2262. * access the 'in_interrupt()' functions again (which do show
  2263. * a bit of overhead in something as critical as function tracing,
  2264. * we use a bitmask trick.
  2265. *
  2266. * bit 0 = NMI context
  2267. * bit 1 = IRQ context
  2268. * bit 2 = SoftIRQ context
  2269. * bit 3 = normal context.
  2270. *
  2271. * This works because this is the order of contexts that can
  2272. * preempt other contexts. A SoftIRQ never preempts an IRQ
  2273. * context.
  2274. *
  2275. * When the context is determined, the corresponding bit is
  2276. * checked and set (if it was set, then a recursion of that context
  2277. * happened).
  2278. *
  2279. * On unlock, we need to clear this bit. To do so, just subtract
  2280. * 1 from the current_context and AND it to itself.
  2281. *
  2282. * (binary)
  2283. * 101 - 1 = 100
  2284. * 101 & 100 = 100 (clearing bit zero)
  2285. *
  2286. * 1010 - 1 = 1001
  2287. * 1010 & 1001 = 1000 (clearing bit 1)
  2288. *
  2289. * The least significant bit can be cleared this way, and it
  2290. * just so happens that it is the same bit corresponding to
  2291. * the current context.
  2292. */
  2293. static DEFINE_PER_CPU(unsigned int, current_context);
  2294. static __always_inline int trace_recursive_lock(void)
  2295. {
  2296. unsigned int val = __this_cpu_read(current_context);
  2297. int bit;
  2298. if (in_interrupt()) {
  2299. if (in_nmi())
  2300. bit = 0;
  2301. else if (in_irq())
  2302. bit = 1;
  2303. else
  2304. bit = 2;
  2305. } else
  2306. bit = 3;
  2307. if (unlikely(val & (1 << bit)))
  2308. return 1;
  2309. val |= (1 << bit);
  2310. __this_cpu_write(current_context, val);
  2311. return 0;
  2312. }
  2313. static __always_inline void trace_recursive_unlock(void)
  2314. {
  2315. __this_cpu_and(current_context, __this_cpu_read(current_context) - 1);
  2316. }
  2317. #else
  2318. #define trace_recursive_lock() (0)
  2319. #define trace_recursive_unlock() do { } while (0)
  2320. #endif
  2321. /**
  2322. * ring_buffer_lock_reserve - reserve a part of the buffer
  2323. * @buffer: the ring buffer to reserve from
  2324. * @length: the length of the data to reserve (excluding event header)
  2325. *
  2326. * Returns a reseverd event on the ring buffer to copy directly to.
  2327. * The user of this interface will need to get the body to write into
  2328. * and can use the ring_buffer_event_data() interface.
  2329. *
  2330. * The length is the length of the data needed, not the event length
  2331. * which also includes the event header.
  2332. *
  2333. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  2334. * If NULL is returned, then nothing has been allocated or locked.
  2335. */
  2336. struct ring_buffer_event *
  2337. ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
  2338. {
  2339. struct ring_buffer_per_cpu *cpu_buffer;
  2340. struct ring_buffer_event *event;
  2341. int cpu;
  2342. if (ring_buffer_flags != RB_BUFFERS_ON)
  2343. return NULL;
  2344. /* If we are tracing schedule, we don't want to recurse */
  2345. preempt_disable_notrace();
  2346. if (atomic_read(&buffer->record_disabled))
  2347. goto out_nocheck;
  2348. if (trace_recursive_lock())
  2349. goto out_nocheck;
  2350. cpu = raw_smp_processor_id();
  2351. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2352. goto out;
  2353. cpu_buffer = buffer->buffers[cpu];
  2354. if (atomic_read(&cpu_buffer->record_disabled))
  2355. goto out;
  2356. if (length > BUF_MAX_DATA_SIZE)
  2357. goto out;
  2358. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2359. if (!event)
  2360. goto out;
  2361. return event;
  2362. out:
  2363. trace_recursive_unlock();
  2364. out_nocheck:
  2365. preempt_enable_notrace();
  2366. return NULL;
  2367. }
  2368. EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
  2369. static void
  2370. rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2371. struct ring_buffer_event *event)
  2372. {
  2373. u64 delta;
  2374. /*
  2375. * The event first in the commit queue updates the
  2376. * time stamp.
  2377. */
  2378. if (rb_event_is_commit(cpu_buffer, event)) {
  2379. /*
  2380. * A commit event that is first on a page
  2381. * updates the write timestamp with the page stamp
  2382. */
  2383. if (!rb_event_index(event))
  2384. cpu_buffer->write_stamp =
  2385. cpu_buffer->commit_page->page->time_stamp;
  2386. else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  2387. delta = event->array[0];
  2388. delta <<= TS_SHIFT;
  2389. delta += event->time_delta;
  2390. cpu_buffer->write_stamp += delta;
  2391. } else
  2392. cpu_buffer->write_stamp += event->time_delta;
  2393. }
  2394. }
  2395. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  2396. struct ring_buffer_event *event)
  2397. {
  2398. local_inc(&cpu_buffer->entries);
  2399. rb_update_write_stamp(cpu_buffer, event);
  2400. rb_end_commit(cpu_buffer);
  2401. }
  2402. static __always_inline void
  2403. rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
  2404. {
  2405. bool pagebusy;
  2406. if (buffer->irq_work.waiters_pending) {
  2407. buffer->irq_work.waiters_pending = false;
  2408. /* irq_work_queue() supplies it's own memory barriers */
  2409. irq_work_queue(&buffer->irq_work.work);
  2410. }
  2411. if (cpu_buffer->irq_work.waiters_pending) {
  2412. cpu_buffer->irq_work.waiters_pending = false;
  2413. /* irq_work_queue() supplies it's own memory barriers */
  2414. irq_work_queue(&cpu_buffer->irq_work.work);
  2415. }
  2416. pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
  2417. if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
  2418. cpu_buffer->irq_work.wakeup_full = true;
  2419. cpu_buffer->irq_work.full_waiters_pending = false;
  2420. /* irq_work_queue() supplies it's own memory barriers */
  2421. irq_work_queue(&cpu_buffer->irq_work.work);
  2422. }
  2423. }
  2424. /**
  2425. * ring_buffer_unlock_commit - commit a reserved
  2426. * @buffer: The buffer to commit to
  2427. * @event: The event pointer to commit.
  2428. *
  2429. * This commits the data to the ring buffer, and releases any locks held.
  2430. *
  2431. * Must be paired with ring_buffer_lock_reserve.
  2432. */
  2433. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  2434. struct ring_buffer_event *event)
  2435. {
  2436. struct ring_buffer_per_cpu *cpu_buffer;
  2437. int cpu = raw_smp_processor_id();
  2438. cpu_buffer = buffer->buffers[cpu];
  2439. rb_commit(cpu_buffer, event);
  2440. rb_wakeups(buffer, cpu_buffer);
  2441. trace_recursive_unlock();
  2442. preempt_enable_notrace();
  2443. return 0;
  2444. }
  2445. EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
  2446. static inline void rb_event_discard(struct ring_buffer_event *event)
  2447. {
  2448. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  2449. event = skip_time_extend(event);
  2450. /* array[0] holds the actual length for the discarded event */
  2451. event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
  2452. event->type_len = RINGBUF_TYPE_PADDING;
  2453. /* time delta must be non zero */
  2454. if (!event->time_delta)
  2455. event->time_delta = 1;
  2456. }
  2457. /*
  2458. * Decrement the entries to the page that an event is on.
  2459. * The event does not even need to exist, only the pointer
  2460. * to the page it is on. This may only be called before the commit
  2461. * takes place.
  2462. */
  2463. static inline void
  2464. rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
  2465. struct ring_buffer_event *event)
  2466. {
  2467. unsigned long addr = (unsigned long)event;
  2468. struct buffer_page *bpage = cpu_buffer->commit_page;
  2469. struct buffer_page *start;
  2470. addr &= PAGE_MASK;
  2471. /* Do the likely case first */
  2472. if (likely(bpage->page == (void *)addr)) {
  2473. local_dec(&bpage->entries);
  2474. return;
  2475. }
  2476. /*
  2477. * Because the commit page may be on the reader page we
  2478. * start with the next page and check the end loop there.
  2479. */
  2480. rb_inc_page(cpu_buffer, &bpage);
  2481. start = bpage;
  2482. do {
  2483. if (bpage->page == (void *)addr) {
  2484. local_dec(&bpage->entries);
  2485. return;
  2486. }
  2487. rb_inc_page(cpu_buffer, &bpage);
  2488. } while (bpage != start);
  2489. /* commit not part of this buffer?? */
  2490. RB_WARN_ON(cpu_buffer, 1);
  2491. }
  2492. /**
  2493. * ring_buffer_commit_discard - discard an event that has not been committed
  2494. * @buffer: the ring buffer
  2495. * @event: non committed event to discard
  2496. *
  2497. * Sometimes an event that is in the ring buffer needs to be ignored.
  2498. * This function lets the user discard an event in the ring buffer
  2499. * and then that event will not be read later.
  2500. *
  2501. * This function only works if it is called before the the item has been
  2502. * committed. It will try to free the event from the ring buffer
  2503. * if another event has not been added behind it.
  2504. *
  2505. * If another event has been added behind it, it will set the event
  2506. * up as discarded, and perform the commit.
  2507. *
  2508. * If this function is called, do not call ring_buffer_unlock_commit on
  2509. * the event.
  2510. */
  2511. void ring_buffer_discard_commit(struct ring_buffer *buffer,
  2512. struct ring_buffer_event *event)
  2513. {
  2514. struct ring_buffer_per_cpu *cpu_buffer;
  2515. int cpu;
  2516. /* The event is discarded regardless */
  2517. rb_event_discard(event);
  2518. cpu = smp_processor_id();
  2519. cpu_buffer = buffer->buffers[cpu];
  2520. /*
  2521. * This must only be called if the event has not been
  2522. * committed yet. Thus we can assume that preemption
  2523. * is still disabled.
  2524. */
  2525. RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
  2526. rb_decrement_entry(cpu_buffer, event);
  2527. if (rb_try_to_discard(cpu_buffer, event))
  2528. goto out;
  2529. /*
  2530. * The commit is still visible by the reader, so we
  2531. * must still update the timestamp.
  2532. */
  2533. rb_update_write_stamp(cpu_buffer, event);
  2534. out:
  2535. rb_end_commit(cpu_buffer);
  2536. trace_recursive_unlock();
  2537. preempt_enable_notrace();
  2538. }
  2539. EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
  2540. /**
  2541. * ring_buffer_write - write data to the buffer without reserving
  2542. * @buffer: The ring buffer to write to.
  2543. * @length: The length of the data being written (excluding the event header)
  2544. * @data: The data to write to the buffer.
  2545. *
  2546. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  2547. * one function. If you already have the data to write to the buffer, it
  2548. * may be easier to simply call this function.
  2549. *
  2550. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  2551. * and not the length of the event which would hold the header.
  2552. */
  2553. int ring_buffer_write(struct ring_buffer *buffer,
  2554. unsigned long length,
  2555. void *data)
  2556. {
  2557. struct ring_buffer_per_cpu *cpu_buffer;
  2558. struct ring_buffer_event *event;
  2559. void *body;
  2560. int ret = -EBUSY;
  2561. int cpu;
  2562. if (ring_buffer_flags != RB_BUFFERS_ON)
  2563. return -EBUSY;
  2564. preempt_disable_notrace();
  2565. if (atomic_read(&buffer->record_disabled))
  2566. goto out;
  2567. cpu = raw_smp_processor_id();
  2568. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2569. goto out;
  2570. cpu_buffer = buffer->buffers[cpu];
  2571. if (atomic_read(&cpu_buffer->record_disabled))
  2572. goto out;
  2573. if (length > BUF_MAX_DATA_SIZE)
  2574. goto out;
  2575. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2576. if (!event)
  2577. goto out;
  2578. body = rb_event_data(event);
  2579. memcpy(body, data, length);
  2580. rb_commit(cpu_buffer, event);
  2581. rb_wakeups(buffer, cpu_buffer);
  2582. ret = 0;
  2583. out:
  2584. preempt_enable_notrace();
  2585. return ret;
  2586. }
  2587. EXPORT_SYMBOL_GPL(ring_buffer_write);
  2588. static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  2589. {
  2590. struct buffer_page *reader = cpu_buffer->reader_page;
  2591. struct buffer_page *head = rb_set_head_page(cpu_buffer);
  2592. struct buffer_page *commit = cpu_buffer->commit_page;
  2593. /* In case of error, head will be NULL */
  2594. if (unlikely(!head))
  2595. return 1;
  2596. return reader->read == rb_page_commit(reader) &&
  2597. (commit == reader ||
  2598. (commit == head &&
  2599. head->read == rb_page_commit(commit)));
  2600. }
  2601. /**
  2602. * ring_buffer_record_disable - stop all writes into the buffer
  2603. * @buffer: The ring buffer to stop writes to.
  2604. *
  2605. * This prevents all writes to the buffer. Any attempt to write
  2606. * to the buffer after this will fail and return NULL.
  2607. *
  2608. * The caller should call synchronize_sched() after this.
  2609. */
  2610. void ring_buffer_record_disable(struct ring_buffer *buffer)
  2611. {
  2612. atomic_inc(&buffer->record_disabled);
  2613. }
  2614. EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
  2615. /**
  2616. * ring_buffer_record_enable - enable writes to the buffer
  2617. * @buffer: The ring buffer to enable writes
  2618. *
  2619. * Note, multiple disables will need the same number of enables
  2620. * to truly enable the writing (much like preempt_disable).
  2621. */
  2622. void ring_buffer_record_enable(struct ring_buffer *buffer)
  2623. {
  2624. atomic_dec(&buffer->record_disabled);
  2625. }
  2626. EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
  2627. /**
  2628. * ring_buffer_record_off - stop all writes into the buffer
  2629. * @buffer: The ring buffer to stop writes to.
  2630. *
  2631. * This prevents all writes to the buffer. Any attempt to write
  2632. * to the buffer after this will fail and return NULL.
  2633. *
  2634. * This is different than ring_buffer_record_disable() as
  2635. * it works like an on/off switch, where as the disable() version
  2636. * must be paired with a enable().
  2637. */
  2638. void ring_buffer_record_off(struct ring_buffer *buffer)
  2639. {
  2640. unsigned int rd;
  2641. unsigned int new_rd;
  2642. do {
  2643. rd = atomic_read(&buffer->record_disabled);
  2644. new_rd = rd | RB_BUFFER_OFF;
  2645. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2646. }
  2647. EXPORT_SYMBOL_GPL(ring_buffer_record_off);
  2648. /**
  2649. * ring_buffer_record_on - restart writes into the buffer
  2650. * @buffer: The ring buffer to start writes to.
  2651. *
  2652. * This enables all writes to the buffer that was disabled by
  2653. * ring_buffer_record_off().
  2654. *
  2655. * This is different than ring_buffer_record_enable() as
  2656. * it works like an on/off switch, where as the enable() version
  2657. * must be paired with a disable().
  2658. */
  2659. void ring_buffer_record_on(struct ring_buffer *buffer)
  2660. {
  2661. unsigned int rd;
  2662. unsigned int new_rd;
  2663. do {
  2664. rd = atomic_read(&buffer->record_disabled);
  2665. new_rd = rd & ~RB_BUFFER_OFF;
  2666. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2667. }
  2668. EXPORT_SYMBOL_GPL(ring_buffer_record_on);
  2669. /**
  2670. * ring_buffer_record_is_on - return true if the ring buffer can write
  2671. * @buffer: The ring buffer to see if write is enabled
  2672. *
  2673. * Returns true if the ring buffer is in a state that it accepts writes.
  2674. */
  2675. int ring_buffer_record_is_on(struct ring_buffer *buffer)
  2676. {
  2677. return !atomic_read(&buffer->record_disabled);
  2678. }
  2679. /**
  2680. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  2681. * @buffer: The ring buffer to stop writes to.
  2682. * @cpu: The CPU buffer to stop
  2683. *
  2684. * This prevents all writes to the buffer. Any attempt to write
  2685. * to the buffer after this will fail and return NULL.
  2686. *
  2687. * The caller should call synchronize_sched() after this.
  2688. */
  2689. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  2690. {
  2691. struct ring_buffer_per_cpu *cpu_buffer;
  2692. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2693. return;
  2694. cpu_buffer = buffer->buffers[cpu];
  2695. atomic_inc(&cpu_buffer->record_disabled);
  2696. }
  2697. EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
  2698. /**
  2699. * ring_buffer_record_enable_cpu - enable writes to the buffer
  2700. * @buffer: The ring buffer to enable writes
  2701. * @cpu: The CPU to enable.
  2702. *
  2703. * Note, multiple disables will need the same number of enables
  2704. * to truly enable the writing (much like preempt_disable).
  2705. */
  2706. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  2707. {
  2708. struct ring_buffer_per_cpu *cpu_buffer;
  2709. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2710. return;
  2711. cpu_buffer = buffer->buffers[cpu];
  2712. atomic_dec(&cpu_buffer->record_disabled);
  2713. }
  2714. EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
  2715. /*
  2716. * The total entries in the ring buffer is the running counter
  2717. * of entries entered into the ring buffer, minus the sum of
  2718. * the entries read from the ring buffer and the number of
  2719. * entries that were overwritten.
  2720. */
  2721. static inline unsigned long
  2722. rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
  2723. {
  2724. return local_read(&cpu_buffer->entries) -
  2725. (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
  2726. }
  2727. /**
  2728. * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
  2729. * @buffer: The ring buffer
  2730. * @cpu: The per CPU buffer to read from.
  2731. */
  2732. u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
  2733. {
  2734. unsigned long flags;
  2735. struct ring_buffer_per_cpu *cpu_buffer;
  2736. struct buffer_page *bpage;
  2737. u64 ret = 0;
  2738. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2739. return 0;
  2740. cpu_buffer = buffer->buffers[cpu];
  2741. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2742. /*
  2743. * if the tail is on reader_page, oldest time stamp is on the reader
  2744. * page
  2745. */
  2746. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  2747. bpage = cpu_buffer->reader_page;
  2748. else
  2749. bpage = rb_set_head_page(cpu_buffer);
  2750. if (bpage)
  2751. ret = bpage->page->time_stamp;
  2752. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2753. return ret;
  2754. }
  2755. EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
  2756. /**
  2757. * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
  2758. * @buffer: The ring buffer
  2759. * @cpu: The per CPU buffer to read from.
  2760. */
  2761. unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
  2762. {
  2763. struct ring_buffer_per_cpu *cpu_buffer;
  2764. unsigned long ret;
  2765. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2766. return 0;
  2767. cpu_buffer = buffer->buffers[cpu];
  2768. ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
  2769. return ret;
  2770. }
  2771. EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
  2772. /**
  2773. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  2774. * @buffer: The ring buffer
  2775. * @cpu: The per CPU buffer to get the entries from.
  2776. */
  2777. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  2778. {
  2779. struct ring_buffer_per_cpu *cpu_buffer;
  2780. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2781. return 0;
  2782. cpu_buffer = buffer->buffers[cpu];
  2783. return rb_num_of_entries(cpu_buffer);
  2784. }
  2785. EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
  2786. /**
  2787. * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
  2788. * buffer wrapping around (only if RB_FL_OVERWRITE is on).
  2789. * @buffer: The ring buffer
  2790. * @cpu: The per CPU buffer to get the number of overruns from
  2791. */
  2792. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2793. {
  2794. struct ring_buffer_per_cpu *cpu_buffer;
  2795. unsigned long ret;
  2796. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2797. return 0;
  2798. cpu_buffer = buffer->buffers[cpu];
  2799. ret = local_read(&cpu_buffer->overrun);
  2800. return ret;
  2801. }
  2802. EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
  2803. /**
  2804. * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
  2805. * commits failing due to the buffer wrapping around while there are uncommitted
  2806. * events, such as during an interrupt storm.
  2807. * @buffer: The ring buffer
  2808. * @cpu: The per CPU buffer to get the number of overruns from
  2809. */
  2810. unsigned long
  2811. ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2812. {
  2813. struct ring_buffer_per_cpu *cpu_buffer;
  2814. unsigned long ret;
  2815. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2816. return 0;
  2817. cpu_buffer = buffer->buffers[cpu];
  2818. ret = local_read(&cpu_buffer->commit_overrun);
  2819. return ret;
  2820. }
  2821. EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
  2822. /**
  2823. * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
  2824. * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
  2825. * @buffer: The ring buffer
  2826. * @cpu: The per CPU buffer to get the number of overruns from
  2827. */
  2828. unsigned long
  2829. ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
  2830. {
  2831. struct ring_buffer_per_cpu *cpu_buffer;
  2832. unsigned long ret;
  2833. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2834. return 0;
  2835. cpu_buffer = buffer->buffers[cpu];
  2836. ret = local_read(&cpu_buffer->dropped_events);
  2837. return ret;
  2838. }
  2839. EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
  2840. /**
  2841. * ring_buffer_read_events_cpu - get the number of events successfully read
  2842. * @buffer: The ring buffer
  2843. * @cpu: The per CPU buffer to get the number of events read
  2844. */
  2845. unsigned long
  2846. ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
  2847. {
  2848. struct ring_buffer_per_cpu *cpu_buffer;
  2849. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2850. return 0;
  2851. cpu_buffer = buffer->buffers[cpu];
  2852. return cpu_buffer->read;
  2853. }
  2854. EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
  2855. /**
  2856. * ring_buffer_entries - get the number of entries in a buffer
  2857. * @buffer: The ring buffer
  2858. *
  2859. * Returns the total number of entries in the ring buffer
  2860. * (all CPU entries)
  2861. */
  2862. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  2863. {
  2864. struct ring_buffer_per_cpu *cpu_buffer;
  2865. unsigned long entries = 0;
  2866. int cpu;
  2867. /* if you care about this being correct, lock the buffer */
  2868. for_each_buffer_cpu(buffer, cpu) {
  2869. cpu_buffer = buffer->buffers[cpu];
  2870. entries += rb_num_of_entries(cpu_buffer);
  2871. }
  2872. return entries;
  2873. }
  2874. EXPORT_SYMBOL_GPL(ring_buffer_entries);
  2875. /**
  2876. * ring_buffer_overruns - get the number of overruns in buffer
  2877. * @buffer: The ring buffer
  2878. *
  2879. * Returns the total number of overruns in the ring buffer
  2880. * (all CPU entries)
  2881. */
  2882. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  2883. {
  2884. struct ring_buffer_per_cpu *cpu_buffer;
  2885. unsigned long overruns = 0;
  2886. int cpu;
  2887. /* if you care about this being correct, lock the buffer */
  2888. for_each_buffer_cpu(buffer, cpu) {
  2889. cpu_buffer = buffer->buffers[cpu];
  2890. overruns += local_read(&cpu_buffer->overrun);
  2891. }
  2892. return overruns;
  2893. }
  2894. EXPORT_SYMBOL_GPL(ring_buffer_overruns);
  2895. static void rb_iter_reset(struct ring_buffer_iter *iter)
  2896. {
  2897. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  2898. /* Iterator usage is expected to have record disabled */
  2899. iter->head_page = cpu_buffer->reader_page;
  2900. iter->head = cpu_buffer->reader_page->read;
  2901. iter->cache_reader_page = iter->head_page;
  2902. iter->cache_read = cpu_buffer->read;
  2903. if (iter->head)
  2904. iter->read_stamp = cpu_buffer->read_stamp;
  2905. else
  2906. iter->read_stamp = iter->head_page->page->time_stamp;
  2907. }
  2908. /**
  2909. * ring_buffer_iter_reset - reset an iterator
  2910. * @iter: The iterator to reset
  2911. *
  2912. * Resets the iterator, so that it will start from the beginning
  2913. * again.
  2914. */
  2915. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  2916. {
  2917. struct ring_buffer_per_cpu *cpu_buffer;
  2918. unsigned long flags;
  2919. if (!iter)
  2920. return;
  2921. cpu_buffer = iter->cpu_buffer;
  2922. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2923. rb_iter_reset(iter);
  2924. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2925. }
  2926. EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
  2927. /**
  2928. * ring_buffer_iter_empty - check if an iterator has no more to read
  2929. * @iter: The iterator to check
  2930. */
  2931. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  2932. {
  2933. struct ring_buffer_per_cpu *cpu_buffer;
  2934. cpu_buffer = iter->cpu_buffer;
  2935. return iter->head_page == cpu_buffer->commit_page &&
  2936. iter->head == rb_commit_index(cpu_buffer);
  2937. }
  2938. EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
  2939. static void
  2940. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2941. struct ring_buffer_event *event)
  2942. {
  2943. u64 delta;
  2944. switch (event->type_len) {
  2945. case RINGBUF_TYPE_PADDING:
  2946. return;
  2947. case RINGBUF_TYPE_TIME_EXTEND:
  2948. delta = event->array[0];
  2949. delta <<= TS_SHIFT;
  2950. delta += event->time_delta;
  2951. cpu_buffer->read_stamp += delta;
  2952. return;
  2953. case RINGBUF_TYPE_TIME_STAMP:
  2954. /* FIXME: not implemented */
  2955. return;
  2956. case RINGBUF_TYPE_DATA:
  2957. cpu_buffer->read_stamp += event->time_delta;
  2958. return;
  2959. default:
  2960. BUG();
  2961. }
  2962. return;
  2963. }
  2964. static void
  2965. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  2966. struct ring_buffer_event *event)
  2967. {
  2968. u64 delta;
  2969. switch (event->type_len) {
  2970. case RINGBUF_TYPE_PADDING:
  2971. return;
  2972. case RINGBUF_TYPE_TIME_EXTEND:
  2973. delta = event->array[0];
  2974. delta <<= TS_SHIFT;
  2975. delta += event->time_delta;
  2976. iter->read_stamp += delta;
  2977. return;
  2978. case RINGBUF_TYPE_TIME_STAMP:
  2979. /* FIXME: not implemented */
  2980. return;
  2981. case RINGBUF_TYPE_DATA:
  2982. iter->read_stamp += event->time_delta;
  2983. return;
  2984. default:
  2985. BUG();
  2986. }
  2987. return;
  2988. }
  2989. static struct buffer_page *
  2990. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  2991. {
  2992. struct buffer_page *reader = NULL;
  2993. unsigned long overwrite;
  2994. unsigned long flags;
  2995. int nr_loops = 0;
  2996. int ret;
  2997. local_irq_save(flags);
  2998. arch_spin_lock(&cpu_buffer->lock);
  2999. again:
  3000. /*
  3001. * This should normally only loop twice. But because the
  3002. * start of the reader inserts an empty page, it causes
  3003. * a case where we will loop three times. There should be no
  3004. * reason to loop four times (that I know of).
  3005. */
  3006. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  3007. reader = NULL;
  3008. goto out;
  3009. }
  3010. reader = cpu_buffer->reader_page;
  3011. /* If there's more to read, return this page */
  3012. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  3013. goto out;
  3014. /* Never should we have an index greater than the size */
  3015. if (RB_WARN_ON(cpu_buffer,
  3016. cpu_buffer->reader_page->read > rb_page_size(reader)))
  3017. goto out;
  3018. /* check if we caught up to the tail */
  3019. reader = NULL;
  3020. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  3021. goto out;
  3022. /* Don't bother swapping if the ring buffer is empty */
  3023. if (rb_num_of_entries(cpu_buffer) == 0)
  3024. goto out;
  3025. /*
  3026. * Reset the reader page to size zero.
  3027. */
  3028. local_set(&cpu_buffer->reader_page->write, 0);
  3029. local_set(&cpu_buffer->reader_page->entries, 0);
  3030. local_set(&cpu_buffer->reader_page->page->commit, 0);
  3031. cpu_buffer->reader_page->real_end = 0;
  3032. spin:
  3033. /*
  3034. * Splice the empty reader page into the list around the head.
  3035. */
  3036. reader = rb_set_head_page(cpu_buffer);
  3037. if (!reader)
  3038. goto out;
  3039. cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
  3040. cpu_buffer->reader_page->list.prev = reader->list.prev;
  3041. /*
  3042. * cpu_buffer->pages just needs to point to the buffer, it
  3043. * has no specific buffer page to point to. Lets move it out
  3044. * of our way so we don't accidentally swap it.
  3045. */
  3046. cpu_buffer->pages = reader->list.prev;
  3047. /* The reader page will be pointing to the new head */
  3048. rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
  3049. /*
  3050. * We want to make sure we read the overruns after we set up our
  3051. * pointers to the next object. The writer side does a
  3052. * cmpxchg to cross pages which acts as the mb on the writer
  3053. * side. Note, the reader will constantly fail the swap
  3054. * while the writer is updating the pointers, so this
  3055. * guarantees that the overwrite recorded here is the one we
  3056. * want to compare with the last_overrun.
  3057. */
  3058. smp_mb();
  3059. overwrite = local_read(&(cpu_buffer->overrun));
  3060. /*
  3061. * Here's the tricky part.
  3062. *
  3063. * We need to move the pointer past the header page.
  3064. * But we can only do that if a writer is not currently
  3065. * moving it. The page before the header page has the
  3066. * flag bit '1' set if it is pointing to the page we want.
  3067. * but if the writer is in the process of moving it
  3068. * than it will be '2' or already moved '0'.
  3069. */
  3070. ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
  3071. /*
  3072. * If we did not convert it, then we must try again.
  3073. */
  3074. if (!ret)
  3075. goto spin;
  3076. /*
  3077. * Yeah! We succeeded in replacing the page.
  3078. *
  3079. * Now make the new head point back to the reader page.
  3080. */
  3081. rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
  3082. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  3083. /* Finally update the reader page to the new head */
  3084. cpu_buffer->reader_page = reader;
  3085. rb_reset_reader_page(cpu_buffer);
  3086. if (overwrite != cpu_buffer->last_overrun) {
  3087. cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
  3088. cpu_buffer->last_overrun = overwrite;
  3089. }
  3090. goto again;
  3091. out:
  3092. arch_spin_unlock(&cpu_buffer->lock);
  3093. local_irq_restore(flags);
  3094. return reader;
  3095. }
  3096. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  3097. {
  3098. struct ring_buffer_event *event;
  3099. struct buffer_page *reader;
  3100. unsigned length;
  3101. reader = rb_get_reader_page(cpu_buffer);
  3102. /* This function should not be called when buffer is empty */
  3103. if (RB_WARN_ON(cpu_buffer, !reader))
  3104. return;
  3105. event = rb_reader_event(cpu_buffer);
  3106. if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  3107. cpu_buffer->read++;
  3108. rb_update_read_stamp(cpu_buffer, event);
  3109. length = rb_event_length(event);
  3110. cpu_buffer->reader_page->read += length;
  3111. }
  3112. static void rb_advance_iter(struct ring_buffer_iter *iter)
  3113. {
  3114. struct ring_buffer_per_cpu *cpu_buffer;
  3115. struct ring_buffer_event *event;
  3116. unsigned length;
  3117. cpu_buffer = iter->cpu_buffer;
  3118. /*
  3119. * Check if we are at the end of the buffer.
  3120. */
  3121. if (iter->head >= rb_page_size(iter->head_page)) {
  3122. /* discarded commits can make the page empty */
  3123. if (iter->head_page == cpu_buffer->commit_page)
  3124. return;
  3125. rb_inc_iter(iter);
  3126. return;
  3127. }
  3128. event = rb_iter_head_event(iter);
  3129. length = rb_event_length(event);
  3130. /*
  3131. * This should not be called to advance the header if we are
  3132. * at the tail of the buffer.
  3133. */
  3134. if (RB_WARN_ON(cpu_buffer,
  3135. (iter->head_page == cpu_buffer->commit_page) &&
  3136. (iter->head + length > rb_commit_index(cpu_buffer))))
  3137. return;
  3138. rb_update_iter_read_stamp(iter, event);
  3139. iter->head += length;
  3140. /* check for end of page padding */
  3141. if ((iter->head >= rb_page_size(iter->head_page)) &&
  3142. (iter->head_page != cpu_buffer->commit_page))
  3143. rb_inc_iter(iter);
  3144. }
  3145. static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
  3146. {
  3147. return cpu_buffer->lost_events;
  3148. }
  3149. static struct ring_buffer_event *
  3150. rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
  3151. unsigned long *lost_events)
  3152. {
  3153. struct ring_buffer_event *event;
  3154. struct buffer_page *reader;
  3155. int nr_loops = 0;
  3156. again:
  3157. /*
  3158. * We repeat when a time extend is encountered.
  3159. * Since the time extend is always attached to a data event,
  3160. * we should never loop more than once.
  3161. * (We never hit the following condition more than twice).
  3162. */
  3163. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
  3164. return NULL;
  3165. reader = rb_get_reader_page(cpu_buffer);
  3166. if (!reader)
  3167. return NULL;
  3168. event = rb_reader_event(cpu_buffer);
  3169. switch (event->type_len) {
  3170. case RINGBUF_TYPE_PADDING:
  3171. if (rb_null_event(event))
  3172. RB_WARN_ON(cpu_buffer, 1);
  3173. /*
  3174. * Because the writer could be discarding every
  3175. * event it creates (which would probably be bad)
  3176. * if we were to go back to "again" then we may never
  3177. * catch up, and will trigger the warn on, or lock
  3178. * the box. Return the padding, and we will release
  3179. * the current locks, and try again.
  3180. */
  3181. return event;
  3182. case RINGBUF_TYPE_TIME_EXTEND:
  3183. /* Internal data, OK to advance */
  3184. rb_advance_reader(cpu_buffer);
  3185. goto again;
  3186. case RINGBUF_TYPE_TIME_STAMP:
  3187. /* FIXME: not implemented */
  3188. rb_advance_reader(cpu_buffer);
  3189. goto again;
  3190. case RINGBUF_TYPE_DATA:
  3191. if (ts) {
  3192. *ts = cpu_buffer->read_stamp + event->time_delta;
  3193. ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
  3194. cpu_buffer->cpu, ts);
  3195. }
  3196. if (lost_events)
  3197. *lost_events = rb_lost_events(cpu_buffer);
  3198. return event;
  3199. default:
  3200. BUG();
  3201. }
  3202. return NULL;
  3203. }
  3204. EXPORT_SYMBOL_GPL(ring_buffer_peek);
  3205. static struct ring_buffer_event *
  3206. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3207. {
  3208. struct ring_buffer *buffer;
  3209. struct ring_buffer_per_cpu *cpu_buffer;
  3210. struct ring_buffer_event *event;
  3211. int nr_loops = 0;
  3212. cpu_buffer = iter->cpu_buffer;
  3213. buffer = cpu_buffer->buffer;
  3214. /*
  3215. * Check if someone performed a consuming read to
  3216. * the buffer. A consuming read invalidates the iterator
  3217. * and we need to reset the iterator in this case.
  3218. */
  3219. if (unlikely(iter->cache_read != cpu_buffer->read ||
  3220. iter->cache_reader_page != cpu_buffer->reader_page))
  3221. rb_iter_reset(iter);
  3222. again:
  3223. if (ring_buffer_iter_empty(iter))
  3224. return NULL;
  3225. /*
  3226. * We repeat when a time extend is encountered or we hit
  3227. * the end of the page. Since the time extend is always attached
  3228. * to a data event, we should never loop more than three times.
  3229. * Once for going to next page, once on time extend, and
  3230. * finally once to get the event.
  3231. * (We never hit the following condition more than thrice).
  3232. */
  3233. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
  3234. return NULL;
  3235. if (rb_per_cpu_empty(cpu_buffer))
  3236. return NULL;
  3237. if (iter->head >= rb_page_size(iter->head_page)) {
  3238. rb_inc_iter(iter);
  3239. goto again;
  3240. }
  3241. event = rb_iter_head_event(iter);
  3242. switch (event->type_len) {
  3243. case RINGBUF_TYPE_PADDING:
  3244. if (rb_null_event(event)) {
  3245. rb_inc_iter(iter);
  3246. goto again;
  3247. }
  3248. rb_advance_iter(iter);
  3249. return event;
  3250. case RINGBUF_TYPE_TIME_EXTEND:
  3251. /* Internal data, OK to advance */
  3252. rb_advance_iter(iter);
  3253. goto again;
  3254. case RINGBUF_TYPE_TIME_STAMP:
  3255. /* FIXME: not implemented */
  3256. rb_advance_iter(iter);
  3257. goto again;
  3258. case RINGBUF_TYPE_DATA:
  3259. if (ts) {
  3260. *ts = iter->read_stamp + event->time_delta;
  3261. ring_buffer_normalize_time_stamp(buffer,
  3262. cpu_buffer->cpu, ts);
  3263. }
  3264. return event;
  3265. default:
  3266. BUG();
  3267. }
  3268. return NULL;
  3269. }
  3270. EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
  3271. static inline int rb_ok_to_lock(void)
  3272. {
  3273. /*
  3274. * If an NMI die dumps out the content of the ring buffer
  3275. * do not grab locks. We also permanently disable the ring
  3276. * buffer too. A one time deal is all you get from reading
  3277. * the ring buffer from an NMI.
  3278. */
  3279. if (likely(!in_nmi()))
  3280. return 1;
  3281. tracing_off_permanent();
  3282. return 0;
  3283. }
  3284. /**
  3285. * ring_buffer_peek - peek at the next event to be read
  3286. * @buffer: The ring buffer to read
  3287. * @cpu: The cpu to peak at
  3288. * @ts: The timestamp counter of this event.
  3289. * @lost_events: a variable to store if events were lost (may be NULL)
  3290. *
  3291. * This will return the event that will be read next, but does
  3292. * not consume the data.
  3293. */
  3294. struct ring_buffer_event *
  3295. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
  3296. unsigned long *lost_events)
  3297. {
  3298. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3299. struct ring_buffer_event *event;
  3300. unsigned long flags;
  3301. int dolock;
  3302. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3303. return NULL;
  3304. dolock = rb_ok_to_lock();
  3305. again:
  3306. local_irq_save(flags);
  3307. if (dolock)
  3308. raw_spin_lock(&cpu_buffer->reader_lock);
  3309. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3310. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3311. rb_advance_reader(cpu_buffer);
  3312. if (dolock)
  3313. raw_spin_unlock(&cpu_buffer->reader_lock);
  3314. local_irq_restore(flags);
  3315. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3316. goto again;
  3317. return event;
  3318. }
  3319. /**
  3320. * ring_buffer_iter_peek - peek at the next event to be read
  3321. * @iter: The ring buffer iterator
  3322. * @ts: The timestamp counter of this event.
  3323. *
  3324. * This will return the event that will be read next, but does
  3325. * not increment the iterator.
  3326. */
  3327. struct ring_buffer_event *
  3328. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3329. {
  3330. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3331. struct ring_buffer_event *event;
  3332. unsigned long flags;
  3333. again:
  3334. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3335. event = rb_iter_peek(iter, ts);
  3336. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3337. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3338. goto again;
  3339. return event;
  3340. }
  3341. /**
  3342. * ring_buffer_consume - return an event and consume it
  3343. * @buffer: The ring buffer to get the next event from
  3344. * @cpu: the cpu to read the buffer from
  3345. * @ts: a variable to store the timestamp (may be NULL)
  3346. * @lost_events: a variable to store if events were lost (may be NULL)
  3347. *
  3348. * Returns the next event in the ring buffer, and that event is consumed.
  3349. * Meaning, that sequential reads will keep returning a different event,
  3350. * and eventually empty the ring buffer if the producer is slower.
  3351. */
  3352. struct ring_buffer_event *
  3353. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
  3354. unsigned long *lost_events)
  3355. {
  3356. struct ring_buffer_per_cpu *cpu_buffer;
  3357. struct ring_buffer_event *event = NULL;
  3358. unsigned long flags;
  3359. int dolock;
  3360. dolock = rb_ok_to_lock();
  3361. again:
  3362. /* might be called in atomic */
  3363. preempt_disable();
  3364. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3365. goto out;
  3366. cpu_buffer = buffer->buffers[cpu];
  3367. local_irq_save(flags);
  3368. if (dolock)
  3369. raw_spin_lock(&cpu_buffer->reader_lock);
  3370. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3371. if (event) {
  3372. cpu_buffer->lost_events = 0;
  3373. rb_advance_reader(cpu_buffer);
  3374. }
  3375. if (dolock)
  3376. raw_spin_unlock(&cpu_buffer->reader_lock);
  3377. local_irq_restore(flags);
  3378. out:
  3379. preempt_enable();
  3380. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3381. goto again;
  3382. return event;
  3383. }
  3384. EXPORT_SYMBOL_GPL(ring_buffer_consume);
  3385. /**
  3386. * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
  3387. * @buffer: The ring buffer to read from
  3388. * @cpu: The cpu buffer to iterate over
  3389. *
  3390. * This performs the initial preparations necessary to iterate
  3391. * through the buffer. Memory is allocated, buffer recording
  3392. * is disabled, and the iterator pointer is returned to the caller.
  3393. *
  3394. * Disabling buffer recordng prevents the reading from being
  3395. * corrupted. This is not a consuming read, so a producer is not
  3396. * expected.
  3397. *
  3398. * After a sequence of ring_buffer_read_prepare calls, the user is
  3399. * expected to make at least one call to ring_buffer_read_prepare_sync.
  3400. * Afterwards, ring_buffer_read_start is invoked to get things going
  3401. * for real.
  3402. *
  3403. * This overall must be paired with ring_buffer_read_finish.
  3404. */
  3405. struct ring_buffer_iter *
  3406. ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
  3407. {
  3408. struct ring_buffer_per_cpu *cpu_buffer;
  3409. struct ring_buffer_iter *iter;
  3410. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3411. return NULL;
  3412. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  3413. if (!iter)
  3414. return NULL;
  3415. cpu_buffer = buffer->buffers[cpu];
  3416. iter->cpu_buffer = cpu_buffer;
  3417. atomic_inc(&buffer->resize_disabled);
  3418. atomic_inc(&cpu_buffer->record_disabled);
  3419. return iter;
  3420. }
  3421. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
  3422. /**
  3423. * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
  3424. *
  3425. * All previously invoked ring_buffer_read_prepare calls to prepare
  3426. * iterators will be synchronized. Afterwards, read_buffer_read_start
  3427. * calls on those iterators are allowed.
  3428. */
  3429. void
  3430. ring_buffer_read_prepare_sync(void)
  3431. {
  3432. synchronize_sched();
  3433. }
  3434. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
  3435. /**
  3436. * ring_buffer_read_start - start a non consuming read of the buffer
  3437. * @iter: The iterator returned by ring_buffer_read_prepare
  3438. *
  3439. * This finalizes the startup of an iteration through the buffer.
  3440. * The iterator comes from a call to ring_buffer_read_prepare and
  3441. * an intervening ring_buffer_read_prepare_sync must have been
  3442. * performed.
  3443. *
  3444. * Must be paired with ring_buffer_read_finish.
  3445. */
  3446. void
  3447. ring_buffer_read_start(struct ring_buffer_iter *iter)
  3448. {
  3449. struct ring_buffer_per_cpu *cpu_buffer;
  3450. unsigned long flags;
  3451. if (!iter)
  3452. return;
  3453. cpu_buffer = iter->cpu_buffer;
  3454. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3455. arch_spin_lock(&cpu_buffer->lock);
  3456. rb_iter_reset(iter);
  3457. arch_spin_unlock(&cpu_buffer->lock);
  3458. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3459. }
  3460. EXPORT_SYMBOL_GPL(ring_buffer_read_start);
  3461. /**
  3462. * ring_buffer_read_finish - finish reading the iterator of the buffer
  3463. * @iter: The iterator retrieved by ring_buffer_start
  3464. *
  3465. * This re-enables the recording to the buffer, and frees the
  3466. * iterator.
  3467. */
  3468. void
  3469. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  3470. {
  3471. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3472. unsigned long flags;
  3473. /*
  3474. * Ring buffer is disabled from recording, here's a good place
  3475. * to check the integrity of the ring buffer.
  3476. * Must prevent readers from trying to read, as the check
  3477. * clears the HEAD page and readers require it.
  3478. */
  3479. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3480. rb_check_pages(cpu_buffer);
  3481. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3482. atomic_dec(&cpu_buffer->record_disabled);
  3483. atomic_dec(&cpu_buffer->buffer->resize_disabled);
  3484. kfree(iter);
  3485. }
  3486. EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
  3487. /**
  3488. * ring_buffer_read - read the next item in the ring buffer by the iterator
  3489. * @iter: The ring buffer iterator
  3490. * @ts: The time stamp of the event read.
  3491. *
  3492. * This reads the next event in the ring buffer and increments the iterator.
  3493. */
  3494. struct ring_buffer_event *
  3495. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  3496. {
  3497. struct ring_buffer_event *event;
  3498. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3499. unsigned long flags;
  3500. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3501. again:
  3502. event = rb_iter_peek(iter, ts);
  3503. if (!event)
  3504. goto out;
  3505. if (event->type_len == RINGBUF_TYPE_PADDING)
  3506. goto again;
  3507. rb_advance_iter(iter);
  3508. out:
  3509. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3510. return event;
  3511. }
  3512. EXPORT_SYMBOL_GPL(ring_buffer_read);
  3513. /**
  3514. * ring_buffer_size - return the size of the ring buffer (in bytes)
  3515. * @buffer: The ring buffer.
  3516. */
  3517. unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
  3518. {
  3519. /*
  3520. * Earlier, this method returned
  3521. * BUF_PAGE_SIZE * buffer->nr_pages
  3522. * Since the nr_pages field is now removed, we have converted this to
  3523. * return the per cpu buffer value.
  3524. */
  3525. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3526. return 0;
  3527. return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
  3528. }
  3529. EXPORT_SYMBOL_GPL(ring_buffer_size);
  3530. static void
  3531. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  3532. {
  3533. rb_head_page_deactivate(cpu_buffer);
  3534. cpu_buffer->head_page
  3535. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  3536. local_set(&cpu_buffer->head_page->write, 0);
  3537. local_set(&cpu_buffer->head_page->entries, 0);
  3538. local_set(&cpu_buffer->head_page->page->commit, 0);
  3539. cpu_buffer->head_page->read = 0;
  3540. cpu_buffer->tail_page = cpu_buffer->head_page;
  3541. cpu_buffer->commit_page = cpu_buffer->head_page;
  3542. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  3543. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  3544. local_set(&cpu_buffer->reader_page->write, 0);
  3545. local_set(&cpu_buffer->reader_page->entries, 0);
  3546. local_set(&cpu_buffer->reader_page->page->commit, 0);
  3547. cpu_buffer->reader_page->read = 0;
  3548. local_set(&cpu_buffer->entries_bytes, 0);
  3549. local_set(&cpu_buffer->overrun, 0);
  3550. local_set(&cpu_buffer->commit_overrun, 0);
  3551. local_set(&cpu_buffer->dropped_events, 0);
  3552. local_set(&cpu_buffer->entries, 0);
  3553. local_set(&cpu_buffer->committing, 0);
  3554. local_set(&cpu_buffer->commits, 0);
  3555. cpu_buffer->read = 0;
  3556. cpu_buffer->read_bytes = 0;
  3557. cpu_buffer->write_stamp = 0;
  3558. cpu_buffer->read_stamp = 0;
  3559. cpu_buffer->lost_events = 0;
  3560. cpu_buffer->last_overrun = 0;
  3561. rb_head_page_activate(cpu_buffer);
  3562. }
  3563. /**
  3564. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  3565. * @buffer: The ring buffer to reset a per cpu buffer of
  3566. * @cpu: The CPU buffer to be reset
  3567. */
  3568. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  3569. {
  3570. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3571. unsigned long flags;
  3572. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3573. return;
  3574. atomic_inc(&buffer->resize_disabled);
  3575. atomic_inc(&cpu_buffer->record_disabled);
  3576. /* Make sure all commits have finished */
  3577. synchronize_sched();
  3578. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3579. if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
  3580. goto out;
  3581. arch_spin_lock(&cpu_buffer->lock);
  3582. rb_reset_cpu(cpu_buffer);
  3583. arch_spin_unlock(&cpu_buffer->lock);
  3584. out:
  3585. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3586. atomic_dec(&cpu_buffer->record_disabled);
  3587. atomic_dec(&buffer->resize_disabled);
  3588. }
  3589. EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
  3590. /**
  3591. * ring_buffer_reset - reset a ring buffer
  3592. * @buffer: The ring buffer to reset all cpu buffers
  3593. */
  3594. void ring_buffer_reset(struct ring_buffer *buffer)
  3595. {
  3596. int cpu;
  3597. for_each_buffer_cpu(buffer, cpu)
  3598. ring_buffer_reset_cpu(buffer, cpu);
  3599. }
  3600. EXPORT_SYMBOL_GPL(ring_buffer_reset);
  3601. /**
  3602. * rind_buffer_empty - is the ring buffer empty?
  3603. * @buffer: The ring buffer to test
  3604. */
  3605. int ring_buffer_empty(struct ring_buffer *buffer)
  3606. {
  3607. struct ring_buffer_per_cpu *cpu_buffer;
  3608. unsigned long flags;
  3609. int dolock;
  3610. int cpu;
  3611. int ret;
  3612. dolock = rb_ok_to_lock();
  3613. /* yes this is racy, but if you don't like the race, lock the buffer */
  3614. for_each_buffer_cpu(buffer, cpu) {
  3615. cpu_buffer = buffer->buffers[cpu];
  3616. local_irq_save(flags);
  3617. if (dolock)
  3618. raw_spin_lock(&cpu_buffer->reader_lock);
  3619. ret = rb_per_cpu_empty(cpu_buffer);
  3620. if (dolock)
  3621. raw_spin_unlock(&cpu_buffer->reader_lock);
  3622. local_irq_restore(flags);
  3623. if (!ret)
  3624. return 0;
  3625. }
  3626. return 1;
  3627. }
  3628. EXPORT_SYMBOL_GPL(ring_buffer_empty);
  3629. /**
  3630. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  3631. * @buffer: The ring buffer
  3632. * @cpu: The CPU buffer to test
  3633. */
  3634. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  3635. {
  3636. struct ring_buffer_per_cpu *cpu_buffer;
  3637. unsigned long flags;
  3638. int dolock;
  3639. int ret;
  3640. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3641. return 1;
  3642. dolock = rb_ok_to_lock();
  3643. cpu_buffer = buffer->buffers[cpu];
  3644. local_irq_save(flags);
  3645. if (dolock)
  3646. raw_spin_lock(&cpu_buffer->reader_lock);
  3647. ret = rb_per_cpu_empty(cpu_buffer);
  3648. if (dolock)
  3649. raw_spin_unlock(&cpu_buffer->reader_lock);
  3650. local_irq_restore(flags);
  3651. return ret;
  3652. }
  3653. EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
  3654. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  3655. /**
  3656. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  3657. * @buffer_a: One buffer to swap with
  3658. * @buffer_b: The other buffer to swap with
  3659. *
  3660. * This function is useful for tracers that want to take a "snapshot"
  3661. * of a CPU buffer and has another back up buffer lying around.
  3662. * it is expected that the tracer handles the cpu buffer not being
  3663. * used at the moment.
  3664. */
  3665. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  3666. struct ring_buffer *buffer_b, int cpu)
  3667. {
  3668. struct ring_buffer_per_cpu *cpu_buffer_a;
  3669. struct ring_buffer_per_cpu *cpu_buffer_b;
  3670. int ret = -EINVAL;
  3671. if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
  3672. !cpumask_test_cpu(cpu, buffer_b->cpumask))
  3673. goto out;
  3674. cpu_buffer_a = buffer_a->buffers[cpu];
  3675. cpu_buffer_b = buffer_b->buffers[cpu];
  3676. /* At least make sure the two buffers are somewhat the same */
  3677. if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
  3678. goto out;
  3679. ret = -EAGAIN;
  3680. if (ring_buffer_flags != RB_BUFFERS_ON)
  3681. goto out;
  3682. if (atomic_read(&buffer_a->record_disabled))
  3683. goto out;
  3684. if (atomic_read(&buffer_b->record_disabled))
  3685. goto out;
  3686. if (atomic_read(&cpu_buffer_a->record_disabled))
  3687. goto out;
  3688. if (atomic_read(&cpu_buffer_b->record_disabled))
  3689. goto out;
  3690. /*
  3691. * We can't do a synchronize_sched here because this
  3692. * function can be called in atomic context.
  3693. * Normally this will be called from the same CPU as cpu.
  3694. * If not it's up to the caller to protect this.
  3695. */
  3696. atomic_inc(&cpu_buffer_a->record_disabled);
  3697. atomic_inc(&cpu_buffer_b->record_disabled);
  3698. ret = -EBUSY;
  3699. if (local_read(&cpu_buffer_a->committing))
  3700. goto out_dec;
  3701. if (local_read(&cpu_buffer_b->committing))
  3702. goto out_dec;
  3703. buffer_a->buffers[cpu] = cpu_buffer_b;
  3704. buffer_b->buffers[cpu] = cpu_buffer_a;
  3705. cpu_buffer_b->buffer = buffer_a;
  3706. cpu_buffer_a->buffer = buffer_b;
  3707. ret = 0;
  3708. out_dec:
  3709. atomic_dec(&cpu_buffer_a->record_disabled);
  3710. atomic_dec(&cpu_buffer_b->record_disabled);
  3711. out:
  3712. return ret;
  3713. }
  3714. EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
  3715. #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
  3716. /**
  3717. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  3718. * @buffer: the buffer to allocate for.
  3719. * @cpu: the cpu buffer to allocate.
  3720. *
  3721. * This function is used in conjunction with ring_buffer_read_page.
  3722. * When reading a full page from the ring buffer, these functions
  3723. * can be used to speed up the process. The calling function should
  3724. * allocate a few pages first with this function. Then when it
  3725. * needs to get pages from the ring buffer, it passes the result
  3726. * of this function into ring_buffer_read_page, which will swap
  3727. * the page that was allocated, with the read page of the buffer.
  3728. *
  3729. * Returns:
  3730. * The page allocated, or NULL on error.
  3731. */
  3732. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
  3733. {
  3734. struct buffer_data_page *bpage;
  3735. struct page *page;
  3736. page = alloc_pages_node(cpu_to_node(cpu),
  3737. GFP_KERNEL | __GFP_NORETRY, 0);
  3738. if (!page)
  3739. return NULL;
  3740. bpage = page_address(page);
  3741. rb_init_page(bpage);
  3742. return bpage;
  3743. }
  3744. EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
  3745. /**
  3746. * ring_buffer_free_read_page - free an allocated read page
  3747. * @buffer: the buffer the page was allocate for
  3748. * @data: the page to free
  3749. *
  3750. * Free a page allocated from ring_buffer_alloc_read_page.
  3751. */
  3752. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  3753. {
  3754. free_page((unsigned long)data);
  3755. }
  3756. EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
  3757. /**
  3758. * ring_buffer_read_page - extract a page from the ring buffer
  3759. * @buffer: buffer to extract from
  3760. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  3761. * @len: amount to extract
  3762. * @cpu: the cpu of the buffer to extract
  3763. * @full: should the extraction only happen when the page is full.
  3764. *
  3765. * This function will pull out a page from the ring buffer and consume it.
  3766. * @data_page must be the address of the variable that was returned
  3767. * from ring_buffer_alloc_read_page. This is because the page might be used
  3768. * to swap with a page in the ring buffer.
  3769. *
  3770. * for example:
  3771. * rpage = ring_buffer_alloc_read_page(buffer, cpu);
  3772. * if (!rpage)
  3773. * return error;
  3774. * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
  3775. * if (ret >= 0)
  3776. * process_page(rpage, ret);
  3777. *
  3778. * When @full is set, the function will not return true unless
  3779. * the writer is off the reader page.
  3780. *
  3781. * Note: it is up to the calling functions to handle sleeps and wakeups.
  3782. * The ring buffer can be used anywhere in the kernel and can not
  3783. * blindly call wake_up. The layer that uses the ring buffer must be
  3784. * responsible for that.
  3785. *
  3786. * Returns:
  3787. * >=0 if data has been transferred, returns the offset of consumed data.
  3788. * <0 if no data has been transferred.
  3789. */
  3790. int ring_buffer_read_page(struct ring_buffer *buffer,
  3791. void **data_page, size_t len, int cpu, int full)
  3792. {
  3793. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3794. struct ring_buffer_event *event;
  3795. struct buffer_data_page *bpage;
  3796. struct buffer_page *reader;
  3797. unsigned long missed_events;
  3798. unsigned long flags;
  3799. unsigned int commit;
  3800. unsigned int read;
  3801. u64 save_timestamp;
  3802. int ret = -1;
  3803. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3804. goto out;
  3805. /*
  3806. * If len is not big enough to hold the page header, then
  3807. * we can not copy anything.
  3808. */
  3809. if (len <= BUF_PAGE_HDR_SIZE)
  3810. goto out;
  3811. len -= BUF_PAGE_HDR_SIZE;
  3812. if (!data_page)
  3813. goto out;
  3814. bpage = *data_page;
  3815. if (!bpage)
  3816. goto out;
  3817. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3818. reader = rb_get_reader_page(cpu_buffer);
  3819. if (!reader)
  3820. goto out_unlock;
  3821. event = rb_reader_event(cpu_buffer);
  3822. read = reader->read;
  3823. commit = rb_page_commit(reader);
  3824. /* Check if any events were dropped */
  3825. missed_events = cpu_buffer->lost_events;
  3826. /*
  3827. * If this page has been partially read or
  3828. * if len is not big enough to read the rest of the page or
  3829. * a writer is still on the page, then
  3830. * we must copy the data from the page to the buffer.
  3831. * Otherwise, we can simply swap the page with the one passed in.
  3832. */
  3833. if (read || (len < (commit - read)) ||
  3834. cpu_buffer->reader_page == cpu_buffer->commit_page) {
  3835. struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
  3836. unsigned int rpos = read;
  3837. unsigned int pos = 0;
  3838. unsigned int size;
  3839. if (full)
  3840. goto out_unlock;
  3841. if (len > (commit - read))
  3842. len = (commit - read);
  3843. /* Always keep the time extend and data together */
  3844. size = rb_event_ts_length(event);
  3845. if (len < size)
  3846. goto out_unlock;
  3847. /* save the current timestamp, since the user will need it */
  3848. save_timestamp = cpu_buffer->read_stamp;
  3849. /* Need to copy one event at a time */
  3850. do {
  3851. /* We need the size of one event, because
  3852. * rb_advance_reader only advances by one event,
  3853. * whereas rb_event_ts_length may include the size of
  3854. * one or two events.
  3855. * We have already ensured there's enough space if this
  3856. * is a time extend. */
  3857. size = rb_event_length(event);
  3858. memcpy(bpage->data + pos, rpage->data + rpos, size);
  3859. len -= size;
  3860. rb_advance_reader(cpu_buffer);
  3861. rpos = reader->read;
  3862. pos += size;
  3863. if (rpos >= commit)
  3864. break;
  3865. event = rb_reader_event(cpu_buffer);
  3866. /* Always keep the time extend and data together */
  3867. size = rb_event_ts_length(event);
  3868. } while (len >= size);
  3869. /* update bpage */
  3870. local_set(&bpage->commit, pos);
  3871. bpage->time_stamp = save_timestamp;
  3872. /* we copied everything to the beginning */
  3873. read = 0;
  3874. } else {
  3875. /* update the entry counter */
  3876. cpu_buffer->read += rb_page_entries(reader);
  3877. cpu_buffer->read_bytes += BUF_PAGE_SIZE;
  3878. /* swap the pages */
  3879. rb_init_page(bpage);
  3880. bpage = reader->page;
  3881. reader->page = *data_page;
  3882. local_set(&reader->write, 0);
  3883. local_set(&reader->entries, 0);
  3884. reader->read = 0;
  3885. *data_page = bpage;
  3886. /*
  3887. * Use the real_end for the data size,
  3888. * This gives us a chance to store the lost events
  3889. * on the page.
  3890. */
  3891. if (reader->real_end)
  3892. local_set(&bpage->commit, reader->real_end);
  3893. }
  3894. ret = read;
  3895. cpu_buffer->lost_events = 0;
  3896. commit = local_read(&bpage->commit);
  3897. /*
  3898. * Set a flag in the commit field if we lost events
  3899. */
  3900. if (missed_events) {
  3901. /* If there is room at the end of the page to save the
  3902. * missed events, then record it there.
  3903. */
  3904. if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
  3905. memcpy(&bpage->data[commit], &missed_events,
  3906. sizeof(missed_events));
  3907. local_add(RB_MISSED_STORED, &bpage->commit);
  3908. commit += sizeof(missed_events);
  3909. }
  3910. local_add(RB_MISSED_EVENTS, &bpage->commit);
  3911. }
  3912. /*
  3913. * This page may be off to user land. Zero it out here.
  3914. */
  3915. if (commit < BUF_PAGE_SIZE)
  3916. memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
  3917. out_unlock:
  3918. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3919. out:
  3920. return ret;
  3921. }
  3922. EXPORT_SYMBOL_GPL(ring_buffer_read_page);
  3923. #ifdef CONFIG_HOTPLUG_CPU
  3924. static int rb_cpu_notify(struct notifier_block *self,
  3925. unsigned long action, void *hcpu)
  3926. {
  3927. struct ring_buffer *buffer =
  3928. container_of(self, struct ring_buffer, cpu_notify);
  3929. long cpu = (long)hcpu;
  3930. int cpu_i, nr_pages_same;
  3931. unsigned int nr_pages;
  3932. switch (action) {
  3933. case CPU_UP_PREPARE:
  3934. case CPU_UP_PREPARE_FROZEN:
  3935. if (cpumask_test_cpu(cpu, buffer->cpumask))
  3936. return NOTIFY_OK;
  3937. nr_pages = 0;
  3938. nr_pages_same = 1;
  3939. /* check if all cpu sizes are same */
  3940. for_each_buffer_cpu(buffer, cpu_i) {
  3941. /* fill in the size from first enabled cpu */
  3942. if (nr_pages == 0)
  3943. nr_pages = buffer->buffers[cpu_i]->nr_pages;
  3944. if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
  3945. nr_pages_same = 0;
  3946. break;
  3947. }
  3948. }
  3949. /* allocate minimum pages, user can later expand it */
  3950. if (!nr_pages_same)
  3951. nr_pages = 2;
  3952. buffer->buffers[cpu] =
  3953. rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  3954. if (!buffer->buffers[cpu]) {
  3955. WARN(1, "failed to allocate ring buffer on CPU %ld\n",
  3956. cpu);
  3957. return NOTIFY_OK;
  3958. }
  3959. smp_wmb();
  3960. cpumask_set_cpu(cpu, buffer->cpumask);
  3961. break;
  3962. case CPU_DOWN_PREPARE:
  3963. case CPU_DOWN_PREPARE_FROZEN:
  3964. /*
  3965. * Do nothing.
  3966. * If we were to free the buffer, then the user would
  3967. * lose any trace that was in the buffer.
  3968. */
  3969. break;
  3970. default:
  3971. break;
  3972. }
  3973. return NOTIFY_OK;
  3974. }
  3975. #endif
  3976. #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
  3977. /*
  3978. * This is a basic integrity check of the ring buffer.
  3979. * Late in the boot cycle this test will run when configured in.
  3980. * It will kick off a thread per CPU that will go into a loop
  3981. * writing to the per cpu ring buffer various sizes of data.
  3982. * Some of the data will be large items, some small.
  3983. *
  3984. * Another thread is created that goes into a spin, sending out
  3985. * IPIs to the other CPUs to also write into the ring buffer.
  3986. * this is to test the nesting ability of the buffer.
  3987. *
  3988. * Basic stats are recorded and reported. If something in the
  3989. * ring buffer should happen that's not expected, a big warning
  3990. * is displayed and all ring buffers are disabled.
  3991. */
  3992. static struct task_struct *rb_threads[NR_CPUS] __initdata;
  3993. struct rb_test_data {
  3994. struct ring_buffer *buffer;
  3995. unsigned long events;
  3996. unsigned long bytes_written;
  3997. unsigned long bytes_alloc;
  3998. unsigned long bytes_dropped;
  3999. unsigned long events_nested;
  4000. unsigned long bytes_written_nested;
  4001. unsigned long bytes_alloc_nested;
  4002. unsigned long bytes_dropped_nested;
  4003. int min_size_nested;
  4004. int max_size_nested;
  4005. int max_size;
  4006. int min_size;
  4007. int cpu;
  4008. int cnt;
  4009. };
  4010. static struct rb_test_data rb_data[NR_CPUS] __initdata;
  4011. /* 1 meg per cpu */
  4012. #define RB_TEST_BUFFER_SIZE 1048576
  4013. static char rb_string[] __initdata =
  4014. "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
  4015. "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
  4016. "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
  4017. static bool rb_test_started __initdata;
  4018. struct rb_item {
  4019. int size;
  4020. char str[];
  4021. };
  4022. static __init int rb_write_something(struct rb_test_data *data, bool nested)
  4023. {
  4024. struct ring_buffer_event *event;
  4025. struct rb_item *item;
  4026. bool started;
  4027. int event_len;
  4028. int size;
  4029. int len;
  4030. int cnt;
  4031. /* Have nested writes different that what is written */
  4032. cnt = data->cnt + (nested ? 27 : 0);
  4033. /* Multiply cnt by ~e, to make some unique increment */
  4034. size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
  4035. len = size + sizeof(struct rb_item);
  4036. started = rb_test_started;
  4037. /* read rb_test_started before checking buffer enabled */
  4038. smp_rmb();
  4039. event = ring_buffer_lock_reserve(data->buffer, len);
  4040. if (!event) {
  4041. /* Ignore dropped events before test starts. */
  4042. if (started) {
  4043. if (nested)
  4044. data->bytes_dropped += len;
  4045. else
  4046. data->bytes_dropped_nested += len;
  4047. }
  4048. return len;
  4049. }
  4050. event_len = ring_buffer_event_length(event);
  4051. if (RB_WARN_ON(data->buffer, event_len < len))
  4052. goto out;
  4053. item = ring_buffer_event_data(event);
  4054. item->size = size;
  4055. memcpy(item->str, rb_string, size);
  4056. if (nested) {
  4057. data->bytes_alloc_nested += event_len;
  4058. data->bytes_written_nested += len;
  4059. data->events_nested++;
  4060. if (!data->min_size_nested || len < data->min_size_nested)
  4061. data->min_size_nested = len;
  4062. if (len > data->max_size_nested)
  4063. data->max_size_nested = len;
  4064. } else {
  4065. data->bytes_alloc += event_len;
  4066. data->bytes_written += len;
  4067. data->events++;
  4068. if (!data->min_size || len < data->min_size)
  4069. data->max_size = len;
  4070. if (len > data->max_size)
  4071. data->max_size = len;
  4072. }
  4073. out:
  4074. ring_buffer_unlock_commit(data->buffer, event);
  4075. return 0;
  4076. }
  4077. static __init int rb_test(void *arg)
  4078. {
  4079. struct rb_test_data *data = arg;
  4080. while (!kthread_should_stop()) {
  4081. rb_write_something(data, false);
  4082. data->cnt++;
  4083. set_current_state(TASK_INTERRUPTIBLE);
  4084. /* Now sleep between a min of 100-300us and a max of 1ms */
  4085. usleep_range(((data->cnt % 3) + 1) * 100, 1000);
  4086. }
  4087. return 0;
  4088. }
  4089. static __init void rb_ipi(void *ignore)
  4090. {
  4091. struct rb_test_data *data;
  4092. int cpu = smp_processor_id();
  4093. data = &rb_data[cpu];
  4094. rb_write_something(data, true);
  4095. }
  4096. static __init int rb_hammer_test(void *arg)
  4097. {
  4098. while (!kthread_should_stop()) {
  4099. /* Send an IPI to all cpus to write data! */
  4100. smp_call_function(rb_ipi, NULL, 1);
  4101. /* No sleep, but for non preempt, let others run */
  4102. schedule();
  4103. }
  4104. return 0;
  4105. }
  4106. static __init int test_ringbuffer(void)
  4107. {
  4108. struct task_struct *rb_hammer;
  4109. struct ring_buffer *buffer;
  4110. int cpu;
  4111. int ret = 0;
  4112. pr_info("Running ring buffer tests...\n");
  4113. buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
  4114. if (WARN_ON(!buffer))
  4115. return 0;
  4116. /* Disable buffer so that threads can't write to it yet */
  4117. ring_buffer_record_off(buffer);
  4118. for_each_online_cpu(cpu) {
  4119. rb_data[cpu].buffer = buffer;
  4120. rb_data[cpu].cpu = cpu;
  4121. rb_data[cpu].cnt = cpu;
  4122. rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
  4123. "rbtester/%d", cpu);
  4124. if (WARN_ON(!rb_threads[cpu])) {
  4125. pr_cont("FAILED\n");
  4126. ret = -1;
  4127. goto out_free;
  4128. }
  4129. kthread_bind(rb_threads[cpu], cpu);
  4130. wake_up_process(rb_threads[cpu]);
  4131. }
  4132. /* Now create the rb hammer! */
  4133. rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
  4134. if (WARN_ON(!rb_hammer)) {
  4135. pr_cont("FAILED\n");
  4136. ret = -1;
  4137. goto out_free;
  4138. }
  4139. ring_buffer_record_on(buffer);
  4140. /*
  4141. * Show buffer is enabled before setting rb_test_started.
  4142. * Yes there's a small race window where events could be
  4143. * dropped and the thread wont catch it. But when a ring
  4144. * buffer gets enabled, there will always be some kind of
  4145. * delay before other CPUs see it. Thus, we don't care about
  4146. * those dropped events. We care about events dropped after
  4147. * the threads see that the buffer is active.
  4148. */
  4149. smp_wmb();
  4150. rb_test_started = true;
  4151. set_current_state(TASK_INTERRUPTIBLE);
  4152. /* Just run for 10 seconds */;
  4153. schedule_timeout(10 * HZ);
  4154. kthread_stop(rb_hammer);
  4155. out_free:
  4156. for_each_online_cpu(cpu) {
  4157. if (!rb_threads[cpu])
  4158. break;
  4159. kthread_stop(rb_threads[cpu]);
  4160. }
  4161. if (ret) {
  4162. ring_buffer_free(buffer);
  4163. return ret;
  4164. }
  4165. /* Report! */
  4166. pr_info("finished\n");
  4167. for_each_online_cpu(cpu) {
  4168. struct ring_buffer_event *event;
  4169. struct rb_test_data *data = &rb_data[cpu];
  4170. struct rb_item *item;
  4171. unsigned long total_events;
  4172. unsigned long total_dropped;
  4173. unsigned long total_written;
  4174. unsigned long total_alloc;
  4175. unsigned long total_read = 0;
  4176. unsigned long total_size = 0;
  4177. unsigned long total_len = 0;
  4178. unsigned long total_lost = 0;
  4179. unsigned long lost;
  4180. int big_event_size;
  4181. int small_event_size;
  4182. ret = -1;
  4183. total_events = data->events + data->events_nested;
  4184. total_written = data->bytes_written + data->bytes_written_nested;
  4185. total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
  4186. total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
  4187. big_event_size = data->max_size + data->max_size_nested;
  4188. small_event_size = data->min_size + data->min_size_nested;
  4189. pr_info("CPU %d:\n", cpu);
  4190. pr_info(" events: %ld\n", total_events);
  4191. pr_info(" dropped bytes: %ld\n", total_dropped);
  4192. pr_info(" alloced bytes: %ld\n", total_alloc);
  4193. pr_info(" written bytes: %ld\n", total_written);
  4194. pr_info(" biggest event: %d\n", big_event_size);
  4195. pr_info(" smallest event: %d\n", small_event_size);
  4196. if (RB_WARN_ON(buffer, total_dropped))
  4197. break;
  4198. ret = 0;
  4199. while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
  4200. total_lost += lost;
  4201. item = ring_buffer_event_data(event);
  4202. total_len += ring_buffer_event_length(event);
  4203. total_size += item->size + sizeof(struct rb_item);
  4204. if (memcmp(&item->str[0], rb_string, item->size) != 0) {
  4205. pr_info("FAILED!\n");
  4206. pr_info("buffer had: %.*s\n", item->size, item->str);
  4207. pr_info("expected: %.*s\n", item->size, rb_string);
  4208. RB_WARN_ON(buffer, 1);
  4209. ret = -1;
  4210. break;
  4211. }
  4212. total_read++;
  4213. }
  4214. if (ret)
  4215. break;
  4216. ret = -1;
  4217. pr_info(" read events: %ld\n", total_read);
  4218. pr_info(" lost events: %ld\n", total_lost);
  4219. pr_info(" total events: %ld\n", total_lost + total_read);
  4220. pr_info(" recorded len bytes: %ld\n", total_len);
  4221. pr_info(" recorded size bytes: %ld\n", total_size);
  4222. if (total_lost)
  4223. pr_info(" With dropped events, record len and size may not match\n"
  4224. " alloced and written from above\n");
  4225. if (!total_lost) {
  4226. if (RB_WARN_ON(buffer, total_len != total_alloc ||
  4227. total_size != total_written))
  4228. break;
  4229. }
  4230. if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
  4231. break;
  4232. ret = 0;
  4233. }
  4234. if (!ret)
  4235. pr_info("Ring buffer PASSED!\n");
  4236. ring_buffer_free(buffer);
  4237. return 0;
  4238. }
  4239. late_initcall(test_ringbuffer);
  4240. #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */