futex.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/hugetlb.h>
  65. #include <linux/freezer.h>
  66. #include <linux/bootmem.h>
  67. #include <asm/futex.h>
  68. #include "locking/rtmutex_common.h"
  69. /*
  70. * READ this before attempting to hack on futexes!
  71. *
  72. * Basic futex operation and ordering guarantees
  73. * =============================================
  74. *
  75. * The waiter reads the futex value in user space and calls
  76. * futex_wait(). This function computes the hash bucket and acquires
  77. * the hash bucket lock. After that it reads the futex user space value
  78. * again and verifies that the data has not changed. If it has not changed
  79. * it enqueues itself into the hash bucket, releases the hash bucket lock
  80. * and schedules.
  81. *
  82. * The waker side modifies the user space value of the futex and calls
  83. * futex_wake(). This function computes the hash bucket and acquires the
  84. * hash bucket lock. Then it looks for waiters on that futex in the hash
  85. * bucket and wakes them.
  86. *
  87. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  88. * the hb spinlock can be avoided and simply return. In order for this
  89. * optimization to work, ordering guarantees must exist so that the waiter
  90. * being added to the list is acknowledged when the list is concurrently being
  91. * checked by the waker, avoiding scenarios like the following:
  92. *
  93. * CPU 0 CPU 1
  94. * val = *futex;
  95. * sys_futex(WAIT, futex, val);
  96. * futex_wait(futex, val);
  97. * uval = *futex;
  98. * *futex = newval;
  99. * sys_futex(WAKE, futex);
  100. * futex_wake(futex);
  101. * if (queue_empty())
  102. * return;
  103. * if (uval == val)
  104. * lock(hash_bucket(futex));
  105. * queue();
  106. * unlock(hash_bucket(futex));
  107. * schedule();
  108. *
  109. * This would cause the waiter on CPU 0 to wait forever because it
  110. * missed the transition of the user space value from val to newval
  111. * and the waker did not find the waiter in the hash bucket queue.
  112. *
  113. * The correct serialization ensures that a waiter either observes
  114. * the changed user space value before blocking or is woken by a
  115. * concurrent waker:
  116. *
  117. * CPU 0 CPU 1
  118. * val = *futex;
  119. * sys_futex(WAIT, futex, val);
  120. * futex_wait(futex, val);
  121. *
  122. * waiters++; (a)
  123. * mb(); (A) <-- paired with -.
  124. * |
  125. * lock(hash_bucket(futex)); |
  126. * |
  127. * uval = *futex; |
  128. * | *futex = newval;
  129. * | sys_futex(WAKE, futex);
  130. * | futex_wake(futex);
  131. * |
  132. * `-------> mb(); (B)
  133. * if (uval == val)
  134. * queue();
  135. * unlock(hash_bucket(futex));
  136. * schedule(); if (waiters)
  137. * lock(hash_bucket(futex));
  138. * else wake_waiters(futex);
  139. * waiters--; (b) unlock(hash_bucket(futex));
  140. *
  141. * Where (A) orders the waiters increment and the futex value read through
  142. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  143. * to futex and the waiters read -- this is done by the barriers in
  144. * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
  145. * futex type.
  146. *
  147. * This yields the following case (where X:=waiters, Y:=futex):
  148. *
  149. * X = Y = 0
  150. *
  151. * w[X]=1 w[Y]=1
  152. * MB MB
  153. * r[Y]=y r[X]=x
  154. *
  155. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  156. * the guarantee that we cannot both miss the futex variable change and the
  157. * enqueue.
  158. *
  159. * Note that a new waiter is accounted for in (a) even when it is possible that
  160. * the wait call can return error, in which case we backtrack from it in (b).
  161. * Refer to the comment in queue_lock().
  162. *
  163. * Similarly, in order to account for waiters being requeued on another
  164. * address we always increment the waiters for the destination bucket before
  165. * acquiring the lock. It then decrements them again after releasing it -
  166. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  167. * will do the additional required waiter count housekeeping. This is done for
  168. * double_lock_hb() and double_unlock_hb(), respectively.
  169. */
  170. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  171. int __read_mostly futex_cmpxchg_enabled;
  172. #endif
  173. /*
  174. * Futex flags used to encode options to functions and preserve them across
  175. * restarts.
  176. */
  177. #define FLAGS_SHARED 0x01
  178. #define FLAGS_CLOCKRT 0x02
  179. #define FLAGS_HAS_TIMEOUT 0x04
  180. /*
  181. * Priority Inheritance state:
  182. */
  183. struct futex_pi_state {
  184. /*
  185. * list of 'owned' pi_state instances - these have to be
  186. * cleaned up in do_exit() if the task exits prematurely:
  187. */
  188. struct list_head list;
  189. /*
  190. * The PI object:
  191. */
  192. struct rt_mutex pi_mutex;
  193. struct task_struct *owner;
  194. atomic_t refcount;
  195. union futex_key key;
  196. };
  197. /**
  198. * struct futex_q - The hashed futex queue entry, one per waiting task
  199. * @list: priority-sorted list of tasks waiting on this futex
  200. * @task: the task waiting on the futex
  201. * @lock_ptr: the hash bucket lock
  202. * @key: the key the futex is hashed on
  203. * @pi_state: optional priority inheritance state
  204. * @rt_waiter: rt_waiter storage for use with requeue_pi
  205. * @requeue_pi_key: the requeue_pi target futex key
  206. * @bitset: bitset for the optional bitmasked wakeup
  207. *
  208. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  209. * we can wake only the relevant ones (hashed queues may be shared).
  210. *
  211. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  212. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  213. * The order of wakeup is always to make the first condition true, then
  214. * the second.
  215. *
  216. * PI futexes are typically woken before they are removed from the hash list via
  217. * the rt_mutex code. See unqueue_me_pi().
  218. */
  219. struct futex_q {
  220. struct plist_node list;
  221. struct task_struct *task;
  222. spinlock_t *lock_ptr;
  223. union futex_key key;
  224. struct futex_pi_state *pi_state;
  225. struct rt_mutex_waiter *rt_waiter;
  226. union futex_key *requeue_pi_key;
  227. u32 bitset;
  228. };
  229. static const struct futex_q futex_q_init = {
  230. /* list gets initialized in queue_me()*/
  231. .key = FUTEX_KEY_INIT,
  232. .bitset = FUTEX_BITSET_MATCH_ANY
  233. };
  234. /*
  235. * Hash buckets are shared by all the futex_keys that hash to the same
  236. * location. Each key may have multiple futex_q structures, one for each task
  237. * waiting on a futex.
  238. */
  239. struct futex_hash_bucket {
  240. atomic_t waiters;
  241. spinlock_t lock;
  242. struct plist_head chain;
  243. } ____cacheline_aligned_in_smp;
  244. static unsigned long __read_mostly futex_hashsize;
  245. static struct futex_hash_bucket *futex_queues;
  246. static inline void futex_get_mm(union futex_key *key)
  247. {
  248. atomic_inc(&key->private.mm->mm_count);
  249. /*
  250. * Ensure futex_get_mm() implies a full barrier such that
  251. * get_futex_key() implies a full barrier. This is relied upon
  252. * as full barrier (B), see the ordering comment above.
  253. */
  254. smp_mb__after_atomic();
  255. }
  256. /*
  257. * Reflects a new waiter being added to the waitqueue.
  258. */
  259. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  260. {
  261. #ifdef CONFIG_SMP
  262. atomic_inc(&hb->waiters);
  263. /*
  264. * Full barrier (A), see the ordering comment above.
  265. */
  266. smp_mb__after_atomic();
  267. #endif
  268. }
  269. /*
  270. * Reflects a waiter being removed from the waitqueue by wakeup
  271. * paths.
  272. */
  273. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  274. {
  275. #ifdef CONFIG_SMP
  276. atomic_dec(&hb->waiters);
  277. #endif
  278. }
  279. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  280. {
  281. #ifdef CONFIG_SMP
  282. return atomic_read(&hb->waiters);
  283. #else
  284. return 1;
  285. #endif
  286. }
  287. /*
  288. * We hash on the keys returned from get_futex_key (see below).
  289. */
  290. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  291. {
  292. u32 hash = jhash2((u32*)&key->both.word,
  293. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  294. key->both.offset);
  295. return &futex_queues[hash & (futex_hashsize - 1)];
  296. }
  297. /*
  298. * Return 1 if two futex_keys are equal, 0 otherwise.
  299. */
  300. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  301. {
  302. return (key1 && key2
  303. && key1->both.word == key2->both.word
  304. && key1->both.ptr == key2->both.ptr
  305. && key1->both.offset == key2->both.offset);
  306. }
  307. /*
  308. * Take a reference to the resource addressed by a key.
  309. * Can be called while holding spinlocks.
  310. *
  311. */
  312. static void get_futex_key_refs(union futex_key *key)
  313. {
  314. if (!key->both.ptr)
  315. return;
  316. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  317. case FUT_OFF_INODE:
  318. ihold(key->shared.inode); /* implies MB (B) */
  319. break;
  320. case FUT_OFF_MMSHARED:
  321. futex_get_mm(key); /* implies MB (B) */
  322. break;
  323. }
  324. }
  325. /*
  326. * Drop a reference to the resource addressed by a key.
  327. * The hash bucket spinlock must not be held.
  328. */
  329. static void drop_futex_key_refs(union futex_key *key)
  330. {
  331. if (!key->both.ptr) {
  332. /* If we're here then we tried to put a key we failed to get */
  333. WARN_ON_ONCE(1);
  334. return;
  335. }
  336. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  337. case FUT_OFF_INODE:
  338. iput(key->shared.inode);
  339. break;
  340. case FUT_OFF_MMSHARED:
  341. mmdrop(key->private.mm);
  342. break;
  343. }
  344. }
  345. /**
  346. * get_futex_key() - Get parameters which are the keys for a futex
  347. * @uaddr: virtual address of the futex
  348. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  349. * @key: address where result is stored.
  350. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  351. * VERIFY_WRITE)
  352. *
  353. * Return: a negative error code or 0
  354. *
  355. * The key words are stored in *key on success.
  356. *
  357. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  358. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  359. * We can usually work out the index without swapping in the page.
  360. *
  361. * lock_page() might sleep, the caller should not hold a spinlock.
  362. */
  363. static int
  364. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  365. {
  366. unsigned long address = (unsigned long)uaddr;
  367. struct mm_struct *mm = current->mm;
  368. struct page *page, *page_head;
  369. int err, ro = 0;
  370. /*
  371. * The futex address must be "naturally" aligned.
  372. */
  373. key->both.offset = address % PAGE_SIZE;
  374. if (unlikely((address % sizeof(u32)) != 0))
  375. return -EINVAL;
  376. address -= key->both.offset;
  377. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  378. return -EFAULT;
  379. /*
  380. * PROCESS_PRIVATE futexes are fast.
  381. * As the mm cannot disappear under us and the 'key' only needs
  382. * virtual address, we dont even have to find the underlying vma.
  383. * Note : We do have to check 'uaddr' is a valid user address,
  384. * but access_ok() should be faster than find_vma()
  385. */
  386. if (!fshared) {
  387. key->private.mm = mm;
  388. key->private.address = address;
  389. get_futex_key_refs(key); /* implies MB (B) */
  390. return 0;
  391. }
  392. again:
  393. err = get_user_pages_fast(address, 1, 1, &page);
  394. /*
  395. * If write access is not required (eg. FUTEX_WAIT), try
  396. * and get read-only access.
  397. */
  398. if (err == -EFAULT && rw == VERIFY_READ) {
  399. err = get_user_pages_fast(address, 1, 0, &page);
  400. ro = 1;
  401. }
  402. if (err < 0)
  403. return err;
  404. else
  405. err = 0;
  406. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  407. page_head = page;
  408. if (unlikely(PageTail(page))) {
  409. put_page(page);
  410. /* serialize against __split_huge_page_splitting() */
  411. local_irq_disable();
  412. if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
  413. page_head = compound_head(page);
  414. /*
  415. * page_head is valid pointer but we must pin
  416. * it before taking the PG_lock and/or
  417. * PG_compound_lock. The moment we re-enable
  418. * irqs __split_huge_page_splitting() can
  419. * return and the head page can be freed from
  420. * under us. We can't take the PG_lock and/or
  421. * PG_compound_lock on a page that could be
  422. * freed from under us.
  423. */
  424. if (page != page_head) {
  425. get_page(page_head);
  426. put_page(page);
  427. }
  428. local_irq_enable();
  429. } else {
  430. local_irq_enable();
  431. goto again;
  432. }
  433. }
  434. #else
  435. page_head = compound_head(page);
  436. if (page != page_head) {
  437. get_page(page_head);
  438. put_page(page);
  439. }
  440. #endif
  441. lock_page(page_head);
  442. /*
  443. * If page_head->mapping is NULL, then it cannot be a PageAnon
  444. * page; but it might be the ZERO_PAGE or in the gate area or
  445. * in a special mapping (all cases which we are happy to fail);
  446. * or it may have been a good file page when get_user_pages_fast
  447. * found it, but truncated or holepunched or subjected to
  448. * invalidate_complete_page2 before we got the page lock (also
  449. * cases which we are happy to fail). And we hold a reference,
  450. * so refcount care in invalidate_complete_page's remove_mapping
  451. * prevents drop_caches from setting mapping to NULL beneath us.
  452. *
  453. * The case we do have to guard against is when memory pressure made
  454. * shmem_writepage move it from filecache to swapcache beneath us:
  455. * an unlikely race, but we do need to retry for page_head->mapping.
  456. */
  457. if (!page_head->mapping) {
  458. int shmem_swizzled = PageSwapCache(page_head);
  459. unlock_page(page_head);
  460. put_page(page_head);
  461. if (shmem_swizzled)
  462. goto again;
  463. return -EFAULT;
  464. }
  465. /*
  466. * Private mappings are handled in a simple way.
  467. *
  468. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  469. * it's a read-only handle, it's expected that futexes attach to
  470. * the object not the particular process.
  471. */
  472. if (PageAnon(page_head)) {
  473. /*
  474. * A RO anonymous page will never change and thus doesn't make
  475. * sense for futex operations.
  476. */
  477. if (ro) {
  478. err = -EFAULT;
  479. goto out;
  480. }
  481. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  482. key->private.mm = mm;
  483. key->private.address = address;
  484. } else {
  485. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  486. key->shared.inode = page_head->mapping->host;
  487. key->shared.pgoff = basepage_index(page);
  488. }
  489. get_futex_key_refs(key); /* implies MB (B) */
  490. out:
  491. unlock_page(page_head);
  492. put_page(page_head);
  493. return err;
  494. }
  495. static inline void put_futex_key(union futex_key *key)
  496. {
  497. drop_futex_key_refs(key);
  498. }
  499. /**
  500. * fault_in_user_writeable() - Fault in user address and verify RW access
  501. * @uaddr: pointer to faulting user space address
  502. *
  503. * Slow path to fixup the fault we just took in the atomic write
  504. * access to @uaddr.
  505. *
  506. * We have no generic implementation of a non-destructive write to the
  507. * user address. We know that we faulted in the atomic pagefault
  508. * disabled section so we can as well avoid the #PF overhead by
  509. * calling get_user_pages() right away.
  510. */
  511. static int fault_in_user_writeable(u32 __user *uaddr)
  512. {
  513. struct mm_struct *mm = current->mm;
  514. int ret;
  515. down_read(&mm->mmap_sem);
  516. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  517. FAULT_FLAG_WRITE);
  518. up_read(&mm->mmap_sem);
  519. return ret < 0 ? ret : 0;
  520. }
  521. /**
  522. * futex_top_waiter() - Return the highest priority waiter on a futex
  523. * @hb: the hash bucket the futex_q's reside in
  524. * @key: the futex key (to distinguish it from other futex futex_q's)
  525. *
  526. * Must be called with the hb lock held.
  527. */
  528. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  529. union futex_key *key)
  530. {
  531. struct futex_q *this;
  532. plist_for_each_entry(this, &hb->chain, list) {
  533. if (match_futex(&this->key, key))
  534. return this;
  535. }
  536. return NULL;
  537. }
  538. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  539. u32 uval, u32 newval)
  540. {
  541. int ret;
  542. pagefault_disable();
  543. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  544. pagefault_enable();
  545. return ret;
  546. }
  547. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  548. {
  549. int ret;
  550. pagefault_disable();
  551. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  552. pagefault_enable();
  553. return ret ? -EFAULT : 0;
  554. }
  555. /*
  556. * PI code:
  557. */
  558. static int refill_pi_state_cache(void)
  559. {
  560. struct futex_pi_state *pi_state;
  561. if (likely(current->pi_state_cache))
  562. return 0;
  563. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  564. if (!pi_state)
  565. return -ENOMEM;
  566. INIT_LIST_HEAD(&pi_state->list);
  567. /* pi_mutex gets initialized later */
  568. pi_state->owner = NULL;
  569. atomic_set(&pi_state->refcount, 1);
  570. pi_state->key = FUTEX_KEY_INIT;
  571. current->pi_state_cache = pi_state;
  572. return 0;
  573. }
  574. static struct futex_pi_state * alloc_pi_state(void)
  575. {
  576. struct futex_pi_state *pi_state = current->pi_state_cache;
  577. WARN_ON(!pi_state);
  578. current->pi_state_cache = NULL;
  579. return pi_state;
  580. }
  581. static void free_pi_state(struct futex_pi_state *pi_state)
  582. {
  583. if (!atomic_dec_and_test(&pi_state->refcount))
  584. return;
  585. /*
  586. * If pi_state->owner is NULL, the owner is most probably dying
  587. * and has cleaned up the pi_state already
  588. */
  589. if (pi_state->owner) {
  590. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  591. list_del_init(&pi_state->list);
  592. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  593. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  594. }
  595. if (current->pi_state_cache)
  596. kfree(pi_state);
  597. else {
  598. /*
  599. * pi_state->list is already empty.
  600. * clear pi_state->owner.
  601. * refcount is at 0 - put it back to 1.
  602. */
  603. pi_state->owner = NULL;
  604. atomic_set(&pi_state->refcount, 1);
  605. current->pi_state_cache = pi_state;
  606. }
  607. }
  608. /*
  609. * Look up the task based on what TID userspace gave us.
  610. * We dont trust it.
  611. */
  612. static struct task_struct * futex_find_get_task(pid_t pid)
  613. {
  614. struct task_struct *p;
  615. rcu_read_lock();
  616. p = find_task_by_vpid(pid);
  617. if (p)
  618. get_task_struct(p);
  619. rcu_read_unlock();
  620. return p;
  621. }
  622. /*
  623. * This task is holding PI mutexes at exit time => bad.
  624. * Kernel cleans up PI-state, but userspace is likely hosed.
  625. * (Robust-futex cleanup is separate and might save the day for userspace.)
  626. */
  627. void exit_pi_state_list(struct task_struct *curr)
  628. {
  629. struct list_head *next, *head = &curr->pi_state_list;
  630. struct futex_pi_state *pi_state;
  631. struct futex_hash_bucket *hb;
  632. union futex_key key = FUTEX_KEY_INIT;
  633. if (!futex_cmpxchg_enabled)
  634. return;
  635. /*
  636. * We are a ZOMBIE and nobody can enqueue itself on
  637. * pi_state_list anymore, but we have to be careful
  638. * versus waiters unqueueing themselves:
  639. */
  640. raw_spin_lock_irq(&curr->pi_lock);
  641. while (!list_empty(head)) {
  642. next = head->next;
  643. pi_state = list_entry(next, struct futex_pi_state, list);
  644. key = pi_state->key;
  645. hb = hash_futex(&key);
  646. raw_spin_unlock_irq(&curr->pi_lock);
  647. spin_lock(&hb->lock);
  648. raw_spin_lock_irq(&curr->pi_lock);
  649. /*
  650. * We dropped the pi-lock, so re-check whether this
  651. * task still owns the PI-state:
  652. */
  653. if (head->next != next) {
  654. spin_unlock(&hb->lock);
  655. continue;
  656. }
  657. WARN_ON(pi_state->owner != curr);
  658. WARN_ON(list_empty(&pi_state->list));
  659. list_del_init(&pi_state->list);
  660. pi_state->owner = NULL;
  661. raw_spin_unlock_irq(&curr->pi_lock);
  662. rt_mutex_unlock(&pi_state->pi_mutex);
  663. spin_unlock(&hb->lock);
  664. raw_spin_lock_irq(&curr->pi_lock);
  665. }
  666. raw_spin_unlock_irq(&curr->pi_lock);
  667. }
  668. /*
  669. * We need to check the following states:
  670. *
  671. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  672. *
  673. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  674. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  675. *
  676. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  677. *
  678. * [4] Found | Found | NULL | 0 | 1 | Valid
  679. * [5] Found | Found | NULL | >0 | 1 | Invalid
  680. *
  681. * [6] Found | Found | task | 0 | 1 | Valid
  682. *
  683. * [7] Found | Found | NULL | Any | 0 | Invalid
  684. *
  685. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  686. * [9] Found | Found | task | 0 | 0 | Invalid
  687. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  688. *
  689. * [1] Indicates that the kernel can acquire the futex atomically. We
  690. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  691. *
  692. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  693. * thread is found then it indicates that the owner TID has died.
  694. *
  695. * [3] Invalid. The waiter is queued on a non PI futex
  696. *
  697. * [4] Valid state after exit_robust_list(), which sets the user space
  698. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  699. *
  700. * [5] The user space value got manipulated between exit_robust_list()
  701. * and exit_pi_state_list()
  702. *
  703. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  704. * the pi_state but cannot access the user space value.
  705. *
  706. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  707. *
  708. * [8] Owner and user space value match
  709. *
  710. * [9] There is no transient state which sets the user space TID to 0
  711. * except exit_robust_list(), but this is indicated by the
  712. * FUTEX_OWNER_DIED bit. See [4]
  713. *
  714. * [10] There is no transient state which leaves owner and user space
  715. * TID out of sync.
  716. */
  717. /*
  718. * Validate that the existing waiter has a pi_state and sanity check
  719. * the pi_state against the user space value. If correct, attach to
  720. * it.
  721. */
  722. static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
  723. struct futex_pi_state **ps)
  724. {
  725. pid_t pid = uval & FUTEX_TID_MASK;
  726. /*
  727. * Userspace might have messed up non-PI and PI futexes [3]
  728. */
  729. if (unlikely(!pi_state))
  730. return -EINVAL;
  731. WARN_ON(!atomic_read(&pi_state->refcount));
  732. /*
  733. * Handle the owner died case:
  734. */
  735. if (uval & FUTEX_OWNER_DIED) {
  736. /*
  737. * exit_pi_state_list sets owner to NULL and wakes the
  738. * topmost waiter. The task which acquires the
  739. * pi_state->rt_mutex will fixup owner.
  740. */
  741. if (!pi_state->owner) {
  742. /*
  743. * No pi state owner, but the user space TID
  744. * is not 0. Inconsistent state. [5]
  745. */
  746. if (pid)
  747. return -EINVAL;
  748. /*
  749. * Take a ref on the state and return success. [4]
  750. */
  751. goto out_state;
  752. }
  753. /*
  754. * If TID is 0, then either the dying owner has not
  755. * yet executed exit_pi_state_list() or some waiter
  756. * acquired the rtmutex in the pi state, but did not
  757. * yet fixup the TID in user space.
  758. *
  759. * Take a ref on the state and return success. [6]
  760. */
  761. if (!pid)
  762. goto out_state;
  763. } else {
  764. /*
  765. * If the owner died bit is not set, then the pi_state
  766. * must have an owner. [7]
  767. */
  768. if (!pi_state->owner)
  769. return -EINVAL;
  770. }
  771. /*
  772. * Bail out if user space manipulated the futex value. If pi
  773. * state exists then the owner TID must be the same as the
  774. * user space TID. [9/10]
  775. */
  776. if (pid != task_pid_vnr(pi_state->owner))
  777. return -EINVAL;
  778. out_state:
  779. atomic_inc(&pi_state->refcount);
  780. *ps = pi_state;
  781. return 0;
  782. }
  783. /*
  784. * Lookup the task for the TID provided from user space and attach to
  785. * it after doing proper sanity checks.
  786. */
  787. static int attach_to_pi_owner(u32 uval, union futex_key *key,
  788. struct futex_pi_state **ps)
  789. {
  790. pid_t pid = uval & FUTEX_TID_MASK;
  791. struct futex_pi_state *pi_state;
  792. struct task_struct *p;
  793. /*
  794. * We are the first waiter - try to look up the real owner and attach
  795. * the new pi_state to it, but bail out when TID = 0 [1]
  796. */
  797. if (!pid)
  798. return -ESRCH;
  799. p = futex_find_get_task(pid);
  800. if (!p)
  801. return -ESRCH;
  802. if (!p->mm) {
  803. put_task_struct(p);
  804. return -EPERM;
  805. }
  806. /*
  807. * We need to look at the task state flags to figure out,
  808. * whether the task is exiting. To protect against the do_exit
  809. * change of the task flags, we do this protected by
  810. * p->pi_lock:
  811. */
  812. raw_spin_lock_irq(&p->pi_lock);
  813. if (unlikely(p->flags & PF_EXITING)) {
  814. /*
  815. * The task is on the way out. When PF_EXITPIDONE is
  816. * set, we know that the task has finished the
  817. * cleanup:
  818. */
  819. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  820. raw_spin_unlock_irq(&p->pi_lock);
  821. put_task_struct(p);
  822. return ret;
  823. }
  824. /*
  825. * No existing pi state. First waiter. [2]
  826. */
  827. pi_state = alloc_pi_state();
  828. /*
  829. * Initialize the pi_mutex in locked state and make @p
  830. * the owner of it:
  831. */
  832. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  833. /* Store the key for possible exit cleanups: */
  834. pi_state->key = *key;
  835. WARN_ON(!list_empty(&pi_state->list));
  836. list_add(&pi_state->list, &p->pi_state_list);
  837. pi_state->owner = p;
  838. raw_spin_unlock_irq(&p->pi_lock);
  839. put_task_struct(p);
  840. *ps = pi_state;
  841. return 0;
  842. }
  843. static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  844. union futex_key *key, struct futex_pi_state **ps)
  845. {
  846. struct futex_q *match = futex_top_waiter(hb, key);
  847. /*
  848. * If there is a waiter on that futex, validate it and
  849. * attach to the pi_state when the validation succeeds.
  850. */
  851. if (match)
  852. return attach_to_pi_state(uval, match->pi_state, ps);
  853. /*
  854. * We are the first waiter - try to look up the owner based on
  855. * @uval and attach to it.
  856. */
  857. return attach_to_pi_owner(uval, key, ps);
  858. }
  859. static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  860. {
  861. u32 uninitialized_var(curval);
  862. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  863. return -EFAULT;
  864. /*If user space value changed, let the caller retry */
  865. return curval != uval ? -EAGAIN : 0;
  866. }
  867. /**
  868. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  869. * @uaddr: the pi futex user address
  870. * @hb: the pi futex hash bucket
  871. * @key: the futex key associated with uaddr and hb
  872. * @ps: the pi_state pointer where we store the result of the
  873. * lookup
  874. * @task: the task to perform the atomic lock work for. This will
  875. * be "current" except in the case of requeue pi.
  876. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  877. *
  878. * Return:
  879. * 0 - ready to wait;
  880. * 1 - acquired the lock;
  881. * <0 - error
  882. *
  883. * The hb->lock and futex_key refs shall be held by the caller.
  884. */
  885. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  886. union futex_key *key,
  887. struct futex_pi_state **ps,
  888. struct task_struct *task, int set_waiters)
  889. {
  890. u32 uval, newval, vpid = task_pid_vnr(task);
  891. struct futex_q *match;
  892. int ret;
  893. /*
  894. * Read the user space value first so we can validate a few
  895. * things before proceeding further.
  896. */
  897. if (get_futex_value_locked(&uval, uaddr))
  898. return -EFAULT;
  899. /*
  900. * Detect deadlocks.
  901. */
  902. if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
  903. return -EDEADLK;
  904. /*
  905. * Lookup existing state first. If it exists, try to attach to
  906. * its pi_state.
  907. */
  908. match = futex_top_waiter(hb, key);
  909. if (match)
  910. return attach_to_pi_state(uval, match->pi_state, ps);
  911. /*
  912. * No waiter and user TID is 0. We are here because the
  913. * waiters or the owner died bit is set or called from
  914. * requeue_cmp_pi or for whatever reason something took the
  915. * syscall.
  916. */
  917. if (!(uval & FUTEX_TID_MASK)) {
  918. /*
  919. * We take over the futex. No other waiters and the user space
  920. * TID is 0. We preserve the owner died bit.
  921. */
  922. newval = uval & FUTEX_OWNER_DIED;
  923. newval |= vpid;
  924. /* The futex requeue_pi code can enforce the waiters bit */
  925. if (set_waiters)
  926. newval |= FUTEX_WAITERS;
  927. ret = lock_pi_update_atomic(uaddr, uval, newval);
  928. /* If the take over worked, return 1 */
  929. return ret < 0 ? ret : 1;
  930. }
  931. /*
  932. * First waiter. Set the waiters bit before attaching ourself to
  933. * the owner. If owner tries to unlock, it will be forced into
  934. * the kernel and blocked on hb->lock.
  935. */
  936. newval = uval | FUTEX_WAITERS;
  937. ret = lock_pi_update_atomic(uaddr, uval, newval);
  938. if (ret)
  939. return ret;
  940. /*
  941. * If the update of the user space value succeeded, we try to
  942. * attach to the owner. If that fails, no harm done, we only
  943. * set the FUTEX_WAITERS bit in the user space variable.
  944. */
  945. return attach_to_pi_owner(uval, key, ps);
  946. }
  947. /**
  948. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  949. * @q: The futex_q to unqueue
  950. *
  951. * The q->lock_ptr must not be NULL and must be held by the caller.
  952. */
  953. static void __unqueue_futex(struct futex_q *q)
  954. {
  955. struct futex_hash_bucket *hb;
  956. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  957. || WARN_ON(plist_node_empty(&q->list)))
  958. return;
  959. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  960. plist_del(&q->list, &hb->chain);
  961. hb_waiters_dec(hb);
  962. }
  963. /*
  964. * The hash bucket lock must be held when this is called.
  965. * Afterwards, the futex_q must not be accessed.
  966. */
  967. static void wake_futex(struct futex_q *q)
  968. {
  969. struct task_struct *p = q->task;
  970. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  971. return;
  972. /*
  973. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  974. * a non-futex wake up happens on another CPU then the task
  975. * might exit and p would dereference a non-existing task
  976. * struct. Prevent this by holding a reference on p across the
  977. * wake up.
  978. */
  979. get_task_struct(p);
  980. __unqueue_futex(q);
  981. /*
  982. * The waiting task can free the futex_q as soon as
  983. * q->lock_ptr = NULL is written, without taking any locks. A
  984. * memory barrier is required here to prevent the following
  985. * store to lock_ptr from getting ahead of the plist_del.
  986. */
  987. smp_wmb();
  988. q->lock_ptr = NULL;
  989. wake_up_state(p, TASK_NORMAL);
  990. put_task_struct(p);
  991. }
  992. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  993. {
  994. struct task_struct *new_owner;
  995. struct futex_pi_state *pi_state = this->pi_state;
  996. u32 uninitialized_var(curval), newval;
  997. int ret = 0;
  998. if (!pi_state)
  999. return -EINVAL;
  1000. /*
  1001. * If current does not own the pi_state then the futex is
  1002. * inconsistent and user space fiddled with the futex value.
  1003. */
  1004. if (pi_state->owner != current)
  1005. return -EINVAL;
  1006. raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  1007. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1008. /*
  1009. * It is possible that the next waiter (the one that brought
  1010. * this owner to the kernel) timed out and is no longer
  1011. * waiting on the lock.
  1012. */
  1013. if (!new_owner)
  1014. new_owner = this->task;
  1015. /*
  1016. * We pass it to the next owner. The WAITERS bit is always
  1017. * kept enabled while there is PI state around. We cleanup the
  1018. * owner died bit, because we are the owner.
  1019. */
  1020. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1021. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1022. ret = -EFAULT;
  1023. else if (curval != uval)
  1024. ret = -EINVAL;
  1025. if (ret) {
  1026. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  1027. return ret;
  1028. }
  1029. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1030. WARN_ON(list_empty(&pi_state->list));
  1031. list_del_init(&pi_state->list);
  1032. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1033. raw_spin_lock_irq(&new_owner->pi_lock);
  1034. WARN_ON(!list_empty(&pi_state->list));
  1035. list_add(&pi_state->list, &new_owner->pi_state_list);
  1036. pi_state->owner = new_owner;
  1037. raw_spin_unlock_irq(&new_owner->pi_lock);
  1038. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  1039. rt_mutex_unlock(&pi_state->pi_mutex);
  1040. return 0;
  1041. }
  1042. /*
  1043. * Express the locking dependencies for lockdep:
  1044. */
  1045. static inline void
  1046. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1047. {
  1048. if (hb1 <= hb2) {
  1049. spin_lock(&hb1->lock);
  1050. if (hb1 < hb2)
  1051. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1052. } else { /* hb1 > hb2 */
  1053. spin_lock(&hb2->lock);
  1054. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1055. }
  1056. }
  1057. static inline void
  1058. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1059. {
  1060. spin_unlock(&hb1->lock);
  1061. if (hb1 != hb2)
  1062. spin_unlock(&hb2->lock);
  1063. }
  1064. /*
  1065. * Wake up waiters matching bitset queued on this futex (uaddr).
  1066. */
  1067. static int
  1068. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1069. {
  1070. struct futex_hash_bucket *hb;
  1071. struct futex_q *this, *next;
  1072. union futex_key key = FUTEX_KEY_INIT;
  1073. int ret;
  1074. if (!bitset)
  1075. return -EINVAL;
  1076. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1077. if (unlikely(ret != 0))
  1078. goto out;
  1079. hb = hash_futex(&key);
  1080. /* Make sure we really have tasks to wakeup */
  1081. if (!hb_waiters_pending(hb))
  1082. goto out_put_key;
  1083. spin_lock(&hb->lock);
  1084. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1085. if (match_futex (&this->key, &key)) {
  1086. if (this->pi_state || this->rt_waiter) {
  1087. ret = -EINVAL;
  1088. break;
  1089. }
  1090. /* Check if one of the bits is set in both bitsets */
  1091. if (!(this->bitset & bitset))
  1092. continue;
  1093. wake_futex(this);
  1094. if (++ret >= nr_wake)
  1095. break;
  1096. }
  1097. }
  1098. spin_unlock(&hb->lock);
  1099. out_put_key:
  1100. put_futex_key(&key);
  1101. out:
  1102. return ret;
  1103. }
  1104. /*
  1105. * Wake up all waiters hashed on the physical page that is mapped
  1106. * to this virtual address:
  1107. */
  1108. static int
  1109. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1110. int nr_wake, int nr_wake2, int op)
  1111. {
  1112. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1113. struct futex_hash_bucket *hb1, *hb2;
  1114. struct futex_q *this, *next;
  1115. int ret, op_ret;
  1116. retry:
  1117. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1118. if (unlikely(ret != 0))
  1119. goto out;
  1120. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1121. if (unlikely(ret != 0))
  1122. goto out_put_key1;
  1123. hb1 = hash_futex(&key1);
  1124. hb2 = hash_futex(&key2);
  1125. retry_private:
  1126. double_lock_hb(hb1, hb2);
  1127. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1128. if (unlikely(op_ret < 0)) {
  1129. double_unlock_hb(hb1, hb2);
  1130. #ifndef CONFIG_MMU
  1131. /*
  1132. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1133. * but we might get them from range checking
  1134. */
  1135. ret = op_ret;
  1136. goto out_put_keys;
  1137. #endif
  1138. if (unlikely(op_ret != -EFAULT)) {
  1139. ret = op_ret;
  1140. goto out_put_keys;
  1141. }
  1142. ret = fault_in_user_writeable(uaddr2);
  1143. if (ret)
  1144. goto out_put_keys;
  1145. if (!(flags & FLAGS_SHARED))
  1146. goto retry_private;
  1147. put_futex_key(&key2);
  1148. put_futex_key(&key1);
  1149. goto retry;
  1150. }
  1151. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1152. if (match_futex (&this->key, &key1)) {
  1153. if (this->pi_state || this->rt_waiter) {
  1154. ret = -EINVAL;
  1155. goto out_unlock;
  1156. }
  1157. wake_futex(this);
  1158. if (++ret >= nr_wake)
  1159. break;
  1160. }
  1161. }
  1162. if (op_ret > 0) {
  1163. op_ret = 0;
  1164. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1165. if (match_futex (&this->key, &key2)) {
  1166. if (this->pi_state || this->rt_waiter) {
  1167. ret = -EINVAL;
  1168. goto out_unlock;
  1169. }
  1170. wake_futex(this);
  1171. if (++op_ret >= nr_wake2)
  1172. break;
  1173. }
  1174. }
  1175. ret += op_ret;
  1176. }
  1177. out_unlock:
  1178. double_unlock_hb(hb1, hb2);
  1179. out_put_keys:
  1180. put_futex_key(&key2);
  1181. out_put_key1:
  1182. put_futex_key(&key1);
  1183. out:
  1184. return ret;
  1185. }
  1186. /**
  1187. * requeue_futex() - Requeue a futex_q from one hb to another
  1188. * @q: the futex_q to requeue
  1189. * @hb1: the source hash_bucket
  1190. * @hb2: the target hash_bucket
  1191. * @key2: the new key for the requeued futex_q
  1192. */
  1193. static inline
  1194. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1195. struct futex_hash_bucket *hb2, union futex_key *key2)
  1196. {
  1197. /*
  1198. * If key1 and key2 hash to the same bucket, no need to
  1199. * requeue.
  1200. */
  1201. if (likely(&hb1->chain != &hb2->chain)) {
  1202. plist_del(&q->list, &hb1->chain);
  1203. hb_waiters_dec(hb1);
  1204. plist_add(&q->list, &hb2->chain);
  1205. hb_waiters_inc(hb2);
  1206. q->lock_ptr = &hb2->lock;
  1207. }
  1208. get_futex_key_refs(key2);
  1209. q->key = *key2;
  1210. }
  1211. /**
  1212. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1213. * @q: the futex_q
  1214. * @key: the key of the requeue target futex
  1215. * @hb: the hash_bucket of the requeue target futex
  1216. *
  1217. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1218. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1219. * to the requeue target futex so the waiter can detect the wakeup on the right
  1220. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1221. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1222. * to protect access to the pi_state to fixup the owner later. Must be called
  1223. * with both q->lock_ptr and hb->lock held.
  1224. */
  1225. static inline
  1226. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1227. struct futex_hash_bucket *hb)
  1228. {
  1229. get_futex_key_refs(key);
  1230. q->key = *key;
  1231. __unqueue_futex(q);
  1232. WARN_ON(!q->rt_waiter);
  1233. q->rt_waiter = NULL;
  1234. q->lock_ptr = &hb->lock;
  1235. wake_up_state(q->task, TASK_NORMAL);
  1236. }
  1237. /**
  1238. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1239. * @pifutex: the user address of the to futex
  1240. * @hb1: the from futex hash bucket, must be locked by the caller
  1241. * @hb2: the to futex hash bucket, must be locked by the caller
  1242. * @key1: the from futex key
  1243. * @key2: the to futex key
  1244. * @ps: address to store the pi_state pointer
  1245. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1246. *
  1247. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1248. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1249. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1250. * hb1 and hb2 must be held by the caller.
  1251. *
  1252. * Return:
  1253. * 0 - failed to acquire the lock atomically;
  1254. * >0 - acquired the lock, return value is vpid of the top_waiter
  1255. * <0 - error
  1256. */
  1257. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1258. struct futex_hash_bucket *hb1,
  1259. struct futex_hash_bucket *hb2,
  1260. union futex_key *key1, union futex_key *key2,
  1261. struct futex_pi_state **ps, int set_waiters)
  1262. {
  1263. struct futex_q *top_waiter = NULL;
  1264. u32 curval;
  1265. int ret, vpid;
  1266. if (get_futex_value_locked(&curval, pifutex))
  1267. return -EFAULT;
  1268. /*
  1269. * Find the top_waiter and determine if there are additional waiters.
  1270. * If the caller intends to requeue more than 1 waiter to pifutex,
  1271. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1272. * as we have means to handle the possible fault. If not, don't set
  1273. * the bit unecessarily as it will force the subsequent unlock to enter
  1274. * the kernel.
  1275. */
  1276. top_waiter = futex_top_waiter(hb1, key1);
  1277. /* There are no waiters, nothing for us to do. */
  1278. if (!top_waiter)
  1279. return 0;
  1280. /* Ensure we requeue to the expected futex. */
  1281. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1282. return -EINVAL;
  1283. /*
  1284. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1285. * the contended case or if set_waiters is 1. The pi_state is returned
  1286. * in ps in contended cases.
  1287. */
  1288. vpid = task_pid_vnr(top_waiter->task);
  1289. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1290. set_waiters);
  1291. if (ret == 1) {
  1292. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1293. return vpid;
  1294. }
  1295. return ret;
  1296. }
  1297. /**
  1298. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1299. * @uaddr1: source futex user address
  1300. * @flags: futex flags (FLAGS_SHARED, etc.)
  1301. * @uaddr2: target futex user address
  1302. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1303. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1304. * @cmpval: @uaddr1 expected value (or %NULL)
  1305. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1306. * pi futex (pi to pi requeue is not supported)
  1307. *
  1308. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1309. * uaddr2 atomically on behalf of the top waiter.
  1310. *
  1311. * Return:
  1312. * >=0 - on success, the number of tasks requeued or woken;
  1313. * <0 - on error
  1314. */
  1315. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1316. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1317. u32 *cmpval, int requeue_pi)
  1318. {
  1319. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1320. int drop_count = 0, task_count = 0, ret;
  1321. struct futex_pi_state *pi_state = NULL;
  1322. struct futex_hash_bucket *hb1, *hb2;
  1323. struct futex_q *this, *next;
  1324. if (requeue_pi) {
  1325. /*
  1326. * Requeue PI only works on two distinct uaddrs. This
  1327. * check is only valid for private futexes. See below.
  1328. */
  1329. if (uaddr1 == uaddr2)
  1330. return -EINVAL;
  1331. /*
  1332. * requeue_pi requires a pi_state, try to allocate it now
  1333. * without any locks in case it fails.
  1334. */
  1335. if (refill_pi_state_cache())
  1336. return -ENOMEM;
  1337. /*
  1338. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1339. * + nr_requeue, since it acquires the rt_mutex prior to
  1340. * returning to userspace, so as to not leave the rt_mutex with
  1341. * waiters and no owner. However, second and third wake-ups
  1342. * cannot be predicted as they involve race conditions with the
  1343. * first wake and a fault while looking up the pi_state. Both
  1344. * pthread_cond_signal() and pthread_cond_broadcast() should
  1345. * use nr_wake=1.
  1346. */
  1347. if (nr_wake != 1)
  1348. return -EINVAL;
  1349. }
  1350. retry:
  1351. if (pi_state != NULL) {
  1352. /*
  1353. * We will have to lookup the pi_state again, so free this one
  1354. * to keep the accounting correct.
  1355. */
  1356. free_pi_state(pi_state);
  1357. pi_state = NULL;
  1358. }
  1359. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1360. if (unlikely(ret != 0))
  1361. goto out;
  1362. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1363. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1364. if (unlikely(ret != 0))
  1365. goto out_put_key1;
  1366. /*
  1367. * The check above which compares uaddrs is not sufficient for
  1368. * shared futexes. We need to compare the keys:
  1369. */
  1370. if (requeue_pi && match_futex(&key1, &key2)) {
  1371. ret = -EINVAL;
  1372. goto out_put_keys;
  1373. }
  1374. hb1 = hash_futex(&key1);
  1375. hb2 = hash_futex(&key2);
  1376. retry_private:
  1377. hb_waiters_inc(hb2);
  1378. double_lock_hb(hb1, hb2);
  1379. if (likely(cmpval != NULL)) {
  1380. u32 curval;
  1381. ret = get_futex_value_locked(&curval, uaddr1);
  1382. if (unlikely(ret)) {
  1383. double_unlock_hb(hb1, hb2);
  1384. hb_waiters_dec(hb2);
  1385. ret = get_user(curval, uaddr1);
  1386. if (ret)
  1387. goto out_put_keys;
  1388. if (!(flags & FLAGS_SHARED))
  1389. goto retry_private;
  1390. put_futex_key(&key2);
  1391. put_futex_key(&key1);
  1392. goto retry;
  1393. }
  1394. if (curval != *cmpval) {
  1395. ret = -EAGAIN;
  1396. goto out_unlock;
  1397. }
  1398. }
  1399. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1400. /*
  1401. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1402. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1403. * bit. We force this here where we are able to easily handle
  1404. * faults rather in the requeue loop below.
  1405. */
  1406. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1407. &key2, &pi_state, nr_requeue);
  1408. /*
  1409. * At this point the top_waiter has either taken uaddr2 or is
  1410. * waiting on it. If the former, then the pi_state will not
  1411. * exist yet, look it up one more time to ensure we have a
  1412. * reference to it. If the lock was taken, ret contains the
  1413. * vpid of the top waiter task.
  1414. */
  1415. if (ret > 0) {
  1416. WARN_ON(pi_state);
  1417. drop_count++;
  1418. task_count++;
  1419. /*
  1420. * If we acquired the lock, then the user
  1421. * space value of uaddr2 should be vpid. It
  1422. * cannot be changed by the top waiter as it
  1423. * is blocked on hb2 lock if it tries to do
  1424. * so. If something fiddled with it behind our
  1425. * back the pi state lookup might unearth
  1426. * it. So we rather use the known value than
  1427. * rereading and handing potential crap to
  1428. * lookup_pi_state.
  1429. */
  1430. ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
  1431. }
  1432. switch (ret) {
  1433. case 0:
  1434. break;
  1435. case -EFAULT:
  1436. double_unlock_hb(hb1, hb2);
  1437. hb_waiters_dec(hb2);
  1438. put_futex_key(&key2);
  1439. put_futex_key(&key1);
  1440. ret = fault_in_user_writeable(uaddr2);
  1441. if (!ret)
  1442. goto retry;
  1443. goto out;
  1444. case -EAGAIN:
  1445. /*
  1446. * Two reasons for this:
  1447. * - Owner is exiting and we just wait for the
  1448. * exit to complete.
  1449. * - The user space value changed.
  1450. */
  1451. double_unlock_hb(hb1, hb2);
  1452. hb_waiters_dec(hb2);
  1453. put_futex_key(&key2);
  1454. put_futex_key(&key1);
  1455. cond_resched();
  1456. goto retry;
  1457. default:
  1458. goto out_unlock;
  1459. }
  1460. }
  1461. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1462. if (task_count - nr_wake >= nr_requeue)
  1463. break;
  1464. if (!match_futex(&this->key, &key1))
  1465. continue;
  1466. /*
  1467. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1468. * be paired with each other and no other futex ops.
  1469. *
  1470. * We should never be requeueing a futex_q with a pi_state,
  1471. * which is awaiting a futex_unlock_pi().
  1472. */
  1473. if ((requeue_pi && !this->rt_waiter) ||
  1474. (!requeue_pi && this->rt_waiter) ||
  1475. this->pi_state) {
  1476. ret = -EINVAL;
  1477. break;
  1478. }
  1479. /*
  1480. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1481. * lock, we already woke the top_waiter. If not, it will be
  1482. * woken by futex_unlock_pi().
  1483. */
  1484. if (++task_count <= nr_wake && !requeue_pi) {
  1485. wake_futex(this);
  1486. continue;
  1487. }
  1488. /* Ensure we requeue to the expected futex for requeue_pi. */
  1489. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1490. ret = -EINVAL;
  1491. break;
  1492. }
  1493. /*
  1494. * Requeue nr_requeue waiters and possibly one more in the case
  1495. * of requeue_pi if we couldn't acquire the lock atomically.
  1496. */
  1497. if (requeue_pi) {
  1498. /* Prepare the waiter to take the rt_mutex. */
  1499. atomic_inc(&pi_state->refcount);
  1500. this->pi_state = pi_state;
  1501. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1502. this->rt_waiter,
  1503. this->task);
  1504. if (ret == 1) {
  1505. /* We got the lock. */
  1506. requeue_pi_wake_futex(this, &key2, hb2);
  1507. drop_count++;
  1508. continue;
  1509. } else if (ret) {
  1510. /* -EDEADLK */
  1511. this->pi_state = NULL;
  1512. free_pi_state(pi_state);
  1513. goto out_unlock;
  1514. }
  1515. }
  1516. requeue_futex(this, hb1, hb2, &key2);
  1517. drop_count++;
  1518. }
  1519. out_unlock:
  1520. double_unlock_hb(hb1, hb2);
  1521. hb_waiters_dec(hb2);
  1522. /*
  1523. * drop_futex_key_refs() must be called outside the spinlocks. During
  1524. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1525. * one at key2 and updated their key pointer. We no longer need to
  1526. * hold the references to key1.
  1527. */
  1528. while (--drop_count >= 0)
  1529. drop_futex_key_refs(&key1);
  1530. out_put_keys:
  1531. put_futex_key(&key2);
  1532. out_put_key1:
  1533. put_futex_key(&key1);
  1534. out:
  1535. if (pi_state != NULL)
  1536. free_pi_state(pi_state);
  1537. return ret ? ret : task_count;
  1538. }
  1539. /* The key must be already stored in q->key. */
  1540. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1541. __acquires(&hb->lock)
  1542. {
  1543. struct futex_hash_bucket *hb;
  1544. hb = hash_futex(&q->key);
  1545. /*
  1546. * Increment the counter before taking the lock so that
  1547. * a potential waker won't miss a to-be-slept task that is
  1548. * waiting for the spinlock. This is safe as all queue_lock()
  1549. * users end up calling queue_me(). Similarly, for housekeeping,
  1550. * decrement the counter at queue_unlock() when some error has
  1551. * occurred and we don't end up adding the task to the list.
  1552. */
  1553. hb_waiters_inc(hb);
  1554. q->lock_ptr = &hb->lock;
  1555. spin_lock(&hb->lock); /* implies MB (A) */
  1556. return hb;
  1557. }
  1558. static inline void
  1559. queue_unlock(struct futex_hash_bucket *hb)
  1560. __releases(&hb->lock)
  1561. {
  1562. spin_unlock(&hb->lock);
  1563. hb_waiters_dec(hb);
  1564. }
  1565. /**
  1566. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1567. * @q: The futex_q to enqueue
  1568. * @hb: The destination hash bucket
  1569. *
  1570. * The hb->lock must be held by the caller, and is released here. A call to
  1571. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1572. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1573. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1574. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1575. * an example).
  1576. */
  1577. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1578. __releases(&hb->lock)
  1579. {
  1580. int prio;
  1581. /*
  1582. * The priority used to register this element is
  1583. * - either the real thread-priority for the real-time threads
  1584. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1585. * - or MAX_RT_PRIO for non-RT threads.
  1586. * Thus, all RT-threads are woken first in priority order, and
  1587. * the others are woken last, in FIFO order.
  1588. */
  1589. prio = min(current->normal_prio, MAX_RT_PRIO);
  1590. plist_node_init(&q->list, prio);
  1591. plist_add(&q->list, &hb->chain);
  1592. q->task = current;
  1593. spin_unlock(&hb->lock);
  1594. }
  1595. /**
  1596. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1597. * @q: The futex_q to unqueue
  1598. *
  1599. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1600. * be paired with exactly one earlier call to queue_me().
  1601. *
  1602. * Return:
  1603. * 1 - if the futex_q was still queued (and we removed unqueued it);
  1604. * 0 - if the futex_q was already removed by the waking thread
  1605. */
  1606. static int unqueue_me(struct futex_q *q)
  1607. {
  1608. spinlock_t *lock_ptr;
  1609. int ret = 0;
  1610. /* In the common case we don't take the spinlock, which is nice. */
  1611. retry:
  1612. lock_ptr = q->lock_ptr;
  1613. barrier();
  1614. if (lock_ptr != NULL) {
  1615. spin_lock(lock_ptr);
  1616. /*
  1617. * q->lock_ptr can change between reading it and
  1618. * spin_lock(), causing us to take the wrong lock. This
  1619. * corrects the race condition.
  1620. *
  1621. * Reasoning goes like this: if we have the wrong lock,
  1622. * q->lock_ptr must have changed (maybe several times)
  1623. * between reading it and the spin_lock(). It can
  1624. * change again after the spin_lock() but only if it was
  1625. * already changed before the spin_lock(). It cannot,
  1626. * however, change back to the original value. Therefore
  1627. * we can detect whether we acquired the correct lock.
  1628. */
  1629. if (unlikely(lock_ptr != q->lock_ptr)) {
  1630. spin_unlock(lock_ptr);
  1631. goto retry;
  1632. }
  1633. __unqueue_futex(q);
  1634. BUG_ON(q->pi_state);
  1635. spin_unlock(lock_ptr);
  1636. ret = 1;
  1637. }
  1638. drop_futex_key_refs(&q->key);
  1639. return ret;
  1640. }
  1641. /*
  1642. * PI futexes can not be requeued and must remove themself from the
  1643. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1644. * and dropped here.
  1645. */
  1646. static void unqueue_me_pi(struct futex_q *q)
  1647. __releases(q->lock_ptr)
  1648. {
  1649. __unqueue_futex(q);
  1650. BUG_ON(!q->pi_state);
  1651. free_pi_state(q->pi_state);
  1652. q->pi_state = NULL;
  1653. spin_unlock(q->lock_ptr);
  1654. }
  1655. /*
  1656. * Fixup the pi_state owner with the new owner.
  1657. *
  1658. * Must be called with hash bucket lock held and mm->sem held for non
  1659. * private futexes.
  1660. */
  1661. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1662. struct task_struct *newowner)
  1663. {
  1664. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1665. struct futex_pi_state *pi_state = q->pi_state;
  1666. struct task_struct *oldowner = pi_state->owner;
  1667. u32 uval, uninitialized_var(curval), newval;
  1668. int ret;
  1669. /* Owner died? */
  1670. if (!pi_state->owner)
  1671. newtid |= FUTEX_OWNER_DIED;
  1672. /*
  1673. * We are here either because we stole the rtmutex from the
  1674. * previous highest priority waiter or we are the highest priority
  1675. * waiter but failed to get the rtmutex the first time.
  1676. * We have to replace the newowner TID in the user space variable.
  1677. * This must be atomic as we have to preserve the owner died bit here.
  1678. *
  1679. * Note: We write the user space value _before_ changing the pi_state
  1680. * because we can fault here. Imagine swapped out pages or a fork
  1681. * that marked all the anonymous memory readonly for cow.
  1682. *
  1683. * Modifying pi_state _before_ the user space value would
  1684. * leave the pi_state in an inconsistent state when we fault
  1685. * here, because we need to drop the hash bucket lock to
  1686. * handle the fault. This might be observed in the PID check
  1687. * in lookup_pi_state.
  1688. */
  1689. retry:
  1690. if (get_futex_value_locked(&uval, uaddr))
  1691. goto handle_fault;
  1692. while (1) {
  1693. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1694. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1695. goto handle_fault;
  1696. if (curval == uval)
  1697. break;
  1698. uval = curval;
  1699. }
  1700. /*
  1701. * We fixed up user space. Now we need to fix the pi_state
  1702. * itself.
  1703. */
  1704. if (pi_state->owner != NULL) {
  1705. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1706. WARN_ON(list_empty(&pi_state->list));
  1707. list_del_init(&pi_state->list);
  1708. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1709. }
  1710. pi_state->owner = newowner;
  1711. raw_spin_lock_irq(&newowner->pi_lock);
  1712. WARN_ON(!list_empty(&pi_state->list));
  1713. list_add(&pi_state->list, &newowner->pi_state_list);
  1714. raw_spin_unlock_irq(&newowner->pi_lock);
  1715. return 0;
  1716. /*
  1717. * To handle the page fault we need to drop the hash bucket
  1718. * lock here. That gives the other task (either the highest priority
  1719. * waiter itself or the task which stole the rtmutex) the
  1720. * chance to try the fixup of the pi_state. So once we are
  1721. * back from handling the fault we need to check the pi_state
  1722. * after reacquiring the hash bucket lock and before trying to
  1723. * do another fixup. When the fixup has been done already we
  1724. * simply return.
  1725. */
  1726. handle_fault:
  1727. spin_unlock(q->lock_ptr);
  1728. ret = fault_in_user_writeable(uaddr);
  1729. spin_lock(q->lock_ptr);
  1730. /*
  1731. * Check if someone else fixed it for us:
  1732. */
  1733. if (pi_state->owner != oldowner)
  1734. return 0;
  1735. if (ret)
  1736. return ret;
  1737. goto retry;
  1738. }
  1739. static long futex_wait_restart(struct restart_block *restart);
  1740. /**
  1741. * fixup_owner() - Post lock pi_state and corner case management
  1742. * @uaddr: user address of the futex
  1743. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1744. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1745. *
  1746. * After attempting to lock an rt_mutex, this function is called to cleanup
  1747. * the pi_state owner as well as handle race conditions that may allow us to
  1748. * acquire the lock. Must be called with the hb lock held.
  1749. *
  1750. * Return:
  1751. * 1 - success, lock taken;
  1752. * 0 - success, lock not taken;
  1753. * <0 - on error (-EFAULT)
  1754. */
  1755. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1756. {
  1757. struct task_struct *owner;
  1758. int ret = 0;
  1759. if (locked) {
  1760. /*
  1761. * Got the lock. We might not be the anticipated owner if we
  1762. * did a lock-steal - fix up the PI-state in that case:
  1763. */
  1764. if (q->pi_state->owner != current)
  1765. ret = fixup_pi_state_owner(uaddr, q, current);
  1766. goto out;
  1767. }
  1768. /*
  1769. * Catch the rare case, where the lock was released when we were on the
  1770. * way back before we locked the hash bucket.
  1771. */
  1772. if (q->pi_state->owner == current) {
  1773. /*
  1774. * Try to get the rt_mutex now. This might fail as some other
  1775. * task acquired the rt_mutex after we removed ourself from the
  1776. * rt_mutex waiters list.
  1777. */
  1778. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1779. locked = 1;
  1780. goto out;
  1781. }
  1782. /*
  1783. * pi_state is incorrect, some other task did a lock steal and
  1784. * we returned due to timeout or signal without taking the
  1785. * rt_mutex. Too late.
  1786. */
  1787. raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
  1788. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1789. if (!owner)
  1790. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  1791. raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
  1792. ret = fixup_pi_state_owner(uaddr, q, owner);
  1793. goto out;
  1794. }
  1795. /*
  1796. * Paranoia check. If we did not take the lock, then we should not be
  1797. * the owner of the rt_mutex.
  1798. */
  1799. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1800. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1801. "pi-state %p\n", ret,
  1802. q->pi_state->pi_mutex.owner,
  1803. q->pi_state->owner);
  1804. out:
  1805. return ret ? ret : locked;
  1806. }
  1807. /**
  1808. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1809. * @hb: the futex hash bucket, must be locked by the caller
  1810. * @q: the futex_q to queue up on
  1811. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1812. */
  1813. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1814. struct hrtimer_sleeper *timeout)
  1815. {
  1816. /*
  1817. * The task state is guaranteed to be set before another task can
  1818. * wake it. set_current_state() is implemented using set_mb() and
  1819. * queue_me() calls spin_unlock() upon completion, both serializing
  1820. * access to the hash list and forcing another memory barrier.
  1821. */
  1822. set_current_state(TASK_INTERRUPTIBLE);
  1823. queue_me(q, hb);
  1824. /* Arm the timer */
  1825. if (timeout) {
  1826. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1827. if (!hrtimer_active(&timeout->timer))
  1828. timeout->task = NULL;
  1829. }
  1830. /*
  1831. * If we have been removed from the hash list, then another task
  1832. * has tried to wake us, and we can skip the call to schedule().
  1833. */
  1834. if (likely(!plist_node_empty(&q->list))) {
  1835. /*
  1836. * If the timer has already expired, current will already be
  1837. * flagged for rescheduling. Only call schedule if there
  1838. * is no timeout, or if it has yet to expire.
  1839. */
  1840. if (!timeout || timeout->task)
  1841. freezable_schedule();
  1842. }
  1843. __set_current_state(TASK_RUNNING);
  1844. }
  1845. /**
  1846. * futex_wait_setup() - Prepare to wait on a futex
  1847. * @uaddr: the futex userspace address
  1848. * @val: the expected value
  1849. * @flags: futex flags (FLAGS_SHARED, etc.)
  1850. * @q: the associated futex_q
  1851. * @hb: storage for hash_bucket pointer to be returned to caller
  1852. *
  1853. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1854. * compare it with the expected value. Handle atomic faults internally.
  1855. * Return with the hb lock held and a q.key reference on success, and unlocked
  1856. * with no q.key reference on failure.
  1857. *
  1858. * Return:
  1859. * 0 - uaddr contains val and hb has been locked;
  1860. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  1861. */
  1862. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  1863. struct futex_q *q, struct futex_hash_bucket **hb)
  1864. {
  1865. u32 uval;
  1866. int ret;
  1867. /*
  1868. * Access the page AFTER the hash-bucket is locked.
  1869. * Order is important:
  1870. *
  1871. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1872. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1873. *
  1874. * The basic logical guarantee of a futex is that it blocks ONLY
  1875. * if cond(var) is known to be true at the time of blocking, for
  1876. * any cond. If we locked the hash-bucket after testing *uaddr, that
  1877. * would open a race condition where we could block indefinitely with
  1878. * cond(var) false, which would violate the guarantee.
  1879. *
  1880. * On the other hand, we insert q and release the hash-bucket only
  1881. * after testing *uaddr. This guarantees that futex_wait() will NOT
  1882. * absorb a wakeup if *uaddr does not match the desired values
  1883. * while the syscall executes.
  1884. */
  1885. retry:
  1886. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  1887. if (unlikely(ret != 0))
  1888. return ret;
  1889. retry_private:
  1890. *hb = queue_lock(q);
  1891. ret = get_futex_value_locked(&uval, uaddr);
  1892. if (ret) {
  1893. queue_unlock(*hb);
  1894. ret = get_user(uval, uaddr);
  1895. if (ret)
  1896. goto out;
  1897. if (!(flags & FLAGS_SHARED))
  1898. goto retry_private;
  1899. put_futex_key(&q->key);
  1900. goto retry;
  1901. }
  1902. if (uval != val) {
  1903. queue_unlock(*hb);
  1904. ret = -EWOULDBLOCK;
  1905. }
  1906. out:
  1907. if (ret)
  1908. put_futex_key(&q->key);
  1909. return ret;
  1910. }
  1911. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  1912. ktime_t *abs_time, u32 bitset)
  1913. {
  1914. struct hrtimer_sleeper timeout, *to = NULL;
  1915. struct restart_block *restart;
  1916. struct futex_hash_bucket *hb;
  1917. struct futex_q q = futex_q_init;
  1918. int ret;
  1919. if (!bitset)
  1920. return -EINVAL;
  1921. q.bitset = bitset;
  1922. if (abs_time) {
  1923. to = &timeout;
  1924. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1925. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1926. HRTIMER_MODE_ABS);
  1927. hrtimer_init_sleeper(to, current);
  1928. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1929. current->timer_slack_ns);
  1930. }
  1931. retry:
  1932. /*
  1933. * Prepare to wait on uaddr. On success, holds hb lock and increments
  1934. * q.key refs.
  1935. */
  1936. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1937. if (ret)
  1938. goto out;
  1939. /* queue_me and wait for wakeup, timeout, or a signal. */
  1940. futex_wait_queue_me(hb, &q, to);
  1941. /* If we were woken (and unqueued), we succeeded, whatever. */
  1942. ret = 0;
  1943. /* unqueue_me() drops q.key ref */
  1944. if (!unqueue_me(&q))
  1945. goto out;
  1946. ret = -ETIMEDOUT;
  1947. if (to && !to->task)
  1948. goto out;
  1949. /*
  1950. * We expect signal_pending(current), but we might be the
  1951. * victim of a spurious wakeup as well.
  1952. */
  1953. if (!signal_pending(current))
  1954. goto retry;
  1955. ret = -ERESTARTSYS;
  1956. if (!abs_time)
  1957. goto out;
  1958. restart = &current_thread_info()->restart_block;
  1959. restart->fn = futex_wait_restart;
  1960. restart->futex.uaddr = uaddr;
  1961. restart->futex.val = val;
  1962. restart->futex.time = abs_time->tv64;
  1963. restart->futex.bitset = bitset;
  1964. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  1965. ret = -ERESTART_RESTARTBLOCK;
  1966. out:
  1967. if (to) {
  1968. hrtimer_cancel(&to->timer);
  1969. destroy_hrtimer_on_stack(&to->timer);
  1970. }
  1971. return ret;
  1972. }
  1973. static long futex_wait_restart(struct restart_block *restart)
  1974. {
  1975. u32 __user *uaddr = restart->futex.uaddr;
  1976. ktime_t t, *tp = NULL;
  1977. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1978. t.tv64 = restart->futex.time;
  1979. tp = &t;
  1980. }
  1981. restart->fn = do_no_restart_syscall;
  1982. return (long)futex_wait(uaddr, restart->futex.flags,
  1983. restart->futex.val, tp, restart->futex.bitset);
  1984. }
  1985. /*
  1986. * Userspace tried a 0 -> TID atomic transition of the futex value
  1987. * and failed. The kernel side here does the whole locking operation:
  1988. * if there are waiters then it will block, it does PI, etc. (Due to
  1989. * races the kernel might see a 0 value of the futex too.)
  1990. */
  1991. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
  1992. ktime_t *time, int trylock)
  1993. {
  1994. struct hrtimer_sleeper timeout, *to = NULL;
  1995. struct futex_hash_bucket *hb;
  1996. struct futex_q q = futex_q_init;
  1997. int res, ret;
  1998. if (refill_pi_state_cache())
  1999. return -ENOMEM;
  2000. if (time) {
  2001. to = &timeout;
  2002. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2003. HRTIMER_MODE_ABS);
  2004. hrtimer_init_sleeper(to, current);
  2005. hrtimer_set_expires(&to->timer, *time);
  2006. }
  2007. retry:
  2008. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2009. if (unlikely(ret != 0))
  2010. goto out;
  2011. retry_private:
  2012. hb = queue_lock(&q);
  2013. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2014. if (unlikely(ret)) {
  2015. switch (ret) {
  2016. case 1:
  2017. /* We got the lock. */
  2018. ret = 0;
  2019. goto out_unlock_put_key;
  2020. case -EFAULT:
  2021. goto uaddr_faulted;
  2022. case -EAGAIN:
  2023. /*
  2024. * Two reasons for this:
  2025. * - Task is exiting and we just wait for the
  2026. * exit to complete.
  2027. * - The user space value changed.
  2028. */
  2029. queue_unlock(hb);
  2030. put_futex_key(&q.key);
  2031. cond_resched();
  2032. goto retry;
  2033. default:
  2034. goto out_unlock_put_key;
  2035. }
  2036. }
  2037. /*
  2038. * Only actually queue now that the atomic ops are done:
  2039. */
  2040. queue_me(&q, hb);
  2041. WARN_ON(!q.pi_state);
  2042. /*
  2043. * Block on the PI mutex:
  2044. */
  2045. if (!trylock) {
  2046. ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
  2047. } else {
  2048. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  2049. /* Fixup the trylock return value: */
  2050. ret = ret ? 0 : -EWOULDBLOCK;
  2051. }
  2052. spin_lock(q.lock_ptr);
  2053. /*
  2054. * Fixup the pi_state owner and possibly acquire the lock if we
  2055. * haven't already.
  2056. */
  2057. res = fixup_owner(uaddr, &q, !ret);
  2058. /*
  2059. * If fixup_owner() returned an error, proprogate that. If it acquired
  2060. * the lock, clear our -ETIMEDOUT or -EINTR.
  2061. */
  2062. if (res)
  2063. ret = (res < 0) ? res : 0;
  2064. /*
  2065. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2066. * it and return the fault to userspace.
  2067. */
  2068. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  2069. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2070. /* Unqueue and drop the lock */
  2071. unqueue_me_pi(&q);
  2072. goto out_put_key;
  2073. out_unlock_put_key:
  2074. queue_unlock(hb);
  2075. out_put_key:
  2076. put_futex_key(&q.key);
  2077. out:
  2078. if (to)
  2079. destroy_hrtimer_on_stack(&to->timer);
  2080. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2081. uaddr_faulted:
  2082. queue_unlock(hb);
  2083. ret = fault_in_user_writeable(uaddr);
  2084. if (ret)
  2085. goto out_put_key;
  2086. if (!(flags & FLAGS_SHARED))
  2087. goto retry_private;
  2088. put_futex_key(&q.key);
  2089. goto retry;
  2090. }
  2091. /*
  2092. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2093. * This is the in-kernel slowpath: we look up the PI state (if any),
  2094. * and do the rt-mutex unlock.
  2095. */
  2096. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2097. {
  2098. u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
  2099. union futex_key key = FUTEX_KEY_INIT;
  2100. struct futex_hash_bucket *hb;
  2101. struct futex_q *match;
  2102. int ret;
  2103. retry:
  2104. if (get_user(uval, uaddr))
  2105. return -EFAULT;
  2106. /*
  2107. * We release only a lock we actually own:
  2108. */
  2109. if ((uval & FUTEX_TID_MASK) != vpid)
  2110. return -EPERM;
  2111. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2112. if (ret)
  2113. return ret;
  2114. hb = hash_futex(&key);
  2115. spin_lock(&hb->lock);
  2116. /*
  2117. * Check waiters first. We do not trust user space values at
  2118. * all and we at least want to know if user space fiddled
  2119. * with the futex value instead of blindly unlocking.
  2120. */
  2121. match = futex_top_waiter(hb, &key);
  2122. if (match) {
  2123. ret = wake_futex_pi(uaddr, uval, match);
  2124. /*
  2125. * The atomic access to the futex value generated a
  2126. * pagefault, so retry the user-access and the wakeup:
  2127. */
  2128. if (ret == -EFAULT)
  2129. goto pi_faulted;
  2130. goto out_unlock;
  2131. }
  2132. /*
  2133. * We have no kernel internal state, i.e. no waiters in the
  2134. * kernel. Waiters which are about to queue themselves are stuck
  2135. * on hb->lock. So we can safely ignore them. We do neither
  2136. * preserve the WAITERS bit not the OWNER_DIED one. We are the
  2137. * owner.
  2138. */
  2139. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
  2140. goto pi_faulted;
  2141. /*
  2142. * If uval has changed, let user space handle it.
  2143. */
  2144. ret = (curval == uval) ? 0 : -EAGAIN;
  2145. out_unlock:
  2146. spin_unlock(&hb->lock);
  2147. put_futex_key(&key);
  2148. return ret;
  2149. pi_faulted:
  2150. spin_unlock(&hb->lock);
  2151. put_futex_key(&key);
  2152. ret = fault_in_user_writeable(uaddr);
  2153. if (!ret)
  2154. goto retry;
  2155. return ret;
  2156. }
  2157. /**
  2158. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2159. * @hb: the hash_bucket futex_q was original enqueued on
  2160. * @q: the futex_q woken while waiting to be requeued
  2161. * @key2: the futex_key of the requeue target futex
  2162. * @timeout: the timeout associated with the wait (NULL if none)
  2163. *
  2164. * Detect if the task was woken on the initial futex as opposed to the requeue
  2165. * target futex. If so, determine if it was a timeout or a signal that caused
  2166. * the wakeup and return the appropriate error code to the caller. Must be
  2167. * called with the hb lock held.
  2168. *
  2169. * Return:
  2170. * 0 = no early wakeup detected;
  2171. * <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2172. */
  2173. static inline
  2174. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2175. struct futex_q *q, union futex_key *key2,
  2176. struct hrtimer_sleeper *timeout)
  2177. {
  2178. int ret = 0;
  2179. /*
  2180. * With the hb lock held, we avoid races while we process the wakeup.
  2181. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2182. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2183. * It can't be requeued from uaddr2 to something else since we don't
  2184. * support a PI aware source futex for requeue.
  2185. */
  2186. if (!match_futex(&q->key, key2)) {
  2187. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2188. /*
  2189. * We were woken prior to requeue by a timeout or a signal.
  2190. * Unqueue the futex_q and determine which it was.
  2191. */
  2192. plist_del(&q->list, &hb->chain);
  2193. hb_waiters_dec(hb);
  2194. /* Handle spurious wakeups gracefully */
  2195. ret = -EWOULDBLOCK;
  2196. if (timeout && !timeout->task)
  2197. ret = -ETIMEDOUT;
  2198. else if (signal_pending(current))
  2199. ret = -ERESTARTNOINTR;
  2200. }
  2201. return ret;
  2202. }
  2203. /**
  2204. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2205. * @uaddr: the futex we initially wait on (non-pi)
  2206. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2207. * the same type, no requeueing from private to shared, etc.
  2208. * @val: the expected value of uaddr
  2209. * @abs_time: absolute timeout
  2210. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2211. * @uaddr2: the pi futex we will take prior to returning to user-space
  2212. *
  2213. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2214. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2215. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2216. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2217. * without one, the pi logic would not know which task to boost/deboost, if
  2218. * there was a need to.
  2219. *
  2220. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2221. * via the following--
  2222. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2223. * 2) wakeup on uaddr2 after a requeue
  2224. * 3) signal
  2225. * 4) timeout
  2226. *
  2227. * If 3, cleanup and return -ERESTARTNOINTR.
  2228. *
  2229. * If 2, we may then block on trying to take the rt_mutex and return via:
  2230. * 5) successful lock
  2231. * 6) signal
  2232. * 7) timeout
  2233. * 8) other lock acquisition failure
  2234. *
  2235. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2236. *
  2237. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2238. *
  2239. * Return:
  2240. * 0 - On success;
  2241. * <0 - On error
  2242. */
  2243. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2244. u32 val, ktime_t *abs_time, u32 bitset,
  2245. u32 __user *uaddr2)
  2246. {
  2247. struct hrtimer_sleeper timeout, *to = NULL;
  2248. struct rt_mutex_waiter rt_waiter;
  2249. struct rt_mutex *pi_mutex = NULL;
  2250. struct futex_hash_bucket *hb;
  2251. union futex_key key2 = FUTEX_KEY_INIT;
  2252. struct futex_q q = futex_q_init;
  2253. int res, ret;
  2254. if (uaddr == uaddr2)
  2255. return -EINVAL;
  2256. if (!bitset)
  2257. return -EINVAL;
  2258. if (abs_time) {
  2259. to = &timeout;
  2260. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2261. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2262. HRTIMER_MODE_ABS);
  2263. hrtimer_init_sleeper(to, current);
  2264. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2265. current->timer_slack_ns);
  2266. }
  2267. /*
  2268. * The waiter is allocated on our stack, manipulated by the requeue
  2269. * code while we sleep on uaddr.
  2270. */
  2271. debug_rt_mutex_init_waiter(&rt_waiter);
  2272. RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
  2273. RB_CLEAR_NODE(&rt_waiter.tree_entry);
  2274. rt_waiter.task = NULL;
  2275. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2276. if (unlikely(ret != 0))
  2277. goto out;
  2278. q.bitset = bitset;
  2279. q.rt_waiter = &rt_waiter;
  2280. q.requeue_pi_key = &key2;
  2281. /*
  2282. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2283. * count.
  2284. */
  2285. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2286. if (ret)
  2287. goto out_key2;
  2288. /*
  2289. * The check above which compares uaddrs is not sufficient for
  2290. * shared futexes. We need to compare the keys:
  2291. */
  2292. if (match_futex(&q.key, &key2)) {
  2293. ret = -EINVAL;
  2294. goto out_put_keys;
  2295. }
  2296. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2297. futex_wait_queue_me(hb, &q, to);
  2298. spin_lock(&hb->lock);
  2299. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2300. spin_unlock(&hb->lock);
  2301. if (ret)
  2302. goto out_put_keys;
  2303. /*
  2304. * In order for us to be here, we know our q.key == key2, and since
  2305. * we took the hb->lock above, we also know that futex_requeue() has
  2306. * completed and we no longer have to concern ourselves with a wakeup
  2307. * race with the atomic proxy lock acquisition by the requeue code. The
  2308. * futex_requeue dropped our key1 reference and incremented our key2
  2309. * reference count.
  2310. */
  2311. /* Check if the requeue code acquired the second futex for us. */
  2312. if (!q.rt_waiter) {
  2313. /*
  2314. * Got the lock. We might not be the anticipated owner if we
  2315. * did a lock-steal - fix up the PI-state in that case.
  2316. */
  2317. if (q.pi_state && (q.pi_state->owner != current)) {
  2318. spin_lock(q.lock_ptr);
  2319. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2320. spin_unlock(q.lock_ptr);
  2321. }
  2322. } else {
  2323. /*
  2324. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2325. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2326. * the pi_state.
  2327. */
  2328. WARN_ON(!q.pi_state);
  2329. pi_mutex = &q.pi_state->pi_mutex;
  2330. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
  2331. debug_rt_mutex_free_waiter(&rt_waiter);
  2332. spin_lock(q.lock_ptr);
  2333. /*
  2334. * Fixup the pi_state owner and possibly acquire the lock if we
  2335. * haven't already.
  2336. */
  2337. res = fixup_owner(uaddr2, &q, !ret);
  2338. /*
  2339. * If fixup_owner() returned an error, proprogate that. If it
  2340. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2341. */
  2342. if (res)
  2343. ret = (res < 0) ? res : 0;
  2344. /* Unqueue and drop the lock. */
  2345. unqueue_me_pi(&q);
  2346. }
  2347. /*
  2348. * If fixup_pi_state_owner() faulted and was unable to handle the
  2349. * fault, unlock the rt_mutex and return the fault to userspace.
  2350. */
  2351. if (ret == -EFAULT) {
  2352. if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
  2353. rt_mutex_unlock(pi_mutex);
  2354. } else if (ret == -EINTR) {
  2355. /*
  2356. * We've already been requeued, but cannot restart by calling
  2357. * futex_lock_pi() directly. We could restart this syscall, but
  2358. * it would detect that the user space "val" changed and return
  2359. * -EWOULDBLOCK. Save the overhead of the restart and return
  2360. * -EWOULDBLOCK directly.
  2361. */
  2362. ret = -EWOULDBLOCK;
  2363. }
  2364. out_put_keys:
  2365. put_futex_key(&q.key);
  2366. out_key2:
  2367. put_futex_key(&key2);
  2368. out:
  2369. if (to) {
  2370. hrtimer_cancel(&to->timer);
  2371. destroy_hrtimer_on_stack(&to->timer);
  2372. }
  2373. return ret;
  2374. }
  2375. /*
  2376. * Support for robust futexes: the kernel cleans up held futexes at
  2377. * thread exit time.
  2378. *
  2379. * Implementation: user-space maintains a per-thread list of locks it
  2380. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2381. * and marks all locks that are owned by this thread with the
  2382. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2383. * always manipulated with the lock held, so the list is private and
  2384. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2385. * field, to allow the kernel to clean up if the thread dies after
  2386. * acquiring the lock, but just before it could have added itself to
  2387. * the list. There can only be one such pending lock.
  2388. */
  2389. /**
  2390. * sys_set_robust_list() - Set the robust-futex list head of a task
  2391. * @head: pointer to the list-head
  2392. * @len: length of the list-head, as userspace expects
  2393. */
  2394. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2395. size_t, len)
  2396. {
  2397. if (!futex_cmpxchg_enabled)
  2398. return -ENOSYS;
  2399. /*
  2400. * The kernel knows only one size for now:
  2401. */
  2402. if (unlikely(len != sizeof(*head)))
  2403. return -EINVAL;
  2404. current->robust_list = head;
  2405. return 0;
  2406. }
  2407. /**
  2408. * sys_get_robust_list() - Get the robust-futex list head of a task
  2409. * @pid: pid of the process [zero for current task]
  2410. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2411. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2412. */
  2413. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2414. struct robust_list_head __user * __user *, head_ptr,
  2415. size_t __user *, len_ptr)
  2416. {
  2417. struct robust_list_head __user *head;
  2418. unsigned long ret;
  2419. struct task_struct *p;
  2420. if (!futex_cmpxchg_enabled)
  2421. return -ENOSYS;
  2422. rcu_read_lock();
  2423. ret = -ESRCH;
  2424. if (!pid)
  2425. p = current;
  2426. else {
  2427. p = find_task_by_vpid(pid);
  2428. if (!p)
  2429. goto err_unlock;
  2430. }
  2431. ret = -EPERM;
  2432. if (!ptrace_may_access(p, PTRACE_MODE_READ))
  2433. goto err_unlock;
  2434. head = p->robust_list;
  2435. rcu_read_unlock();
  2436. if (put_user(sizeof(*head), len_ptr))
  2437. return -EFAULT;
  2438. return put_user(head, head_ptr);
  2439. err_unlock:
  2440. rcu_read_unlock();
  2441. return ret;
  2442. }
  2443. /*
  2444. * Process a futex-list entry, check whether it's owned by the
  2445. * dying task, and do notification if so:
  2446. */
  2447. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2448. {
  2449. u32 uval, uninitialized_var(nval), mval;
  2450. retry:
  2451. if (get_user(uval, uaddr))
  2452. return -1;
  2453. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2454. /*
  2455. * Ok, this dying thread is truly holding a futex
  2456. * of interest. Set the OWNER_DIED bit atomically
  2457. * via cmpxchg, and if the value had FUTEX_WAITERS
  2458. * set, wake up a waiter (if any). (We have to do a
  2459. * futex_wake() even if OWNER_DIED is already set -
  2460. * to handle the rare but possible case of recursive
  2461. * thread-death.) The rest of the cleanup is done in
  2462. * userspace.
  2463. */
  2464. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2465. /*
  2466. * We are not holding a lock here, but we want to have
  2467. * the pagefault_disable/enable() protection because
  2468. * we want to handle the fault gracefully. If the
  2469. * access fails we try to fault in the futex with R/W
  2470. * verification via get_user_pages. get_user() above
  2471. * does not guarantee R/W access. If that fails we
  2472. * give up and leave the futex locked.
  2473. */
  2474. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2475. if (fault_in_user_writeable(uaddr))
  2476. return -1;
  2477. goto retry;
  2478. }
  2479. if (nval != uval)
  2480. goto retry;
  2481. /*
  2482. * Wake robust non-PI futexes here. The wakeup of
  2483. * PI futexes happens in exit_pi_state():
  2484. */
  2485. if (!pi && (uval & FUTEX_WAITERS))
  2486. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2487. }
  2488. return 0;
  2489. }
  2490. /*
  2491. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2492. */
  2493. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2494. struct robust_list __user * __user *head,
  2495. unsigned int *pi)
  2496. {
  2497. unsigned long uentry;
  2498. if (get_user(uentry, (unsigned long __user *)head))
  2499. return -EFAULT;
  2500. *entry = (void __user *)(uentry & ~1UL);
  2501. *pi = uentry & 1;
  2502. return 0;
  2503. }
  2504. /*
  2505. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2506. * and mark any locks found there dead, and notify any waiters.
  2507. *
  2508. * We silently return on any sign of list-walking problem.
  2509. */
  2510. void exit_robust_list(struct task_struct *curr)
  2511. {
  2512. struct robust_list_head __user *head = curr->robust_list;
  2513. struct robust_list __user *entry, *next_entry, *pending;
  2514. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2515. unsigned int uninitialized_var(next_pi);
  2516. unsigned long futex_offset;
  2517. int rc;
  2518. if (!futex_cmpxchg_enabled)
  2519. return;
  2520. /*
  2521. * Fetch the list head (which was registered earlier, via
  2522. * sys_set_robust_list()):
  2523. */
  2524. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2525. return;
  2526. /*
  2527. * Fetch the relative futex offset:
  2528. */
  2529. if (get_user(futex_offset, &head->futex_offset))
  2530. return;
  2531. /*
  2532. * Fetch any possibly pending lock-add first, and handle it
  2533. * if it exists:
  2534. */
  2535. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2536. return;
  2537. next_entry = NULL; /* avoid warning with gcc */
  2538. while (entry != &head->list) {
  2539. /*
  2540. * Fetch the next entry in the list before calling
  2541. * handle_futex_death:
  2542. */
  2543. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2544. /*
  2545. * A pending lock might already be on the list, so
  2546. * don't process it twice:
  2547. */
  2548. if (entry != pending)
  2549. if (handle_futex_death((void __user *)entry + futex_offset,
  2550. curr, pi))
  2551. return;
  2552. if (rc)
  2553. return;
  2554. entry = next_entry;
  2555. pi = next_pi;
  2556. /*
  2557. * Avoid excessively long or circular lists:
  2558. */
  2559. if (!--limit)
  2560. break;
  2561. cond_resched();
  2562. }
  2563. if (pending)
  2564. handle_futex_death((void __user *)pending + futex_offset,
  2565. curr, pip);
  2566. }
  2567. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2568. u32 __user *uaddr2, u32 val2, u32 val3)
  2569. {
  2570. int cmd = op & FUTEX_CMD_MASK;
  2571. unsigned int flags = 0;
  2572. if (!(op & FUTEX_PRIVATE_FLAG))
  2573. flags |= FLAGS_SHARED;
  2574. if (op & FUTEX_CLOCK_REALTIME) {
  2575. flags |= FLAGS_CLOCKRT;
  2576. if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2577. return -ENOSYS;
  2578. }
  2579. switch (cmd) {
  2580. case FUTEX_LOCK_PI:
  2581. case FUTEX_UNLOCK_PI:
  2582. case FUTEX_TRYLOCK_PI:
  2583. case FUTEX_WAIT_REQUEUE_PI:
  2584. case FUTEX_CMP_REQUEUE_PI:
  2585. if (!futex_cmpxchg_enabled)
  2586. return -ENOSYS;
  2587. }
  2588. switch (cmd) {
  2589. case FUTEX_WAIT:
  2590. val3 = FUTEX_BITSET_MATCH_ANY;
  2591. case FUTEX_WAIT_BITSET:
  2592. return futex_wait(uaddr, flags, val, timeout, val3);
  2593. case FUTEX_WAKE:
  2594. val3 = FUTEX_BITSET_MATCH_ANY;
  2595. case FUTEX_WAKE_BITSET:
  2596. return futex_wake(uaddr, flags, val, val3);
  2597. case FUTEX_REQUEUE:
  2598. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2599. case FUTEX_CMP_REQUEUE:
  2600. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2601. case FUTEX_WAKE_OP:
  2602. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2603. case FUTEX_LOCK_PI:
  2604. return futex_lock_pi(uaddr, flags, val, timeout, 0);
  2605. case FUTEX_UNLOCK_PI:
  2606. return futex_unlock_pi(uaddr, flags);
  2607. case FUTEX_TRYLOCK_PI:
  2608. return futex_lock_pi(uaddr, flags, 0, timeout, 1);
  2609. case FUTEX_WAIT_REQUEUE_PI:
  2610. val3 = FUTEX_BITSET_MATCH_ANY;
  2611. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2612. uaddr2);
  2613. case FUTEX_CMP_REQUEUE_PI:
  2614. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2615. }
  2616. return -ENOSYS;
  2617. }
  2618. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2619. struct timespec __user *, utime, u32 __user *, uaddr2,
  2620. u32, val3)
  2621. {
  2622. struct timespec ts;
  2623. ktime_t t, *tp = NULL;
  2624. u32 val2 = 0;
  2625. int cmd = op & FUTEX_CMD_MASK;
  2626. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2627. cmd == FUTEX_WAIT_BITSET ||
  2628. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2629. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2630. return -EFAULT;
  2631. if (!timespec_valid(&ts))
  2632. return -EINVAL;
  2633. t = timespec_to_ktime(ts);
  2634. if (cmd == FUTEX_WAIT)
  2635. t = ktime_add_safe(ktime_get(), t);
  2636. tp = &t;
  2637. }
  2638. /*
  2639. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2640. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2641. */
  2642. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2643. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2644. val2 = (u32) (unsigned long) utime;
  2645. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2646. }
  2647. static void __init futex_detect_cmpxchg(void)
  2648. {
  2649. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  2650. u32 curval;
  2651. /*
  2652. * This will fail and we want it. Some arch implementations do
  2653. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2654. * functionality. We want to know that before we call in any
  2655. * of the complex code paths. Also we want to prevent
  2656. * registration of robust lists in that case. NULL is
  2657. * guaranteed to fault and we get -EFAULT on functional
  2658. * implementation, the non-functional ones will return
  2659. * -ENOSYS.
  2660. */
  2661. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2662. futex_cmpxchg_enabled = 1;
  2663. #endif
  2664. }
  2665. static int __init futex_init(void)
  2666. {
  2667. unsigned int futex_shift;
  2668. unsigned long i;
  2669. #if CONFIG_BASE_SMALL
  2670. futex_hashsize = 16;
  2671. #else
  2672. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  2673. #endif
  2674. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  2675. futex_hashsize, 0,
  2676. futex_hashsize < 256 ? HASH_SMALL : 0,
  2677. &futex_shift, NULL,
  2678. futex_hashsize, futex_hashsize);
  2679. futex_hashsize = 1UL << futex_shift;
  2680. futex_detect_cmpxchg();
  2681. for (i = 0; i < futex_hashsize; i++) {
  2682. atomic_set(&futex_queues[i].waiters, 0);
  2683. plist_head_init(&futex_queues[i].chain);
  2684. spin_lock_init(&futex_queues[i].lock);
  2685. }
  2686. return 0;
  2687. }
  2688. __initcall(futex_init);