core.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534
  1. /*
  2. * Linux Socket Filter - Kernel level socket filtering
  3. *
  4. * Based on the design of the Berkeley Packet Filter. The new
  5. * internal format has been designed by PLUMgrid:
  6. *
  7. * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
  8. *
  9. * Authors:
  10. *
  11. * Jay Schulist <jschlst@samba.org>
  12. * Alexei Starovoitov <ast@plumgrid.com>
  13. * Daniel Borkmann <dborkman@redhat.com>
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. * Andi Kleen - Fix a few bad bugs and races.
  21. * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22. */
  23. #include <linux/filter.h>
  24. #include <linux/skbuff.h>
  25. #include <asm/unaligned.h>
  26. /* Registers */
  27. #define BPF_R0 regs[BPF_REG_0]
  28. #define BPF_R1 regs[BPF_REG_1]
  29. #define BPF_R2 regs[BPF_REG_2]
  30. #define BPF_R3 regs[BPF_REG_3]
  31. #define BPF_R4 regs[BPF_REG_4]
  32. #define BPF_R5 regs[BPF_REG_5]
  33. #define BPF_R6 regs[BPF_REG_6]
  34. #define BPF_R7 regs[BPF_REG_7]
  35. #define BPF_R8 regs[BPF_REG_8]
  36. #define BPF_R9 regs[BPF_REG_9]
  37. #define BPF_R10 regs[BPF_REG_10]
  38. /* Named registers */
  39. #define DST regs[insn->dst_reg]
  40. #define SRC regs[insn->src_reg]
  41. #define FP regs[BPF_REG_FP]
  42. #define ARG1 regs[BPF_REG_ARG1]
  43. #define CTX regs[BPF_REG_CTX]
  44. #define IMM insn->imm
  45. /* No hurry in this branch
  46. *
  47. * Exported for the bpf jit load helper.
  48. */
  49. void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  50. {
  51. u8 *ptr = NULL;
  52. if (k >= SKF_NET_OFF)
  53. ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  54. else if (k >= SKF_LL_OFF)
  55. ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  56. if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  57. return ptr;
  58. return NULL;
  59. }
  60. /* Base function for offset calculation. Needs to go into .text section,
  61. * therefore keeping it non-static as well; will also be used by JITs
  62. * anyway later on, so do not let the compiler omit it.
  63. */
  64. noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  65. {
  66. return 0;
  67. }
  68. /**
  69. * __bpf_prog_run - run eBPF program on a given context
  70. * @ctx: is the data we are operating on
  71. * @insn: is the array of eBPF instructions
  72. *
  73. * Decode and execute eBPF instructions.
  74. */
  75. static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
  76. {
  77. u64 stack[MAX_BPF_STACK / sizeof(u64)];
  78. u64 regs[MAX_BPF_REG], tmp;
  79. static const void *jumptable[256] = {
  80. [0 ... 255] = &&default_label,
  81. /* Now overwrite non-defaults ... */
  82. /* 32 bit ALU operations */
  83. [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
  84. [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
  85. [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
  86. [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
  87. [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
  88. [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
  89. [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
  90. [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
  91. [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
  92. [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
  93. [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
  94. [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
  95. [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
  96. [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
  97. [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
  98. [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
  99. [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
  100. [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
  101. [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
  102. [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
  103. [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
  104. [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
  105. [BPF_ALU | BPF_NEG] = &&ALU_NEG,
  106. [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
  107. [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
  108. /* 64 bit ALU operations */
  109. [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
  110. [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
  111. [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
  112. [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
  113. [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
  114. [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
  115. [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
  116. [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
  117. [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
  118. [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
  119. [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
  120. [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
  121. [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
  122. [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
  123. [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
  124. [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
  125. [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
  126. [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
  127. [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
  128. [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
  129. [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
  130. [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
  131. [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
  132. [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
  133. [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
  134. /* Call instruction */
  135. [BPF_JMP | BPF_CALL] = &&JMP_CALL,
  136. /* Jumps */
  137. [BPF_JMP | BPF_JA] = &&JMP_JA,
  138. [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
  139. [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
  140. [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
  141. [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
  142. [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
  143. [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
  144. [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
  145. [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
  146. [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
  147. [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
  148. [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
  149. [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
  150. [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
  151. [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
  152. /* Program return */
  153. [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
  154. /* Store instructions */
  155. [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
  156. [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
  157. [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
  158. [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
  159. [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
  160. [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
  161. [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
  162. [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
  163. [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
  164. [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
  165. /* Load instructions */
  166. [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
  167. [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
  168. [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
  169. [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
  170. [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
  171. [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
  172. [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
  173. [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
  174. [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
  175. [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
  176. };
  177. void *ptr;
  178. int off;
  179. #define CONT ({ insn++; goto select_insn; })
  180. #define CONT_JMP ({ insn++; goto select_insn; })
  181. FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
  182. ARG1 = (u64) (unsigned long) ctx;
  183. /* Registers used in classic BPF programs need to be reset first. */
  184. regs[BPF_REG_A] = 0;
  185. regs[BPF_REG_X] = 0;
  186. select_insn:
  187. goto *jumptable[insn->code];
  188. /* ALU */
  189. #define ALU(OPCODE, OP) \
  190. ALU64_##OPCODE##_X: \
  191. DST = DST OP SRC; \
  192. CONT; \
  193. ALU_##OPCODE##_X: \
  194. DST = (u32) DST OP (u32) SRC; \
  195. CONT; \
  196. ALU64_##OPCODE##_K: \
  197. DST = DST OP IMM; \
  198. CONT; \
  199. ALU_##OPCODE##_K: \
  200. DST = (u32) DST OP (u32) IMM; \
  201. CONT;
  202. ALU(ADD, +)
  203. ALU(SUB, -)
  204. ALU(AND, &)
  205. ALU(OR, |)
  206. ALU(LSH, <<)
  207. ALU(RSH, >>)
  208. ALU(XOR, ^)
  209. ALU(MUL, *)
  210. #undef ALU
  211. ALU_NEG:
  212. DST = (u32) -DST;
  213. CONT;
  214. ALU64_NEG:
  215. DST = -DST;
  216. CONT;
  217. ALU_MOV_X:
  218. DST = (u32) SRC;
  219. CONT;
  220. ALU_MOV_K:
  221. DST = (u32) IMM;
  222. CONT;
  223. ALU64_MOV_X:
  224. DST = SRC;
  225. CONT;
  226. ALU64_MOV_K:
  227. DST = IMM;
  228. CONT;
  229. ALU64_ARSH_X:
  230. (*(s64 *) &DST) >>= SRC;
  231. CONT;
  232. ALU64_ARSH_K:
  233. (*(s64 *) &DST) >>= IMM;
  234. CONT;
  235. ALU64_MOD_X:
  236. if (unlikely(SRC == 0))
  237. return 0;
  238. tmp = DST;
  239. DST = do_div(tmp, SRC);
  240. CONT;
  241. ALU_MOD_X:
  242. if (unlikely(SRC == 0))
  243. return 0;
  244. tmp = (u32) DST;
  245. DST = do_div(tmp, (u32) SRC);
  246. CONT;
  247. ALU64_MOD_K:
  248. tmp = DST;
  249. DST = do_div(tmp, IMM);
  250. CONT;
  251. ALU_MOD_K:
  252. tmp = (u32) DST;
  253. DST = do_div(tmp, (u32) IMM);
  254. CONT;
  255. ALU64_DIV_X:
  256. if (unlikely(SRC == 0))
  257. return 0;
  258. do_div(DST, SRC);
  259. CONT;
  260. ALU_DIV_X:
  261. if (unlikely(SRC == 0))
  262. return 0;
  263. tmp = (u32) DST;
  264. do_div(tmp, (u32) SRC);
  265. DST = (u32) tmp;
  266. CONT;
  267. ALU64_DIV_K:
  268. do_div(DST, IMM);
  269. CONT;
  270. ALU_DIV_K:
  271. tmp = (u32) DST;
  272. do_div(tmp, (u32) IMM);
  273. DST = (u32) tmp;
  274. CONT;
  275. ALU_END_TO_BE:
  276. switch (IMM) {
  277. case 16:
  278. DST = (__force u16) cpu_to_be16(DST);
  279. break;
  280. case 32:
  281. DST = (__force u32) cpu_to_be32(DST);
  282. break;
  283. case 64:
  284. DST = (__force u64) cpu_to_be64(DST);
  285. break;
  286. }
  287. CONT;
  288. ALU_END_TO_LE:
  289. switch (IMM) {
  290. case 16:
  291. DST = (__force u16) cpu_to_le16(DST);
  292. break;
  293. case 32:
  294. DST = (__force u32) cpu_to_le32(DST);
  295. break;
  296. case 64:
  297. DST = (__force u64) cpu_to_le64(DST);
  298. break;
  299. }
  300. CONT;
  301. /* CALL */
  302. JMP_CALL:
  303. /* Function call scratches BPF_R1-BPF_R5 registers,
  304. * preserves BPF_R6-BPF_R9, and stores return value
  305. * into BPF_R0.
  306. */
  307. BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
  308. BPF_R4, BPF_R5);
  309. CONT;
  310. /* JMP */
  311. JMP_JA:
  312. insn += insn->off;
  313. CONT;
  314. JMP_JEQ_X:
  315. if (DST == SRC) {
  316. insn += insn->off;
  317. CONT_JMP;
  318. }
  319. CONT;
  320. JMP_JEQ_K:
  321. if (DST == IMM) {
  322. insn += insn->off;
  323. CONT_JMP;
  324. }
  325. CONT;
  326. JMP_JNE_X:
  327. if (DST != SRC) {
  328. insn += insn->off;
  329. CONT_JMP;
  330. }
  331. CONT;
  332. JMP_JNE_K:
  333. if (DST != IMM) {
  334. insn += insn->off;
  335. CONT_JMP;
  336. }
  337. CONT;
  338. JMP_JGT_X:
  339. if (DST > SRC) {
  340. insn += insn->off;
  341. CONT_JMP;
  342. }
  343. CONT;
  344. JMP_JGT_K:
  345. if (DST > IMM) {
  346. insn += insn->off;
  347. CONT_JMP;
  348. }
  349. CONT;
  350. JMP_JGE_X:
  351. if (DST >= SRC) {
  352. insn += insn->off;
  353. CONT_JMP;
  354. }
  355. CONT;
  356. JMP_JGE_K:
  357. if (DST >= IMM) {
  358. insn += insn->off;
  359. CONT_JMP;
  360. }
  361. CONT;
  362. JMP_JSGT_X:
  363. if (((s64) DST) > ((s64) SRC)) {
  364. insn += insn->off;
  365. CONT_JMP;
  366. }
  367. CONT;
  368. JMP_JSGT_K:
  369. if (((s64) DST) > ((s64) IMM)) {
  370. insn += insn->off;
  371. CONT_JMP;
  372. }
  373. CONT;
  374. JMP_JSGE_X:
  375. if (((s64) DST) >= ((s64) SRC)) {
  376. insn += insn->off;
  377. CONT_JMP;
  378. }
  379. CONT;
  380. JMP_JSGE_K:
  381. if (((s64) DST) >= ((s64) IMM)) {
  382. insn += insn->off;
  383. CONT_JMP;
  384. }
  385. CONT;
  386. JMP_JSET_X:
  387. if (DST & SRC) {
  388. insn += insn->off;
  389. CONT_JMP;
  390. }
  391. CONT;
  392. JMP_JSET_K:
  393. if (DST & IMM) {
  394. insn += insn->off;
  395. CONT_JMP;
  396. }
  397. CONT;
  398. JMP_EXIT:
  399. return BPF_R0;
  400. /* STX and ST and LDX*/
  401. #define LDST(SIZEOP, SIZE) \
  402. STX_MEM_##SIZEOP: \
  403. *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
  404. CONT; \
  405. ST_MEM_##SIZEOP: \
  406. *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
  407. CONT; \
  408. LDX_MEM_##SIZEOP: \
  409. DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
  410. CONT;
  411. LDST(B, u8)
  412. LDST(H, u16)
  413. LDST(W, u32)
  414. LDST(DW, u64)
  415. #undef LDST
  416. STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
  417. atomic_add((u32) SRC, (atomic_t *)(unsigned long)
  418. (DST + insn->off));
  419. CONT;
  420. STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
  421. atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
  422. (DST + insn->off));
  423. CONT;
  424. LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
  425. off = IMM;
  426. load_word:
  427. /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
  428. * only appearing in the programs where ctx ==
  429. * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
  430. * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
  431. * internal BPF verifier will check that BPF_R6 ==
  432. * ctx.
  433. *
  434. * BPF_ABS and BPF_IND are wrappers of function calls,
  435. * so they scratch BPF_R1-BPF_R5 registers, preserve
  436. * BPF_R6-BPF_R9, and store return value into BPF_R0.
  437. *
  438. * Implicit input:
  439. * ctx == skb == BPF_R6 == CTX
  440. *
  441. * Explicit input:
  442. * SRC == any register
  443. * IMM == 32-bit immediate
  444. *
  445. * Output:
  446. * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
  447. */
  448. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
  449. if (likely(ptr != NULL)) {
  450. BPF_R0 = get_unaligned_be32(ptr);
  451. CONT;
  452. }
  453. return 0;
  454. LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
  455. off = IMM;
  456. load_half:
  457. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
  458. if (likely(ptr != NULL)) {
  459. BPF_R0 = get_unaligned_be16(ptr);
  460. CONT;
  461. }
  462. return 0;
  463. LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
  464. off = IMM;
  465. load_byte:
  466. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
  467. if (likely(ptr != NULL)) {
  468. BPF_R0 = *(u8 *)ptr;
  469. CONT;
  470. }
  471. return 0;
  472. LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
  473. off = IMM + SRC;
  474. goto load_word;
  475. LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
  476. off = IMM + SRC;
  477. goto load_half;
  478. LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
  479. off = IMM + SRC;
  480. goto load_byte;
  481. default_label:
  482. /* If we ever reach this, we have a bug somewhere. */
  483. WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
  484. return 0;
  485. }
  486. void __weak bpf_int_jit_compile(struct bpf_prog *prog)
  487. {
  488. }
  489. /**
  490. * bpf_prog_select_runtime - select execution runtime for BPF program
  491. * @fp: bpf_prog populated with internal BPF program
  492. *
  493. * try to JIT internal BPF program, if JIT is not available select interpreter
  494. * BPF program will be executed via BPF_PROG_RUN() macro
  495. */
  496. void bpf_prog_select_runtime(struct bpf_prog *fp)
  497. {
  498. fp->bpf_func = (void *) __bpf_prog_run;
  499. /* Probe if internal BPF can be JITed */
  500. bpf_int_jit_compile(fp);
  501. }
  502. EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
  503. /* free internal BPF program */
  504. void bpf_prog_free(struct bpf_prog *fp)
  505. {
  506. bpf_jit_free(fp);
  507. }
  508. EXPORT_SYMBOL_GPL(bpf_prog_free);