fork.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <asm/pgtable.h>
  76. #include <asm/pgalloc.h>
  77. #include <asm/uaccess.h>
  78. #include <asm/mmu_context.h>
  79. #include <asm/cacheflush.h>
  80. #include <asm/tlbflush.h>
  81. #include <trace/events/sched.h>
  82. #define CREATE_TRACE_POINTS
  83. #include <trace/events/task.h>
  84. /*
  85. * Protected counters by write_lock_irq(&tasklist_lock)
  86. */
  87. unsigned long total_forks; /* Handle normal Linux uptimes. */
  88. int nr_threads; /* The idle threads do not count.. */
  89. int max_threads; /* tunable limit on nr_threads */
  90. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  91. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  92. #ifdef CONFIG_PROVE_RCU
  93. int lockdep_tasklist_lock_is_held(void)
  94. {
  95. return lockdep_is_held(&tasklist_lock);
  96. }
  97. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  98. #endif /* #ifdef CONFIG_PROVE_RCU */
  99. int nr_processes(void)
  100. {
  101. int cpu;
  102. int total = 0;
  103. for_each_possible_cpu(cpu)
  104. total += per_cpu(process_counts, cpu);
  105. return total;
  106. }
  107. void __weak arch_release_task_struct(struct task_struct *tsk)
  108. {
  109. }
  110. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  111. static struct kmem_cache *task_struct_cachep;
  112. static inline struct task_struct *alloc_task_struct_node(int node)
  113. {
  114. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  115. }
  116. static inline void free_task_struct(struct task_struct *tsk)
  117. {
  118. kmem_cache_free(task_struct_cachep, tsk);
  119. }
  120. #endif
  121. void __weak arch_release_thread_info(struct thread_info *ti)
  122. {
  123. }
  124. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  125. /*
  126. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  127. * kmemcache based allocator.
  128. */
  129. # if THREAD_SIZE >= PAGE_SIZE
  130. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  131. int node)
  132. {
  133. struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
  134. THREAD_SIZE_ORDER);
  135. return page ? page_address(page) : NULL;
  136. }
  137. static inline void free_thread_info(struct thread_info *ti)
  138. {
  139. free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  140. }
  141. # else
  142. static struct kmem_cache *thread_info_cache;
  143. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  144. int node)
  145. {
  146. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  147. }
  148. static void free_thread_info(struct thread_info *ti)
  149. {
  150. kmem_cache_free(thread_info_cache, ti);
  151. }
  152. void thread_info_cache_init(void)
  153. {
  154. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  155. THREAD_SIZE, 0, NULL);
  156. BUG_ON(thread_info_cache == NULL);
  157. }
  158. # endif
  159. #endif
  160. /* SLAB cache for signal_struct structures (tsk->signal) */
  161. static struct kmem_cache *signal_cachep;
  162. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  163. struct kmem_cache *sighand_cachep;
  164. /* SLAB cache for files_struct structures (tsk->files) */
  165. struct kmem_cache *files_cachep;
  166. /* SLAB cache for fs_struct structures (tsk->fs) */
  167. struct kmem_cache *fs_cachep;
  168. /* SLAB cache for vm_area_struct structures */
  169. struct kmem_cache *vm_area_cachep;
  170. /* SLAB cache for mm_struct structures (tsk->mm) */
  171. static struct kmem_cache *mm_cachep;
  172. static void account_kernel_stack(struct thread_info *ti, int account)
  173. {
  174. struct zone *zone = page_zone(virt_to_page(ti));
  175. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  176. }
  177. void free_task(struct task_struct *tsk)
  178. {
  179. account_kernel_stack(tsk->stack, -1);
  180. arch_release_thread_info(tsk->stack);
  181. free_thread_info(tsk->stack);
  182. rt_mutex_debug_task_free(tsk);
  183. ftrace_graph_exit_task(tsk);
  184. put_seccomp_filter(tsk);
  185. arch_release_task_struct(tsk);
  186. free_task_struct(tsk);
  187. }
  188. EXPORT_SYMBOL(free_task);
  189. static inline void free_signal_struct(struct signal_struct *sig)
  190. {
  191. taskstats_tgid_free(sig);
  192. sched_autogroup_exit(sig);
  193. kmem_cache_free(signal_cachep, sig);
  194. }
  195. static inline void put_signal_struct(struct signal_struct *sig)
  196. {
  197. if (atomic_dec_and_test(&sig->sigcnt))
  198. free_signal_struct(sig);
  199. }
  200. void __put_task_struct(struct task_struct *tsk)
  201. {
  202. WARN_ON(!tsk->exit_state);
  203. WARN_ON(atomic_read(&tsk->usage));
  204. WARN_ON(tsk == current);
  205. task_numa_free(tsk);
  206. security_task_free(tsk);
  207. exit_creds(tsk);
  208. delayacct_tsk_free(tsk);
  209. put_signal_struct(tsk->signal);
  210. if (!profile_handoff_task(tsk))
  211. free_task(tsk);
  212. }
  213. EXPORT_SYMBOL_GPL(__put_task_struct);
  214. void __init __weak arch_task_cache_init(void) { }
  215. void __init fork_init(unsigned long mempages)
  216. {
  217. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  218. #ifndef ARCH_MIN_TASKALIGN
  219. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  220. #endif
  221. /* create a slab on which task_structs can be allocated */
  222. task_struct_cachep =
  223. kmem_cache_create("task_struct", sizeof(struct task_struct),
  224. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  225. #endif
  226. /* do the arch specific task caches init */
  227. arch_task_cache_init();
  228. /*
  229. * The default maximum number of threads is set to a safe
  230. * value: the thread structures can take up at most half
  231. * of memory.
  232. */
  233. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  234. /*
  235. * we need to allow at least 20 threads to boot a system
  236. */
  237. if (max_threads < 20)
  238. max_threads = 20;
  239. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  240. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  241. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  242. init_task.signal->rlim[RLIMIT_NPROC];
  243. }
  244. int __weak arch_dup_task_struct(struct task_struct *dst,
  245. struct task_struct *src)
  246. {
  247. *dst = *src;
  248. return 0;
  249. }
  250. void set_task_stack_end_magic(struct task_struct *tsk)
  251. {
  252. unsigned long *stackend;
  253. stackend = end_of_stack(tsk);
  254. *stackend = STACK_END_MAGIC; /* for overflow detection */
  255. }
  256. static struct task_struct *dup_task_struct(struct task_struct *orig)
  257. {
  258. struct task_struct *tsk;
  259. struct thread_info *ti;
  260. int node = tsk_fork_get_node(orig);
  261. int err;
  262. tsk = alloc_task_struct_node(node);
  263. if (!tsk)
  264. return NULL;
  265. ti = alloc_thread_info_node(tsk, node);
  266. if (!ti)
  267. goto free_tsk;
  268. err = arch_dup_task_struct(tsk, orig);
  269. if (err)
  270. goto free_ti;
  271. tsk->stack = ti;
  272. #ifdef CONFIG_SECCOMP
  273. /*
  274. * We must handle setting up seccomp filters once we're under
  275. * the sighand lock in case orig has changed between now and
  276. * then. Until then, filter must be NULL to avoid messing up
  277. * the usage counts on the error path calling free_task.
  278. */
  279. tsk->seccomp.filter = NULL;
  280. #endif
  281. setup_thread_stack(tsk, orig);
  282. clear_user_return_notifier(tsk);
  283. clear_tsk_need_resched(tsk);
  284. set_task_stack_end_magic(tsk);
  285. #ifdef CONFIG_CC_STACKPROTECTOR
  286. tsk->stack_canary = get_random_int();
  287. #endif
  288. /*
  289. * One for us, one for whoever does the "release_task()" (usually
  290. * parent)
  291. */
  292. atomic_set(&tsk->usage, 2);
  293. #ifdef CONFIG_BLK_DEV_IO_TRACE
  294. tsk->btrace_seq = 0;
  295. #endif
  296. tsk->splice_pipe = NULL;
  297. tsk->task_frag.page = NULL;
  298. account_kernel_stack(ti, 1);
  299. return tsk;
  300. free_ti:
  301. free_thread_info(ti);
  302. free_tsk:
  303. free_task_struct(tsk);
  304. return NULL;
  305. }
  306. #ifdef CONFIG_MMU
  307. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  308. {
  309. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  310. struct rb_node **rb_link, *rb_parent;
  311. int retval;
  312. unsigned long charge;
  313. uprobe_start_dup_mmap();
  314. down_write(&oldmm->mmap_sem);
  315. flush_cache_dup_mm(oldmm);
  316. uprobe_dup_mmap(oldmm, mm);
  317. /*
  318. * Not linked in yet - no deadlock potential:
  319. */
  320. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  321. mm->total_vm = oldmm->total_vm;
  322. mm->shared_vm = oldmm->shared_vm;
  323. mm->exec_vm = oldmm->exec_vm;
  324. mm->stack_vm = oldmm->stack_vm;
  325. rb_link = &mm->mm_rb.rb_node;
  326. rb_parent = NULL;
  327. pprev = &mm->mmap;
  328. retval = ksm_fork(mm, oldmm);
  329. if (retval)
  330. goto out;
  331. retval = khugepaged_fork(mm, oldmm);
  332. if (retval)
  333. goto out;
  334. prev = NULL;
  335. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  336. struct file *file;
  337. if (mpnt->vm_flags & VM_DONTCOPY) {
  338. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  339. -vma_pages(mpnt));
  340. continue;
  341. }
  342. charge = 0;
  343. if (mpnt->vm_flags & VM_ACCOUNT) {
  344. unsigned long len = vma_pages(mpnt);
  345. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  346. goto fail_nomem;
  347. charge = len;
  348. }
  349. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  350. if (!tmp)
  351. goto fail_nomem;
  352. *tmp = *mpnt;
  353. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  354. retval = vma_dup_policy(mpnt, tmp);
  355. if (retval)
  356. goto fail_nomem_policy;
  357. tmp->vm_mm = mm;
  358. if (anon_vma_fork(tmp, mpnt))
  359. goto fail_nomem_anon_vma_fork;
  360. tmp->vm_flags &= ~VM_LOCKED;
  361. tmp->vm_next = tmp->vm_prev = NULL;
  362. file = tmp->vm_file;
  363. if (file) {
  364. struct inode *inode = file_inode(file);
  365. struct address_space *mapping = file->f_mapping;
  366. get_file(file);
  367. if (tmp->vm_flags & VM_DENYWRITE)
  368. atomic_dec(&inode->i_writecount);
  369. i_mmap_lock_write(mapping);
  370. if (tmp->vm_flags & VM_SHARED)
  371. atomic_inc(&mapping->i_mmap_writable);
  372. flush_dcache_mmap_lock(mapping);
  373. /* insert tmp into the share list, just after mpnt */
  374. vma_interval_tree_insert_after(tmp, mpnt,
  375. &mapping->i_mmap);
  376. flush_dcache_mmap_unlock(mapping);
  377. i_mmap_unlock_write(mapping);
  378. }
  379. /*
  380. * Clear hugetlb-related page reserves for children. This only
  381. * affects MAP_PRIVATE mappings. Faults generated by the child
  382. * are not guaranteed to succeed, even if read-only
  383. */
  384. if (is_vm_hugetlb_page(tmp))
  385. reset_vma_resv_huge_pages(tmp);
  386. /*
  387. * Link in the new vma and copy the page table entries.
  388. */
  389. *pprev = tmp;
  390. pprev = &tmp->vm_next;
  391. tmp->vm_prev = prev;
  392. prev = tmp;
  393. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  394. rb_link = &tmp->vm_rb.rb_right;
  395. rb_parent = &tmp->vm_rb;
  396. mm->map_count++;
  397. retval = copy_page_range(mm, oldmm, mpnt);
  398. if (tmp->vm_ops && tmp->vm_ops->open)
  399. tmp->vm_ops->open(tmp);
  400. if (retval)
  401. goto out;
  402. }
  403. /* a new mm has just been created */
  404. arch_dup_mmap(oldmm, mm);
  405. retval = 0;
  406. out:
  407. up_write(&mm->mmap_sem);
  408. flush_tlb_mm(oldmm);
  409. up_write(&oldmm->mmap_sem);
  410. uprobe_end_dup_mmap();
  411. return retval;
  412. fail_nomem_anon_vma_fork:
  413. mpol_put(vma_policy(tmp));
  414. fail_nomem_policy:
  415. kmem_cache_free(vm_area_cachep, tmp);
  416. fail_nomem:
  417. retval = -ENOMEM;
  418. vm_unacct_memory(charge);
  419. goto out;
  420. }
  421. static inline int mm_alloc_pgd(struct mm_struct *mm)
  422. {
  423. mm->pgd = pgd_alloc(mm);
  424. if (unlikely(!mm->pgd))
  425. return -ENOMEM;
  426. return 0;
  427. }
  428. static inline void mm_free_pgd(struct mm_struct *mm)
  429. {
  430. pgd_free(mm, mm->pgd);
  431. }
  432. #else
  433. #define dup_mmap(mm, oldmm) (0)
  434. #define mm_alloc_pgd(mm) (0)
  435. #define mm_free_pgd(mm)
  436. #endif /* CONFIG_MMU */
  437. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  438. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  439. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  440. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  441. static int __init coredump_filter_setup(char *s)
  442. {
  443. default_dump_filter =
  444. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  445. MMF_DUMP_FILTER_MASK;
  446. return 1;
  447. }
  448. __setup("coredump_filter=", coredump_filter_setup);
  449. #include <linux/init_task.h>
  450. static void mm_init_aio(struct mm_struct *mm)
  451. {
  452. #ifdef CONFIG_AIO
  453. spin_lock_init(&mm->ioctx_lock);
  454. mm->ioctx_table = NULL;
  455. #endif
  456. }
  457. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  458. {
  459. #ifdef CONFIG_MEMCG
  460. mm->owner = p;
  461. #endif
  462. }
  463. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  464. {
  465. mm->mmap = NULL;
  466. mm->mm_rb = RB_ROOT;
  467. mm->vmacache_seqnum = 0;
  468. atomic_set(&mm->mm_users, 1);
  469. atomic_set(&mm->mm_count, 1);
  470. init_rwsem(&mm->mmap_sem);
  471. INIT_LIST_HEAD(&mm->mmlist);
  472. mm->core_state = NULL;
  473. atomic_long_set(&mm->nr_ptes, 0);
  474. mm_nr_pmds_init(mm);
  475. mm->map_count = 0;
  476. mm->locked_vm = 0;
  477. mm->pinned_vm = 0;
  478. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  479. spin_lock_init(&mm->page_table_lock);
  480. mm_init_cpumask(mm);
  481. mm_init_aio(mm);
  482. mm_init_owner(mm, p);
  483. mmu_notifier_mm_init(mm);
  484. clear_tlb_flush_pending(mm);
  485. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  486. mm->pmd_huge_pte = NULL;
  487. #endif
  488. if (current->mm) {
  489. mm->flags = current->mm->flags & MMF_INIT_MASK;
  490. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  491. } else {
  492. mm->flags = default_dump_filter;
  493. mm->def_flags = 0;
  494. }
  495. if (mm_alloc_pgd(mm))
  496. goto fail_nopgd;
  497. if (init_new_context(p, mm))
  498. goto fail_nocontext;
  499. return mm;
  500. fail_nocontext:
  501. mm_free_pgd(mm);
  502. fail_nopgd:
  503. free_mm(mm);
  504. return NULL;
  505. }
  506. static void check_mm(struct mm_struct *mm)
  507. {
  508. int i;
  509. for (i = 0; i < NR_MM_COUNTERS; i++) {
  510. long x = atomic_long_read(&mm->rss_stat.count[i]);
  511. if (unlikely(x))
  512. printk(KERN_ALERT "BUG: Bad rss-counter state "
  513. "mm:%p idx:%d val:%ld\n", mm, i, x);
  514. }
  515. if (atomic_long_read(&mm->nr_ptes))
  516. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  517. atomic_long_read(&mm->nr_ptes));
  518. if (mm_nr_pmds(mm))
  519. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  520. mm_nr_pmds(mm));
  521. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  522. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  523. #endif
  524. }
  525. /*
  526. * Allocate and initialize an mm_struct.
  527. */
  528. struct mm_struct *mm_alloc(void)
  529. {
  530. struct mm_struct *mm;
  531. mm = allocate_mm();
  532. if (!mm)
  533. return NULL;
  534. memset(mm, 0, sizeof(*mm));
  535. return mm_init(mm, current);
  536. }
  537. /*
  538. * Called when the last reference to the mm
  539. * is dropped: either by a lazy thread or by
  540. * mmput. Free the page directory and the mm.
  541. */
  542. void __mmdrop(struct mm_struct *mm)
  543. {
  544. BUG_ON(mm == &init_mm);
  545. mm_free_pgd(mm);
  546. destroy_context(mm);
  547. mmu_notifier_mm_destroy(mm);
  548. check_mm(mm);
  549. free_mm(mm);
  550. }
  551. EXPORT_SYMBOL_GPL(__mmdrop);
  552. /*
  553. * Decrement the use count and release all resources for an mm.
  554. */
  555. void mmput(struct mm_struct *mm)
  556. {
  557. might_sleep();
  558. if (atomic_dec_and_test(&mm->mm_users)) {
  559. uprobe_clear_state(mm);
  560. exit_aio(mm);
  561. ksm_exit(mm);
  562. khugepaged_exit(mm); /* must run before exit_mmap */
  563. exit_mmap(mm);
  564. set_mm_exe_file(mm, NULL);
  565. if (!list_empty(&mm->mmlist)) {
  566. spin_lock(&mmlist_lock);
  567. list_del(&mm->mmlist);
  568. spin_unlock(&mmlist_lock);
  569. }
  570. if (mm->binfmt)
  571. module_put(mm->binfmt->module);
  572. mmdrop(mm);
  573. }
  574. }
  575. EXPORT_SYMBOL_GPL(mmput);
  576. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  577. {
  578. if (new_exe_file)
  579. get_file(new_exe_file);
  580. if (mm->exe_file)
  581. fput(mm->exe_file);
  582. mm->exe_file = new_exe_file;
  583. }
  584. struct file *get_mm_exe_file(struct mm_struct *mm)
  585. {
  586. struct file *exe_file;
  587. /* We need mmap_sem to protect against races with removal of exe_file */
  588. down_read(&mm->mmap_sem);
  589. exe_file = mm->exe_file;
  590. if (exe_file)
  591. get_file(exe_file);
  592. up_read(&mm->mmap_sem);
  593. return exe_file;
  594. }
  595. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  596. {
  597. /* It's safe to write the exe_file pointer without exe_file_lock because
  598. * this is called during fork when the task is not yet in /proc */
  599. newmm->exe_file = get_mm_exe_file(oldmm);
  600. }
  601. /**
  602. * get_task_mm - acquire a reference to the task's mm
  603. *
  604. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  605. * this kernel workthread has transiently adopted a user mm with use_mm,
  606. * to do its AIO) is not set and if so returns a reference to it, after
  607. * bumping up the use count. User must release the mm via mmput()
  608. * after use. Typically used by /proc and ptrace.
  609. */
  610. struct mm_struct *get_task_mm(struct task_struct *task)
  611. {
  612. struct mm_struct *mm;
  613. task_lock(task);
  614. mm = task->mm;
  615. if (mm) {
  616. if (task->flags & PF_KTHREAD)
  617. mm = NULL;
  618. else
  619. atomic_inc(&mm->mm_users);
  620. }
  621. task_unlock(task);
  622. return mm;
  623. }
  624. EXPORT_SYMBOL_GPL(get_task_mm);
  625. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  626. {
  627. struct mm_struct *mm;
  628. int err;
  629. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  630. if (err)
  631. return ERR_PTR(err);
  632. mm = get_task_mm(task);
  633. if (mm && mm != current->mm &&
  634. !ptrace_may_access(task, mode)) {
  635. mmput(mm);
  636. mm = ERR_PTR(-EACCES);
  637. }
  638. mutex_unlock(&task->signal->cred_guard_mutex);
  639. return mm;
  640. }
  641. static void complete_vfork_done(struct task_struct *tsk)
  642. {
  643. struct completion *vfork;
  644. task_lock(tsk);
  645. vfork = tsk->vfork_done;
  646. if (likely(vfork)) {
  647. tsk->vfork_done = NULL;
  648. complete(vfork);
  649. }
  650. task_unlock(tsk);
  651. }
  652. static int wait_for_vfork_done(struct task_struct *child,
  653. struct completion *vfork)
  654. {
  655. int killed;
  656. freezer_do_not_count();
  657. killed = wait_for_completion_killable(vfork);
  658. freezer_count();
  659. if (killed) {
  660. task_lock(child);
  661. child->vfork_done = NULL;
  662. task_unlock(child);
  663. }
  664. put_task_struct(child);
  665. return killed;
  666. }
  667. /* Please note the differences between mmput and mm_release.
  668. * mmput is called whenever we stop holding onto a mm_struct,
  669. * error success whatever.
  670. *
  671. * mm_release is called after a mm_struct has been removed
  672. * from the current process.
  673. *
  674. * This difference is important for error handling, when we
  675. * only half set up a mm_struct for a new process and need to restore
  676. * the old one. Because we mmput the new mm_struct before
  677. * restoring the old one. . .
  678. * Eric Biederman 10 January 1998
  679. */
  680. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  681. {
  682. /* Get rid of any futexes when releasing the mm */
  683. #ifdef CONFIG_FUTEX
  684. if (unlikely(tsk->robust_list)) {
  685. exit_robust_list(tsk);
  686. tsk->robust_list = NULL;
  687. }
  688. #ifdef CONFIG_COMPAT
  689. if (unlikely(tsk->compat_robust_list)) {
  690. compat_exit_robust_list(tsk);
  691. tsk->compat_robust_list = NULL;
  692. }
  693. #endif
  694. if (unlikely(!list_empty(&tsk->pi_state_list)))
  695. exit_pi_state_list(tsk);
  696. #endif
  697. uprobe_free_utask(tsk);
  698. /* Get rid of any cached register state */
  699. deactivate_mm(tsk, mm);
  700. /*
  701. * If we're exiting normally, clear a user-space tid field if
  702. * requested. We leave this alone when dying by signal, to leave
  703. * the value intact in a core dump, and to save the unnecessary
  704. * trouble, say, a killed vfork parent shouldn't touch this mm.
  705. * Userland only wants this done for a sys_exit.
  706. */
  707. if (tsk->clear_child_tid) {
  708. if (!(tsk->flags & PF_SIGNALED) &&
  709. atomic_read(&mm->mm_users) > 1) {
  710. /*
  711. * We don't check the error code - if userspace has
  712. * not set up a proper pointer then tough luck.
  713. */
  714. put_user(0, tsk->clear_child_tid);
  715. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  716. 1, NULL, NULL, 0);
  717. }
  718. tsk->clear_child_tid = NULL;
  719. }
  720. /*
  721. * All done, finally we can wake up parent and return this mm to him.
  722. * Also kthread_stop() uses this completion for synchronization.
  723. */
  724. if (tsk->vfork_done)
  725. complete_vfork_done(tsk);
  726. }
  727. /*
  728. * Allocate a new mm structure and copy contents from the
  729. * mm structure of the passed in task structure.
  730. */
  731. static struct mm_struct *dup_mm(struct task_struct *tsk)
  732. {
  733. struct mm_struct *mm, *oldmm = current->mm;
  734. int err;
  735. mm = allocate_mm();
  736. if (!mm)
  737. goto fail_nomem;
  738. memcpy(mm, oldmm, sizeof(*mm));
  739. if (!mm_init(mm, tsk))
  740. goto fail_nomem;
  741. dup_mm_exe_file(oldmm, mm);
  742. err = dup_mmap(mm, oldmm);
  743. if (err)
  744. goto free_pt;
  745. mm->hiwater_rss = get_mm_rss(mm);
  746. mm->hiwater_vm = mm->total_vm;
  747. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  748. goto free_pt;
  749. return mm;
  750. free_pt:
  751. /* don't put binfmt in mmput, we haven't got module yet */
  752. mm->binfmt = NULL;
  753. mmput(mm);
  754. fail_nomem:
  755. return NULL;
  756. }
  757. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  758. {
  759. struct mm_struct *mm, *oldmm;
  760. int retval;
  761. tsk->min_flt = tsk->maj_flt = 0;
  762. tsk->nvcsw = tsk->nivcsw = 0;
  763. #ifdef CONFIG_DETECT_HUNG_TASK
  764. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  765. #endif
  766. tsk->mm = NULL;
  767. tsk->active_mm = NULL;
  768. /*
  769. * Are we cloning a kernel thread?
  770. *
  771. * We need to steal a active VM for that..
  772. */
  773. oldmm = current->mm;
  774. if (!oldmm)
  775. return 0;
  776. /* initialize the new vmacache entries */
  777. vmacache_flush(tsk);
  778. if (clone_flags & CLONE_VM) {
  779. atomic_inc(&oldmm->mm_users);
  780. mm = oldmm;
  781. goto good_mm;
  782. }
  783. retval = -ENOMEM;
  784. mm = dup_mm(tsk);
  785. if (!mm)
  786. goto fail_nomem;
  787. good_mm:
  788. tsk->mm = mm;
  789. tsk->active_mm = mm;
  790. return 0;
  791. fail_nomem:
  792. return retval;
  793. }
  794. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  795. {
  796. struct fs_struct *fs = current->fs;
  797. if (clone_flags & CLONE_FS) {
  798. /* tsk->fs is already what we want */
  799. spin_lock(&fs->lock);
  800. if (fs->in_exec) {
  801. spin_unlock(&fs->lock);
  802. return -EAGAIN;
  803. }
  804. fs->users++;
  805. spin_unlock(&fs->lock);
  806. return 0;
  807. }
  808. tsk->fs = copy_fs_struct(fs);
  809. if (!tsk->fs)
  810. return -ENOMEM;
  811. return 0;
  812. }
  813. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  814. {
  815. struct files_struct *oldf, *newf;
  816. int error = 0;
  817. /*
  818. * A background process may not have any files ...
  819. */
  820. oldf = current->files;
  821. if (!oldf)
  822. goto out;
  823. if (clone_flags & CLONE_FILES) {
  824. atomic_inc(&oldf->count);
  825. goto out;
  826. }
  827. newf = dup_fd(oldf, &error);
  828. if (!newf)
  829. goto out;
  830. tsk->files = newf;
  831. error = 0;
  832. out:
  833. return error;
  834. }
  835. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  836. {
  837. #ifdef CONFIG_BLOCK
  838. struct io_context *ioc = current->io_context;
  839. struct io_context *new_ioc;
  840. if (!ioc)
  841. return 0;
  842. /*
  843. * Share io context with parent, if CLONE_IO is set
  844. */
  845. if (clone_flags & CLONE_IO) {
  846. ioc_task_link(ioc);
  847. tsk->io_context = ioc;
  848. } else if (ioprio_valid(ioc->ioprio)) {
  849. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  850. if (unlikely(!new_ioc))
  851. return -ENOMEM;
  852. new_ioc->ioprio = ioc->ioprio;
  853. put_io_context(new_ioc);
  854. }
  855. #endif
  856. return 0;
  857. }
  858. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  859. {
  860. struct sighand_struct *sig;
  861. if (clone_flags & CLONE_SIGHAND) {
  862. atomic_inc(&current->sighand->count);
  863. return 0;
  864. }
  865. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  866. rcu_assign_pointer(tsk->sighand, sig);
  867. if (!sig)
  868. return -ENOMEM;
  869. atomic_set(&sig->count, 1);
  870. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  871. return 0;
  872. }
  873. void __cleanup_sighand(struct sighand_struct *sighand)
  874. {
  875. if (atomic_dec_and_test(&sighand->count)) {
  876. signalfd_cleanup(sighand);
  877. /*
  878. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  879. * without an RCU grace period, see __lock_task_sighand().
  880. */
  881. kmem_cache_free(sighand_cachep, sighand);
  882. }
  883. }
  884. /*
  885. * Initialize POSIX timer handling for a thread group.
  886. */
  887. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  888. {
  889. unsigned long cpu_limit;
  890. /* Thread group counters. */
  891. thread_group_cputime_init(sig);
  892. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  893. if (cpu_limit != RLIM_INFINITY) {
  894. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  895. sig->cputimer.running = 1;
  896. }
  897. /* The timer lists. */
  898. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  899. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  900. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  901. }
  902. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  903. {
  904. struct signal_struct *sig;
  905. if (clone_flags & CLONE_THREAD)
  906. return 0;
  907. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  908. tsk->signal = sig;
  909. if (!sig)
  910. return -ENOMEM;
  911. sig->nr_threads = 1;
  912. atomic_set(&sig->live, 1);
  913. atomic_set(&sig->sigcnt, 1);
  914. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  915. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  916. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  917. init_waitqueue_head(&sig->wait_chldexit);
  918. sig->curr_target = tsk;
  919. init_sigpending(&sig->shared_pending);
  920. INIT_LIST_HEAD(&sig->posix_timers);
  921. seqlock_init(&sig->stats_lock);
  922. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  923. sig->real_timer.function = it_real_fn;
  924. task_lock(current->group_leader);
  925. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  926. task_unlock(current->group_leader);
  927. posix_cpu_timers_init_group(sig);
  928. tty_audit_fork(sig);
  929. sched_autogroup_fork(sig);
  930. #ifdef CONFIG_CGROUPS
  931. init_rwsem(&sig->group_rwsem);
  932. #endif
  933. sig->oom_score_adj = current->signal->oom_score_adj;
  934. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  935. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  936. current->signal->is_child_subreaper;
  937. mutex_init(&sig->cred_guard_mutex);
  938. return 0;
  939. }
  940. static void copy_seccomp(struct task_struct *p)
  941. {
  942. #ifdef CONFIG_SECCOMP
  943. /*
  944. * Must be called with sighand->lock held, which is common to
  945. * all threads in the group. Holding cred_guard_mutex is not
  946. * needed because this new task is not yet running and cannot
  947. * be racing exec.
  948. */
  949. assert_spin_locked(&current->sighand->siglock);
  950. /* Ref-count the new filter user, and assign it. */
  951. get_seccomp_filter(current);
  952. p->seccomp = current->seccomp;
  953. /*
  954. * Explicitly enable no_new_privs here in case it got set
  955. * between the task_struct being duplicated and holding the
  956. * sighand lock. The seccomp state and nnp must be in sync.
  957. */
  958. if (task_no_new_privs(current))
  959. task_set_no_new_privs(p);
  960. /*
  961. * If the parent gained a seccomp mode after copying thread
  962. * flags and between before we held the sighand lock, we have
  963. * to manually enable the seccomp thread flag here.
  964. */
  965. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  966. set_tsk_thread_flag(p, TIF_SECCOMP);
  967. #endif
  968. }
  969. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  970. {
  971. current->clear_child_tid = tidptr;
  972. return task_pid_vnr(current);
  973. }
  974. static void rt_mutex_init_task(struct task_struct *p)
  975. {
  976. raw_spin_lock_init(&p->pi_lock);
  977. #ifdef CONFIG_RT_MUTEXES
  978. p->pi_waiters = RB_ROOT;
  979. p->pi_waiters_leftmost = NULL;
  980. p->pi_blocked_on = NULL;
  981. #endif
  982. }
  983. /*
  984. * Initialize POSIX timer handling for a single task.
  985. */
  986. static void posix_cpu_timers_init(struct task_struct *tsk)
  987. {
  988. tsk->cputime_expires.prof_exp = 0;
  989. tsk->cputime_expires.virt_exp = 0;
  990. tsk->cputime_expires.sched_exp = 0;
  991. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  992. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  993. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  994. }
  995. static inline void
  996. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  997. {
  998. task->pids[type].pid = pid;
  999. }
  1000. /*
  1001. * This creates a new process as a copy of the old one,
  1002. * but does not actually start it yet.
  1003. *
  1004. * It copies the registers, and all the appropriate
  1005. * parts of the process environment (as per the clone
  1006. * flags). The actual kick-off is left to the caller.
  1007. */
  1008. static struct task_struct *copy_process(unsigned long clone_flags,
  1009. unsigned long stack_start,
  1010. unsigned long stack_size,
  1011. int __user *child_tidptr,
  1012. struct pid *pid,
  1013. int trace)
  1014. {
  1015. int retval;
  1016. struct task_struct *p;
  1017. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1018. return ERR_PTR(-EINVAL);
  1019. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1020. return ERR_PTR(-EINVAL);
  1021. /*
  1022. * Thread groups must share signals as well, and detached threads
  1023. * can only be started up within the thread group.
  1024. */
  1025. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1026. return ERR_PTR(-EINVAL);
  1027. /*
  1028. * Shared signal handlers imply shared VM. By way of the above,
  1029. * thread groups also imply shared VM. Blocking this case allows
  1030. * for various simplifications in other code.
  1031. */
  1032. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1033. return ERR_PTR(-EINVAL);
  1034. /*
  1035. * Siblings of global init remain as zombies on exit since they are
  1036. * not reaped by their parent (swapper). To solve this and to avoid
  1037. * multi-rooted process trees, prevent global and container-inits
  1038. * from creating siblings.
  1039. */
  1040. if ((clone_flags & CLONE_PARENT) &&
  1041. current->signal->flags & SIGNAL_UNKILLABLE)
  1042. return ERR_PTR(-EINVAL);
  1043. /*
  1044. * If the new process will be in a different pid or user namespace
  1045. * do not allow it to share a thread group or signal handlers or
  1046. * parent with the forking task.
  1047. */
  1048. if (clone_flags & CLONE_SIGHAND) {
  1049. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1050. (task_active_pid_ns(current) !=
  1051. current->nsproxy->pid_ns_for_children))
  1052. return ERR_PTR(-EINVAL);
  1053. }
  1054. retval = security_task_create(clone_flags);
  1055. if (retval)
  1056. goto fork_out;
  1057. retval = -ENOMEM;
  1058. p = dup_task_struct(current);
  1059. if (!p)
  1060. goto fork_out;
  1061. ftrace_graph_init_task(p);
  1062. rt_mutex_init_task(p);
  1063. #ifdef CONFIG_PROVE_LOCKING
  1064. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1065. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1066. #endif
  1067. retval = -EAGAIN;
  1068. if (atomic_read(&p->real_cred->user->processes) >=
  1069. task_rlimit(p, RLIMIT_NPROC)) {
  1070. if (p->real_cred->user != INIT_USER &&
  1071. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1072. goto bad_fork_free;
  1073. }
  1074. current->flags &= ~PF_NPROC_EXCEEDED;
  1075. retval = copy_creds(p, clone_flags);
  1076. if (retval < 0)
  1077. goto bad_fork_free;
  1078. /*
  1079. * If multiple threads are within copy_process(), then this check
  1080. * triggers too late. This doesn't hurt, the check is only there
  1081. * to stop root fork bombs.
  1082. */
  1083. retval = -EAGAIN;
  1084. if (nr_threads >= max_threads)
  1085. goto bad_fork_cleanup_count;
  1086. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1087. goto bad_fork_cleanup_count;
  1088. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1089. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1090. p->flags |= PF_FORKNOEXEC;
  1091. INIT_LIST_HEAD(&p->children);
  1092. INIT_LIST_HEAD(&p->sibling);
  1093. rcu_copy_process(p);
  1094. p->vfork_done = NULL;
  1095. spin_lock_init(&p->alloc_lock);
  1096. init_sigpending(&p->pending);
  1097. p->utime = p->stime = p->gtime = 0;
  1098. p->utimescaled = p->stimescaled = 0;
  1099. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  1100. p->prev_cputime.utime = p->prev_cputime.stime = 0;
  1101. #endif
  1102. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1103. seqlock_init(&p->vtime_seqlock);
  1104. p->vtime_snap = 0;
  1105. p->vtime_snap_whence = VTIME_SLEEPING;
  1106. #endif
  1107. #if defined(SPLIT_RSS_COUNTING)
  1108. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1109. #endif
  1110. p->default_timer_slack_ns = current->timer_slack_ns;
  1111. task_io_accounting_init(&p->ioac);
  1112. acct_clear_integrals(p);
  1113. posix_cpu_timers_init(p);
  1114. p->start_time = ktime_get_ns();
  1115. p->real_start_time = ktime_get_boot_ns();
  1116. p->io_context = NULL;
  1117. p->audit_context = NULL;
  1118. if (clone_flags & CLONE_THREAD)
  1119. threadgroup_change_begin(current);
  1120. cgroup_fork(p);
  1121. #ifdef CONFIG_NUMA
  1122. p->mempolicy = mpol_dup(p->mempolicy);
  1123. if (IS_ERR(p->mempolicy)) {
  1124. retval = PTR_ERR(p->mempolicy);
  1125. p->mempolicy = NULL;
  1126. goto bad_fork_cleanup_threadgroup_lock;
  1127. }
  1128. #endif
  1129. #ifdef CONFIG_CPUSETS
  1130. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1131. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1132. seqcount_init(&p->mems_allowed_seq);
  1133. #endif
  1134. #ifdef CONFIG_TRACE_IRQFLAGS
  1135. p->irq_events = 0;
  1136. p->hardirqs_enabled = 0;
  1137. p->hardirq_enable_ip = 0;
  1138. p->hardirq_enable_event = 0;
  1139. p->hardirq_disable_ip = _THIS_IP_;
  1140. p->hardirq_disable_event = 0;
  1141. p->softirqs_enabled = 1;
  1142. p->softirq_enable_ip = _THIS_IP_;
  1143. p->softirq_enable_event = 0;
  1144. p->softirq_disable_ip = 0;
  1145. p->softirq_disable_event = 0;
  1146. p->hardirq_context = 0;
  1147. p->softirq_context = 0;
  1148. #endif
  1149. #ifdef CONFIG_LOCKDEP
  1150. p->lockdep_depth = 0; /* no locks held yet */
  1151. p->curr_chain_key = 0;
  1152. p->lockdep_recursion = 0;
  1153. #endif
  1154. #ifdef CONFIG_DEBUG_MUTEXES
  1155. p->blocked_on = NULL; /* not blocked yet */
  1156. #endif
  1157. #ifdef CONFIG_BCACHE
  1158. p->sequential_io = 0;
  1159. p->sequential_io_avg = 0;
  1160. #endif
  1161. /* Perform scheduler related setup. Assign this task to a CPU. */
  1162. retval = sched_fork(clone_flags, p);
  1163. if (retval)
  1164. goto bad_fork_cleanup_policy;
  1165. retval = perf_event_init_task(p);
  1166. if (retval)
  1167. goto bad_fork_cleanup_policy;
  1168. retval = audit_alloc(p);
  1169. if (retval)
  1170. goto bad_fork_cleanup_perf;
  1171. /* copy all the process information */
  1172. shm_init_task(p);
  1173. retval = copy_semundo(clone_flags, p);
  1174. if (retval)
  1175. goto bad_fork_cleanup_audit;
  1176. retval = copy_files(clone_flags, p);
  1177. if (retval)
  1178. goto bad_fork_cleanup_semundo;
  1179. retval = copy_fs(clone_flags, p);
  1180. if (retval)
  1181. goto bad_fork_cleanup_files;
  1182. retval = copy_sighand(clone_flags, p);
  1183. if (retval)
  1184. goto bad_fork_cleanup_fs;
  1185. retval = copy_signal(clone_flags, p);
  1186. if (retval)
  1187. goto bad_fork_cleanup_sighand;
  1188. retval = copy_mm(clone_flags, p);
  1189. if (retval)
  1190. goto bad_fork_cleanup_signal;
  1191. retval = copy_namespaces(clone_flags, p);
  1192. if (retval)
  1193. goto bad_fork_cleanup_mm;
  1194. retval = copy_io(clone_flags, p);
  1195. if (retval)
  1196. goto bad_fork_cleanup_namespaces;
  1197. retval = copy_thread(clone_flags, stack_start, stack_size, p);
  1198. if (retval)
  1199. goto bad_fork_cleanup_io;
  1200. if (pid != &init_struct_pid) {
  1201. retval = -ENOMEM;
  1202. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1203. if (!pid)
  1204. goto bad_fork_cleanup_io;
  1205. }
  1206. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1207. /*
  1208. * Clear TID on mm_release()?
  1209. */
  1210. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1211. #ifdef CONFIG_BLOCK
  1212. p->plug = NULL;
  1213. #endif
  1214. #ifdef CONFIG_FUTEX
  1215. p->robust_list = NULL;
  1216. #ifdef CONFIG_COMPAT
  1217. p->compat_robust_list = NULL;
  1218. #endif
  1219. INIT_LIST_HEAD(&p->pi_state_list);
  1220. p->pi_state_cache = NULL;
  1221. #endif
  1222. /*
  1223. * sigaltstack should be cleared when sharing the same VM
  1224. */
  1225. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1226. p->sas_ss_sp = p->sas_ss_size = 0;
  1227. /*
  1228. * Syscall tracing and stepping should be turned off in the
  1229. * child regardless of CLONE_PTRACE.
  1230. */
  1231. user_disable_single_step(p);
  1232. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1233. #ifdef TIF_SYSCALL_EMU
  1234. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1235. #endif
  1236. clear_all_latency_tracing(p);
  1237. /* ok, now we should be set up.. */
  1238. p->pid = pid_nr(pid);
  1239. if (clone_flags & CLONE_THREAD) {
  1240. p->exit_signal = -1;
  1241. p->group_leader = current->group_leader;
  1242. p->tgid = current->tgid;
  1243. } else {
  1244. if (clone_flags & CLONE_PARENT)
  1245. p->exit_signal = current->group_leader->exit_signal;
  1246. else
  1247. p->exit_signal = (clone_flags & CSIGNAL);
  1248. p->group_leader = p;
  1249. p->tgid = p->pid;
  1250. }
  1251. p->nr_dirtied = 0;
  1252. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1253. p->dirty_paused_when = 0;
  1254. p->pdeath_signal = 0;
  1255. INIT_LIST_HEAD(&p->thread_group);
  1256. p->task_works = NULL;
  1257. /*
  1258. * Make it visible to the rest of the system, but dont wake it up yet.
  1259. * Need tasklist lock for parent etc handling!
  1260. */
  1261. write_lock_irq(&tasklist_lock);
  1262. /* CLONE_PARENT re-uses the old parent */
  1263. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1264. p->real_parent = current->real_parent;
  1265. p->parent_exec_id = current->parent_exec_id;
  1266. } else {
  1267. p->real_parent = current;
  1268. p->parent_exec_id = current->self_exec_id;
  1269. }
  1270. spin_lock(&current->sighand->siglock);
  1271. /*
  1272. * Copy seccomp details explicitly here, in case they were changed
  1273. * before holding sighand lock.
  1274. */
  1275. copy_seccomp(p);
  1276. /*
  1277. * Process group and session signals need to be delivered to just the
  1278. * parent before the fork or both the parent and the child after the
  1279. * fork. Restart if a signal comes in before we add the new process to
  1280. * it's process group.
  1281. * A fatal signal pending means that current will exit, so the new
  1282. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1283. */
  1284. recalc_sigpending();
  1285. if (signal_pending(current)) {
  1286. spin_unlock(&current->sighand->siglock);
  1287. write_unlock_irq(&tasklist_lock);
  1288. retval = -ERESTARTNOINTR;
  1289. goto bad_fork_free_pid;
  1290. }
  1291. if (likely(p->pid)) {
  1292. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1293. init_task_pid(p, PIDTYPE_PID, pid);
  1294. if (thread_group_leader(p)) {
  1295. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1296. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1297. if (is_child_reaper(pid)) {
  1298. ns_of_pid(pid)->child_reaper = p;
  1299. p->signal->flags |= SIGNAL_UNKILLABLE;
  1300. }
  1301. p->signal->leader_pid = pid;
  1302. p->signal->tty = tty_kref_get(current->signal->tty);
  1303. list_add_tail(&p->sibling, &p->real_parent->children);
  1304. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1305. attach_pid(p, PIDTYPE_PGID);
  1306. attach_pid(p, PIDTYPE_SID);
  1307. __this_cpu_inc(process_counts);
  1308. } else {
  1309. current->signal->nr_threads++;
  1310. atomic_inc(&current->signal->live);
  1311. atomic_inc(&current->signal->sigcnt);
  1312. list_add_tail_rcu(&p->thread_group,
  1313. &p->group_leader->thread_group);
  1314. list_add_tail_rcu(&p->thread_node,
  1315. &p->signal->thread_head);
  1316. }
  1317. attach_pid(p, PIDTYPE_PID);
  1318. nr_threads++;
  1319. }
  1320. total_forks++;
  1321. spin_unlock(&current->sighand->siglock);
  1322. syscall_tracepoint_update(p);
  1323. write_unlock_irq(&tasklist_lock);
  1324. proc_fork_connector(p);
  1325. cgroup_post_fork(p);
  1326. if (clone_flags & CLONE_THREAD)
  1327. threadgroup_change_end(current);
  1328. perf_event_fork(p);
  1329. trace_task_newtask(p, clone_flags);
  1330. uprobe_copy_process(p, clone_flags);
  1331. return p;
  1332. bad_fork_free_pid:
  1333. if (pid != &init_struct_pid)
  1334. free_pid(pid);
  1335. bad_fork_cleanup_io:
  1336. if (p->io_context)
  1337. exit_io_context(p);
  1338. bad_fork_cleanup_namespaces:
  1339. exit_task_namespaces(p);
  1340. bad_fork_cleanup_mm:
  1341. if (p->mm)
  1342. mmput(p->mm);
  1343. bad_fork_cleanup_signal:
  1344. if (!(clone_flags & CLONE_THREAD))
  1345. free_signal_struct(p->signal);
  1346. bad_fork_cleanup_sighand:
  1347. __cleanup_sighand(p->sighand);
  1348. bad_fork_cleanup_fs:
  1349. exit_fs(p); /* blocking */
  1350. bad_fork_cleanup_files:
  1351. exit_files(p); /* blocking */
  1352. bad_fork_cleanup_semundo:
  1353. exit_sem(p);
  1354. bad_fork_cleanup_audit:
  1355. audit_free(p);
  1356. bad_fork_cleanup_perf:
  1357. perf_event_free_task(p);
  1358. bad_fork_cleanup_policy:
  1359. #ifdef CONFIG_NUMA
  1360. mpol_put(p->mempolicy);
  1361. bad_fork_cleanup_threadgroup_lock:
  1362. #endif
  1363. if (clone_flags & CLONE_THREAD)
  1364. threadgroup_change_end(current);
  1365. delayacct_tsk_free(p);
  1366. module_put(task_thread_info(p)->exec_domain->module);
  1367. bad_fork_cleanup_count:
  1368. atomic_dec(&p->cred->user->processes);
  1369. exit_creds(p);
  1370. bad_fork_free:
  1371. free_task(p);
  1372. fork_out:
  1373. return ERR_PTR(retval);
  1374. }
  1375. static inline void init_idle_pids(struct pid_link *links)
  1376. {
  1377. enum pid_type type;
  1378. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1379. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1380. links[type].pid = &init_struct_pid;
  1381. }
  1382. }
  1383. struct task_struct *fork_idle(int cpu)
  1384. {
  1385. struct task_struct *task;
  1386. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
  1387. if (!IS_ERR(task)) {
  1388. init_idle_pids(task->pids);
  1389. init_idle(task, cpu);
  1390. }
  1391. return task;
  1392. }
  1393. /*
  1394. * Ok, this is the main fork-routine.
  1395. *
  1396. * It copies the process, and if successful kick-starts
  1397. * it and waits for it to finish using the VM if required.
  1398. */
  1399. long do_fork(unsigned long clone_flags,
  1400. unsigned long stack_start,
  1401. unsigned long stack_size,
  1402. int __user *parent_tidptr,
  1403. int __user *child_tidptr)
  1404. {
  1405. struct task_struct *p;
  1406. int trace = 0;
  1407. long nr;
  1408. /*
  1409. * Determine whether and which event to report to ptracer. When
  1410. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1411. * requested, no event is reported; otherwise, report if the event
  1412. * for the type of forking is enabled.
  1413. */
  1414. if (!(clone_flags & CLONE_UNTRACED)) {
  1415. if (clone_flags & CLONE_VFORK)
  1416. trace = PTRACE_EVENT_VFORK;
  1417. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1418. trace = PTRACE_EVENT_CLONE;
  1419. else
  1420. trace = PTRACE_EVENT_FORK;
  1421. if (likely(!ptrace_event_enabled(current, trace)))
  1422. trace = 0;
  1423. }
  1424. p = copy_process(clone_flags, stack_start, stack_size,
  1425. child_tidptr, NULL, trace);
  1426. /*
  1427. * Do this prior waking up the new thread - the thread pointer
  1428. * might get invalid after that point, if the thread exits quickly.
  1429. */
  1430. if (!IS_ERR(p)) {
  1431. struct completion vfork;
  1432. struct pid *pid;
  1433. trace_sched_process_fork(current, p);
  1434. pid = get_task_pid(p, PIDTYPE_PID);
  1435. nr = pid_vnr(pid);
  1436. if (clone_flags & CLONE_PARENT_SETTID)
  1437. put_user(nr, parent_tidptr);
  1438. if (clone_flags & CLONE_VFORK) {
  1439. p->vfork_done = &vfork;
  1440. init_completion(&vfork);
  1441. get_task_struct(p);
  1442. }
  1443. wake_up_new_task(p);
  1444. /* forking complete and child started to run, tell ptracer */
  1445. if (unlikely(trace))
  1446. ptrace_event_pid(trace, pid);
  1447. if (clone_flags & CLONE_VFORK) {
  1448. if (!wait_for_vfork_done(p, &vfork))
  1449. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1450. }
  1451. put_pid(pid);
  1452. } else {
  1453. nr = PTR_ERR(p);
  1454. }
  1455. return nr;
  1456. }
  1457. /*
  1458. * Create a kernel thread.
  1459. */
  1460. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1461. {
  1462. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1463. (unsigned long)arg, NULL, NULL);
  1464. }
  1465. #ifdef __ARCH_WANT_SYS_FORK
  1466. SYSCALL_DEFINE0(fork)
  1467. {
  1468. #ifdef CONFIG_MMU
  1469. return do_fork(SIGCHLD, 0, 0, NULL, NULL);
  1470. #else
  1471. /* can not support in nommu mode */
  1472. return -EINVAL;
  1473. #endif
  1474. }
  1475. #endif
  1476. #ifdef __ARCH_WANT_SYS_VFORK
  1477. SYSCALL_DEFINE0(vfork)
  1478. {
  1479. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1480. 0, NULL, NULL);
  1481. }
  1482. #endif
  1483. #ifdef __ARCH_WANT_SYS_CLONE
  1484. #ifdef CONFIG_CLONE_BACKWARDS
  1485. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1486. int __user *, parent_tidptr,
  1487. int, tls_val,
  1488. int __user *, child_tidptr)
  1489. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1490. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1491. int __user *, parent_tidptr,
  1492. int __user *, child_tidptr,
  1493. int, tls_val)
  1494. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1495. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1496. int, stack_size,
  1497. int __user *, parent_tidptr,
  1498. int __user *, child_tidptr,
  1499. int, tls_val)
  1500. #else
  1501. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1502. int __user *, parent_tidptr,
  1503. int __user *, child_tidptr,
  1504. int, tls_val)
  1505. #endif
  1506. {
  1507. return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
  1508. }
  1509. #endif
  1510. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1511. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1512. #endif
  1513. static void sighand_ctor(void *data)
  1514. {
  1515. struct sighand_struct *sighand = data;
  1516. spin_lock_init(&sighand->siglock);
  1517. init_waitqueue_head(&sighand->signalfd_wqh);
  1518. }
  1519. void __init proc_caches_init(void)
  1520. {
  1521. sighand_cachep = kmem_cache_create("sighand_cache",
  1522. sizeof(struct sighand_struct), 0,
  1523. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1524. SLAB_NOTRACK, sighand_ctor);
  1525. signal_cachep = kmem_cache_create("signal_cache",
  1526. sizeof(struct signal_struct), 0,
  1527. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1528. files_cachep = kmem_cache_create("files_cache",
  1529. sizeof(struct files_struct), 0,
  1530. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1531. fs_cachep = kmem_cache_create("fs_cache",
  1532. sizeof(struct fs_struct), 0,
  1533. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1534. /*
  1535. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1536. * whole struct cpumask for the OFFSTACK case. We could change
  1537. * this to *only* allocate as much of it as required by the
  1538. * maximum number of CPU's we can ever have. The cpumask_allocation
  1539. * is at the end of the structure, exactly for that reason.
  1540. */
  1541. mm_cachep = kmem_cache_create("mm_struct",
  1542. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1543. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1544. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1545. mmap_init();
  1546. nsproxy_cache_init();
  1547. }
  1548. /*
  1549. * Check constraints on flags passed to the unshare system call.
  1550. */
  1551. static int check_unshare_flags(unsigned long unshare_flags)
  1552. {
  1553. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1554. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1555. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1556. CLONE_NEWUSER|CLONE_NEWPID))
  1557. return -EINVAL;
  1558. /*
  1559. * Not implemented, but pretend it works if there is nothing to
  1560. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1561. * needs to unshare vm.
  1562. */
  1563. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1564. /* FIXME: get_task_mm() increments ->mm_users */
  1565. if (atomic_read(&current->mm->mm_users) > 1)
  1566. return -EINVAL;
  1567. }
  1568. return 0;
  1569. }
  1570. /*
  1571. * Unshare the filesystem structure if it is being shared
  1572. */
  1573. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1574. {
  1575. struct fs_struct *fs = current->fs;
  1576. if (!(unshare_flags & CLONE_FS) || !fs)
  1577. return 0;
  1578. /* don't need lock here; in the worst case we'll do useless copy */
  1579. if (fs->users == 1)
  1580. return 0;
  1581. *new_fsp = copy_fs_struct(fs);
  1582. if (!*new_fsp)
  1583. return -ENOMEM;
  1584. return 0;
  1585. }
  1586. /*
  1587. * Unshare file descriptor table if it is being shared
  1588. */
  1589. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1590. {
  1591. struct files_struct *fd = current->files;
  1592. int error = 0;
  1593. if ((unshare_flags & CLONE_FILES) &&
  1594. (fd && atomic_read(&fd->count) > 1)) {
  1595. *new_fdp = dup_fd(fd, &error);
  1596. if (!*new_fdp)
  1597. return error;
  1598. }
  1599. return 0;
  1600. }
  1601. /*
  1602. * unshare allows a process to 'unshare' part of the process
  1603. * context which was originally shared using clone. copy_*
  1604. * functions used by do_fork() cannot be used here directly
  1605. * because they modify an inactive task_struct that is being
  1606. * constructed. Here we are modifying the current, active,
  1607. * task_struct.
  1608. */
  1609. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1610. {
  1611. struct fs_struct *fs, *new_fs = NULL;
  1612. struct files_struct *fd, *new_fd = NULL;
  1613. struct cred *new_cred = NULL;
  1614. struct nsproxy *new_nsproxy = NULL;
  1615. int do_sysvsem = 0;
  1616. int err;
  1617. /*
  1618. * If unsharing a user namespace must also unshare the thread.
  1619. */
  1620. if (unshare_flags & CLONE_NEWUSER)
  1621. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1622. /*
  1623. * If unsharing a thread from a thread group, must also unshare vm.
  1624. */
  1625. if (unshare_flags & CLONE_THREAD)
  1626. unshare_flags |= CLONE_VM;
  1627. /*
  1628. * If unsharing vm, must also unshare signal handlers.
  1629. */
  1630. if (unshare_flags & CLONE_VM)
  1631. unshare_flags |= CLONE_SIGHAND;
  1632. /*
  1633. * If unsharing namespace, must also unshare filesystem information.
  1634. */
  1635. if (unshare_flags & CLONE_NEWNS)
  1636. unshare_flags |= CLONE_FS;
  1637. err = check_unshare_flags(unshare_flags);
  1638. if (err)
  1639. goto bad_unshare_out;
  1640. /*
  1641. * CLONE_NEWIPC must also detach from the undolist: after switching
  1642. * to a new ipc namespace, the semaphore arrays from the old
  1643. * namespace are unreachable.
  1644. */
  1645. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1646. do_sysvsem = 1;
  1647. err = unshare_fs(unshare_flags, &new_fs);
  1648. if (err)
  1649. goto bad_unshare_out;
  1650. err = unshare_fd(unshare_flags, &new_fd);
  1651. if (err)
  1652. goto bad_unshare_cleanup_fs;
  1653. err = unshare_userns(unshare_flags, &new_cred);
  1654. if (err)
  1655. goto bad_unshare_cleanup_fd;
  1656. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1657. new_cred, new_fs);
  1658. if (err)
  1659. goto bad_unshare_cleanup_cred;
  1660. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1661. if (do_sysvsem) {
  1662. /*
  1663. * CLONE_SYSVSEM is equivalent to sys_exit().
  1664. */
  1665. exit_sem(current);
  1666. }
  1667. if (unshare_flags & CLONE_NEWIPC) {
  1668. /* Orphan segments in old ns (see sem above). */
  1669. exit_shm(current);
  1670. shm_init_task(current);
  1671. }
  1672. if (new_nsproxy)
  1673. switch_task_namespaces(current, new_nsproxy);
  1674. task_lock(current);
  1675. if (new_fs) {
  1676. fs = current->fs;
  1677. spin_lock(&fs->lock);
  1678. current->fs = new_fs;
  1679. if (--fs->users)
  1680. new_fs = NULL;
  1681. else
  1682. new_fs = fs;
  1683. spin_unlock(&fs->lock);
  1684. }
  1685. if (new_fd) {
  1686. fd = current->files;
  1687. current->files = new_fd;
  1688. new_fd = fd;
  1689. }
  1690. task_unlock(current);
  1691. if (new_cred) {
  1692. /* Install the new user namespace */
  1693. commit_creds(new_cred);
  1694. new_cred = NULL;
  1695. }
  1696. }
  1697. bad_unshare_cleanup_cred:
  1698. if (new_cred)
  1699. put_cred(new_cred);
  1700. bad_unshare_cleanup_fd:
  1701. if (new_fd)
  1702. put_files_struct(new_fd);
  1703. bad_unshare_cleanup_fs:
  1704. if (new_fs)
  1705. free_fs_struct(new_fs);
  1706. bad_unshare_out:
  1707. return err;
  1708. }
  1709. /*
  1710. * Helper to unshare the files of the current task.
  1711. * We don't want to expose copy_files internals to
  1712. * the exec layer of the kernel.
  1713. */
  1714. int unshare_files(struct files_struct **displaced)
  1715. {
  1716. struct task_struct *task = current;
  1717. struct files_struct *copy = NULL;
  1718. int error;
  1719. error = unshare_fd(CLONE_FILES, &copy);
  1720. if (error || !copy) {
  1721. *displaced = NULL;
  1722. return error;
  1723. }
  1724. *displaced = task->files;
  1725. task_lock(task);
  1726. task->files = copy;
  1727. task_unlock(task);
  1728. return 0;
  1729. }