aes-ce-glue.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. /*
  2. * aes-ce-glue.c - wrapper code for ARMv8 AES
  3. *
  4. * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <asm/hwcap.h>
  11. #include <asm/neon.h>
  12. #include <asm/hwcap.h>
  13. #include <crypto/aes.h>
  14. #include <crypto/ablk_helper.h>
  15. #include <crypto/algapi.h>
  16. #include <linux/module.h>
  17. #include <crypto/xts.h>
  18. MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
  19. MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
  20. MODULE_LICENSE("GPL v2");
  21. /* defined in aes-ce-core.S */
  22. asmlinkage u32 ce_aes_sub(u32 input);
  23. asmlinkage void ce_aes_invert(void *dst, void *src);
  24. asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
  25. int rounds, int blocks);
  26. asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
  27. int rounds, int blocks);
  28. asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
  29. int rounds, int blocks, u8 iv[]);
  30. asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
  31. int rounds, int blocks, u8 iv[]);
  32. asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
  33. int rounds, int blocks, u8 ctr[]);
  34. asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
  35. int rounds, int blocks, u8 iv[],
  36. u8 const rk2[], int first);
  37. asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
  38. int rounds, int blocks, u8 iv[],
  39. u8 const rk2[], int first);
  40. struct aes_block {
  41. u8 b[AES_BLOCK_SIZE];
  42. };
  43. static int num_rounds(struct crypto_aes_ctx *ctx)
  44. {
  45. /*
  46. * # of rounds specified by AES:
  47. * 128 bit key 10 rounds
  48. * 192 bit key 12 rounds
  49. * 256 bit key 14 rounds
  50. * => n byte key => 6 + (n/4) rounds
  51. */
  52. return 6 + ctx->key_length / 4;
  53. }
  54. static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
  55. unsigned int key_len)
  56. {
  57. /*
  58. * The AES key schedule round constants
  59. */
  60. static u8 const rcon[] = {
  61. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
  62. };
  63. u32 kwords = key_len / sizeof(u32);
  64. struct aes_block *key_enc, *key_dec;
  65. int i, j;
  66. if (key_len != AES_KEYSIZE_128 &&
  67. key_len != AES_KEYSIZE_192 &&
  68. key_len != AES_KEYSIZE_256)
  69. return -EINVAL;
  70. memcpy(ctx->key_enc, in_key, key_len);
  71. ctx->key_length = key_len;
  72. kernel_neon_begin();
  73. for (i = 0; i < sizeof(rcon); i++) {
  74. u32 *rki = ctx->key_enc + (i * kwords);
  75. u32 *rko = rki + kwords;
  76. rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
  77. rko[0] = rko[0] ^ rki[0] ^ rcon[i];
  78. rko[1] = rko[0] ^ rki[1];
  79. rko[2] = rko[1] ^ rki[2];
  80. rko[3] = rko[2] ^ rki[3];
  81. if (key_len == AES_KEYSIZE_192) {
  82. if (i >= 7)
  83. break;
  84. rko[4] = rko[3] ^ rki[4];
  85. rko[5] = rko[4] ^ rki[5];
  86. } else if (key_len == AES_KEYSIZE_256) {
  87. if (i >= 6)
  88. break;
  89. rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
  90. rko[5] = rko[4] ^ rki[5];
  91. rko[6] = rko[5] ^ rki[6];
  92. rko[7] = rko[6] ^ rki[7];
  93. }
  94. }
  95. /*
  96. * Generate the decryption keys for the Equivalent Inverse Cipher.
  97. * This involves reversing the order of the round keys, and applying
  98. * the Inverse Mix Columns transformation on all but the first and
  99. * the last one.
  100. */
  101. key_enc = (struct aes_block *)ctx->key_enc;
  102. key_dec = (struct aes_block *)ctx->key_dec;
  103. j = num_rounds(ctx);
  104. key_dec[0] = key_enc[j];
  105. for (i = 1, j--; j > 0; i++, j--)
  106. ce_aes_invert(key_dec + i, key_enc + j);
  107. key_dec[i] = key_enc[0];
  108. kernel_neon_end();
  109. return 0;
  110. }
  111. static int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
  112. unsigned int key_len)
  113. {
  114. struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  115. int ret;
  116. ret = ce_aes_expandkey(ctx, in_key, key_len);
  117. if (!ret)
  118. return 0;
  119. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  120. return -EINVAL;
  121. }
  122. struct crypto_aes_xts_ctx {
  123. struct crypto_aes_ctx key1;
  124. struct crypto_aes_ctx __aligned(8) key2;
  125. };
  126. static int xts_set_key(struct crypto_tfm *tfm, const u8 *in_key,
  127. unsigned int key_len)
  128. {
  129. struct crypto_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
  130. int ret;
  131. ret = xts_check_key(tfm, in_key, key_len);
  132. if (ret)
  133. return ret;
  134. ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
  135. if (!ret)
  136. ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
  137. key_len / 2);
  138. if (!ret)
  139. return 0;
  140. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  141. return -EINVAL;
  142. }
  143. static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  144. struct scatterlist *src, unsigned int nbytes)
  145. {
  146. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  147. struct blkcipher_walk walk;
  148. unsigned int blocks;
  149. int err;
  150. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  151. blkcipher_walk_init(&walk, dst, src, nbytes);
  152. err = blkcipher_walk_virt(desc, &walk);
  153. kernel_neon_begin();
  154. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  155. ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  156. (u8 *)ctx->key_enc, num_rounds(ctx), blocks);
  157. err = blkcipher_walk_done(desc, &walk,
  158. walk.nbytes % AES_BLOCK_SIZE);
  159. }
  160. kernel_neon_end();
  161. return err;
  162. }
  163. static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  164. struct scatterlist *src, unsigned int nbytes)
  165. {
  166. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  167. struct blkcipher_walk walk;
  168. unsigned int blocks;
  169. int err;
  170. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  171. blkcipher_walk_init(&walk, dst, src, nbytes);
  172. err = blkcipher_walk_virt(desc, &walk);
  173. kernel_neon_begin();
  174. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  175. ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  176. (u8 *)ctx->key_dec, num_rounds(ctx), blocks);
  177. err = blkcipher_walk_done(desc, &walk,
  178. walk.nbytes % AES_BLOCK_SIZE);
  179. }
  180. kernel_neon_end();
  181. return err;
  182. }
  183. static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  184. struct scatterlist *src, unsigned int nbytes)
  185. {
  186. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  187. struct blkcipher_walk walk;
  188. unsigned int blocks;
  189. int err;
  190. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  191. blkcipher_walk_init(&walk, dst, src, nbytes);
  192. err = blkcipher_walk_virt(desc, &walk);
  193. kernel_neon_begin();
  194. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  195. ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  196. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  197. walk.iv);
  198. err = blkcipher_walk_done(desc, &walk,
  199. walk.nbytes % AES_BLOCK_SIZE);
  200. }
  201. kernel_neon_end();
  202. return err;
  203. }
  204. static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  205. struct scatterlist *src, unsigned int nbytes)
  206. {
  207. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  208. struct blkcipher_walk walk;
  209. unsigned int blocks;
  210. int err;
  211. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  212. blkcipher_walk_init(&walk, dst, src, nbytes);
  213. err = blkcipher_walk_virt(desc, &walk);
  214. kernel_neon_begin();
  215. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  216. ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  217. (u8 *)ctx->key_dec, num_rounds(ctx), blocks,
  218. walk.iv);
  219. err = blkcipher_walk_done(desc, &walk,
  220. walk.nbytes % AES_BLOCK_SIZE);
  221. }
  222. kernel_neon_end();
  223. return err;
  224. }
  225. static int ctr_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  226. struct scatterlist *src, unsigned int nbytes)
  227. {
  228. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  229. struct blkcipher_walk walk;
  230. int err, blocks;
  231. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  232. blkcipher_walk_init(&walk, dst, src, nbytes);
  233. err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
  234. kernel_neon_begin();
  235. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  236. ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  237. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  238. walk.iv);
  239. nbytes -= blocks * AES_BLOCK_SIZE;
  240. if (nbytes && nbytes == walk.nbytes % AES_BLOCK_SIZE)
  241. break;
  242. err = blkcipher_walk_done(desc, &walk,
  243. walk.nbytes % AES_BLOCK_SIZE);
  244. }
  245. if (walk.nbytes % AES_BLOCK_SIZE) {
  246. u8 *tdst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
  247. u8 *tsrc = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
  248. u8 __aligned(8) tail[AES_BLOCK_SIZE];
  249. /*
  250. * Minimum alignment is 8 bytes, so if nbytes is <= 8, we need
  251. * to tell aes_ctr_encrypt() to only read half a block.
  252. */
  253. blocks = (nbytes <= 8) ? -1 : 1;
  254. ce_aes_ctr_encrypt(tail, tsrc, (u8 *)ctx->key_enc,
  255. num_rounds(ctx), blocks, walk.iv);
  256. memcpy(tdst, tail, nbytes);
  257. err = blkcipher_walk_done(desc, &walk, 0);
  258. }
  259. kernel_neon_end();
  260. return err;
  261. }
  262. static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  263. struct scatterlist *src, unsigned int nbytes)
  264. {
  265. struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  266. int err, first, rounds = num_rounds(&ctx->key1);
  267. struct blkcipher_walk walk;
  268. unsigned int blocks;
  269. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  270. blkcipher_walk_init(&walk, dst, src, nbytes);
  271. err = blkcipher_walk_virt(desc, &walk);
  272. kernel_neon_begin();
  273. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  274. ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  275. (u8 *)ctx->key1.key_enc, rounds, blocks,
  276. walk.iv, (u8 *)ctx->key2.key_enc, first);
  277. err = blkcipher_walk_done(desc, &walk,
  278. walk.nbytes % AES_BLOCK_SIZE);
  279. }
  280. kernel_neon_end();
  281. return err;
  282. }
  283. static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  284. struct scatterlist *src, unsigned int nbytes)
  285. {
  286. struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  287. int err, first, rounds = num_rounds(&ctx->key1);
  288. struct blkcipher_walk walk;
  289. unsigned int blocks;
  290. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  291. blkcipher_walk_init(&walk, dst, src, nbytes);
  292. err = blkcipher_walk_virt(desc, &walk);
  293. kernel_neon_begin();
  294. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  295. ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  296. (u8 *)ctx->key1.key_dec, rounds, blocks,
  297. walk.iv, (u8 *)ctx->key2.key_enc, first);
  298. err = blkcipher_walk_done(desc, &walk,
  299. walk.nbytes % AES_BLOCK_SIZE);
  300. }
  301. kernel_neon_end();
  302. return err;
  303. }
  304. static struct crypto_alg aes_algs[] = { {
  305. .cra_name = "__ecb-aes-ce",
  306. .cra_driver_name = "__driver-ecb-aes-ce",
  307. .cra_priority = 0,
  308. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
  309. CRYPTO_ALG_INTERNAL,
  310. .cra_blocksize = AES_BLOCK_SIZE,
  311. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  312. .cra_alignmask = 7,
  313. .cra_type = &crypto_blkcipher_type,
  314. .cra_module = THIS_MODULE,
  315. .cra_blkcipher = {
  316. .min_keysize = AES_MIN_KEY_SIZE,
  317. .max_keysize = AES_MAX_KEY_SIZE,
  318. .ivsize = 0,
  319. .setkey = ce_aes_setkey,
  320. .encrypt = ecb_encrypt,
  321. .decrypt = ecb_decrypt,
  322. },
  323. }, {
  324. .cra_name = "__cbc-aes-ce",
  325. .cra_driver_name = "__driver-cbc-aes-ce",
  326. .cra_priority = 0,
  327. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
  328. CRYPTO_ALG_INTERNAL,
  329. .cra_blocksize = AES_BLOCK_SIZE,
  330. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  331. .cra_alignmask = 7,
  332. .cra_type = &crypto_blkcipher_type,
  333. .cra_module = THIS_MODULE,
  334. .cra_blkcipher = {
  335. .min_keysize = AES_MIN_KEY_SIZE,
  336. .max_keysize = AES_MAX_KEY_SIZE,
  337. .ivsize = AES_BLOCK_SIZE,
  338. .setkey = ce_aes_setkey,
  339. .encrypt = cbc_encrypt,
  340. .decrypt = cbc_decrypt,
  341. },
  342. }, {
  343. .cra_name = "__ctr-aes-ce",
  344. .cra_driver_name = "__driver-ctr-aes-ce",
  345. .cra_priority = 0,
  346. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
  347. CRYPTO_ALG_INTERNAL,
  348. .cra_blocksize = 1,
  349. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  350. .cra_alignmask = 7,
  351. .cra_type = &crypto_blkcipher_type,
  352. .cra_module = THIS_MODULE,
  353. .cra_blkcipher = {
  354. .min_keysize = AES_MIN_KEY_SIZE,
  355. .max_keysize = AES_MAX_KEY_SIZE,
  356. .ivsize = AES_BLOCK_SIZE,
  357. .setkey = ce_aes_setkey,
  358. .encrypt = ctr_encrypt,
  359. .decrypt = ctr_encrypt,
  360. },
  361. }, {
  362. .cra_name = "__xts-aes-ce",
  363. .cra_driver_name = "__driver-xts-aes-ce",
  364. .cra_priority = 0,
  365. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
  366. CRYPTO_ALG_INTERNAL,
  367. .cra_blocksize = AES_BLOCK_SIZE,
  368. .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
  369. .cra_alignmask = 7,
  370. .cra_type = &crypto_blkcipher_type,
  371. .cra_module = THIS_MODULE,
  372. .cra_blkcipher = {
  373. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  374. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  375. .ivsize = AES_BLOCK_SIZE,
  376. .setkey = xts_set_key,
  377. .encrypt = xts_encrypt,
  378. .decrypt = xts_decrypt,
  379. },
  380. }, {
  381. .cra_name = "ecb(aes)",
  382. .cra_driver_name = "ecb-aes-ce",
  383. .cra_priority = 300,
  384. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  385. .cra_blocksize = AES_BLOCK_SIZE,
  386. .cra_ctxsize = sizeof(struct async_helper_ctx),
  387. .cra_alignmask = 7,
  388. .cra_type = &crypto_ablkcipher_type,
  389. .cra_module = THIS_MODULE,
  390. .cra_init = ablk_init,
  391. .cra_exit = ablk_exit,
  392. .cra_ablkcipher = {
  393. .min_keysize = AES_MIN_KEY_SIZE,
  394. .max_keysize = AES_MAX_KEY_SIZE,
  395. .ivsize = 0,
  396. .setkey = ablk_set_key,
  397. .encrypt = ablk_encrypt,
  398. .decrypt = ablk_decrypt,
  399. }
  400. }, {
  401. .cra_name = "cbc(aes)",
  402. .cra_driver_name = "cbc-aes-ce",
  403. .cra_priority = 300,
  404. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  405. .cra_blocksize = AES_BLOCK_SIZE,
  406. .cra_ctxsize = sizeof(struct async_helper_ctx),
  407. .cra_alignmask = 7,
  408. .cra_type = &crypto_ablkcipher_type,
  409. .cra_module = THIS_MODULE,
  410. .cra_init = ablk_init,
  411. .cra_exit = ablk_exit,
  412. .cra_ablkcipher = {
  413. .min_keysize = AES_MIN_KEY_SIZE,
  414. .max_keysize = AES_MAX_KEY_SIZE,
  415. .ivsize = AES_BLOCK_SIZE,
  416. .setkey = ablk_set_key,
  417. .encrypt = ablk_encrypt,
  418. .decrypt = ablk_decrypt,
  419. }
  420. }, {
  421. .cra_name = "ctr(aes)",
  422. .cra_driver_name = "ctr-aes-ce",
  423. .cra_priority = 300,
  424. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  425. .cra_blocksize = 1,
  426. .cra_ctxsize = sizeof(struct async_helper_ctx),
  427. .cra_alignmask = 7,
  428. .cra_type = &crypto_ablkcipher_type,
  429. .cra_module = THIS_MODULE,
  430. .cra_init = ablk_init,
  431. .cra_exit = ablk_exit,
  432. .cra_ablkcipher = {
  433. .min_keysize = AES_MIN_KEY_SIZE,
  434. .max_keysize = AES_MAX_KEY_SIZE,
  435. .ivsize = AES_BLOCK_SIZE,
  436. .setkey = ablk_set_key,
  437. .encrypt = ablk_encrypt,
  438. .decrypt = ablk_decrypt,
  439. }
  440. }, {
  441. .cra_name = "xts(aes)",
  442. .cra_driver_name = "xts-aes-ce",
  443. .cra_priority = 300,
  444. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  445. .cra_blocksize = AES_BLOCK_SIZE,
  446. .cra_ctxsize = sizeof(struct async_helper_ctx),
  447. .cra_alignmask = 7,
  448. .cra_type = &crypto_ablkcipher_type,
  449. .cra_module = THIS_MODULE,
  450. .cra_init = ablk_init,
  451. .cra_exit = ablk_exit,
  452. .cra_ablkcipher = {
  453. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  454. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  455. .ivsize = AES_BLOCK_SIZE,
  456. .setkey = ablk_set_key,
  457. .encrypt = ablk_encrypt,
  458. .decrypt = ablk_decrypt,
  459. }
  460. } };
  461. static int __init aes_init(void)
  462. {
  463. if (!(elf_hwcap2 & HWCAP2_AES))
  464. return -ENODEV;
  465. return crypto_register_algs(aes_algs, ARRAY_SIZE(aes_algs));
  466. }
  467. static void __exit aes_exit(void)
  468. {
  469. crypto_unregister_algs(aes_algs, ARRAY_SIZE(aes_algs));
  470. }
  471. module_init(aes_init);
  472. module_exit(aes_exit);