fsl_ddr_edac.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. /*
  2. * Freescale Memory Controller kernel module
  3. *
  4. * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
  5. * ARM-based Layerscape SoCs including LS2xxx. Originally split
  6. * out from mpc85xx_edac EDAC driver.
  7. *
  8. * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
  9. *
  10. * Author: Dave Jiang <djiang@mvista.com>
  11. *
  12. * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
  13. * the terms of the GNU General Public License version 2. This program
  14. * is licensed "as is" without any warranty of any kind, whether express
  15. * or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/ctype.h>
  21. #include <linux/io.h>
  22. #include <linux/mod_devicetable.h>
  23. #include <linux/edac.h>
  24. #include <linux/smp.h>
  25. #include <linux/gfp.h>
  26. #include <linux/of_platform.h>
  27. #include <linux/of_device.h>
  28. #include <linux/of_address.h>
  29. #include "edac_module.h"
  30. #include "edac_core.h"
  31. #include "fsl_ddr_edac.h"
  32. #define EDAC_MOD_STR "fsl_ddr_edac"
  33. static int edac_mc_idx;
  34. static u32 orig_ddr_err_disable;
  35. static u32 orig_ddr_err_sbe;
  36. static bool little_endian;
  37. static inline u32 ddr_in32(void __iomem *addr)
  38. {
  39. return little_endian ? ioread32(addr) : ioread32be(addr);
  40. }
  41. static inline void ddr_out32(void __iomem *addr, u32 value)
  42. {
  43. if (little_endian)
  44. iowrite32(value, addr);
  45. else
  46. iowrite32be(value, addr);
  47. }
  48. /************************ MC SYSFS parts ***********************************/
  49. #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
  50. static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
  51. struct device_attribute *mattr,
  52. char *data)
  53. {
  54. struct mem_ctl_info *mci = to_mci(dev);
  55. struct fsl_mc_pdata *pdata = mci->pvt_info;
  56. return sprintf(data, "0x%08x",
  57. ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
  58. }
  59. static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
  60. struct device_attribute *mattr,
  61. char *data)
  62. {
  63. struct mem_ctl_info *mci = to_mci(dev);
  64. struct fsl_mc_pdata *pdata = mci->pvt_info;
  65. return sprintf(data, "0x%08x",
  66. ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
  67. }
  68. static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
  69. struct device_attribute *mattr,
  70. char *data)
  71. {
  72. struct mem_ctl_info *mci = to_mci(dev);
  73. struct fsl_mc_pdata *pdata = mci->pvt_info;
  74. return sprintf(data, "0x%08x",
  75. ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
  76. }
  77. static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
  78. struct device_attribute *mattr,
  79. const char *data, size_t count)
  80. {
  81. struct mem_ctl_info *mci = to_mci(dev);
  82. struct fsl_mc_pdata *pdata = mci->pvt_info;
  83. if (isdigit(*data)) {
  84. ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI,
  85. simple_strtoul(data, NULL, 0));
  86. return count;
  87. }
  88. return 0;
  89. }
  90. static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
  91. struct device_attribute *mattr,
  92. const char *data, size_t count)
  93. {
  94. struct mem_ctl_info *mci = to_mci(dev);
  95. struct fsl_mc_pdata *pdata = mci->pvt_info;
  96. if (isdigit(*data)) {
  97. ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO,
  98. simple_strtoul(data, NULL, 0));
  99. return count;
  100. }
  101. return 0;
  102. }
  103. static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
  104. struct device_attribute *mattr,
  105. const char *data, size_t count)
  106. {
  107. struct mem_ctl_info *mci = to_mci(dev);
  108. struct fsl_mc_pdata *pdata = mci->pvt_info;
  109. if (isdigit(*data)) {
  110. ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT,
  111. simple_strtoul(data, NULL, 0));
  112. return count;
  113. }
  114. return 0;
  115. }
  116. DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
  117. fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
  118. DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
  119. fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
  120. DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
  121. fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
  122. static struct attribute *fsl_ddr_dev_attrs[] = {
  123. &dev_attr_inject_data_hi.attr,
  124. &dev_attr_inject_data_lo.attr,
  125. &dev_attr_inject_ctrl.attr,
  126. NULL
  127. };
  128. ATTRIBUTE_GROUPS(fsl_ddr_dev);
  129. /**************************** MC Err device ***************************/
  130. /*
  131. * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
  132. * MPC8572 User's Manual. Each line represents a syndrome bit column as a
  133. * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
  134. * below correspond to Freescale's manuals.
  135. */
  136. static unsigned int ecc_table[16] = {
  137. /* MSB LSB */
  138. /* [0:31] [32:63] */
  139. 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
  140. 0x00ff00ff, 0x00fff0ff,
  141. 0x0f0f0f0f, 0x0f0fff00,
  142. 0x11113333, 0x7777000f,
  143. 0x22224444, 0x8888222f,
  144. 0x44448888, 0xffff4441,
  145. 0x8888ffff, 0x11118882,
  146. 0xffff1111, 0x22221114, /* Syndrome bit 0 */
  147. };
  148. /*
  149. * Calculate the correct ECC value for a 64-bit value specified by high:low
  150. */
  151. static u8 calculate_ecc(u32 high, u32 low)
  152. {
  153. u32 mask_low;
  154. u32 mask_high;
  155. int bit_cnt;
  156. u8 ecc = 0;
  157. int i;
  158. int j;
  159. for (i = 0; i < 8; i++) {
  160. mask_high = ecc_table[i * 2];
  161. mask_low = ecc_table[i * 2 + 1];
  162. bit_cnt = 0;
  163. for (j = 0; j < 32; j++) {
  164. if ((mask_high >> j) & 1)
  165. bit_cnt ^= (high >> j) & 1;
  166. if ((mask_low >> j) & 1)
  167. bit_cnt ^= (low >> j) & 1;
  168. }
  169. ecc |= bit_cnt << i;
  170. }
  171. return ecc;
  172. }
  173. /*
  174. * Create the syndrome code which is generated if the data line specified by
  175. * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
  176. * User's Manual and 9-61 in the MPC8572 User's Manual.
  177. */
  178. static u8 syndrome_from_bit(unsigned int bit) {
  179. int i;
  180. u8 syndrome = 0;
  181. /*
  182. * Cycle through the upper or lower 32-bit portion of each value in
  183. * ecc_table depending on if 'bit' is in the upper or lower half of
  184. * 64-bit data.
  185. */
  186. for (i = bit < 32; i < 16; i += 2)
  187. syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
  188. return syndrome;
  189. }
  190. /*
  191. * Decode data and ecc syndrome to determine what went wrong
  192. * Note: This can only decode single-bit errors
  193. */
  194. static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
  195. int *bad_data_bit, int *bad_ecc_bit)
  196. {
  197. int i;
  198. u8 syndrome;
  199. *bad_data_bit = -1;
  200. *bad_ecc_bit = -1;
  201. /*
  202. * Calculate the ECC of the captured data and XOR it with the captured
  203. * ECC to find an ECC syndrome value we can search for
  204. */
  205. syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
  206. /* Check if a data line is stuck... */
  207. for (i = 0; i < 64; i++) {
  208. if (syndrome == syndrome_from_bit(i)) {
  209. *bad_data_bit = i;
  210. return;
  211. }
  212. }
  213. /* If data is correct, check ECC bits for errors... */
  214. for (i = 0; i < 8; i++) {
  215. if ((syndrome >> i) & 0x1) {
  216. *bad_ecc_bit = i;
  217. return;
  218. }
  219. }
  220. }
  221. #define make64(high, low) (((u64)(high) << 32) | (low))
  222. static void fsl_mc_check(struct mem_ctl_info *mci)
  223. {
  224. struct fsl_mc_pdata *pdata = mci->pvt_info;
  225. struct csrow_info *csrow;
  226. u32 bus_width;
  227. u32 err_detect;
  228. u32 syndrome;
  229. u64 err_addr;
  230. u32 pfn;
  231. int row_index;
  232. u32 cap_high;
  233. u32 cap_low;
  234. int bad_data_bit;
  235. int bad_ecc_bit;
  236. err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
  237. if (!err_detect)
  238. return;
  239. fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
  240. err_detect);
  241. /* no more processing if not ECC bit errors */
  242. if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
  243. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
  244. return;
  245. }
  246. syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
  247. /* Mask off appropriate bits of syndrome based on bus width */
  248. bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
  249. DSC_DBW_MASK) ? 32 : 64;
  250. if (bus_width == 64)
  251. syndrome &= 0xff;
  252. else
  253. syndrome &= 0xffff;
  254. err_addr = make64(
  255. ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
  256. ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
  257. pfn = err_addr >> PAGE_SHIFT;
  258. for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
  259. csrow = mci->csrows[row_index];
  260. if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
  261. break;
  262. }
  263. cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
  264. cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
  265. /*
  266. * Analyze single-bit errors on 64-bit wide buses
  267. * TODO: Add support for 32-bit wide buses
  268. */
  269. if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
  270. sbe_ecc_decode(cap_high, cap_low, syndrome,
  271. &bad_data_bit, &bad_ecc_bit);
  272. if (bad_data_bit != -1)
  273. fsl_mc_printk(mci, KERN_ERR,
  274. "Faulty Data bit: %d\n", bad_data_bit);
  275. if (bad_ecc_bit != -1)
  276. fsl_mc_printk(mci, KERN_ERR,
  277. "Faulty ECC bit: %d\n", bad_ecc_bit);
  278. fsl_mc_printk(mci, KERN_ERR,
  279. "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
  280. cap_high ^ (1 << (bad_data_bit - 32)),
  281. cap_low ^ (1 << bad_data_bit),
  282. syndrome ^ (1 << bad_ecc_bit));
  283. }
  284. fsl_mc_printk(mci, KERN_ERR,
  285. "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
  286. cap_high, cap_low, syndrome);
  287. fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
  288. fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
  289. /* we are out of range */
  290. if (row_index == mci->nr_csrows)
  291. fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
  292. if (err_detect & DDR_EDE_SBE)
  293. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
  294. pfn, err_addr & ~PAGE_MASK, syndrome,
  295. row_index, 0, -1,
  296. mci->ctl_name, "");
  297. if (err_detect & DDR_EDE_MBE)
  298. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
  299. pfn, err_addr & ~PAGE_MASK, syndrome,
  300. row_index, 0, -1,
  301. mci->ctl_name, "");
  302. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
  303. }
  304. static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
  305. {
  306. struct mem_ctl_info *mci = dev_id;
  307. struct fsl_mc_pdata *pdata = mci->pvt_info;
  308. u32 err_detect;
  309. err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
  310. if (!err_detect)
  311. return IRQ_NONE;
  312. fsl_mc_check(mci);
  313. return IRQ_HANDLED;
  314. }
  315. static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
  316. {
  317. struct fsl_mc_pdata *pdata = mci->pvt_info;
  318. struct csrow_info *csrow;
  319. struct dimm_info *dimm;
  320. u32 sdram_ctl;
  321. u32 sdtype;
  322. enum mem_type mtype;
  323. u32 cs_bnds;
  324. int index;
  325. sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
  326. sdtype = sdram_ctl & DSC_SDTYPE_MASK;
  327. if (sdram_ctl & DSC_RD_EN) {
  328. switch (sdtype) {
  329. case 0x02000000:
  330. mtype = MEM_RDDR;
  331. break;
  332. case 0x03000000:
  333. mtype = MEM_RDDR2;
  334. break;
  335. case 0x07000000:
  336. mtype = MEM_RDDR3;
  337. break;
  338. case 0x05000000:
  339. mtype = MEM_RDDR4;
  340. break;
  341. default:
  342. mtype = MEM_UNKNOWN;
  343. break;
  344. }
  345. } else {
  346. switch (sdtype) {
  347. case 0x02000000:
  348. mtype = MEM_DDR;
  349. break;
  350. case 0x03000000:
  351. mtype = MEM_DDR2;
  352. break;
  353. case 0x07000000:
  354. mtype = MEM_DDR3;
  355. break;
  356. case 0x05000000:
  357. mtype = MEM_DDR4;
  358. break;
  359. default:
  360. mtype = MEM_UNKNOWN;
  361. break;
  362. }
  363. }
  364. for (index = 0; index < mci->nr_csrows; index++) {
  365. u32 start;
  366. u32 end;
  367. csrow = mci->csrows[index];
  368. dimm = csrow->channels[0]->dimm;
  369. cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
  370. (index * FSL_MC_CS_BNDS_OFS));
  371. start = (cs_bnds & 0xffff0000) >> 16;
  372. end = (cs_bnds & 0x0000ffff);
  373. if (start == end)
  374. continue; /* not populated */
  375. start <<= (24 - PAGE_SHIFT);
  376. end <<= (24 - PAGE_SHIFT);
  377. end |= (1 << (24 - PAGE_SHIFT)) - 1;
  378. csrow->first_page = start;
  379. csrow->last_page = end;
  380. dimm->nr_pages = end + 1 - start;
  381. dimm->grain = 8;
  382. dimm->mtype = mtype;
  383. dimm->dtype = DEV_UNKNOWN;
  384. if (sdram_ctl & DSC_X32_EN)
  385. dimm->dtype = DEV_X32;
  386. dimm->edac_mode = EDAC_SECDED;
  387. }
  388. }
  389. int fsl_mc_err_probe(struct platform_device *op)
  390. {
  391. struct mem_ctl_info *mci;
  392. struct edac_mc_layer layers[2];
  393. struct fsl_mc_pdata *pdata;
  394. struct resource r;
  395. u32 sdram_ctl;
  396. int res;
  397. if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
  398. return -ENOMEM;
  399. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  400. layers[0].size = 4;
  401. layers[0].is_virt_csrow = true;
  402. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  403. layers[1].size = 1;
  404. layers[1].is_virt_csrow = false;
  405. mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
  406. sizeof(*pdata));
  407. if (!mci) {
  408. devres_release_group(&op->dev, fsl_mc_err_probe);
  409. return -ENOMEM;
  410. }
  411. pdata = mci->pvt_info;
  412. pdata->name = "fsl_mc_err";
  413. mci->pdev = &op->dev;
  414. pdata->edac_idx = edac_mc_idx++;
  415. dev_set_drvdata(mci->pdev, mci);
  416. mci->ctl_name = pdata->name;
  417. mci->dev_name = pdata->name;
  418. /*
  419. * Get the endianness of DDR controller registers.
  420. * Default is big endian.
  421. */
  422. little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
  423. res = of_address_to_resource(op->dev.of_node, 0, &r);
  424. if (res) {
  425. pr_err("%s: Unable to get resource for MC err regs\n",
  426. __func__);
  427. goto err;
  428. }
  429. if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
  430. pdata->name)) {
  431. pr_err("%s: Error while requesting mem region\n",
  432. __func__);
  433. res = -EBUSY;
  434. goto err;
  435. }
  436. pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
  437. if (!pdata->mc_vbase) {
  438. pr_err("%s: Unable to setup MC err regs\n", __func__);
  439. res = -ENOMEM;
  440. goto err;
  441. }
  442. sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
  443. if (!(sdram_ctl & DSC_ECC_EN)) {
  444. /* no ECC */
  445. pr_warn("%s: No ECC DIMMs discovered\n", __func__);
  446. res = -ENODEV;
  447. goto err;
  448. }
  449. edac_dbg(3, "init mci\n");
  450. mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
  451. MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
  452. MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
  453. MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
  454. mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
  455. mci->edac_cap = EDAC_FLAG_SECDED;
  456. mci->mod_name = EDAC_MOD_STR;
  457. if (edac_op_state == EDAC_OPSTATE_POLL)
  458. mci->edac_check = fsl_mc_check;
  459. mci->ctl_page_to_phys = NULL;
  460. mci->scrub_mode = SCRUB_SW_SRC;
  461. fsl_ddr_init_csrows(mci);
  462. /* store the original error disable bits */
  463. orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
  464. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
  465. /* clear all error bits */
  466. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
  467. if (edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups)) {
  468. edac_dbg(3, "failed edac_mc_add_mc()\n");
  469. goto err;
  470. }
  471. if (edac_op_state == EDAC_OPSTATE_INT) {
  472. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
  473. DDR_EIE_MBEE | DDR_EIE_SBEE);
  474. /* store the original error management threshold */
  475. orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
  476. FSL_MC_ERR_SBE) & 0xff0000;
  477. /* set threshold to 1 error per interrupt */
  478. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
  479. /* register interrupts */
  480. pdata->irq = platform_get_irq(op, 0);
  481. res = devm_request_irq(&op->dev, pdata->irq,
  482. fsl_mc_isr,
  483. IRQF_SHARED,
  484. "[EDAC] MC err", mci);
  485. if (res < 0) {
  486. pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
  487. __func__, pdata->irq);
  488. res = -ENODEV;
  489. goto err2;
  490. }
  491. pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
  492. pdata->irq);
  493. }
  494. devres_remove_group(&op->dev, fsl_mc_err_probe);
  495. edac_dbg(3, "success\n");
  496. pr_info(EDAC_MOD_STR " MC err registered\n");
  497. return 0;
  498. err2:
  499. edac_mc_del_mc(&op->dev);
  500. err:
  501. devres_release_group(&op->dev, fsl_mc_err_probe);
  502. edac_mc_free(mci);
  503. return res;
  504. }
  505. int fsl_mc_err_remove(struct platform_device *op)
  506. {
  507. struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
  508. struct fsl_mc_pdata *pdata = mci->pvt_info;
  509. edac_dbg(0, "\n");
  510. if (edac_op_state == EDAC_OPSTATE_INT) {
  511. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
  512. }
  513. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
  514. orig_ddr_err_disable);
  515. ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
  516. edac_mc_del_mc(&op->dev);
  517. edac_mc_free(mci);
  518. return 0;
  519. }