cpuid.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. * cpuid support routines
  4. *
  5. * derived from arch/x86/kvm/x86.c
  6. *
  7. * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * This work is licensed under the terms of the GNU GPL, version 2. See
  11. * the COPYING file in the top-level directory.
  12. *
  13. */
  14. #include <linux/kvm_host.h>
  15. #include <linux/export.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/uaccess.h>
  18. #include <asm/processor.h>
  19. #include <asm/fpu/internal.h> /* For use_eager_fpu. Ugh! */
  20. #include <asm/user.h>
  21. #include <asm/fpu/xstate.h>
  22. #include "cpuid.h"
  23. #include "lapic.h"
  24. #include "mmu.h"
  25. #include "trace.h"
  26. #include "pmu.h"
  27. static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  28. {
  29. int feature_bit = 0;
  30. u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  31. xstate_bv &= XFEATURE_MASK_EXTEND;
  32. while (xstate_bv) {
  33. if (xstate_bv & 0x1) {
  34. u32 eax, ebx, ecx, edx, offset;
  35. cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  36. offset = compacted ? ret : ebx;
  37. ret = max(ret, offset + eax);
  38. }
  39. xstate_bv >>= 1;
  40. feature_bit++;
  41. }
  42. return ret;
  43. }
  44. bool kvm_mpx_supported(void)
  45. {
  46. return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
  47. && kvm_x86_ops->mpx_supported());
  48. }
  49. EXPORT_SYMBOL_GPL(kvm_mpx_supported);
  50. u64 kvm_supported_xcr0(void)
  51. {
  52. u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
  53. if (!kvm_mpx_supported())
  54. xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
  55. return xcr0;
  56. }
  57. #define F(x) bit(X86_FEATURE_##x)
  58. /* These are scattered features in cpufeatures.h. */
  59. #define KVM_CPUID_BIT_AVX512_4VNNIW 2
  60. #define KVM_CPUID_BIT_AVX512_4FMAPS 3
  61. #define KF(x) bit(KVM_CPUID_BIT_##x)
  62. int kvm_update_cpuid(struct kvm_vcpu *vcpu)
  63. {
  64. struct kvm_cpuid_entry2 *best;
  65. struct kvm_lapic *apic = vcpu->arch.apic;
  66. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  67. if (!best)
  68. return 0;
  69. /* Update OSXSAVE bit */
  70. if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
  71. best->ecx &= ~F(OSXSAVE);
  72. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  73. best->ecx |= F(OSXSAVE);
  74. }
  75. best->edx &= ~F(APIC);
  76. if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
  77. best->edx |= F(APIC);
  78. if (apic) {
  79. if (best->ecx & F(TSC_DEADLINE_TIMER))
  80. apic->lapic_timer.timer_mode_mask = 3 << 17;
  81. else
  82. apic->lapic_timer.timer_mode_mask = 1 << 17;
  83. }
  84. best = kvm_find_cpuid_entry(vcpu, 7, 0);
  85. if (best) {
  86. /* Update OSPKE bit */
  87. if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
  88. best->ecx &= ~F(OSPKE);
  89. if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
  90. best->ecx |= F(OSPKE);
  91. }
  92. }
  93. best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
  94. if (!best) {
  95. vcpu->arch.guest_supported_xcr0 = 0;
  96. vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  97. } else {
  98. vcpu->arch.guest_supported_xcr0 =
  99. (best->eax | ((u64)best->edx << 32)) &
  100. kvm_supported_xcr0();
  101. vcpu->arch.guest_xstate_size = best->ebx =
  102. xstate_required_size(vcpu->arch.xcr0, false);
  103. }
  104. best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
  105. if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
  106. best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
  107. if (use_eager_fpu())
  108. kvm_x86_ops->fpu_activate(vcpu);
  109. /*
  110. * The existing code assumes virtual address is 48-bit in the canonical
  111. * address checks; exit if it is ever changed.
  112. */
  113. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  114. if (best && ((best->eax & 0xff00) >> 8) != 48 &&
  115. ((best->eax & 0xff00) >> 8) != 0)
  116. return -EINVAL;
  117. /* Update physical-address width */
  118. vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
  119. kvm_pmu_refresh(vcpu);
  120. return 0;
  121. }
  122. static int is_efer_nx(void)
  123. {
  124. unsigned long long efer = 0;
  125. rdmsrl_safe(MSR_EFER, &efer);
  126. return efer & EFER_NX;
  127. }
  128. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  129. {
  130. int i;
  131. struct kvm_cpuid_entry2 *e, *entry;
  132. entry = NULL;
  133. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  134. e = &vcpu->arch.cpuid_entries[i];
  135. if (e->function == 0x80000001) {
  136. entry = e;
  137. break;
  138. }
  139. }
  140. if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
  141. entry->edx &= ~F(NX);
  142. printk(KERN_INFO "kvm: guest NX capability removed\n");
  143. }
  144. }
  145. int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
  146. {
  147. struct kvm_cpuid_entry2 *best;
  148. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  149. if (!best || best->eax < 0x80000008)
  150. goto not_found;
  151. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  152. if (best)
  153. return best->eax & 0xff;
  154. not_found:
  155. return 36;
  156. }
  157. EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
  158. /* when an old userspace process fills a new kernel module */
  159. int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  160. struct kvm_cpuid *cpuid,
  161. struct kvm_cpuid_entry __user *entries)
  162. {
  163. int r, i;
  164. struct kvm_cpuid_entry *cpuid_entries = NULL;
  165. r = -E2BIG;
  166. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  167. goto out;
  168. r = -ENOMEM;
  169. if (cpuid->nent) {
  170. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
  171. cpuid->nent);
  172. if (!cpuid_entries)
  173. goto out;
  174. r = -EFAULT;
  175. if (copy_from_user(cpuid_entries, entries,
  176. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  177. goto out;
  178. }
  179. for (i = 0; i < cpuid->nent; i++) {
  180. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  181. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  182. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  183. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  184. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  185. vcpu->arch.cpuid_entries[i].index = 0;
  186. vcpu->arch.cpuid_entries[i].flags = 0;
  187. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  188. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  189. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  190. }
  191. vcpu->arch.cpuid_nent = cpuid->nent;
  192. cpuid_fix_nx_cap(vcpu);
  193. kvm_apic_set_version(vcpu);
  194. kvm_x86_ops->cpuid_update(vcpu);
  195. r = kvm_update_cpuid(vcpu);
  196. out:
  197. vfree(cpuid_entries);
  198. return r;
  199. }
  200. int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  201. struct kvm_cpuid2 *cpuid,
  202. struct kvm_cpuid_entry2 __user *entries)
  203. {
  204. int r;
  205. r = -E2BIG;
  206. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  207. goto out;
  208. r = -EFAULT;
  209. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  210. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  211. goto out;
  212. vcpu->arch.cpuid_nent = cpuid->nent;
  213. kvm_apic_set_version(vcpu);
  214. kvm_x86_ops->cpuid_update(vcpu);
  215. r = kvm_update_cpuid(vcpu);
  216. out:
  217. return r;
  218. }
  219. int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  220. struct kvm_cpuid2 *cpuid,
  221. struct kvm_cpuid_entry2 __user *entries)
  222. {
  223. int r;
  224. r = -E2BIG;
  225. if (cpuid->nent < vcpu->arch.cpuid_nent)
  226. goto out;
  227. r = -EFAULT;
  228. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  229. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  230. goto out;
  231. return 0;
  232. out:
  233. cpuid->nent = vcpu->arch.cpuid_nent;
  234. return r;
  235. }
  236. static void cpuid_mask(u32 *word, int wordnum)
  237. {
  238. *word &= boot_cpu_data.x86_capability[wordnum];
  239. }
  240. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  241. u32 index)
  242. {
  243. entry->function = function;
  244. entry->index = index;
  245. cpuid_count(entry->function, entry->index,
  246. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  247. entry->flags = 0;
  248. }
  249. static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
  250. u32 func, u32 index, int *nent, int maxnent)
  251. {
  252. switch (func) {
  253. case 0:
  254. entry->eax = 1; /* only one leaf currently */
  255. ++*nent;
  256. break;
  257. case 1:
  258. entry->ecx = F(MOVBE);
  259. ++*nent;
  260. break;
  261. default:
  262. break;
  263. }
  264. entry->function = func;
  265. entry->index = index;
  266. return 0;
  267. }
  268. static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  269. u32 index, int *nent, int maxnent)
  270. {
  271. int r;
  272. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  273. #ifdef CONFIG_X86_64
  274. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  275. ? F(GBPAGES) : 0;
  276. unsigned f_lm = F(LM);
  277. #else
  278. unsigned f_gbpages = 0;
  279. unsigned f_lm = 0;
  280. #endif
  281. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  282. unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
  283. unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
  284. unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
  285. /* cpuid 1.edx */
  286. const u32 kvm_cpuid_1_edx_x86_features =
  287. F(FPU) | F(VME) | F(DE) | F(PSE) |
  288. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  289. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  290. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  291. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
  292. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  293. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  294. 0 /* HTT, TM, Reserved, PBE */;
  295. /* cpuid 0x80000001.edx */
  296. const u32 kvm_cpuid_8000_0001_edx_x86_features =
  297. F(FPU) | F(VME) | F(DE) | F(PSE) |
  298. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  299. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  300. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  301. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  302. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  303. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  304. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  305. /* cpuid 1.ecx */
  306. const u32 kvm_cpuid_1_ecx_x86_features =
  307. /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
  308. * but *not* advertised to guests via CPUID ! */
  309. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  310. 0 /* DS-CPL, VMX, SMX, EST */ |
  311. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  312. F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
  313. F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
  314. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  315. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  316. F(F16C) | F(RDRAND);
  317. /* cpuid 0x80000001.ecx */
  318. const u32 kvm_cpuid_8000_0001_ecx_x86_features =
  319. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  320. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  321. F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
  322. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  323. /* cpuid 0xC0000001.edx */
  324. const u32 kvm_cpuid_C000_0001_edx_x86_features =
  325. F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
  326. F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
  327. F(PMM) | F(PMM_EN);
  328. /* cpuid 7.0.ebx */
  329. const u32 kvm_cpuid_7_0_ebx_x86_features =
  330. F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
  331. F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
  332. F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
  333. F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
  334. F(AVX512BW) | F(AVX512VL);
  335. /* cpuid 0xD.1.eax */
  336. const u32 kvm_cpuid_D_1_eax_x86_features =
  337. F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
  338. /* cpuid 7.0.ecx*/
  339. const u32 kvm_cpuid_7_0_ecx_x86_features = F(PKU) | 0 /*OSPKE*/;
  340. /* cpuid 7.0.edx*/
  341. const u32 kvm_cpuid_7_0_edx_x86_features =
  342. KF(AVX512_4VNNIW) | KF(AVX512_4FMAPS);
  343. /* all calls to cpuid_count() should be made on the same cpu */
  344. get_cpu();
  345. r = -E2BIG;
  346. if (*nent >= maxnent)
  347. goto out;
  348. do_cpuid_1_ent(entry, function, index);
  349. ++*nent;
  350. switch (function) {
  351. case 0:
  352. entry->eax = min(entry->eax, (u32)0xd);
  353. break;
  354. case 1:
  355. entry->edx &= kvm_cpuid_1_edx_x86_features;
  356. cpuid_mask(&entry->edx, CPUID_1_EDX);
  357. entry->ecx &= kvm_cpuid_1_ecx_x86_features;
  358. cpuid_mask(&entry->ecx, CPUID_1_ECX);
  359. /* we support x2apic emulation even if host does not support
  360. * it since we emulate x2apic in software */
  361. entry->ecx |= F(X2APIC);
  362. break;
  363. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  364. * may return different values. This forces us to get_cpu() before
  365. * issuing the first command, and also to emulate this annoying behavior
  366. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  367. case 2: {
  368. int t, times = entry->eax & 0xff;
  369. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  370. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  371. for (t = 1; t < times; ++t) {
  372. if (*nent >= maxnent)
  373. goto out;
  374. do_cpuid_1_ent(&entry[t], function, 0);
  375. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  376. ++*nent;
  377. }
  378. break;
  379. }
  380. /* function 4 has additional index. */
  381. case 4: {
  382. int i, cache_type;
  383. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  384. /* read more entries until cache_type is zero */
  385. for (i = 1; ; ++i) {
  386. if (*nent >= maxnent)
  387. goto out;
  388. cache_type = entry[i - 1].eax & 0x1f;
  389. if (!cache_type)
  390. break;
  391. do_cpuid_1_ent(&entry[i], function, i);
  392. entry[i].flags |=
  393. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  394. ++*nent;
  395. }
  396. break;
  397. }
  398. case 6: /* Thermal management */
  399. entry->eax = 0x4; /* allow ARAT */
  400. entry->ebx = 0;
  401. entry->ecx = 0;
  402. entry->edx = 0;
  403. break;
  404. case 7: {
  405. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  406. /* Mask ebx against host capability word 9 */
  407. if (index == 0) {
  408. entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
  409. cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
  410. // TSC_ADJUST is emulated
  411. entry->ebx |= F(TSC_ADJUST);
  412. entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
  413. cpuid_mask(&entry->ecx, CPUID_7_ECX);
  414. /* PKU is not yet implemented for shadow paging. */
  415. if (!tdp_enabled)
  416. entry->ecx &= ~F(PKU);
  417. entry->edx &= kvm_cpuid_7_0_edx_x86_features;
  418. entry->edx &= get_scattered_cpuid_leaf(7, 0, CPUID_EDX);
  419. } else {
  420. entry->ebx = 0;
  421. entry->ecx = 0;
  422. entry->edx = 0;
  423. }
  424. entry->eax = 0;
  425. break;
  426. }
  427. case 9:
  428. break;
  429. case 0xa: { /* Architectural Performance Monitoring */
  430. struct x86_pmu_capability cap;
  431. union cpuid10_eax eax;
  432. union cpuid10_edx edx;
  433. perf_get_x86_pmu_capability(&cap);
  434. /*
  435. * Only support guest architectural pmu on a host
  436. * with architectural pmu.
  437. */
  438. if (!cap.version)
  439. memset(&cap, 0, sizeof(cap));
  440. eax.split.version_id = min(cap.version, 2);
  441. eax.split.num_counters = cap.num_counters_gp;
  442. eax.split.bit_width = cap.bit_width_gp;
  443. eax.split.mask_length = cap.events_mask_len;
  444. edx.split.num_counters_fixed = cap.num_counters_fixed;
  445. edx.split.bit_width_fixed = cap.bit_width_fixed;
  446. edx.split.reserved = 0;
  447. entry->eax = eax.full;
  448. entry->ebx = cap.events_mask;
  449. entry->ecx = 0;
  450. entry->edx = edx.full;
  451. break;
  452. }
  453. /* function 0xb has additional index. */
  454. case 0xb: {
  455. int i, level_type;
  456. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  457. /* read more entries until level_type is zero */
  458. for (i = 1; ; ++i) {
  459. if (*nent >= maxnent)
  460. goto out;
  461. level_type = entry[i - 1].ecx & 0xff00;
  462. if (!level_type)
  463. break;
  464. do_cpuid_1_ent(&entry[i], function, i);
  465. entry[i].flags |=
  466. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  467. ++*nent;
  468. }
  469. break;
  470. }
  471. case 0xd: {
  472. int idx, i;
  473. u64 supported = kvm_supported_xcr0();
  474. entry->eax &= supported;
  475. entry->ebx = xstate_required_size(supported, false);
  476. entry->ecx = entry->ebx;
  477. entry->edx &= supported >> 32;
  478. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  479. if (!supported)
  480. break;
  481. for (idx = 1, i = 1; idx < 64; ++idx) {
  482. u64 mask = ((u64)1 << idx);
  483. if (*nent >= maxnent)
  484. goto out;
  485. do_cpuid_1_ent(&entry[i], function, idx);
  486. if (idx == 1) {
  487. entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
  488. cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
  489. entry[i].ebx = 0;
  490. if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
  491. entry[i].ebx =
  492. xstate_required_size(supported,
  493. true);
  494. } else {
  495. if (entry[i].eax == 0 || !(supported & mask))
  496. continue;
  497. if (WARN_ON_ONCE(entry[i].ecx & 1))
  498. continue;
  499. }
  500. entry[i].ecx = 0;
  501. entry[i].edx = 0;
  502. entry[i].flags |=
  503. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  504. ++*nent;
  505. ++i;
  506. }
  507. break;
  508. }
  509. case KVM_CPUID_SIGNATURE: {
  510. static const char signature[12] = "KVMKVMKVM\0\0";
  511. const u32 *sigptr = (const u32 *)signature;
  512. entry->eax = KVM_CPUID_FEATURES;
  513. entry->ebx = sigptr[0];
  514. entry->ecx = sigptr[1];
  515. entry->edx = sigptr[2];
  516. break;
  517. }
  518. case KVM_CPUID_FEATURES:
  519. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  520. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  521. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  522. (1 << KVM_FEATURE_ASYNC_PF) |
  523. (1 << KVM_FEATURE_PV_EOI) |
  524. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
  525. (1 << KVM_FEATURE_PV_UNHALT);
  526. if (sched_info_on())
  527. entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
  528. entry->ebx = 0;
  529. entry->ecx = 0;
  530. entry->edx = 0;
  531. break;
  532. case 0x80000000:
  533. entry->eax = min(entry->eax, 0x8000001a);
  534. break;
  535. case 0x80000001:
  536. entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
  537. cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
  538. entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
  539. cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
  540. break;
  541. case 0x80000007: /* Advanced power management */
  542. /* invariant TSC is CPUID.80000007H:EDX[8] */
  543. entry->edx &= (1 << 8);
  544. /* mask against host */
  545. entry->edx &= boot_cpu_data.x86_power;
  546. entry->eax = entry->ebx = entry->ecx = 0;
  547. break;
  548. case 0x80000008: {
  549. unsigned g_phys_as = (entry->eax >> 16) & 0xff;
  550. unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
  551. unsigned phys_as = entry->eax & 0xff;
  552. if (!g_phys_as)
  553. g_phys_as = phys_as;
  554. entry->eax = g_phys_as | (virt_as << 8);
  555. entry->ebx = entry->edx = 0;
  556. break;
  557. }
  558. case 0x80000019:
  559. entry->ecx = entry->edx = 0;
  560. break;
  561. case 0x8000001a:
  562. break;
  563. case 0x8000001d:
  564. break;
  565. /*Add support for Centaur's CPUID instruction*/
  566. case 0xC0000000:
  567. /*Just support up to 0xC0000004 now*/
  568. entry->eax = min(entry->eax, 0xC0000004);
  569. break;
  570. case 0xC0000001:
  571. entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
  572. cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
  573. break;
  574. case 3: /* Processor serial number */
  575. case 5: /* MONITOR/MWAIT */
  576. case 0xC0000002:
  577. case 0xC0000003:
  578. case 0xC0000004:
  579. default:
  580. entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
  581. break;
  582. }
  583. kvm_x86_ops->set_supported_cpuid(function, entry);
  584. r = 0;
  585. out:
  586. put_cpu();
  587. return r;
  588. }
  589. static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
  590. u32 idx, int *nent, int maxnent, unsigned int type)
  591. {
  592. if (type == KVM_GET_EMULATED_CPUID)
  593. return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
  594. return __do_cpuid_ent(entry, func, idx, nent, maxnent);
  595. }
  596. #undef F
  597. struct kvm_cpuid_param {
  598. u32 func;
  599. u32 idx;
  600. bool has_leaf_count;
  601. bool (*qualifier)(const struct kvm_cpuid_param *param);
  602. };
  603. static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
  604. {
  605. return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
  606. }
  607. static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
  608. __u32 num_entries, unsigned int ioctl_type)
  609. {
  610. int i;
  611. __u32 pad[3];
  612. if (ioctl_type != KVM_GET_EMULATED_CPUID)
  613. return false;
  614. /*
  615. * We want to make sure that ->padding is being passed clean from
  616. * userspace in case we want to use it for something in the future.
  617. *
  618. * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
  619. * have to give ourselves satisfied only with the emulated side. /me
  620. * sheds a tear.
  621. */
  622. for (i = 0; i < num_entries; i++) {
  623. if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
  624. return true;
  625. if (pad[0] || pad[1] || pad[2])
  626. return true;
  627. }
  628. return false;
  629. }
  630. int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
  631. struct kvm_cpuid_entry2 __user *entries,
  632. unsigned int type)
  633. {
  634. struct kvm_cpuid_entry2 *cpuid_entries;
  635. int limit, nent = 0, r = -E2BIG, i;
  636. u32 func;
  637. static const struct kvm_cpuid_param param[] = {
  638. { .func = 0, .has_leaf_count = true },
  639. { .func = 0x80000000, .has_leaf_count = true },
  640. { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
  641. { .func = KVM_CPUID_SIGNATURE },
  642. { .func = KVM_CPUID_FEATURES },
  643. };
  644. if (cpuid->nent < 1)
  645. goto out;
  646. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  647. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  648. if (sanity_check_entries(entries, cpuid->nent, type))
  649. return -EINVAL;
  650. r = -ENOMEM;
  651. cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  652. if (!cpuid_entries)
  653. goto out;
  654. r = 0;
  655. for (i = 0; i < ARRAY_SIZE(param); i++) {
  656. const struct kvm_cpuid_param *ent = &param[i];
  657. if (ent->qualifier && !ent->qualifier(ent))
  658. continue;
  659. r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
  660. &nent, cpuid->nent, type);
  661. if (r)
  662. goto out_free;
  663. if (!ent->has_leaf_count)
  664. continue;
  665. limit = cpuid_entries[nent - 1].eax;
  666. for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
  667. r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
  668. &nent, cpuid->nent, type);
  669. if (r)
  670. goto out_free;
  671. }
  672. r = -EFAULT;
  673. if (copy_to_user(entries, cpuid_entries,
  674. nent * sizeof(struct kvm_cpuid_entry2)))
  675. goto out_free;
  676. cpuid->nent = nent;
  677. r = 0;
  678. out_free:
  679. vfree(cpuid_entries);
  680. out:
  681. return r;
  682. }
  683. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  684. {
  685. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  686. int j, nent = vcpu->arch.cpuid_nent;
  687. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  688. /* when no next entry is found, the current entry[i] is reselected */
  689. for (j = i + 1; ; j = (j + 1) % nent) {
  690. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  691. if (ej->function == e->function) {
  692. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  693. return j;
  694. }
  695. }
  696. return 0; /* silence gcc, even though control never reaches here */
  697. }
  698. /* find an entry with matching function, matching index (if needed), and that
  699. * should be read next (if it's stateful) */
  700. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  701. u32 function, u32 index)
  702. {
  703. if (e->function != function)
  704. return 0;
  705. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  706. return 0;
  707. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  708. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  709. return 0;
  710. return 1;
  711. }
  712. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  713. u32 function, u32 index)
  714. {
  715. int i;
  716. struct kvm_cpuid_entry2 *best = NULL;
  717. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  718. struct kvm_cpuid_entry2 *e;
  719. e = &vcpu->arch.cpuid_entries[i];
  720. if (is_matching_cpuid_entry(e, function, index)) {
  721. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  722. move_to_next_stateful_cpuid_entry(vcpu, i);
  723. best = e;
  724. break;
  725. }
  726. }
  727. return best;
  728. }
  729. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  730. /*
  731. * If no match is found, check whether we exceed the vCPU's limit
  732. * and return the content of the highest valid _standard_ leaf instead.
  733. * This is to satisfy the CPUID specification.
  734. */
  735. static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
  736. u32 function, u32 index)
  737. {
  738. struct kvm_cpuid_entry2 *maxlevel;
  739. maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
  740. if (!maxlevel || maxlevel->eax >= function)
  741. return NULL;
  742. if (function & 0x80000000) {
  743. maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
  744. if (!maxlevel)
  745. return NULL;
  746. }
  747. return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
  748. }
  749. void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
  750. {
  751. u32 function = *eax, index = *ecx;
  752. struct kvm_cpuid_entry2 *best;
  753. best = kvm_find_cpuid_entry(vcpu, function, index);
  754. if (!best)
  755. best = check_cpuid_limit(vcpu, function, index);
  756. /*
  757. * Perfmon not yet supported for L2 guest.
  758. */
  759. if (is_guest_mode(vcpu) && function == 0xa)
  760. best = NULL;
  761. if (best) {
  762. *eax = best->eax;
  763. *ebx = best->ebx;
  764. *ecx = best->ecx;
  765. *edx = best->edx;
  766. } else
  767. *eax = *ebx = *ecx = *edx = 0;
  768. trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
  769. }
  770. EXPORT_SYMBOL_GPL(kvm_cpuid);
  771. int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  772. {
  773. u32 eax, ebx, ecx, edx;
  774. eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  775. ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  776. kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
  777. kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
  778. kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
  779. kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
  780. kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
  781. return kvm_skip_emulated_instruction(vcpu);
  782. }
  783. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);