intel_ringbuffer.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. static void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. struct intel_engine_cs *ring = req->ring;
  87. u32 cmd;
  88. int ret;
  89. cmd = MI_FLUSH;
  90. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  91. cmd |= MI_NO_WRITE_FLUSH;
  92. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  93. cmd |= MI_READ_FLUSH;
  94. ret = intel_ring_begin(ring, 2);
  95. if (ret)
  96. return ret;
  97. intel_ring_emit(ring, cmd);
  98. intel_ring_emit(ring, MI_NOOP);
  99. intel_ring_advance(ring);
  100. return 0;
  101. }
  102. static int
  103. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  104. u32 invalidate_domains,
  105. u32 flush_domains)
  106. {
  107. struct intel_engine_cs *ring = req->ring;
  108. struct drm_device *dev = ring->dev;
  109. u32 cmd;
  110. int ret;
  111. /*
  112. * read/write caches:
  113. *
  114. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  115. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  116. * also flushed at 2d versus 3d pipeline switches.
  117. *
  118. * read-only caches:
  119. *
  120. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  121. * MI_READ_FLUSH is set, and is always flushed on 965.
  122. *
  123. * I915_GEM_DOMAIN_COMMAND may not exist?
  124. *
  125. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  126. * invalidated when MI_EXE_FLUSH is set.
  127. *
  128. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  129. * invalidated with every MI_FLUSH.
  130. *
  131. * TLBs:
  132. *
  133. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  134. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  135. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  136. * are flushed at any MI_FLUSH.
  137. */
  138. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  139. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  140. cmd &= ~MI_NO_WRITE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  142. cmd |= MI_EXE_FLUSH;
  143. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  144. (IS_G4X(dev) || IS_GEN5(dev)))
  145. cmd |= MI_INVALIDATE_ISP;
  146. ret = intel_ring_begin(ring, 2);
  147. if (ret)
  148. return ret;
  149. intel_ring_emit(ring, cmd);
  150. intel_ring_emit(ring, MI_NOOP);
  151. intel_ring_advance(ring);
  152. return 0;
  153. }
  154. /**
  155. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  156. * implementing two workarounds on gen6. From section 1.4.7.1
  157. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  158. *
  159. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  160. * produced by non-pipelined state commands), software needs to first
  161. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  162. * 0.
  163. *
  164. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  165. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  166. *
  167. * And the workaround for these two requires this workaround first:
  168. *
  169. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  170. * BEFORE the pipe-control with a post-sync op and no write-cache
  171. * flushes.
  172. *
  173. * And this last workaround is tricky because of the requirements on
  174. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  175. * volume 2 part 1:
  176. *
  177. * "1 of the following must also be set:
  178. * - Render Target Cache Flush Enable ([12] of DW1)
  179. * - Depth Cache Flush Enable ([0] of DW1)
  180. * - Stall at Pixel Scoreboard ([1] of DW1)
  181. * - Depth Stall ([13] of DW1)
  182. * - Post-Sync Operation ([13] of DW1)
  183. * - Notify Enable ([8] of DW1)"
  184. *
  185. * The cache flushes require the workaround flush that triggered this
  186. * one, so we can't use it. Depth stall would trigger the same.
  187. * Post-sync nonzero is what triggered this second workaround, so we
  188. * can't use that one either. Notify enable is IRQs, which aren't
  189. * really our business. That leaves only stall at scoreboard.
  190. */
  191. static int
  192. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  193. {
  194. struct intel_engine_cs *ring = req->ring;
  195. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  196. int ret;
  197. ret = intel_ring_begin(ring, 6);
  198. if (ret)
  199. return ret;
  200. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  201. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  202. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  204. intel_ring_emit(ring, 0); /* low dword */
  205. intel_ring_emit(ring, 0); /* high dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. ret = intel_ring_begin(ring, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  214. intel_ring_emit(ring, 0);
  215. intel_ring_emit(ring, 0);
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static int
  221. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  222. u32 invalidate_domains, u32 flush_domains)
  223. {
  224. struct intel_engine_cs *ring = req->ring;
  225. u32 flags = 0;
  226. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  227. int ret;
  228. /* Force SNB workarounds for PIPE_CONTROL flushes */
  229. ret = intel_emit_post_sync_nonzero_flush(req);
  230. if (ret)
  231. return ret;
  232. /* Just flush everything. Experiments have shown that reducing the
  233. * number of bits based on the write domains has little performance
  234. * impact.
  235. */
  236. if (flush_domains) {
  237. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  238. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  239. /*
  240. * Ensure that any following seqno writes only happen
  241. * when the render cache is indeed flushed.
  242. */
  243. flags |= PIPE_CONTROL_CS_STALL;
  244. }
  245. if (invalidate_domains) {
  246. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  247. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  248. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  249. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  250. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  251. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  252. /*
  253. * TLB invalidate requires a post-sync write.
  254. */
  255. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  256. }
  257. ret = intel_ring_begin(ring, 4);
  258. if (ret)
  259. return ret;
  260. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  261. intel_ring_emit(ring, flags);
  262. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  263. intel_ring_emit(ring, 0);
  264. intel_ring_advance(ring);
  265. return 0;
  266. }
  267. static int
  268. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  269. {
  270. struct intel_engine_cs *ring = req->ring;
  271. int ret;
  272. ret = intel_ring_begin(ring, 4);
  273. if (ret)
  274. return ret;
  275. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  276. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  277. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  278. intel_ring_emit(ring, 0);
  279. intel_ring_emit(ring, 0);
  280. intel_ring_advance(ring);
  281. return 0;
  282. }
  283. static int
  284. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  285. u32 invalidate_domains, u32 flush_domains)
  286. {
  287. struct intel_engine_cs *ring = req->ring;
  288. u32 flags = 0;
  289. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  290. int ret;
  291. /*
  292. * Ensure that any following seqno writes only happen when the render
  293. * cache is indeed flushed.
  294. *
  295. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  296. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  297. * don't try to be clever and just set it unconditionally.
  298. */
  299. flags |= PIPE_CONTROL_CS_STALL;
  300. /* Just flush everything. Experiments have shown that reducing the
  301. * number of bits based on the write domains has little performance
  302. * impact.
  303. */
  304. if (flush_domains) {
  305. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  306. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  307. }
  308. if (invalidate_domains) {
  309. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  310. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  311. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  312. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  313. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  314. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  316. /*
  317. * TLB invalidate requires a post-sync write.
  318. */
  319. flags |= PIPE_CONTROL_QW_WRITE;
  320. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  321. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  322. /* Workaround: we must issue a pipe_control with CS-stall bit
  323. * set before a pipe_control command that has the state cache
  324. * invalidate bit set. */
  325. gen7_render_ring_cs_stall_wa(req);
  326. }
  327. ret = intel_ring_begin(ring, 4);
  328. if (ret)
  329. return ret;
  330. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  331. intel_ring_emit(ring, flags);
  332. intel_ring_emit(ring, scratch_addr);
  333. intel_ring_emit(ring, 0);
  334. intel_ring_advance(ring);
  335. return 0;
  336. }
  337. static int
  338. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  339. u32 flags, u32 scratch_addr)
  340. {
  341. struct intel_engine_cs *ring = req->ring;
  342. int ret;
  343. ret = intel_ring_begin(ring, 6);
  344. if (ret)
  345. return ret;
  346. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  347. intel_ring_emit(ring, flags);
  348. intel_ring_emit(ring, scratch_addr);
  349. intel_ring_emit(ring, 0);
  350. intel_ring_emit(ring, 0);
  351. intel_ring_emit(ring, 0);
  352. intel_ring_advance(ring);
  353. return 0;
  354. }
  355. static int
  356. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  357. u32 invalidate_domains, u32 flush_domains)
  358. {
  359. u32 flags = 0;
  360. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  361. int ret;
  362. flags |= PIPE_CONTROL_CS_STALL;
  363. if (flush_domains) {
  364. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  365. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  366. }
  367. if (invalidate_domains) {
  368. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  369. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  370. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  371. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  372. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_QW_WRITE;
  375. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  376. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  377. ret = gen8_emit_pipe_control(req,
  378. PIPE_CONTROL_CS_STALL |
  379. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  380. 0);
  381. if (ret)
  382. return ret;
  383. }
  384. return gen8_emit_pipe_control(req, flags, scratch_addr);
  385. }
  386. static void ring_write_tail(struct intel_engine_cs *ring,
  387. u32 value)
  388. {
  389. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  390. I915_WRITE_TAIL(ring, value);
  391. }
  392. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  393. {
  394. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  395. u64 acthd;
  396. if (INTEL_INFO(ring->dev)->gen >= 8)
  397. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  398. RING_ACTHD_UDW(ring->mmio_base));
  399. else if (INTEL_INFO(ring->dev)->gen >= 4)
  400. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  401. else
  402. acthd = I915_READ(ACTHD);
  403. return acthd;
  404. }
  405. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  406. {
  407. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  408. u32 addr;
  409. addr = dev_priv->status_page_dmah->busaddr;
  410. if (INTEL_INFO(ring->dev)->gen >= 4)
  411. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  412. I915_WRITE(HWS_PGA, addr);
  413. }
  414. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  415. {
  416. struct drm_device *dev = ring->dev;
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. u32 mmio = 0;
  419. /* The ring status page addresses are no longer next to the rest of
  420. * the ring registers as of gen7.
  421. */
  422. if (IS_GEN7(dev)) {
  423. switch (ring->id) {
  424. case RCS:
  425. mmio = RENDER_HWS_PGA_GEN7;
  426. break;
  427. case BCS:
  428. mmio = BLT_HWS_PGA_GEN7;
  429. break;
  430. /*
  431. * VCS2 actually doesn't exist on Gen7. Only shut up
  432. * gcc switch check warning
  433. */
  434. case VCS2:
  435. case VCS:
  436. mmio = BSD_HWS_PGA_GEN7;
  437. break;
  438. case VECS:
  439. mmio = VEBOX_HWS_PGA_GEN7;
  440. break;
  441. }
  442. } else if (IS_GEN6(ring->dev)) {
  443. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  444. } else {
  445. /* XXX: gen8 returns to sanity */
  446. mmio = RING_HWS_PGA(ring->mmio_base);
  447. }
  448. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  449. POSTING_READ(mmio);
  450. /*
  451. * Flush the TLB for this page
  452. *
  453. * FIXME: These two bits have disappeared on gen8, so a question
  454. * arises: do we still need this and if so how should we go about
  455. * invalidating the TLB?
  456. */
  457. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  458. u32 reg = RING_INSTPM(ring->mmio_base);
  459. /* ring should be idle before issuing a sync flush*/
  460. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  461. I915_WRITE(reg,
  462. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  463. INSTPM_SYNC_FLUSH));
  464. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  465. 1000))
  466. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  467. ring->name);
  468. }
  469. }
  470. static bool stop_ring(struct intel_engine_cs *ring)
  471. {
  472. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  473. if (!IS_GEN2(ring->dev)) {
  474. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  475. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  476. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  477. /* Sometimes we observe that the idle flag is not
  478. * set even though the ring is empty. So double
  479. * check before giving up.
  480. */
  481. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  482. return false;
  483. }
  484. }
  485. I915_WRITE_CTL(ring, 0);
  486. I915_WRITE_HEAD(ring, 0);
  487. ring->write_tail(ring, 0);
  488. if (!IS_GEN2(ring->dev)) {
  489. (void)I915_READ_CTL(ring);
  490. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  491. }
  492. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  493. }
  494. static int init_ring_common(struct intel_engine_cs *ring)
  495. {
  496. struct drm_device *dev = ring->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_ringbuffer *ringbuf = ring->buffer;
  499. struct drm_i915_gem_object *obj = ringbuf->obj;
  500. int ret = 0;
  501. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  502. if (!stop_ring(ring)) {
  503. /* G45 ring initialization often fails to reset head to zero */
  504. DRM_DEBUG_KMS("%s head not reset to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. if (!stop_ring(ring)) {
  512. DRM_ERROR("failed to set %s head to zero "
  513. "ctl %08x head %08x tail %08x start %08x\n",
  514. ring->name,
  515. I915_READ_CTL(ring),
  516. I915_READ_HEAD(ring),
  517. I915_READ_TAIL(ring),
  518. I915_READ_START(ring));
  519. ret = -EIO;
  520. goto out;
  521. }
  522. }
  523. if (I915_NEED_GFX_HWS(dev))
  524. intel_ring_setup_status_page(ring);
  525. else
  526. ring_setup_phys_status_page(ring);
  527. /* Enforce ordering by reading HEAD register back */
  528. I915_READ_HEAD(ring);
  529. /* Initialize the ring. This must happen _after_ we've cleared the ring
  530. * registers with the above sequence (the readback of the HEAD registers
  531. * also enforces ordering), otherwise the hw might lose the new ring
  532. * register values. */
  533. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  534. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  535. if (I915_READ_HEAD(ring))
  536. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  537. ring->name, I915_READ_HEAD(ring));
  538. I915_WRITE_HEAD(ring, 0);
  539. (void)I915_READ_HEAD(ring);
  540. I915_WRITE_CTL(ring,
  541. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  542. | RING_VALID);
  543. /* If the head is still not zero, the ring is dead */
  544. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  545. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  546. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  547. DRM_ERROR("%s initialization failed "
  548. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  549. ring->name,
  550. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  551. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  552. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  553. ret = -EIO;
  554. goto out;
  555. }
  556. ringbuf->last_retired_head = -1;
  557. ringbuf->head = I915_READ_HEAD(ring);
  558. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  559. intel_ring_update_space(ringbuf);
  560. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  561. out:
  562. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  563. return ret;
  564. }
  565. void
  566. intel_fini_pipe_control(struct intel_engine_cs *ring)
  567. {
  568. struct drm_device *dev = ring->dev;
  569. if (ring->scratch.obj == NULL)
  570. return;
  571. if (INTEL_INFO(dev)->gen >= 5) {
  572. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  573. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  574. }
  575. drm_gem_object_unreference(&ring->scratch.obj->base);
  576. ring->scratch.obj = NULL;
  577. }
  578. int
  579. intel_init_pipe_control(struct intel_engine_cs *ring)
  580. {
  581. int ret;
  582. WARN_ON(ring->scratch.obj);
  583. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  584. if (ring->scratch.obj == NULL) {
  585. DRM_ERROR("Failed to allocate seqno page\n");
  586. ret = -ENOMEM;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  596. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  597. if (ring->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. ring->name, ring->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&ring->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *ring = req->ring;
  615. struct drm_device *dev = ring->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (WARN_ON_ONCE(w->count == 0))
  619. return 0;
  620. ring->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit(ring, w->reg[i].addr);
  630. intel_ring_emit(ring, w->reg[i].value);
  631. }
  632. intel_ring_emit(ring, MI_NOOP);
  633. intel_ring_advance(ring);
  634. ring->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. DRM_ERROR("init render state: %d\n", ret);
  650. return ret;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. const u32 addr, const u32 mask, const u32 val)
  654. {
  655. const u32 idx = dev_priv->workarounds.count;
  656. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  657. return -ENOSPC;
  658. dev_priv->workarounds.reg[idx].addr = addr;
  659. dev_priv->workarounds.reg[idx].value = val;
  660. dev_priv->workarounds.reg[idx].mask = mask;
  661. dev_priv->workarounds.count++;
  662. return 0;
  663. }
  664. #define WA_REG(addr, mask, val) { \
  665. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  666. if (r) \
  667. return r; \
  668. }
  669. #define WA_SET_BIT_MASKED(addr, mask) \
  670. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  671. #define WA_CLR_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  673. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  674. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  675. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  676. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  677. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  678. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  679. {
  680. struct drm_device *dev = ring->dev;
  681. struct drm_i915_private *dev_priv = dev->dev_private;
  682. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  683. /* WaDisableAsyncFlipPerfMode:bdw */
  684. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  685. /* WaDisablePartialInstShootdown:bdw */
  686. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  687. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  688. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  689. STALL_DOP_GATING_DISABLE);
  690. /* WaDisableDopClockGating:bdw */
  691. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  692. DOP_CLOCK_GATING_DISABLE);
  693. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  694. GEN8_SAMPLER_POWER_BYPASS_DIS);
  695. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  696. * workaround for for a possible hang in the unlikely event a TLB
  697. * invalidation occurs during a PSD flush.
  698. */
  699. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  700. /* WaForceEnableNonCoherent:bdw */
  701. HDC_FORCE_NON_COHERENT |
  702. /* WaForceContextSaveRestoreNonCoherent:bdw */
  703. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  704. /* WaHdcDisableFetchWhenMasked:bdw */
  705. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  706. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  707. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  708. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  709. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  710. * polygons in the same 8x4 pixel/sample area to be processed without
  711. * stalling waiting for the earlier ones to write to Hierarchical Z
  712. * buffer."
  713. *
  714. * This optimization is off by default for Broadwell; turn it on.
  715. */
  716. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  717. /* Wa4x4STCOptimizationDisable:bdw */
  718. WA_SET_BIT_MASKED(CACHE_MODE_1,
  719. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  720. /*
  721. * BSpec recommends 8x4 when MSAA is used,
  722. * however in practice 16x4 seems fastest.
  723. *
  724. * Note that PS/WM thread counts depend on the WIZ hashing
  725. * disable bit, which we don't touch here, but it's good
  726. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  727. */
  728. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  729. GEN6_WIZ_HASHING_MASK,
  730. GEN6_WIZ_HASHING_16x4);
  731. return 0;
  732. }
  733. static int chv_init_workarounds(struct intel_engine_cs *ring)
  734. {
  735. struct drm_device *dev = ring->dev;
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  738. /* WaDisableAsyncFlipPerfMode:chv */
  739. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  740. /* WaDisablePartialInstShootdown:chv */
  741. /* WaDisableThreadStallDopClockGating:chv */
  742. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  743. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  744. STALL_DOP_GATING_DISABLE);
  745. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  746. * workaround for a possible hang in the unlikely event a TLB
  747. * invalidation occurs during a PSD flush.
  748. */
  749. /* WaForceEnableNonCoherent:chv */
  750. /* WaHdcDisableFetchWhenMasked:chv */
  751. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  752. HDC_FORCE_NON_COHERENT |
  753. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  754. /* According to the CACHE_MODE_0 default value documentation, some
  755. * CHV platforms disable this optimization by default. Turn it on.
  756. */
  757. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  758. /* Wa4x4STCOptimizationDisable:chv */
  759. WA_SET_BIT_MASKED(CACHE_MODE_1,
  760. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  761. /* Improve HiZ throughput on CHV. */
  762. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  763. /*
  764. * BSpec recommends 8x4 when MSAA is used,
  765. * however in practice 16x4 seems fastest.
  766. *
  767. * Note that PS/WM thread counts depend on the WIZ hashing
  768. * disable bit, which we don't touch here, but it's good
  769. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  770. */
  771. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  772. GEN6_WIZ_HASHING_MASK,
  773. GEN6_WIZ_HASHING_16x4);
  774. return 0;
  775. }
  776. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  777. {
  778. struct drm_device *dev = ring->dev;
  779. struct drm_i915_private *dev_priv = dev->dev_private;
  780. uint32_t tmp;
  781. /* WaDisablePartialInstShootdown:skl,bxt */
  782. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  783. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  784. /* Syncing dependencies between camera and graphics:skl,bxt */
  785. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  786. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  787. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  788. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  789. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  790. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  791. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  792. GEN9_DG_MIRROR_FIX_ENABLE);
  793. }
  794. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
  795. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  796. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  797. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  798. GEN9_RHWO_OPTIMIZATION_DISABLE);
  799. WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
  800. DISABLE_PIXEL_MASK_CAMMING);
  801. }
  802. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
  803. IS_BROXTON(dev)) {
  804. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  805. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  806. GEN9_ENABLE_YV12_BUGFIX);
  807. }
  808. /* Wa4x4STCOptimizationDisable:skl,bxt */
  809. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  810. /* WaDisablePartialResolveInVc:skl,bxt */
  811. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  812. /* WaCcsTlbPrefetchDisable:skl,bxt */
  813. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  814. GEN9_CCS_TLB_PREFETCH_ENABLE);
  815. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  816. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
  817. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
  818. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  819. PIXEL_MASK_CAMMING_DISABLE);
  820. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  821. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  822. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
  823. (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
  824. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  825. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  826. return 0;
  827. }
  828. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  829. {
  830. struct drm_device *dev = ring->dev;
  831. struct drm_i915_private *dev_priv = dev->dev_private;
  832. u8 vals[3] = { 0, 0, 0 };
  833. unsigned int i;
  834. for (i = 0; i < 3; i++) {
  835. u8 ss;
  836. /*
  837. * Only consider slices where one, and only one, subslice has 7
  838. * EUs
  839. */
  840. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  841. continue;
  842. /*
  843. * subslice_7eu[i] != 0 (because of the check above) and
  844. * ss_max == 4 (maximum number of subslices possible per slice)
  845. *
  846. * -> 0 <= ss <= 3;
  847. */
  848. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  849. vals[i] = 3 - ss;
  850. }
  851. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  852. return 0;
  853. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  854. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  855. GEN9_IZ_HASHING_MASK(2) |
  856. GEN9_IZ_HASHING_MASK(1) |
  857. GEN9_IZ_HASHING_MASK(0),
  858. GEN9_IZ_HASHING(2, vals[2]) |
  859. GEN9_IZ_HASHING(1, vals[1]) |
  860. GEN9_IZ_HASHING(0, vals[0]));
  861. return 0;
  862. }
  863. static int skl_init_workarounds(struct intel_engine_cs *ring)
  864. {
  865. struct drm_device *dev = ring->dev;
  866. struct drm_i915_private *dev_priv = dev->dev_private;
  867. gen9_init_workarounds(ring);
  868. /* WaDisablePowerCompilerClockGating:skl */
  869. if (INTEL_REVID(dev) == SKL_REVID_B0)
  870. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  871. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  872. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  873. /*
  874. *Use Force Non-Coherent whenever executing a 3D context. This
  875. * is a workaround for a possible hang in the unlikely event
  876. * a TLB invalidation occurs during a PSD flush.
  877. */
  878. /* WaForceEnableNonCoherent:skl */
  879. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  880. HDC_FORCE_NON_COHERENT);
  881. }
  882. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  883. INTEL_REVID(dev) == SKL_REVID_D0)
  884. /* WaBarrierPerformanceFixDisable:skl */
  885. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  886. HDC_FENCE_DEST_SLM_DISABLE |
  887. HDC_BARRIER_PERFORMANCE_DISABLE);
  888. return skl_tune_iz_hashing(ring);
  889. }
  890. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  891. {
  892. struct drm_device *dev = ring->dev;
  893. struct drm_i915_private *dev_priv = dev->dev_private;
  894. gen9_init_workarounds(ring);
  895. /* WaDisableThreadStallDopClockGating:bxt */
  896. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  897. STALL_DOP_GATING_DISABLE);
  898. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  899. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  900. WA_SET_BIT_MASKED(
  901. GEN7_HALF_SLICE_CHICKEN1,
  902. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  903. }
  904. return 0;
  905. }
  906. int init_workarounds_ring(struct intel_engine_cs *ring)
  907. {
  908. struct drm_device *dev = ring->dev;
  909. struct drm_i915_private *dev_priv = dev->dev_private;
  910. WARN_ON(ring->id != RCS);
  911. dev_priv->workarounds.count = 0;
  912. if (IS_BROADWELL(dev))
  913. return bdw_init_workarounds(ring);
  914. if (IS_CHERRYVIEW(dev))
  915. return chv_init_workarounds(ring);
  916. if (IS_SKYLAKE(dev))
  917. return skl_init_workarounds(ring);
  918. if (IS_BROXTON(dev))
  919. return bxt_init_workarounds(ring);
  920. return 0;
  921. }
  922. static int init_render_ring(struct intel_engine_cs *ring)
  923. {
  924. struct drm_device *dev = ring->dev;
  925. struct drm_i915_private *dev_priv = dev->dev_private;
  926. int ret = init_ring_common(ring);
  927. if (ret)
  928. return ret;
  929. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  930. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  931. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  932. /* We need to disable the AsyncFlip performance optimisations in order
  933. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  934. * programmed to '1' on all products.
  935. *
  936. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  937. */
  938. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  939. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  940. /* Required for the hardware to program scanline values for waiting */
  941. /* WaEnableFlushTlbInvalidationMode:snb */
  942. if (INTEL_INFO(dev)->gen == 6)
  943. I915_WRITE(GFX_MODE,
  944. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  945. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  946. if (IS_GEN7(dev))
  947. I915_WRITE(GFX_MODE_GEN7,
  948. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  949. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  950. if (IS_GEN6(dev)) {
  951. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  952. * "If this bit is set, STCunit will have LRA as replacement
  953. * policy. [...] This bit must be reset. LRA replacement
  954. * policy is not supported."
  955. */
  956. I915_WRITE(CACHE_MODE_0,
  957. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  958. }
  959. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  960. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  961. if (HAS_L3_DPF(dev))
  962. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  963. return init_workarounds_ring(ring);
  964. }
  965. static void render_ring_cleanup(struct intel_engine_cs *ring)
  966. {
  967. struct drm_device *dev = ring->dev;
  968. struct drm_i915_private *dev_priv = dev->dev_private;
  969. if (dev_priv->semaphore_obj) {
  970. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  971. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  972. dev_priv->semaphore_obj = NULL;
  973. }
  974. intel_fini_pipe_control(ring);
  975. }
  976. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  977. unsigned int num_dwords)
  978. {
  979. #define MBOX_UPDATE_DWORDS 8
  980. struct drm_device *dev = signaller->dev;
  981. struct drm_i915_private *dev_priv = dev->dev_private;
  982. struct intel_engine_cs *waiter;
  983. int i, ret, num_rings;
  984. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  985. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  986. #undef MBOX_UPDATE_DWORDS
  987. ret = intel_ring_begin(signaller, num_dwords);
  988. if (ret)
  989. return ret;
  990. for_each_ring(waiter, dev_priv, i) {
  991. u32 seqno;
  992. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  993. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  994. continue;
  995. seqno = i915_gem_request_get_seqno(
  996. signaller->outstanding_lazy_request);
  997. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  998. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  999. PIPE_CONTROL_QW_WRITE |
  1000. PIPE_CONTROL_FLUSH_ENABLE);
  1001. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1002. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1003. intel_ring_emit(signaller, seqno);
  1004. intel_ring_emit(signaller, 0);
  1005. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1006. MI_SEMAPHORE_TARGET(waiter->id));
  1007. intel_ring_emit(signaller, 0);
  1008. }
  1009. return 0;
  1010. }
  1011. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  1012. unsigned int num_dwords)
  1013. {
  1014. #define MBOX_UPDATE_DWORDS 6
  1015. struct drm_device *dev = signaller->dev;
  1016. struct drm_i915_private *dev_priv = dev->dev_private;
  1017. struct intel_engine_cs *waiter;
  1018. int i, ret, num_rings;
  1019. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1020. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1021. #undef MBOX_UPDATE_DWORDS
  1022. ret = intel_ring_begin(signaller, num_dwords);
  1023. if (ret)
  1024. return ret;
  1025. for_each_ring(waiter, dev_priv, i) {
  1026. u32 seqno;
  1027. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1028. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1029. continue;
  1030. seqno = i915_gem_request_get_seqno(
  1031. signaller->outstanding_lazy_request);
  1032. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1033. MI_FLUSH_DW_OP_STOREDW);
  1034. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1035. MI_FLUSH_DW_USE_GTT);
  1036. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1037. intel_ring_emit(signaller, seqno);
  1038. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1039. MI_SEMAPHORE_TARGET(waiter->id));
  1040. intel_ring_emit(signaller, 0);
  1041. }
  1042. return 0;
  1043. }
  1044. static int gen6_signal(struct intel_engine_cs *signaller,
  1045. unsigned int num_dwords)
  1046. {
  1047. struct drm_device *dev = signaller->dev;
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. struct intel_engine_cs *useless;
  1050. int i, ret, num_rings;
  1051. #define MBOX_UPDATE_DWORDS 3
  1052. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1053. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1054. #undef MBOX_UPDATE_DWORDS
  1055. ret = intel_ring_begin(signaller, num_dwords);
  1056. if (ret)
  1057. return ret;
  1058. for_each_ring(useless, dev_priv, i) {
  1059. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1060. if (mbox_reg != GEN6_NOSYNC) {
  1061. u32 seqno = i915_gem_request_get_seqno(
  1062. signaller->outstanding_lazy_request);
  1063. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1064. intel_ring_emit(signaller, mbox_reg);
  1065. intel_ring_emit(signaller, seqno);
  1066. }
  1067. }
  1068. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1069. if (num_rings % 2 == 0)
  1070. intel_ring_emit(signaller, MI_NOOP);
  1071. return 0;
  1072. }
  1073. /**
  1074. * gen6_add_request - Update the semaphore mailbox registers
  1075. *
  1076. * @request - request to write to the ring
  1077. *
  1078. * Update the mailbox registers in the *other* rings with the current seqno.
  1079. * This acts like a signal in the canonical semaphore.
  1080. */
  1081. static int
  1082. gen6_add_request(struct drm_i915_gem_request *req)
  1083. {
  1084. struct intel_engine_cs *ring = req->ring;
  1085. int ret;
  1086. if (ring->semaphore.signal)
  1087. ret = ring->semaphore.signal(ring, 4);
  1088. else
  1089. ret = intel_ring_begin(ring, 4);
  1090. if (ret)
  1091. return ret;
  1092. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1093. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1094. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1095. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1096. __intel_ring_advance(ring);
  1097. return 0;
  1098. }
  1099. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1100. u32 seqno)
  1101. {
  1102. struct drm_i915_private *dev_priv = dev->dev_private;
  1103. return dev_priv->last_seqno < seqno;
  1104. }
  1105. /**
  1106. * intel_ring_sync - sync the waiter to the signaller on seqno
  1107. *
  1108. * @waiter - ring that is waiting
  1109. * @signaller - ring which has, or will signal
  1110. * @seqno - seqno which the waiter will block on
  1111. */
  1112. static int
  1113. gen8_ring_sync(struct intel_engine_cs *waiter,
  1114. struct intel_engine_cs *signaller,
  1115. u32 seqno)
  1116. {
  1117. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1118. int ret;
  1119. ret = intel_ring_begin(waiter, 4);
  1120. if (ret)
  1121. return ret;
  1122. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1123. MI_SEMAPHORE_GLOBAL_GTT |
  1124. MI_SEMAPHORE_POLL |
  1125. MI_SEMAPHORE_SAD_GTE_SDD);
  1126. intel_ring_emit(waiter, seqno);
  1127. intel_ring_emit(waiter,
  1128. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1129. intel_ring_emit(waiter,
  1130. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1131. intel_ring_advance(waiter);
  1132. return 0;
  1133. }
  1134. static int
  1135. gen6_ring_sync(struct intel_engine_cs *waiter,
  1136. struct intel_engine_cs *signaller,
  1137. u32 seqno)
  1138. {
  1139. u32 dw1 = MI_SEMAPHORE_MBOX |
  1140. MI_SEMAPHORE_COMPARE |
  1141. MI_SEMAPHORE_REGISTER;
  1142. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1143. int ret;
  1144. /* Throughout all of the GEM code, seqno passed implies our current
  1145. * seqno is >= the last seqno executed. However for hardware the
  1146. * comparison is strictly greater than.
  1147. */
  1148. seqno -= 1;
  1149. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1150. ret = intel_ring_begin(waiter, 4);
  1151. if (ret)
  1152. return ret;
  1153. /* If seqno wrap happened, omit the wait with no-ops */
  1154. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1155. intel_ring_emit(waiter, dw1 | wait_mbox);
  1156. intel_ring_emit(waiter, seqno);
  1157. intel_ring_emit(waiter, 0);
  1158. intel_ring_emit(waiter, MI_NOOP);
  1159. } else {
  1160. intel_ring_emit(waiter, MI_NOOP);
  1161. intel_ring_emit(waiter, MI_NOOP);
  1162. intel_ring_emit(waiter, MI_NOOP);
  1163. intel_ring_emit(waiter, MI_NOOP);
  1164. }
  1165. intel_ring_advance(waiter);
  1166. return 0;
  1167. }
  1168. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1169. do { \
  1170. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1171. PIPE_CONTROL_DEPTH_STALL); \
  1172. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1173. intel_ring_emit(ring__, 0); \
  1174. intel_ring_emit(ring__, 0); \
  1175. } while (0)
  1176. static int
  1177. pc_render_add_request(struct drm_i915_gem_request *req)
  1178. {
  1179. struct intel_engine_cs *ring = req->ring;
  1180. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1181. int ret;
  1182. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1183. * incoherent with writes to memory, i.e. completely fubar,
  1184. * so we need to use PIPE_NOTIFY instead.
  1185. *
  1186. * However, we also need to workaround the qword write
  1187. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1188. * memory before requesting an interrupt.
  1189. */
  1190. ret = intel_ring_begin(ring, 32);
  1191. if (ret)
  1192. return ret;
  1193. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1194. PIPE_CONTROL_WRITE_FLUSH |
  1195. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1196. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1197. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1198. intel_ring_emit(ring, 0);
  1199. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1200. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1201. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1202. scratch_addr += 2 * CACHELINE_BYTES;
  1203. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1204. scratch_addr += 2 * CACHELINE_BYTES;
  1205. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1206. scratch_addr += 2 * CACHELINE_BYTES;
  1207. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1208. scratch_addr += 2 * CACHELINE_BYTES;
  1209. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1210. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1211. PIPE_CONTROL_WRITE_FLUSH |
  1212. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1213. PIPE_CONTROL_NOTIFY);
  1214. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1215. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1216. intel_ring_emit(ring, 0);
  1217. __intel_ring_advance(ring);
  1218. return 0;
  1219. }
  1220. static u32
  1221. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1222. {
  1223. /* Workaround to force correct ordering between irq and seqno writes on
  1224. * ivb (and maybe also on snb) by reading from a CS register (like
  1225. * ACTHD) before reading the status page. */
  1226. if (!lazy_coherency) {
  1227. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1228. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1229. }
  1230. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1231. }
  1232. static u32
  1233. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1234. {
  1235. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1236. }
  1237. static void
  1238. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1239. {
  1240. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1241. }
  1242. static u32
  1243. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1244. {
  1245. return ring->scratch.cpu_page[0];
  1246. }
  1247. static void
  1248. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1249. {
  1250. ring->scratch.cpu_page[0] = seqno;
  1251. }
  1252. static bool
  1253. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1254. {
  1255. struct drm_device *dev = ring->dev;
  1256. struct drm_i915_private *dev_priv = dev->dev_private;
  1257. unsigned long flags;
  1258. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1259. return false;
  1260. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1261. if (ring->irq_refcount++ == 0)
  1262. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1263. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1264. return true;
  1265. }
  1266. static void
  1267. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1268. {
  1269. struct drm_device *dev = ring->dev;
  1270. struct drm_i915_private *dev_priv = dev->dev_private;
  1271. unsigned long flags;
  1272. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1273. if (--ring->irq_refcount == 0)
  1274. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1275. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1276. }
  1277. static bool
  1278. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1279. {
  1280. struct drm_device *dev = ring->dev;
  1281. struct drm_i915_private *dev_priv = dev->dev_private;
  1282. unsigned long flags;
  1283. if (!intel_irqs_enabled(dev_priv))
  1284. return false;
  1285. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1286. if (ring->irq_refcount++ == 0) {
  1287. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1288. I915_WRITE(IMR, dev_priv->irq_mask);
  1289. POSTING_READ(IMR);
  1290. }
  1291. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1292. return true;
  1293. }
  1294. static void
  1295. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1296. {
  1297. struct drm_device *dev = ring->dev;
  1298. struct drm_i915_private *dev_priv = dev->dev_private;
  1299. unsigned long flags;
  1300. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1301. if (--ring->irq_refcount == 0) {
  1302. dev_priv->irq_mask |= ring->irq_enable_mask;
  1303. I915_WRITE(IMR, dev_priv->irq_mask);
  1304. POSTING_READ(IMR);
  1305. }
  1306. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1307. }
  1308. static bool
  1309. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1310. {
  1311. struct drm_device *dev = ring->dev;
  1312. struct drm_i915_private *dev_priv = dev->dev_private;
  1313. unsigned long flags;
  1314. if (!intel_irqs_enabled(dev_priv))
  1315. return false;
  1316. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1317. if (ring->irq_refcount++ == 0) {
  1318. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1319. I915_WRITE16(IMR, dev_priv->irq_mask);
  1320. POSTING_READ16(IMR);
  1321. }
  1322. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1323. return true;
  1324. }
  1325. static void
  1326. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1327. {
  1328. struct drm_device *dev = ring->dev;
  1329. struct drm_i915_private *dev_priv = dev->dev_private;
  1330. unsigned long flags;
  1331. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1332. if (--ring->irq_refcount == 0) {
  1333. dev_priv->irq_mask |= ring->irq_enable_mask;
  1334. I915_WRITE16(IMR, dev_priv->irq_mask);
  1335. POSTING_READ16(IMR);
  1336. }
  1337. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1338. }
  1339. static int
  1340. bsd_ring_flush(struct drm_i915_gem_request *req,
  1341. u32 invalidate_domains,
  1342. u32 flush_domains)
  1343. {
  1344. struct intel_engine_cs *ring = req->ring;
  1345. int ret;
  1346. ret = intel_ring_begin(ring, 2);
  1347. if (ret)
  1348. return ret;
  1349. intel_ring_emit(ring, MI_FLUSH);
  1350. intel_ring_emit(ring, MI_NOOP);
  1351. intel_ring_advance(ring);
  1352. return 0;
  1353. }
  1354. static int
  1355. i9xx_add_request(struct drm_i915_gem_request *req)
  1356. {
  1357. struct intel_engine_cs *ring = req->ring;
  1358. int ret;
  1359. ret = intel_ring_begin(ring, 4);
  1360. if (ret)
  1361. return ret;
  1362. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1363. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1364. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1365. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1366. __intel_ring_advance(ring);
  1367. return 0;
  1368. }
  1369. static bool
  1370. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1371. {
  1372. struct drm_device *dev = ring->dev;
  1373. struct drm_i915_private *dev_priv = dev->dev_private;
  1374. unsigned long flags;
  1375. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1376. return false;
  1377. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1378. if (ring->irq_refcount++ == 0) {
  1379. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1380. I915_WRITE_IMR(ring,
  1381. ~(ring->irq_enable_mask |
  1382. GT_PARITY_ERROR(dev)));
  1383. else
  1384. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1385. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1386. }
  1387. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1388. return true;
  1389. }
  1390. static void
  1391. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1392. {
  1393. struct drm_device *dev = ring->dev;
  1394. struct drm_i915_private *dev_priv = dev->dev_private;
  1395. unsigned long flags;
  1396. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1397. if (--ring->irq_refcount == 0) {
  1398. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1399. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1400. else
  1401. I915_WRITE_IMR(ring, ~0);
  1402. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1403. }
  1404. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1405. }
  1406. static bool
  1407. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1408. {
  1409. struct drm_device *dev = ring->dev;
  1410. struct drm_i915_private *dev_priv = dev->dev_private;
  1411. unsigned long flags;
  1412. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1413. return false;
  1414. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1415. if (ring->irq_refcount++ == 0) {
  1416. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1417. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1418. }
  1419. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1420. return true;
  1421. }
  1422. static void
  1423. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1424. {
  1425. struct drm_device *dev = ring->dev;
  1426. struct drm_i915_private *dev_priv = dev->dev_private;
  1427. unsigned long flags;
  1428. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1429. if (--ring->irq_refcount == 0) {
  1430. I915_WRITE_IMR(ring, ~0);
  1431. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1432. }
  1433. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1434. }
  1435. static bool
  1436. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1437. {
  1438. struct drm_device *dev = ring->dev;
  1439. struct drm_i915_private *dev_priv = dev->dev_private;
  1440. unsigned long flags;
  1441. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1442. return false;
  1443. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1444. if (ring->irq_refcount++ == 0) {
  1445. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1446. I915_WRITE_IMR(ring,
  1447. ~(ring->irq_enable_mask |
  1448. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1449. } else {
  1450. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1451. }
  1452. POSTING_READ(RING_IMR(ring->mmio_base));
  1453. }
  1454. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1455. return true;
  1456. }
  1457. static void
  1458. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1459. {
  1460. struct drm_device *dev = ring->dev;
  1461. struct drm_i915_private *dev_priv = dev->dev_private;
  1462. unsigned long flags;
  1463. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1464. if (--ring->irq_refcount == 0) {
  1465. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1466. I915_WRITE_IMR(ring,
  1467. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1468. } else {
  1469. I915_WRITE_IMR(ring, ~0);
  1470. }
  1471. POSTING_READ(RING_IMR(ring->mmio_base));
  1472. }
  1473. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1474. }
  1475. static int
  1476. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1477. u64 offset, u32 length,
  1478. unsigned dispatch_flags)
  1479. {
  1480. int ret;
  1481. ret = intel_ring_begin(ring, 2);
  1482. if (ret)
  1483. return ret;
  1484. intel_ring_emit(ring,
  1485. MI_BATCH_BUFFER_START |
  1486. MI_BATCH_GTT |
  1487. (dispatch_flags & I915_DISPATCH_SECURE ?
  1488. 0 : MI_BATCH_NON_SECURE_I965));
  1489. intel_ring_emit(ring, offset);
  1490. intel_ring_advance(ring);
  1491. return 0;
  1492. }
  1493. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1494. #define I830_BATCH_LIMIT (256*1024)
  1495. #define I830_TLB_ENTRIES (2)
  1496. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1497. static int
  1498. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1499. u64 offset, u32 len,
  1500. unsigned dispatch_flags)
  1501. {
  1502. u32 cs_offset = ring->scratch.gtt_offset;
  1503. int ret;
  1504. ret = intel_ring_begin(ring, 6);
  1505. if (ret)
  1506. return ret;
  1507. /* Evict the invalid PTE TLBs */
  1508. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1509. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1510. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1511. intel_ring_emit(ring, cs_offset);
  1512. intel_ring_emit(ring, 0xdeadbeef);
  1513. intel_ring_emit(ring, MI_NOOP);
  1514. intel_ring_advance(ring);
  1515. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1516. if (len > I830_BATCH_LIMIT)
  1517. return -ENOSPC;
  1518. ret = intel_ring_begin(ring, 6 + 2);
  1519. if (ret)
  1520. return ret;
  1521. /* Blit the batch (which has now all relocs applied) to the
  1522. * stable batch scratch bo area (so that the CS never
  1523. * stumbles over its tlb invalidation bug) ...
  1524. */
  1525. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1526. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1527. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1528. intel_ring_emit(ring, cs_offset);
  1529. intel_ring_emit(ring, 4096);
  1530. intel_ring_emit(ring, offset);
  1531. intel_ring_emit(ring, MI_FLUSH);
  1532. intel_ring_emit(ring, MI_NOOP);
  1533. intel_ring_advance(ring);
  1534. /* ... and execute it. */
  1535. offset = cs_offset;
  1536. }
  1537. ret = intel_ring_begin(ring, 4);
  1538. if (ret)
  1539. return ret;
  1540. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1541. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1542. 0 : MI_BATCH_NON_SECURE));
  1543. intel_ring_emit(ring, offset + len - 8);
  1544. intel_ring_emit(ring, MI_NOOP);
  1545. intel_ring_advance(ring);
  1546. return 0;
  1547. }
  1548. static int
  1549. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1550. u64 offset, u32 len,
  1551. unsigned dispatch_flags)
  1552. {
  1553. int ret;
  1554. ret = intel_ring_begin(ring, 2);
  1555. if (ret)
  1556. return ret;
  1557. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1558. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1559. 0 : MI_BATCH_NON_SECURE));
  1560. intel_ring_advance(ring);
  1561. return 0;
  1562. }
  1563. static void cleanup_status_page(struct intel_engine_cs *ring)
  1564. {
  1565. struct drm_i915_gem_object *obj;
  1566. obj = ring->status_page.obj;
  1567. if (obj == NULL)
  1568. return;
  1569. kunmap(sg_page(obj->pages->sgl));
  1570. i915_gem_object_ggtt_unpin(obj);
  1571. drm_gem_object_unreference(&obj->base);
  1572. ring->status_page.obj = NULL;
  1573. }
  1574. static int init_status_page(struct intel_engine_cs *ring)
  1575. {
  1576. struct drm_i915_gem_object *obj;
  1577. if ((obj = ring->status_page.obj) == NULL) {
  1578. unsigned flags;
  1579. int ret;
  1580. obj = i915_gem_alloc_object(ring->dev, 4096);
  1581. if (obj == NULL) {
  1582. DRM_ERROR("Failed to allocate status page\n");
  1583. return -ENOMEM;
  1584. }
  1585. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1586. if (ret)
  1587. goto err_unref;
  1588. flags = 0;
  1589. if (!HAS_LLC(ring->dev))
  1590. /* On g33, we cannot place HWS above 256MiB, so
  1591. * restrict its pinning to the low mappable arena.
  1592. * Though this restriction is not documented for
  1593. * gen4, gen5, or byt, they also behave similarly
  1594. * and hang if the HWS is placed at the top of the
  1595. * GTT. To generalise, it appears that all !llc
  1596. * platforms have issues with us placing the HWS
  1597. * above the mappable region (even though we never
  1598. * actualy map it).
  1599. */
  1600. flags |= PIN_MAPPABLE;
  1601. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1602. if (ret) {
  1603. err_unref:
  1604. drm_gem_object_unreference(&obj->base);
  1605. return ret;
  1606. }
  1607. ring->status_page.obj = obj;
  1608. }
  1609. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1610. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1611. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1612. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1613. ring->name, ring->status_page.gfx_addr);
  1614. return 0;
  1615. }
  1616. static int init_phys_status_page(struct intel_engine_cs *ring)
  1617. {
  1618. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1619. if (!dev_priv->status_page_dmah) {
  1620. dev_priv->status_page_dmah =
  1621. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1622. if (!dev_priv->status_page_dmah)
  1623. return -ENOMEM;
  1624. }
  1625. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1626. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1627. return 0;
  1628. }
  1629. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1630. {
  1631. iounmap(ringbuf->virtual_start);
  1632. ringbuf->virtual_start = NULL;
  1633. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1634. }
  1635. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1636. struct intel_ringbuffer *ringbuf)
  1637. {
  1638. struct drm_i915_private *dev_priv = to_i915(dev);
  1639. struct drm_i915_gem_object *obj = ringbuf->obj;
  1640. int ret;
  1641. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1642. if (ret)
  1643. return ret;
  1644. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1645. if (ret) {
  1646. i915_gem_object_ggtt_unpin(obj);
  1647. return ret;
  1648. }
  1649. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1650. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1651. if (ringbuf->virtual_start == NULL) {
  1652. i915_gem_object_ggtt_unpin(obj);
  1653. return -EINVAL;
  1654. }
  1655. return 0;
  1656. }
  1657. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1658. {
  1659. drm_gem_object_unreference(&ringbuf->obj->base);
  1660. ringbuf->obj = NULL;
  1661. }
  1662. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1663. struct intel_ringbuffer *ringbuf)
  1664. {
  1665. struct drm_i915_gem_object *obj;
  1666. obj = NULL;
  1667. if (!HAS_LLC(dev))
  1668. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1669. if (obj == NULL)
  1670. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1671. if (obj == NULL)
  1672. return -ENOMEM;
  1673. /* mark ring buffers as read-only from GPU side by default */
  1674. obj->gt_ro = 1;
  1675. ringbuf->obj = obj;
  1676. return 0;
  1677. }
  1678. static int intel_init_ring_buffer(struct drm_device *dev,
  1679. struct intel_engine_cs *ring)
  1680. {
  1681. struct intel_ringbuffer *ringbuf;
  1682. int ret;
  1683. WARN_ON(ring->buffer);
  1684. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1685. if (!ringbuf)
  1686. return -ENOMEM;
  1687. ring->buffer = ringbuf;
  1688. ring->dev = dev;
  1689. INIT_LIST_HEAD(&ring->active_list);
  1690. INIT_LIST_HEAD(&ring->request_list);
  1691. INIT_LIST_HEAD(&ring->execlist_queue);
  1692. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1693. ringbuf->size = 32 * PAGE_SIZE;
  1694. ringbuf->ring = ring;
  1695. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1696. init_waitqueue_head(&ring->irq_queue);
  1697. if (I915_NEED_GFX_HWS(dev)) {
  1698. ret = init_status_page(ring);
  1699. if (ret)
  1700. goto error;
  1701. } else {
  1702. BUG_ON(ring->id != RCS);
  1703. ret = init_phys_status_page(ring);
  1704. if (ret)
  1705. goto error;
  1706. }
  1707. WARN_ON(ringbuf->obj);
  1708. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1709. if (ret) {
  1710. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1711. ring->name, ret);
  1712. goto error;
  1713. }
  1714. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1715. if (ret) {
  1716. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1717. ring->name, ret);
  1718. intel_destroy_ringbuffer_obj(ringbuf);
  1719. goto error;
  1720. }
  1721. /* Workaround an erratum on the i830 which causes a hang if
  1722. * the TAIL pointer points to within the last 2 cachelines
  1723. * of the buffer.
  1724. */
  1725. ringbuf->effective_size = ringbuf->size;
  1726. if (IS_I830(dev) || IS_845G(dev))
  1727. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1728. ret = i915_cmd_parser_init_ring(ring);
  1729. if (ret)
  1730. goto error;
  1731. return 0;
  1732. error:
  1733. kfree(ringbuf);
  1734. ring->buffer = NULL;
  1735. return ret;
  1736. }
  1737. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1738. {
  1739. struct drm_i915_private *dev_priv;
  1740. struct intel_ringbuffer *ringbuf;
  1741. if (!intel_ring_initialized(ring))
  1742. return;
  1743. dev_priv = to_i915(ring->dev);
  1744. ringbuf = ring->buffer;
  1745. intel_stop_ring_buffer(ring);
  1746. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1747. intel_unpin_ringbuffer_obj(ringbuf);
  1748. intel_destroy_ringbuffer_obj(ringbuf);
  1749. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1750. if (ring->cleanup)
  1751. ring->cleanup(ring);
  1752. cleanup_status_page(ring);
  1753. i915_cmd_parser_fini_ring(ring);
  1754. i915_gem_batch_pool_fini(&ring->batch_pool);
  1755. kfree(ringbuf);
  1756. ring->buffer = NULL;
  1757. }
  1758. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1759. {
  1760. struct intel_ringbuffer *ringbuf = ring->buffer;
  1761. struct drm_i915_gem_request *request;
  1762. unsigned space;
  1763. int ret;
  1764. /* The whole point of reserving space is to not wait! */
  1765. WARN_ON(ringbuf->reserved_in_use);
  1766. if (intel_ring_space(ringbuf) >= n)
  1767. return 0;
  1768. list_for_each_entry(request, &ring->request_list, list) {
  1769. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1770. ringbuf->size);
  1771. if (space >= n)
  1772. break;
  1773. }
  1774. if (WARN_ON(&request->list == &ring->request_list))
  1775. return -ENOSPC;
  1776. ret = i915_wait_request(request);
  1777. if (ret)
  1778. return ret;
  1779. ringbuf->space = space;
  1780. return 0;
  1781. }
  1782. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1783. {
  1784. uint32_t __iomem *virt;
  1785. struct intel_ringbuffer *ringbuf = ring->buffer;
  1786. int rem = ringbuf->size - ringbuf->tail;
  1787. /* Can't wrap if space has already been reserved! */
  1788. WARN_ON(ringbuf->reserved_in_use);
  1789. if (ringbuf->space < rem) {
  1790. int ret = ring_wait_for_space(ring, rem);
  1791. if (ret)
  1792. return ret;
  1793. }
  1794. virt = ringbuf->virtual_start + ringbuf->tail;
  1795. rem /= 4;
  1796. while (rem--)
  1797. iowrite32(MI_NOOP, virt++);
  1798. ringbuf->tail = 0;
  1799. intel_ring_update_space(ringbuf);
  1800. return 0;
  1801. }
  1802. int intel_ring_idle(struct intel_engine_cs *ring)
  1803. {
  1804. struct drm_i915_gem_request *req;
  1805. /* We need to add any requests required to flush the objects and ring */
  1806. WARN_ON(ring->outstanding_lazy_request);
  1807. if (ring->outstanding_lazy_request)
  1808. i915_add_request(ring->outstanding_lazy_request);
  1809. /* Wait upon the last request to be completed */
  1810. if (list_empty(&ring->request_list))
  1811. return 0;
  1812. req = list_entry(ring->request_list.prev,
  1813. struct drm_i915_gem_request,
  1814. list);
  1815. /* Make sure we do not trigger any retires */
  1816. return __i915_wait_request(req,
  1817. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1818. to_i915(ring->dev)->mm.interruptible,
  1819. NULL, NULL);
  1820. }
  1821. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1822. {
  1823. request->ringbuf = request->ring->buffer;
  1824. return 0;
  1825. }
  1826. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1827. {
  1828. /* NB: Until request management is fully tidied up and the OLR is
  1829. * removed, there are too many ways for get false hits on this
  1830. * anti-recursion check! */
  1831. /*WARN_ON(ringbuf->reserved_size);*/
  1832. WARN_ON(ringbuf->reserved_in_use);
  1833. ringbuf->reserved_size = size;
  1834. /*
  1835. * Really need to call _begin() here but that currently leads to
  1836. * recursion problems! This will be fixed later but for now just
  1837. * return and hope for the best. Note that there is only a real
  1838. * problem if the create of the request never actually calls _begin()
  1839. * but if they are not submitting any work then why did they create
  1840. * the request in the first place?
  1841. */
  1842. }
  1843. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1844. {
  1845. WARN_ON(ringbuf->reserved_in_use);
  1846. ringbuf->reserved_size = 0;
  1847. ringbuf->reserved_in_use = false;
  1848. }
  1849. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1850. {
  1851. WARN_ON(ringbuf->reserved_in_use);
  1852. ringbuf->reserved_in_use = true;
  1853. ringbuf->reserved_tail = ringbuf->tail;
  1854. }
  1855. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1856. {
  1857. WARN_ON(!ringbuf->reserved_in_use);
  1858. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1859. "request reserved size too small: %d vs %d!\n",
  1860. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1861. ringbuf->reserved_size = 0;
  1862. ringbuf->reserved_in_use = false;
  1863. }
  1864. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1865. {
  1866. struct intel_ringbuffer *ringbuf = ring->buffer;
  1867. int ret;
  1868. /*
  1869. * Add on the reserved size to the request to make sure that after
  1870. * the intended commands have been emitted, there is guaranteed to
  1871. * still be enough free space to send them to the hardware.
  1872. */
  1873. if (!ringbuf->reserved_in_use)
  1874. bytes += ringbuf->reserved_size;
  1875. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1876. ret = intel_wrap_ring_buffer(ring);
  1877. if (unlikely(ret))
  1878. return ret;
  1879. if(ringbuf->reserved_size) {
  1880. uint32_t size = ringbuf->reserved_size;
  1881. intel_ring_reserved_space_cancel(ringbuf);
  1882. intel_ring_reserved_space_reserve(ringbuf, size);
  1883. }
  1884. }
  1885. if (unlikely(ringbuf->space < bytes)) {
  1886. ret = ring_wait_for_space(ring, bytes);
  1887. if (unlikely(ret))
  1888. return ret;
  1889. }
  1890. return 0;
  1891. }
  1892. int intel_ring_begin(struct intel_engine_cs *ring,
  1893. int num_dwords)
  1894. {
  1895. struct drm_i915_gem_request *req;
  1896. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1897. int ret;
  1898. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1899. dev_priv->mm.interruptible);
  1900. if (ret)
  1901. return ret;
  1902. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1903. if (ret)
  1904. return ret;
  1905. /* Preallocate the olr before touching the ring */
  1906. ret = i915_gem_request_alloc(ring, ring->default_context, &req);
  1907. if (ret)
  1908. return ret;
  1909. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1910. return 0;
  1911. }
  1912. /* Align the ring tail to a cacheline boundary */
  1913. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1914. {
  1915. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1916. int ret;
  1917. if (num_dwords == 0)
  1918. return 0;
  1919. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1920. ret = intel_ring_begin(ring, num_dwords);
  1921. if (ret)
  1922. return ret;
  1923. while (num_dwords--)
  1924. intel_ring_emit(ring, MI_NOOP);
  1925. intel_ring_advance(ring);
  1926. return 0;
  1927. }
  1928. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1929. {
  1930. struct drm_device *dev = ring->dev;
  1931. struct drm_i915_private *dev_priv = dev->dev_private;
  1932. BUG_ON(ring->outstanding_lazy_request);
  1933. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1934. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1935. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1936. if (HAS_VEBOX(dev))
  1937. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1938. }
  1939. ring->set_seqno(ring, seqno);
  1940. ring->hangcheck.seqno = seqno;
  1941. }
  1942. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1943. u32 value)
  1944. {
  1945. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1946. /* Every tail move must follow the sequence below */
  1947. /* Disable notification that the ring is IDLE. The GT
  1948. * will then assume that it is busy and bring it out of rc6.
  1949. */
  1950. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1951. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1952. /* Clear the context id. Here be magic! */
  1953. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1954. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1955. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1956. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1957. 50))
  1958. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1959. /* Now that the ring is fully powered up, update the tail */
  1960. I915_WRITE_TAIL(ring, value);
  1961. POSTING_READ(RING_TAIL(ring->mmio_base));
  1962. /* Let the ring send IDLE messages to the GT again,
  1963. * and so let it sleep to conserve power when idle.
  1964. */
  1965. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1966. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1967. }
  1968. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  1969. u32 invalidate, u32 flush)
  1970. {
  1971. struct intel_engine_cs *ring = req->ring;
  1972. uint32_t cmd;
  1973. int ret;
  1974. ret = intel_ring_begin(ring, 4);
  1975. if (ret)
  1976. return ret;
  1977. cmd = MI_FLUSH_DW;
  1978. if (INTEL_INFO(ring->dev)->gen >= 8)
  1979. cmd += 1;
  1980. /* We always require a command barrier so that subsequent
  1981. * commands, such as breadcrumb interrupts, are strictly ordered
  1982. * wrt the contents of the write cache being flushed to memory
  1983. * (and thus being coherent from the CPU).
  1984. */
  1985. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1986. /*
  1987. * Bspec vol 1c.5 - video engine command streamer:
  1988. * "If ENABLED, all TLBs will be invalidated once the flush
  1989. * operation is complete. This bit is only valid when the
  1990. * Post-Sync Operation field is a value of 1h or 3h."
  1991. */
  1992. if (invalidate & I915_GEM_GPU_DOMAINS)
  1993. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1994. intel_ring_emit(ring, cmd);
  1995. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1996. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1997. intel_ring_emit(ring, 0); /* upper addr */
  1998. intel_ring_emit(ring, 0); /* value */
  1999. } else {
  2000. intel_ring_emit(ring, 0);
  2001. intel_ring_emit(ring, MI_NOOP);
  2002. }
  2003. intel_ring_advance(ring);
  2004. return 0;
  2005. }
  2006. static int
  2007. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  2008. u64 offset, u32 len,
  2009. unsigned dispatch_flags)
  2010. {
  2011. bool ppgtt = USES_PPGTT(ring->dev) &&
  2012. !(dispatch_flags & I915_DISPATCH_SECURE);
  2013. int ret;
  2014. ret = intel_ring_begin(ring, 4);
  2015. if (ret)
  2016. return ret;
  2017. /* FIXME(BDW): Address space and security selectors. */
  2018. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  2019. intel_ring_emit(ring, lower_32_bits(offset));
  2020. intel_ring_emit(ring, upper_32_bits(offset));
  2021. intel_ring_emit(ring, MI_NOOP);
  2022. intel_ring_advance(ring);
  2023. return 0;
  2024. }
  2025. static int
  2026. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  2027. u64 offset, u32 len,
  2028. unsigned dispatch_flags)
  2029. {
  2030. int ret;
  2031. ret = intel_ring_begin(ring, 2);
  2032. if (ret)
  2033. return ret;
  2034. intel_ring_emit(ring,
  2035. MI_BATCH_BUFFER_START |
  2036. (dispatch_flags & I915_DISPATCH_SECURE ?
  2037. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  2038. /* bit0-7 is the length on GEN6+ */
  2039. intel_ring_emit(ring, offset);
  2040. intel_ring_advance(ring);
  2041. return 0;
  2042. }
  2043. static int
  2044. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  2045. u64 offset, u32 len,
  2046. unsigned dispatch_flags)
  2047. {
  2048. int ret;
  2049. ret = intel_ring_begin(ring, 2);
  2050. if (ret)
  2051. return ret;
  2052. intel_ring_emit(ring,
  2053. MI_BATCH_BUFFER_START |
  2054. (dispatch_flags & I915_DISPATCH_SECURE ?
  2055. 0 : MI_BATCH_NON_SECURE_I965));
  2056. /* bit0-7 is the length on GEN6+ */
  2057. intel_ring_emit(ring, offset);
  2058. intel_ring_advance(ring);
  2059. return 0;
  2060. }
  2061. /* Blitter support (SandyBridge+) */
  2062. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2063. u32 invalidate, u32 flush)
  2064. {
  2065. struct intel_engine_cs *ring = req->ring;
  2066. struct drm_device *dev = ring->dev;
  2067. uint32_t cmd;
  2068. int ret;
  2069. ret = intel_ring_begin(ring, 4);
  2070. if (ret)
  2071. return ret;
  2072. cmd = MI_FLUSH_DW;
  2073. if (INTEL_INFO(dev)->gen >= 8)
  2074. cmd += 1;
  2075. /* We always require a command barrier so that subsequent
  2076. * commands, such as breadcrumb interrupts, are strictly ordered
  2077. * wrt the contents of the write cache being flushed to memory
  2078. * (and thus being coherent from the CPU).
  2079. */
  2080. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2081. /*
  2082. * Bspec vol 1c.3 - blitter engine command streamer:
  2083. * "If ENABLED, all TLBs will be invalidated once the flush
  2084. * operation is complete. This bit is only valid when the
  2085. * Post-Sync Operation field is a value of 1h or 3h."
  2086. */
  2087. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2088. cmd |= MI_INVALIDATE_TLB;
  2089. intel_ring_emit(ring, cmd);
  2090. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2091. if (INTEL_INFO(dev)->gen >= 8) {
  2092. intel_ring_emit(ring, 0); /* upper addr */
  2093. intel_ring_emit(ring, 0); /* value */
  2094. } else {
  2095. intel_ring_emit(ring, 0);
  2096. intel_ring_emit(ring, MI_NOOP);
  2097. }
  2098. intel_ring_advance(ring);
  2099. return 0;
  2100. }
  2101. int intel_init_render_ring_buffer(struct drm_device *dev)
  2102. {
  2103. struct drm_i915_private *dev_priv = dev->dev_private;
  2104. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2105. struct drm_i915_gem_object *obj;
  2106. int ret;
  2107. ring->name = "render ring";
  2108. ring->id = RCS;
  2109. ring->mmio_base = RENDER_RING_BASE;
  2110. if (INTEL_INFO(dev)->gen >= 8) {
  2111. if (i915_semaphore_is_enabled(dev)) {
  2112. obj = i915_gem_alloc_object(dev, 4096);
  2113. if (obj == NULL) {
  2114. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2115. i915.semaphores = 0;
  2116. } else {
  2117. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2118. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2119. if (ret != 0) {
  2120. drm_gem_object_unreference(&obj->base);
  2121. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2122. i915.semaphores = 0;
  2123. } else
  2124. dev_priv->semaphore_obj = obj;
  2125. }
  2126. }
  2127. ring->init_context = intel_rcs_ctx_init;
  2128. ring->add_request = gen6_add_request;
  2129. ring->flush = gen8_render_ring_flush;
  2130. ring->irq_get = gen8_ring_get_irq;
  2131. ring->irq_put = gen8_ring_put_irq;
  2132. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2133. ring->get_seqno = gen6_ring_get_seqno;
  2134. ring->set_seqno = ring_set_seqno;
  2135. if (i915_semaphore_is_enabled(dev)) {
  2136. WARN_ON(!dev_priv->semaphore_obj);
  2137. ring->semaphore.sync_to = gen8_ring_sync;
  2138. ring->semaphore.signal = gen8_rcs_signal;
  2139. GEN8_RING_SEMAPHORE_INIT;
  2140. }
  2141. } else if (INTEL_INFO(dev)->gen >= 6) {
  2142. ring->add_request = gen6_add_request;
  2143. ring->flush = gen7_render_ring_flush;
  2144. if (INTEL_INFO(dev)->gen == 6)
  2145. ring->flush = gen6_render_ring_flush;
  2146. ring->irq_get = gen6_ring_get_irq;
  2147. ring->irq_put = gen6_ring_put_irq;
  2148. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2149. ring->get_seqno = gen6_ring_get_seqno;
  2150. ring->set_seqno = ring_set_seqno;
  2151. if (i915_semaphore_is_enabled(dev)) {
  2152. ring->semaphore.sync_to = gen6_ring_sync;
  2153. ring->semaphore.signal = gen6_signal;
  2154. /*
  2155. * The current semaphore is only applied on pre-gen8
  2156. * platform. And there is no VCS2 ring on the pre-gen8
  2157. * platform. So the semaphore between RCS and VCS2 is
  2158. * initialized as INVALID. Gen8 will initialize the
  2159. * sema between VCS2 and RCS later.
  2160. */
  2161. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2162. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2163. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2164. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2165. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2166. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2167. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2168. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2169. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2170. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2171. }
  2172. } else if (IS_GEN5(dev)) {
  2173. ring->add_request = pc_render_add_request;
  2174. ring->flush = gen4_render_ring_flush;
  2175. ring->get_seqno = pc_render_get_seqno;
  2176. ring->set_seqno = pc_render_set_seqno;
  2177. ring->irq_get = gen5_ring_get_irq;
  2178. ring->irq_put = gen5_ring_put_irq;
  2179. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2180. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2181. } else {
  2182. ring->add_request = i9xx_add_request;
  2183. if (INTEL_INFO(dev)->gen < 4)
  2184. ring->flush = gen2_render_ring_flush;
  2185. else
  2186. ring->flush = gen4_render_ring_flush;
  2187. ring->get_seqno = ring_get_seqno;
  2188. ring->set_seqno = ring_set_seqno;
  2189. if (IS_GEN2(dev)) {
  2190. ring->irq_get = i8xx_ring_get_irq;
  2191. ring->irq_put = i8xx_ring_put_irq;
  2192. } else {
  2193. ring->irq_get = i9xx_ring_get_irq;
  2194. ring->irq_put = i9xx_ring_put_irq;
  2195. }
  2196. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2197. }
  2198. ring->write_tail = ring_write_tail;
  2199. if (IS_HASWELL(dev))
  2200. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2201. else if (IS_GEN8(dev))
  2202. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2203. else if (INTEL_INFO(dev)->gen >= 6)
  2204. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2205. else if (INTEL_INFO(dev)->gen >= 4)
  2206. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2207. else if (IS_I830(dev) || IS_845G(dev))
  2208. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2209. else
  2210. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2211. ring->init_hw = init_render_ring;
  2212. ring->cleanup = render_ring_cleanup;
  2213. /* Workaround batchbuffer to combat CS tlb bug. */
  2214. if (HAS_BROKEN_CS_TLB(dev)) {
  2215. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2216. if (obj == NULL) {
  2217. DRM_ERROR("Failed to allocate batch bo\n");
  2218. return -ENOMEM;
  2219. }
  2220. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2221. if (ret != 0) {
  2222. drm_gem_object_unreference(&obj->base);
  2223. DRM_ERROR("Failed to ping batch bo\n");
  2224. return ret;
  2225. }
  2226. ring->scratch.obj = obj;
  2227. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2228. }
  2229. ret = intel_init_ring_buffer(dev, ring);
  2230. if (ret)
  2231. return ret;
  2232. if (INTEL_INFO(dev)->gen >= 5) {
  2233. ret = intel_init_pipe_control(ring);
  2234. if (ret)
  2235. return ret;
  2236. }
  2237. return 0;
  2238. }
  2239. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2240. {
  2241. struct drm_i915_private *dev_priv = dev->dev_private;
  2242. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2243. ring->name = "bsd ring";
  2244. ring->id = VCS;
  2245. ring->write_tail = ring_write_tail;
  2246. if (INTEL_INFO(dev)->gen >= 6) {
  2247. ring->mmio_base = GEN6_BSD_RING_BASE;
  2248. /* gen6 bsd needs a special wa for tail updates */
  2249. if (IS_GEN6(dev))
  2250. ring->write_tail = gen6_bsd_ring_write_tail;
  2251. ring->flush = gen6_bsd_ring_flush;
  2252. ring->add_request = gen6_add_request;
  2253. ring->get_seqno = gen6_ring_get_seqno;
  2254. ring->set_seqno = ring_set_seqno;
  2255. if (INTEL_INFO(dev)->gen >= 8) {
  2256. ring->irq_enable_mask =
  2257. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2258. ring->irq_get = gen8_ring_get_irq;
  2259. ring->irq_put = gen8_ring_put_irq;
  2260. ring->dispatch_execbuffer =
  2261. gen8_ring_dispatch_execbuffer;
  2262. if (i915_semaphore_is_enabled(dev)) {
  2263. ring->semaphore.sync_to = gen8_ring_sync;
  2264. ring->semaphore.signal = gen8_xcs_signal;
  2265. GEN8_RING_SEMAPHORE_INIT;
  2266. }
  2267. } else {
  2268. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2269. ring->irq_get = gen6_ring_get_irq;
  2270. ring->irq_put = gen6_ring_put_irq;
  2271. ring->dispatch_execbuffer =
  2272. gen6_ring_dispatch_execbuffer;
  2273. if (i915_semaphore_is_enabled(dev)) {
  2274. ring->semaphore.sync_to = gen6_ring_sync;
  2275. ring->semaphore.signal = gen6_signal;
  2276. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2277. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2278. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2279. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2280. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2281. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2282. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2283. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2284. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2285. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2286. }
  2287. }
  2288. } else {
  2289. ring->mmio_base = BSD_RING_BASE;
  2290. ring->flush = bsd_ring_flush;
  2291. ring->add_request = i9xx_add_request;
  2292. ring->get_seqno = ring_get_seqno;
  2293. ring->set_seqno = ring_set_seqno;
  2294. if (IS_GEN5(dev)) {
  2295. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2296. ring->irq_get = gen5_ring_get_irq;
  2297. ring->irq_put = gen5_ring_put_irq;
  2298. } else {
  2299. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2300. ring->irq_get = i9xx_ring_get_irq;
  2301. ring->irq_put = i9xx_ring_put_irq;
  2302. }
  2303. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2304. }
  2305. ring->init_hw = init_ring_common;
  2306. return intel_init_ring_buffer(dev, ring);
  2307. }
  2308. /**
  2309. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2310. */
  2311. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2312. {
  2313. struct drm_i915_private *dev_priv = dev->dev_private;
  2314. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2315. ring->name = "bsd2 ring";
  2316. ring->id = VCS2;
  2317. ring->write_tail = ring_write_tail;
  2318. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2319. ring->flush = gen6_bsd_ring_flush;
  2320. ring->add_request = gen6_add_request;
  2321. ring->get_seqno = gen6_ring_get_seqno;
  2322. ring->set_seqno = ring_set_seqno;
  2323. ring->irq_enable_mask =
  2324. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2325. ring->irq_get = gen8_ring_get_irq;
  2326. ring->irq_put = gen8_ring_put_irq;
  2327. ring->dispatch_execbuffer =
  2328. gen8_ring_dispatch_execbuffer;
  2329. if (i915_semaphore_is_enabled(dev)) {
  2330. ring->semaphore.sync_to = gen8_ring_sync;
  2331. ring->semaphore.signal = gen8_xcs_signal;
  2332. GEN8_RING_SEMAPHORE_INIT;
  2333. }
  2334. ring->init_hw = init_ring_common;
  2335. return intel_init_ring_buffer(dev, ring);
  2336. }
  2337. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2338. {
  2339. struct drm_i915_private *dev_priv = dev->dev_private;
  2340. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2341. ring->name = "blitter ring";
  2342. ring->id = BCS;
  2343. ring->mmio_base = BLT_RING_BASE;
  2344. ring->write_tail = ring_write_tail;
  2345. ring->flush = gen6_ring_flush;
  2346. ring->add_request = gen6_add_request;
  2347. ring->get_seqno = gen6_ring_get_seqno;
  2348. ring->set_seqno = ring_set_seqno;
  2349. if (INTEL_INFO(dev)->gen >= 8) {
  2350. ring->irq_enable_mask =
  2351. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2352. ring->irq_get = gen8_ring_get_irq;
  2353. ring->irq_put = gen8_ring_put_irq;
  2354. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2355. if (i915_semaphore_is_enabled(dev)) {
  2356. ring->semaphore.sync_to = gen8_ring_sync;
  2357. ring->semaphore.signal = gen8_xcs_signal;
  2358. GEN8_RING_SEMAPHORE_INIT;
  2359. }
  2360. } else {
  2361. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2362. ring->irq_get = gen6_ring_get_irq;
  2363. ring->irq_put = gen6_ring_put_irq;
  2364. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2365. if (i915_semaphore_is_enabled(dev)) {
  2366. ring->semaphore.signal = gen6_signal;
  2367. ring->semaphore.sync_to = gen6_ring_sync;
  2368. /*
  2369. * The current semaphore is only applied on pre-gen8
  2370. * platform. And there is no VCS2 ring on the pre-gen8
  2371. * platform. So the semaphore between BCS and VCS2 is
  2372. * initialized as INVALID. Gen8 will initialize the
  2373. * sema between BCS and VCS2 later.
  2374. */
  2375. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2376. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2377. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2378. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2379. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2380. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2381. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2382. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2383. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2384. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2385. }
  2386. }
  2387. ring->init_hw = init_ring_common;
  2388. return intel_init_ring_buffer(dev, ring);
  2389. }
  2390. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2391. {
  2392. struct drm_i915_private *dev_priv = dev->dev_private;
  2393. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2394. ring->name = "video enhancement ring";
  2395. ring->id = VECS;
  2396. ring->mmio_base = VEBOX_RING_BASE;
  2397. ring->write_tail = ring_write_tail;
  2398. ring->flush = gen6_ring_flush;
  2399. ring->add_request = gen6_add_request;
  2400. ring->get_seqno = gen6_ring_get_seqno;
  2401. ring->set_seqno = ring_set_seqno;
  2402. if (INTEL_INFO(dev)->gen >= 8) {
  2403. ring->irq_enable_mask =
  2404. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2405. ring->irq_get = gen8_ring_get_irq;
  2406. ring->irq_put = gen8_ring_put_irq;
  2407. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2408. if (i915_semaphore_is_enabled(dev)) {
  2409. ring->semaphore.sync_to = gen8_ring_sync;
  2410. ring->semaphore.signal = gen8_xcs_signal;
  2411. GEN8_RING_SEMAPHORE_INIT;
  2412. }
  2413. } else {
  2414. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2415. ring->irq_get = hsw_vebox_get_irq;
  2416. ring->irq_put = hsw_vebox_put_irq;
  2417. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2418. if (i915_semaphore_is_enabled(dev)) {
  2419. ring->semaphore.sync_to = gen6_ring_sync;
  2420. ring->semaphore.signal = gen6_signal;
  2421. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2422. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2423. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2424. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2425. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2426. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2427. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2428. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2429. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2430. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2431. }
  2432. }
  2433. ring->init_hw = init_ring_common;
  2434. return intel_init_ring_buffer(dev, ring);
  2435. }
  2436. int
  2437. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2438. {
  2439. struct intel_engine_cs *ring = req->ring;
  2440. int ret;
  2441. if (!ring->gpu_caches_dirty)
  2442. return 0;
  2443. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2444. if (ret)
  2445. return ret;
  2446. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2447. ring->gpu_caches_dirty = false;
  2448. return 0;
  2449. }
  2450. int
  2451. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2452. {
  2453. struct intel_engine_cs *ring = req->ring;
  2454. uint32_t flush_domains;
  2455. int ret;
  2456. flush_domains = 0;
  2457. if (ring->gpu_caches_dirty)
  2458. flush_domains = I915_GEM_GPU_DOMAINS;
  2459. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2460. if (ret)
  2461. return ret;
  2462. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2463. ring->gpu_caches_dirty = false;
  2464. return 0;
  2465. }
  2466. void
  2467. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2468. {
  2469. int ret;
  2470. if (!intel_ring_initialized(ring))
  2471. return;
  2472. ret = intel_ring_idle(ring);
  2473. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2474. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2475. ring->name, ret);
  2476. stop_ring(ring);
  2477. }