amdgpu_amdkfd_gfx_v8.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/firmware.h>
  26. #include <drm/drmP.h>
  27. #include "amdgpu.h"
  28. #include "amdgpu_amdkfd.h"
  29. #include "amdgpu_ucode.h"
  30. #include "gfx_v8_0.h"
  31. #include "gca/gfx_8_0_sh_mask.h"
  32. #include "gca/gfx_8_0_d.h"
  33. #include "gca/gfx_8_0_enum.h"
  34. #include "oss/oss_3_0_sh_mask.h"
  35. #include "oss/oss_3_0_d.h"
  36. #include "gmc/gmc_8_1_sh_mask.h"
  37. #include "gmc/gmc_8_1_d.h"
  38. #include "vi_structs.h"
  39. #include "vid.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. struct vi_sdma_mqd;
  46. /*
  47. * Register access functions
  48. */
  49. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  50. uint32_t sh_mem_config,
  51. uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
  52. uint32_t sh_mem_bases);
  53. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  54. unsigned int vmid);
  55. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  56. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  57. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  58. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  59. uint32_t queue_id, uint32_t __user *wptr,
  60. uint32_t wptr_shift, uint32_t wptr_mask,
  61. struct mm_struct *mm);
  62. static int kgd_hqd_dump(struct kgd_dev *kgd,
  63. uint32_t pipe_id, uint32_t queue_id,
  64. uint32_t (**dump)[2], uint32_t *n_regs);
  65. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  66. uint32_t __user *wptr, struct mm_struct *mm);
  67. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  68. uint32_t engine_id, uint32_t queue_id,
  69. uint32_t (**dump)[2], uint32_t *n_regs);
  70. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  71. uint32_t pipe_id, uint32_t queue_id);
  72. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  73. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  74. enum kfd_preempt_type reset_type,
  75. unsigned int utimeout, uint32_t pipe_id,
  76. uint32_t queue_id);
  77. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  78. unsigned int utimeout);
  79. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  80. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  81. unsigned int watch_point_id,
  82. uint32_t cntl_val,
  83. uint32_t addr_hi,
  84. uint32_t addr_lo);
  85. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  86. uint32_t gfx_index_val,
  87. uint32_t sq_cmd);
  88. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  89. unsigned int watch_point_id,
  90. unsigned int reg_offset);
  91. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  92. uint8_t vmid);
  93. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  94. uint8_t vmid);
  95. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  96. static void set_scratch_backing_va(struct kgd_dev *kgd,
  97. uint64_t va, uint32_t vmid);
  98. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  99. uint32_t page_table_base);
  100. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
  101. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
  102. /* Because of REG_GET_FIELD() being used, we put this function in the
  103. * asic specific file.
  104. */
  105. static int get_tile_config(struct kgd_dev *kgd,
  106. struct tile_config *config)
  107. {
  108. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  109. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  110. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  111. MC_ARB_RAMCFG, NOOFBANK);
  112. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  113. MC_ARB_RAMCFG, NOOFRANKS);
  114. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  115. config->num_tile_configs =
  116. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  117. config->macro_tile_config_ptr =
  118. adev->gfx.config.macrotile_mode_array;
  119. config->num_macro_tile_configs =
  120. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  121. return 0;
  122. }
  123. static const struct kfd2kgd_calls kfd2kgd = {
  124. .init_gtt_mem_allocation = alloc_gtt_mem,
  125. .free_gtt_mem = free_gtt_mem,
  126. .get_local_mem_info = get_local_mem_info,
  127. .get_gpu_clock_counter = get_gpu_clock_counter,
  128. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  129. .alloc_pasid = amdgpu_pasid_alloc,
  130. .free_pasid = amdgpu_pasid_free,
  131. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  132. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  133. .init_pipeline = kgd_init_pipeline,
  134. .init_interrupts = kgd_init_interrupts,
  135. .hqd_load = kgd_hqd_load,
  136. .hqd_sdma_load = kgd_hqd_sdma_load,
  137. .hqd_dump = kgd_hqd_dump,
  138. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  139. .hqd_is_occupied = kgd_hqd_is_occupied,
  140. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  141. .hqd_destroy = kgd_hqd_destroy,
  142. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  143. .address_watch_disable = kgd_address_watch_disable,
  144. .address_watch_execute = kgd_address_watch_execute,
  145. .wave_control_execute = kgd_wave_control_execute,
  146. .address_watch_get_offset = kgd_address_watch_get_offset,
  147. .get_atc_vmid_pasid_mapping_pasid =
  148. get_atc_vmid_pasid_mapping_pasid,
  149. .get_atc_vmid_pasid_mapping_valid =
  150. get_atc_vmid_pasid_mapping_valid,
  151. .get_fw_version = get_fw_version,
  152. .set_scratch_backing_va = set_scratch_backing_va,
  153. .get_tile_config = get_tile_config,
  154. .get_cu_info = get_cu_info,
  155. .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
  156. .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
  157. .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
  158. .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
  159. .set_vm_context_page_table_base = set_vm_context_page_table_base,
  160. .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
  161. .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
  162. .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
  163. .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
  164. .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
  165. .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
  166. .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
  167. .invalidate_tlbs = invalidate_tlbs,
  168. .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
  169. .submit_ib = amdgpu_amdkfd_submit_ib,
  170. };
  171. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
  172. {
  173. return (struct kfd2kgd_calls *)&kfd2kgd;
  174. }
  175. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  176. {
  177. return (struct amdgpu_device *)kgd;
  178. }
  179. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  180. uint32_t queue, uint32_t vmid)
  181. {
  182. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  183. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  184. mutex_lock(&adev->srbm_mutex);
  185. WREG32(mmSRBM_GFX_CNTL, value);
  186. }
  187. static void unlock_srbm(struct kgd_dev *kgd)
  188. {
  189. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  190. WREG32(mmSRBM_GFX_CNTL, 0);
  191. mutex_unlock(&adev->srbm_mutex);
  192. }
  193. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  194. uint32_t queue_id)
  195. {
  196. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  197. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  198. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  199. lock_srbm(kgd, mec, pipe, queue_id, 0);
  200. }
  201. static void release_queue(struct kgd_dev *kgd)
  202. {
  203. unlock_srbm(kgd);
  204. }
  205. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  206. uint32_t sh_mem_config,
  207. uint32_t sh_mem_ape1_base,
  208. uint32_t sh_mem_ape1_limit,
  209. uint32_t sh_mem_bases)
  210. {
  211. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  212. lock_srbm(kgd, 0, 0, 0, vmid);
  213. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  214. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  215. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  216. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  217. unlock_srbm(kgd);
  218. }
  219. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  220. unsigned int vmid)
  221. {
  222. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  223. /*
  224. * We have to assume that there is no outstanding mapping.
  225. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  226. * a mapping is in progress or because a mapping finished
  227. * and the SW cleared it.
  228. * So the protocol is to always wait & clear.
  229. */
  230. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  231. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  232. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  233. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  234. cpu_relax();
  235. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  236. /* Mapping vmid to pasid also for IH block */
  237. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  238. return 0;
  239. }
  240. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  241. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  242. {
  243. /* amdgpu owns the per-pipe state */
  244. return 0;
  245. }
  246. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  247. {
  248. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  249. uint32_t mec;
  250. uint32_t pipe;
  251. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  252. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  253. lock_srbm(kgd, mec, pipe, 0, 0);
  254. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
  255. unlock_srbm(kgd);
  256. return 0;
  257. }
  258. static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
  259. {
  260. uint32_t retval;
  261. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  262. m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  263. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  264. return retval;
  265. }
  266. static inline struct vi_mqd *get_mqd(void *mqd)
  267. {
  268. return (struct vi_mqd *)mqd;
  269. }
  270. static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
  271. {
  272. return (struct vi_sdma_mqd *)mqd;
  273. }
  274. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  275. uint32_t queue_id, uint32_t __user *wptr,
  276. uint32_t wptr_shift, uint32_t wptr_mask,
  277. struct mm_struct *mm)
  278. {
  279. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  280. struct vi_mqd *m;
  281. uint32_t *mqd_hqd;
  282. uint32_t reg, wptr_val, data;
  283. bool valid_wptr = false;
  284. m = get_mqd(mqd);
  285. acquire_queue(kgd, pipe_id, queue_id);
  286. /* HIQ is set during driver init period with vmid set to 0*/
  287. if (m->cp_hqd_vmid == 0) {
  288. uint32_t value, mec, pipe;
  289. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  290. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  291. pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
  292. mec, pipe, queue_id);
  293. value = RREG32(mmRLC_CP_SCHEDULERS);
  294. value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
  295. ((mec << 5) | (pipe << 3) | queue_id | 0x80));
  296. WREG32(mmRLC_CP_SCHEDULERS, value);
  297. }
  298. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
  299. mqd_hqd = &m->cp_mqd_base_addr_lo;
  300. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
  301. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  302. /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
  303. * This is safe since EOP RPTR==WPTR for any inactive HQD
  304. * on ASICs that do not support context-save.
  305. * EOP writes/reads can start anywhere in the ring.
  306. */
  307. if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
  308. WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
  309. WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
  310. WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
  311. }
  312. for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
  313. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  314. /* Copy userspace write pointer value to register.
  315. * Activate doorbell logic to monitor subsequent changes.
  316. */
  317. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  318. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  319. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  320. /* read_user_ptr may take the mm->mmap_sem.
  321. * release srbm_mutex to avoid circular dependency between
  322. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  323. */
  324. release_queue(kgd);
  325. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  326. acquire_queue(kgd, pipe_id, queue_id);
  327. if (valid_wptr)
  328. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  329. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  330. WREG32(mmCP_HQD_ACTIVE, data);
  331. release_queue(kgd);
  332. return 0;
  333. }
  334. static int kgd_hqd_dump(struct kgd_dev *kgd,
  335. uint32_t pipe_id, uint32_t queue_id,
  336. uint32_t (**dump)[2], uint32_t *n_regs)
  337. {
  338. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  339. uint32_t i = 0, reg;
  340. #define HQD_N_REGS (54+4)
  341. #define DUMP_REG(addr) do { \
  342. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  343. break; \
  344. (*dump)[i][0] = (addr) << 2; \
  345. (*dump)[i++][1] = RREG32(addr); \
  346. } while (0)
  347. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  348. if (*dump == NULL)
  349. return -ENOMEM;
  350. acquire_queue(kgd, pipe_id, queue_id);
  351. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  352. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  353. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  354. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  355. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
  356. DUMP_REG(reg);
  357. release_queue(kgd);
  358. WARN_ON_ONCE(i != HQD_N_REGS);
  359. *n_regs = i;
  360. return 0;
  361. }
  362. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  363. uint32_t __user *wptr, struct mm_struct *mm)
  364. {
  365. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  366. struct vi_sdma_mqd *m;
  367. unsigned long end_jiffies;
  368. uint32_t sdma_base_addr;
  369. uint32_t data;
  370. m = get_sdma_mqd(mqd);
  371. sdma_base_addr = get_sdma_base_addr(m);
  372. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  373. m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  374. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  375. while (true) {
  376. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  377. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  378. break;
  379. if (time_after(jiffies, end_jiffies))
  380. return -ETIME;
  381. usleep_range(500, 1000);
  382. }
  383. if (m->sdma_engine_id) {
  384. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  385. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  386. RESUME_CTX, 0);
  387. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  388. } else {
  389. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  390. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  391. RESUME_CTX, 0);
  392. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  393. }
  394. data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
  395. ENABLE, 1);
  396. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  397. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
  398. if (read_user_wptr(mm, wptr, data))
  399. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  400. else
  401. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  402. m->sdmax_rlcx_rb_rptr);
  403. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  404. m->sdmax_rlcx_virtual_addr);
  405. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
  406. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  407. m->sdmax_rlcx_rb_base_hi);
  408. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  409. m->sdmax_rlcx_rb_rptr_addr_lo);
  410. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  411. m->sdmax_rlcx_rb_rptr_addr_hi);
  412. data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
  413. RB_ENABLE, 1);
  414. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  415. return 0;
  416. }
  417. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  418. uint32_t engine_id, uint32_t queue_id,
  419. uint32_t (**dump)[2], uint32_t *n_regs)
  420. {
  421. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  422. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  423. queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  424. uint32_t i = 0, reg;
  425. #undef HQD_N_REGS
  426. #define HQD_N_REGS (19+4+2+3+7)
  427. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  428. if (*dump == NULL)
  429. return -ENOMEM;
  430. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  431. DUMP_REG(sdma_offset + reg);
  432. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  433. reg++)
  434. DUMP_REG(sdma_offset + reg);
  435. for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
  436. reg++)
  437. DUMP_REG(sdma_offset + reg);
  438. for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
  439. reg++)
  440. DUMP_REG(sdma_offset + reg);
  441. for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
  442. reg++)
  443. DUMP_REG(sdma_offset + reg);
  444. WARN_ON_ONCE(i != HQD_N_REGS);
  445. *n_regs = i;
  446. return 0;
  447. }
  448. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  449. uint32_t pipe_id, uint32_t queue_id)
  450. {
  451. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  452. uint32_t act;
  453. bool retval = false;
  454. uint32_t low, high;
  455. acquire_queue(kgd, pipe_id, queue_id);
  456. act = RREG32(mmCP_HQD_ACTIVE);
  457. if (act) {
  458. low = lower_32_bits(queue_address >> 8);
  459. high = upper_32_bits(queue_address >> 8);
  460. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  461. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  462. retval = true;
  463. }
  464. release_queue(kgd);
  465. return retval;
  466. }
  467. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  468. {
  469. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  470. struct vi_sdma_mqd *m;
  471. uint32_t sdma_base_addr;
  472. uint32_t sdma_rlc_rb_cntl;
  473. m = get_sdma_mqd(mqd);
  474. sdma_base_addr = get_sdma_base_addr(m);
  475. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  476. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  477. return true;
  478. return false;
  479. }
  480. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  481. enum kfd_preempt_type reset_type,
  482. unsigned int utimeout, uint32_t pipe_id,
  483. uint32_t queue_id)
  484. {
  485. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  486. uint32_t temp;
  487. enum hqd_dequeue_request_type type;
  488. unsigned long flags, end_jiffies;
  489. int retry;
  490. struct vi_mqd *m = get_mqd(mqd);
  491. acquire_queue(kgd, pipe_id, queue_id);
  492. if (m->cp_hqd_vmid == 0)
  493. WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
  494. switch (reset_type) {
  495. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  496. type = DRAIN_PIPE;
  497. break;
  498. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  499. type = RESET_WAVES;
  500. break;
  501. default:
  502. type = DRAIN_PIPE;
  503. break;
  504. }
  505. /* Workaround: If IQ timer is active and the wait time is close to or
  506. * equal to 0, dequeueing is not safe. Wait until either the wait time
  507. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  508. * cleared before continuing. Also, ensure wait times are set to at
  509. * least 0x3.
  510. */
  511. local_irq_save(flags);
  512. preempt_disable();
  513. retry = 5000; /* wait for 500 usecs at maximum */
  514. while (true) {
  515. temp = RREG32(mmCP_HQD_IQ_TIMER);
  516. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  517. pr_debug("HW is processing IQ\n");
  518. goto loop;
  519. }
  520. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  521. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  522. == 3) /* SEM-rearm is safe */
  523. break;
  524. /* Wait time 3 is safe for CP, but our MMIO read/write
  525. * time is close to 1 microsecond, so check for 10 to
  526. * leave more buffer room
  527. */
  528. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  529. >= 10)
  530. break;
  531. pr_debug("IQ timer is active\n");
  532. } else
  533. break;
  534. loop:
  535. if (!retry) {
  536. pr_err("CP HQD IQ timer status time out\n");
  537. break;
  538. }
  539. ndelay(100);
  540. --retry;
  541. }
  542. retry = 1000;
  543. while (true) {
  544. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  545. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  546. break;
  547. pr_debug("Dequeue request is pending\n");
  548. if (!retry) {
  549. pr_err("CP HQD dequeue request time out\n");
  550. break;
  551. }
  552. ndelay(100);
  553. --retry;
  554. }
  555. local_irq_restore(flags);
  556. preempt_enable();
  557. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  558. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  559. while (true) {
  560. temp = RREG32(mmCP_HQD_ACTIVE);
  561. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  562. break;
  563. if (time_after(jiffies, end_jiffies)) {
  564. pr_err("cp queue preemption time out.\n");
  565. release_queue(kgd);
  566. return -ETIME;
  567. }
  568. usleep_range(500, 1000);
  569. }
  570. release_queue(kgd);
  571. return 0;
  572. }
  573. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  574. unsigned int utimeout)
  575. {
  576. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  577. struct vi_sdma_mqd *m;
  578. uint32_t sdma_base_addr;
  579. uint32_t temp;
  580. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  581. m = get_sdma_mqd(mqd);
  582. sdma_base_addr = get_sdma_base_addr(m);
  583. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  584. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  585. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  586. while (true) {
  587. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  588. if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  589. break;
  590. if (time_after(jiffies, end_jiffies))
  591. return -ETIME;
  592. usleep_range(500, 1000);
  593. }
  594. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  595. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  596. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  597. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  598. m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  599. return 0;
  600. }
  601. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  602. uint8_t vmid)
  603. {
  604. uint32_t reg;
  605. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  606. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  607. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  608. }
  609. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  610. uint8_t vmid)
  611. {
  612. uint32_t reg;
  613. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  614. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  615. return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
  616. }
  617. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  618. {
  619. return 0;
  620. }
  621. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  622. unsigned int watch_point_id,
  623. uint32_t cntl_val,
  624. uint32_t addr_hi,
  625. uint32_t addr_lo)
  626. {
  627. return 0;
  628. }
  629. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  630. uint32_t gfx_index_val,
  631. uint32_t sq_cmd)
  632. {
  633. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  634. uint32_t data = 0;
  635. mutex_lock(&adev->grbm_idx_mutex);
  636. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  637. WREG32(mmSQ_CMD, sq_cmd);
  638. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  639. INSTANCE_BROADCAST_WRITES, 1);
  640. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  641. SH_BROADCAST_WRITES, 1);
  642. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  643. SE_BROADCAST_WRITES, 1);
  644. WREG32(mmGRBM_GFX_INDEX, data);
  645. mutex_unlock(&adev->grbm_idx_mutex);
  646. return 0;
  647. }
  648. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  649. unsigned int watch_point_id,
  650. unsigned int reg_offset)
  651. {
  652. return 0;
  653. }
  654. static void set_scratch_backing_va(struct kgd_dev *kgd,
  655. uint64_t va, uint32_t vmid)
  656. {
  657. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  658. lock_srbm(kgd, 0, 0, 0, vmid);
  659. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  660. unlock_srbm(kgd);
  661. }
  662. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  663. {
  664. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  665. const union amdgpu_firmware_header *hdr;
  666. switch (type) {
  667. case KGD_ENGINE_PFP:
  668. hdr = (const union amdgpu_firmware_header *)
  669. adev->gfx.pfp_fw->data;
  670. break;
  671. case KGD_ENGINE_ME:
  672. hdr = (const union amdgpu_firmware_header *)
  673. adev->gfx.me_fw->data;
  674. break;
  675. case KGD_ENGINE_CE:
  676. hdr = (const union amdgpu_firmware_header *)
  677. adev->gfx.ce_fw->data;
  678. break;
  679. case KGD_ENGINE_MEC1:
  680. hdr = (const union amdgpu_firmware_header *)
  681. adev->gfx.mec_fw->data;
  682. break;
  683. case KGD_ENGINE_MEC2:
  684. hdr = (const union amdgpu_firmware_header *)
  685. adev->gfx.mec2_fw->data;
  686. break;
  687. case KGD_ENGINE_RLC:
  688. hdr = (const union amdgpu_firmware_header *)
  689. adev->gfx.rlc_fw->data;
  690. break;
  691. case KGD_ENGINE_SDMA1:
  692. hdr = (const union amdgpu_firmware_header *)
  693. adev->sdma.instance[0].fw->data;
  694. break;
  695. case KGD_ENGINE_SDMA2:
  696. hdr = (const union amdgpu_firmware_header *)
  697. adev->sdma.instance[1].fw->data;
  698. break;
  699. default:
  700. return 0;
  701. }
  702. if (hdr == NULL)
  703. return 0;
  704. /* Only 12 bit in use*/
  705. return hdr->common.ucode_version;
  706. }
  707. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  708. uint32_t page_table_base)
  709. {
  710. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  711. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  712. pr_err("trying to set page table base for wrong VMID\n");
  713. return;
  714. }
  715. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
  716. }
  717. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
  718. {
  719. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  720. int vmid;
  721. unsigned int tmp;
  722. for (vmid = 0; vmid < 16; vmid++) {
  723. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
  724. continue;
  725. tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  726. if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
  727. (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
  728. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  729. RREG32(mmVM_INVALIDATE_RESPONSE);
  730. break;
  731. }
  732. }
  733. return 0;
  734. }
  735. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
  736. {
  737. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  738. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  739. pr_err("non kfd vmid %d\n", vmid);
  740. return -EINVAL;
  741. }
  742. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  743. RREG32(mmVM_INVALIDATE_RESPONSE);
  744. return 0;
  745. }