sched.c 177 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/cpu_acct.h>
  55. #include <linux/kthread.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/sysctl.h>
  58. #include <linux/syscalls.h>
  59. #include <linux/times.h>
  60. #include <linux/tsacct_kern.h>
  61. #include <linux/kprobes.h>
  62. #include <linux/delayacct.h>
  63. #include <linux/reciprocal_div.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <asm/tlb.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (1000000000 / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. unsigned long shares;
  155. /* spinlock to serialize modification to shares */
  156. spinlock_t lock;
  157. };
  158. /* Default task group's sched entity on each cpu */
  159. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  160. /* Default task group's cfs_rq on each cpu */
  161. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  162. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  163. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  164. /* Default task group.
  165. * Every task in system belong to this group at bootup.
  166. */
  167. struct task_group init_task_group = {
  168. .se = init_sched_entity_p,
  169. .cfs_rq = init_cfs_rq_p,
  170. };
  171. #ifdef CONFIG_FAIR_USER_SCHED
  172. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  173. #else
  174. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  175. #endif
  176. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  177. /* return group to which a task belongs */
  178. static inline struct task_group *task_group(struct task_struct *p)
  179. {
  180. struct task_group *tg;
  181. #ifdef CONFIG_FAIR_USER_SCHED
  182. tg = p->user->tg;
  183. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  184. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  185. struct task_group, css);
  186. #else
  187. tg = &init_task_group;
  188. #endif
  189. return tg;
  190. }
  191. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  192. static inline void set_task_cfs_rq(struct task_struct *p)
  193. {
  194. p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
  195. p->se.parent = task_group(p)->se[task_cpu(p)];
  196. }
  197. #else
  198. static inline void set_task_cfs_rq(struct task_struct *p) { }
  199. #endif /* CONFIG_FAIR_GROUP_SCHED */
  200. /* CFS-related fields in a runqueue */
  201. struct cfs_rq {
  202. struct load_weight load;
  203. unsigned long nr_running;
  204. u64 exec_clock;
  205. u64 min_vruntime;
  206. struct rb_root tasks_timeline;
  207. struct rb_node *rb_leftmost;
  208. struct rb_node *rb_load_balance_curr;
  209. /* 'curr' points to currently running entity on this cfs_rq.
  210. * It is set to NULL otherwise (i.e when none are currently running).
  211. */
  212. struct sched_entity *curr;
  213. unsigned long nr_spread_over;
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  216. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  217. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  218. * (like users, containers etc.)
  219. *
  220. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  221. * list is used during load balance.
  222. */
  223. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  224. struct task_group *tg; /* group that "owns" this runqueue */
  225. struct rcu_head rcu;
  226. #endif
  227. };
  228. /* Real-Time classes' related field in a runqueue: */
  229. struct rt_rq {
  230. struct rt_prio_array active;
  231. int rt_load_balance_idx;
  232. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  233. };
  234. /*
  235. * This is the main, per-CPU runqueue data structure.
  236. *
  237. * Locking rule: those places that want to lock multiple runqueues
  238. * (such as the load balancing or the thread migration code), lock
  239. * acquire operations must be ordered by ascending &runqueue.
  240. */
  241. struct rq {
  242. /* runqueue lock: */
  243. spinlock_t lock;
  244. /*
  245. * nr_running and cpu_load should be in the same cacheline because
  246. * remote CPUs use both these fields when doing load calculation.
  247. */
  248. unsigned long nr_running;
  249. #define CPU_LOAD_IDX_MAX 5
  250. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  251. unsigned char idle_at_tick;
  252. #ifdef CONFIG_NO_HZ
  253. unsigned char in_nohz_recently;
  254. #endif
  255. /* capture load from *all* tasks on this cpu: */
  256. struct load_weight load;
  257. unsigned long nr_load_updates;
  258. u64 nr_switches;
  259. struct cfs_rq cfs;
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. /* list of leaf cfs_rq on this cpu: */
  262. struct list_head leaf_cfs_rq_list;
  263. #endif
  264. struct rt_rq rt;
  265. /*
  266. * This is part of a global counter where only the total sum
  267. * over all CPUs matters. A task can increase this counter on
  268. * one CPU and if it got migrated afterwards it may decrease
  269. * it on another CPU. Always updated under the runqueue lock:
  270. */
  271. unsigned long nr_uninterruptible;
  272. struct task_struct *curr, *idle;
  273. unsigned long next_balance;
  274. struct mm_struct *prev_mm;
  275. u64 clock, prev_clock_raw;
  276. s64 clock_max_delta;
  277. unsigned int clock_warps, clock_overflows;
  278. u64 idle_clock;
  279. unsigned int clock_deep_idle_events;
  280. u64 tick_timestamp;
  281. atomic_t nr_iowait;
  282. #ifdef CONFIG_SMP
  283. struct sched_domain *sd;
  284. /* For active balancing */
  285. int active_balance;
  286. int push_cpu;
  287. /* cpu of this runqueue: */
  288. int cpu;
  289. struct task_struct *migration_thread;
  290. struct list_head migration_queue;
  291. #endif
  292. #ifdef CONFIG_SCHEDSTATS
  293. /* latency stats */
  294. struct sched_info rq_sched_info;
  295. /* sys_sched_yield() stats */
  296. unsigned int yld_exp_empty;
  297. unsigned int yld_act_empty;
  298. unsigned int yld_both_empty;
  299. unsigned int yld_count;
  300. /* schedule() stats */
  301. unsigned int sched_switch;
  302. unsigned int sched_count;
  303. unsigned int sched_goidle;
  304. /* try_to_wake_up() stats */
  305. unsigned int ttwu_count;
  306. unsigned int ttwu_local;
  307. /* BKL stats */
  308. unsigned int bkl_count;
  309. #endif
  310. struct lock_class_key rq_lock_key;
  311. };
  312. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  313. static DEFINE_MUTEX(sched_hotcpu_mutex);
  314. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  315. {
  316. rq->curr->sched_class->check_preempt_curr(rq, p);
  317. }
  318. static inline int cpu_of(struct rq *rq)
  319. {
  320. #ifdef CONFIG_SMP
  321. return rq->cpu;
  322. #else
  323. return 0;
  324. #endif
  325. }
  326. /*
  327. * Update the per-runqueue clock, as finegrained as the platform can give
  328. * us, but without assuming monotonicity, etc.:
  329. */
  330. static void __update_rq_clock(struct rq *rq)
  331. {
  332. u64 prev_raw = rq->prev_clock_raw;
  333. u64 now = sched_clock();
  334. s64 delta = now - prev_raw;
  335. u64 clock = rq->clock;
  336. #ifdef CONFIG_SCHED_DEBUG
  337. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  338. #endif
  339. /*
  340. * Protect against sched_clock() occasionally going backwards:
  341. */
  342. if (unlikely(delta < 0)) {
  343. clock++;
  344. rq->clock_warps++;
  345. } else {
  346. /*
  347. * Catch too large forward jumps too:
  348. */
  349. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  350. if (clock < rq->tick_timestamp + TICK_NSEC)
  351. clock = rq->tick_timestamp + TICK_NSEC;
  352. else
  353. clock++;
  354. rq->clock_overflows++;
  355. } else {
  356. if (unlikely(delta > rq->clock_max_delta))
  357. rq->clock_max_delta = delta;
  358. clock += delta;
  359. }
  360. }
  361. rq->prev_clock_raw = now;
  362. rq->clock = clock;
  363. }
  364. static void update_rq_clock(struct rq *rq)
  365. {
  366. if (likely(smp_processor_id() == cpu_of(rq)))
  367. __update_rq_clock(rq);
  368. }
  369. /*
  370. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  371. * See detach_destroy_domains: synchronize_sched for details.
  372. *
  373. * The domain tree of any CPU may only be accessed from within
  374. * preempt-disabled sections.
  375. */
  376. #define for_each_domain(cpu, __sd) \
  377. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  378. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  379. #define this_rq() (&__get_cpu_var(runqueues))
  380. #define task_rq(p) cpu_rq(task_cpu(p))
  381. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  382. /*
  383. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  384. */
  385. #ifdef CONFIG_SCHED_DEBUG
  386. # define const_debug __read_mostly
  387. #else
  388. # define const_debug static const
  389. #endif
  390. /*
  391. * Debugging: various feature bits
  392. */
  393. enum {
  394. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  395. SCHED_FEAT_START_DEBIT = 2,
  396. SCHED_FEAT_TREE_AVG = 4,
  397. SCHED_FEAT_APPROX_AVG = 8,
  398. SCHED_FEAT_WAKEUP_PREEMPT = 16,
  399. SCHED_FEAT_PREEMPT_RESTRICT = 32,
  400. };
  401. const_debug unsigned int sysctl_sched_features =
  402. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  403. SCHED_FEAT_START_DEBIT * 1 |
  404. SCHED_FEAT_TREE_AVG * 0 |
  405. SCHED_FEAT_APPROX_AVG * 0 |
  406. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  407. SCHED_FEAT_PREEMPT_RESTRICT * 1;
  408. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  409. /*
  410. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  411. * clock constructed from sched_clock():
  412. */
  413. unsigned long long cpu_clock(int cpu)
  414. {
  415. unsigned long long now;
  416. unsigned long flags;
  417. struct rq *rq;
  418. local_irq_save(flags);
  419. rq = cpu_rq(cpu);
  420. update_rq_clock(rq);
  421. now = rq->clock;
  422. local_irq_restore(flags);
  423. return now;
  424. }
  425. EXPORT_SYMBOL_GPL(cpu_clock);
  426. #ifndef prepare_arch_switch
  427. # define prepare_arch_switch(next) do { } while (0)
  428. #endif
  429. #ifndef finish_arch_switch
  430. # define finish_arch_switch(prev) do { } while (0)
  431. #endif
  432. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  433. static inline int task_running(struct rq *rq, struct task_struct *p)
  434. {
  435. return rq->curr == p;
  436. }
  437. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  438. {
  439. }
  440. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  441. {
  442. #ifdef CONFIG_DEBUG_SPINLOCK
  443. /* this is a valid case when another task releases the spinlock */
  444. rq->lock.owner = current;
  445. #endif
  446. /*
  447. * If we are tracking spinlock dependencies then we have to
  448. * fix up the runqueue lock - which gets 'carried over' from
  449. * prev into current:
  450. */
  451. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  452. spin_unlock_irq(&rq->lock);
  453. }
  454. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  455. static inline int task_running(struct rq *rq, struct task_struct *p)
  456. {
  457. #ifdef CONFIG_SMP
  458. return p->oncpu;
  459. #else
  460. return rq->curr == p;
  461. #endif
  462. }
  463. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  464. {
  465. #ifdef CONFIG_SMP
  466. /*
  467. * We can optimise this out completely for !SMP, because the
  468. * SMP rebalancing from interrupt is the only thing that cares
  469. * here.
  470. */
  471. next->oncpu = 1;
  472. #endif
  473. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  474. spin_unlock_irq(&rq->lock);
  475. #else
  476. spin_unlock(&rq->lock);
  477. #endif
  478. }
  479. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  480. {
  481. #ifdef CONFIG_SMP
  482. /*
  483. * After ->oncpu is cleared, the task can be moved to a different CPU.
  484. * We must ensure this doesn't happen until the switch is completely
  485. * finished.
  486. */
  487. smp_wmb();
  488. prev->oncpu = 0;
  489. #endif
  490. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  491. local_irq_enable();
  492. #endif
  493. }
  494. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  495. /*
  496. * __task_rq_lock - lock the runqueue a given task resides on.
  497. * Must be called interrupts disabled.
  498. */
  499. static inline struct rq *__task_rq_lock(struct task_struct *p)
  500. __acquires(rq->lock)
  501. {
  502. for (;;) {
  503. struct rq *rq = task_rq(p);
  504. spin_lock(&rq->lock);
  505. if (likely(rq == task_rq(p)))
  506. return rq;
  507. spin_unlock(&rq->lock);
  508. }
  509. }
  510. /*
  511. * task_rq_lock - lock the runqueue a given task resides on and disable
  512. * interrupts. Note the ordering: we can safely lookup the task_rq without
  513. * explicitly disabling preemption.
  514. */
  515. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  516. __acquires(rq->lock)
  517. {
  518. struct rq *rq;
  519. for (;;) {
  520. local_irq_save(*flags);
  521. rq = task_rq(p);
  522. spin_lock(&rq->lock);
  523. if (likely(rq == task_rq(p)))
  524. return rq;
  525. spin_unlock_irqrestore(&rq->lock, *flags);
  526. }
  527. }
  528. static void __task_rq_unlock(struct rq *rq)
  529. __releases(rq->lock)
  530. {
  531. spin_unlock(&rq->lock);
  532. }
  533. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  534. __releases(rq->lock)
  535. {
  536. spin_unlock_irqrestore(&rq->lock, *flags);
  537. }
  538. /*
  539. * this_rq_lock - lock this runqueue and disable interrupts.
  540. */
  541. static struct rq *this_rq_lock(void)
  542. __acquires(rq->lock)
  543. {
  544. struct rq *rq;
  545. local_irq_disable();
  546. rq = this_rq();
  547. spin_lock(&rq->lock);
  548. return rq;
  549. }
  550. /*
  551. * We are going deep-idle (irqs are disabled):
  552. */
  553. void sched_clock_idle_sleep_event(void)
  554. {
  555. struct rq *rq = cpu_rq(smp_processor_id());
  556. spin_lock(&rq->lock);
  557. __update_rq_clock(rq);
  558. spin_unlock(&rq->lock);
  559. rq->clock_deep_idle_events++;
  560. }
  561. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  562. /*
  563. * We just idled delta nanoseconds (called with irqs disabled):
  564. */
  565. void sched_clock_idle_wakeup_event(u64 delta_ns)
  566. {
  567. struct rq *rq = cpu_rq(smp_processor_id());
  568. u64 now = sched_clock();
  569. rq->idle_clock += delta_ns;
  570. /*
  571. * Override the previous timestamp and ignore all
  572. * sched_clock() deltas that occured while we idled,
  573. * and use the PM-provided delta_ns to advance the
  574. * rq clock:
  575. */
  576. spin_lock(&rq->lock);
  577. rq->prev_clock_raw = now;
  578. rq->clock += delta_ns;
  579. spin_unlock(&rq->lock);
  580. }
  581. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  582. /*
  583. * resched_task - mark a task 'to be rescheduled now'.
  584. *
  585. * On UP this means the setting of the need_resched flag, on SMP it
  586. * might also involve a cross-CPU call to trigger the scheduler on
  587. * the target CPU.
  588. */
  589. #ifdef CONFIG_SMP
  590. #ifndef tsk_is_polling
  591. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  592. #endif
  593. static void resched_task(struct task_struct *p)
  594. {
  595. int cpu;
  596. assert_spin_locked(&task_rq(p)->lock);
  597. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  598. return;
  599. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  600. cpu = task_cpu(p);
  601. if (cpu == smp_processor_id())
  602. return;
  603. /* NEED_RESCHED must be visible before we test polling */
  604. smp_mb();
  605. if (!tsk_is_polling(p))
  606. smp_send_reschedule(cpu);
  607. }
  608. static void resched_cpu(int cpu)
  609. {
  610. struct rq *rq = cpu_rq(cpu);
  611. unsigned long flags;
  612. if (!spin_trylock_irqsave(&rq->lock, flags))
  613. return;
  614. resched_task(cpu_curr(cpu));
  615. spin_unlock_irqrestore(&rq->lock, flags);
  616. }
  617. #else
  618. static inline void resched_task(struct task_struct *p)
  619. {
  620. assert_spin_locked(&task_rq(p)->lock);
  621. set_tsk_need_resched(p);
  622. }
  623. #endif
  624. #if BITS_PER_LONG == 32
  625. # define WMULT_CONST (~0UL)
  626. #else
  627. # define WMULT_CONST (1UL << 32)
  628. #endif
  629. #define WMULT_SHIFT 32
  630. /*
  631. * Shift right and round:
  632. */
  633. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  634. static unsigned long
  635. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  636. struct load_weight *lw)
  637. {
  638. u64 tmp;
  639. if (unlikely(!lw->inv_weight))
  640. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  641. tmp = (u64)delta_exec * weight;
  642. /*
  643. * Check whether we'd overflow the 64-bit multiplication:
  644. */
  645. if (unlikely(tmp > WMULT_CONST))
  646. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  647. WMULT_SHIFT/2);
  648. else
  649. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  650. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  651. }
  652. static inline unsigned long
  653. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  654. {
  655. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  656. }
  657. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  658. {
  659. lw->weight += inc;
  660. }
  661. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  662. {
  663. lw->weight -= dec;
  664. }
  665. /*
  666. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  667. * of tasks with abnormal "nice" values across CPUs the contribution that
  668. * each task makes to its run queue's load is weighted according to its
  669. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  670. * scaled version of the new time slice allocation that they receive on time
  671. * slice expiry etc.
  672. */
  673. #define WEIGHT_IDLEPRIO 2
  674. #define WMULT_IDLEPRIO (1 << 31)
  675. /*
  676. * Nice levels are multiplicative, with a gentle 10% change for every
  677. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  678. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  679. * that remained on nice 0.
  680. *
  681. * The "10% effect" is relative and cumulative: from _any_ nice level,
  682. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  683. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  684. * If a task goes up by ~10% and another task goes down by ~10% then
  685. * the relative distance between them is ~25%.)
  686. */
  687. static const int prio_to_weight[40] = {
  688. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  689. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  690. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  691. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  692. /* 0 */ 1024, 820, 655, 526, 423,
  693. /* 5 */ 335, 272, 215, 172, 137,
  694. /* 10 */ 110, 87, 70, 56, 45,
  695. /* 15 */ 36, 29, 23, 18, 15,
  696. };
  697. /*
  698. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  699. *
  700. * In cases where the weight does not change often, we can use the
  701. * precalculated inverse to speed up arithmetics by turning divisions
  702. * into multiplications:
  703. */
  704. static const u32 prio_to_wmult[40] = {
  705. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  706. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  707. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  708. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  709. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  710. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  711. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  712. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  713. };
  714. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  715. /*
  716. * runqueue iterator, to support SMP load-balancing between different
  717. * scheduling classes, without having to expose their internal data
  718. * structures to the load-balancing proper:
  719. */
  720. struct rq_iterator {
  721. void *arg;
  722. struct task_struct *(*start)(void *);
  723. struct task_struct *(*next)(void *);
  724. };
  725. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  726. unsigned long max_nr_move, unsigned long max_load_move,
  727. struct sched_domain *sd, enum cpu_idle_type idle,
  728. int *all_pinned, unsigned long *load_moved,
  729. int *this_best_prio, struct rq_iterator *iterator);
  730. #include "sched_stats.h"
  731. #include "sched_idletask.c"
  732. #include "sched_fair.c"
  733. #include "sched_rt.c"
  734. #ifdef CONFIG_SCHED_DEBUG
  735. # include "sched_debug.c"
  736. #endif
  737. #define sched_class_highest (&rt_sched_class)
  738. /*
  739. * Update delta_exec, delta_fair fields for rq.
  740. *
  741. * delta_fair clock advances at a rate inversely proportional to
  742. * total load (rq->load.weight) on the runqueue, while
  743. * delta_exec advances at the same rate as wall-clock (provided
  744. * cpu is not idle).
  745. *
  746. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  747. * runqueue over any given interval. This (smoothened) load is used
  748. * during load balance.
  749. *
  750. * This function is called /before/ updating rq->load
  751. * and when switching tasks.
  752. */
  753. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  754. {
  755. update_load_add(&rq->load, p->se.load.weight);
  756. }
  757. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  758. {
  759. update_load_sub(&rq->load, p->se.load.weight);
  760. }
  761. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  762. {
  763. rq->nr_running++;
  764. inc_load(rq, p);
  765. }
  766. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  767. {
  768. rq->nr_running--;
  769. dec_load(rq, p);
  770. }
  771. static void set_load_weight(struct task_struct *p)
  772. {
  773. if (task_has_rt_policy(p)) {
  774. p->se.load.weight = prio_to_weight[0] * 2;
  775. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  776. return;
  777. }
  778. /*
  779. * SCHED_IDLE tasks get minimal weight:
  780. */
  781. if (p->policy == SCHED_IDLE) {
  782. p->se.load.weight = WEIGHT_IDLEPRIO;
  783. p->se.load.inv_weight = WMULT_IDLEPRIO;
  784. return;
  785. }
  786. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  787. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  788. }
  789. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  790. {
  791. sched_info_queued(p);
  792. p->sched_class->enqueue_task(rq, p, wakeup);
  793. p->se.on_rq = 1;
  794. }
  795. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  796. {
  797. p->sched_class->dequeue_task(rq, p, sleep);
  798. p->se.on_rq = 0;
  799. }
  800. /*
  801. * __normal_prio - return the priority that is based on the static prio
  802. */
  803. static inline int __normal_prio(struct task_struct *p)
  804. {
  805. return p->static_prio;
  806. }
  807. /*
  808. * Calculate the expected normal priority: i.e. priority
  809. * without taking RT-inheritance into account. Might be
  810. * boosted by interactivity modifiers. Changes upon fork,
  811. * setprio syscalls, and whenever the interactivity
  812. * estimator recalculates.
  813. */
  814. static inline int normal_prio(struct task_struct *p)
  815. {
  816. int prio;
  817. if (task_has_rt_policy(p))
  818. prio = MAX_RT_PRIO-1 - p->rt_priority;
  819. else
  820. prio = __normal_prio(p);
  821. return prio;
  822. }
  823. /*
  824. * Calculate the current priority, i.e. the priority
  825. * taken into account by the scheduler. This value might
  826. * be boosted by RT tasks, or might be boosted by
  827. * interactivity modifiers. Will be RT if the task got
  828. * RT-boosted. If not then it returns p->normal_prio.
  829. */
  830. static int effective_prio(struct task_struct *p)
  831. {
  832. p->normal_prio = normal_prio(p);
  833. /*
  834. * If we are RT tasks or we were boosted to RT priority,
  835. * keep the priority unchanged. Otherwise, update priority
  836. * to the normal priority:
  837. */
  838. if (!rt_prio(p->prio))
  839. return p->normal_prio;
  840. return p->prio;
  841. }
  842. /*
  843. * activate_task - move a task to the runqueue.
  844. */
  845. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  846. {
  847. if (p->state == TASK_UNINTERRUPTIBLE)
  848. rq->nr_uninterruptible--;
  849. enqueue_task(rq, p, wakeup);
  850. inc_nr_running(p, rq);
  851. }
  852. /*
  853. * deactivate_task - remove a task from the runqueue.
  854. */
  855. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  856. {
  857. if (p->state == TASK_UNINTERRUPTIBLE)
  858. rq->nr_uninterruptible++;
  859. dequeue_task(rq, p, sleep);
  860. dec_nr_running(p, rq);
  861. }
  862. /**
  863. * task_curr - is this task currently executing on a CPU?
  864. * @p: the task in question.
  865. */
  866. inline int task_curr(const struct task_struct *p)
  867. {
  868. return cpu_curr(task_cpu(p)) == p;
  869. }
  870. /* Used instead of source_load when we know the type == 0 */
  871. unsigned long weighted_cpuload(const int cpu)
  872. {
  873. return cpu_rq(cpu)->load.weight;
  874. }
  875. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  876. {
  877. #ifdef CONFIG_SMP
  878. task_thread_info(p)->cpu = cpu;
  879. #endif
  880. set_task_cfs_rq(p);
  881. }
  882. #ifdef CONFIG_SMP
  883. /*
  884. * Is this task likely cache-hot:
  885. */
  886. static inline int
  887. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  888. {
  889. s64 delta;
  890. if (p->sched_class != &fair_sched_class)
  891. return 0;
  892. if (sysctl_sched_migration_cost == -1)
  893. return 1;
  894. if (sysctl_sched_migration_cost == 0)
  895. return 0;
  896. delta = now - p->se.exec_start;
  897. return delta < (s64)sysctl_sched_migration_cost;
  898. }
  899. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  900. {
  901. int old_cpu = task_cpu(p);
  902. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  903. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  904. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  905. u64 clock_offset;
  906. clock_offset = old_rq->clock - new_rq->clock;
  907. #ifdef CONFIG_SCHEDSTATS
  908. if (p->se.wait_start)
  909. p->se.wait_start -= clock_offset;
  910. if (p->se.sleep_start)
  911. p->se.sleep_start -= clock_offset;
  912. if (p->se.block_start)
  913. p->se.block_start -= clock_offset;
  914. if (old_cpu != new_cpu) {
  915. schedstat_inc(p, se.nr_migrations);
  916. if (task_hot(p, old_rq->clock, NULL))
  917. schedstat_inc(p, se.nr_forced2_migrations);
  918. }
  919. #endif
  920. p->se.vruntime -= old_cfsrq->min_vruntime -
  921. new_cfsrq->min_vruntime;
  922. __set_task_cpu(p, new_cpu);
  923. }
  924. struct migration_req {
  925. struct list_head list;
  926. struct task_struct *task;
  927. int dest_cpu;
  928. struct completion done;
  929. };
  930. /*
  931. * The task's runqueue lock must be held.
  932. * Returns true if you have to wait for migration thread.
  933. */
  934. static int
  935. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  936. {
  937. struct rq *rq = task_rq(p);
  938. /*
  939. * If the task is not on a runqueue (and not running), then
  940. * it is sufficient to simply update the task's cpu field.
  941. */
  942. if (!p->se.on_rq && !task_running(rq, p)) {
  943. set_task_cpu(p, dest_cpu);
  944. return 0;
  945. }
  946. init_completion(&req->done);
  947. req->task = p;
  948. req->dest_cpu = dest_cpu;
  949. list_add(&req->list, &rq->migration_queue);
  950. return 1;
  951. }
  952. /*
  953. * wait_task_inactive - wait for a thread to unschedule.
  954. *
  955. * The caller must ensure that the task *will* unschedule sometime soon,
  956. * else this function might spin for a *long* time. This function can't
  957. * be called with interrupts off, or it may introduce deadlock with
  958. * smp_call_function() if an IPI is sent by the same process we are
  959. * waiting to become inactive.
  960. */
  961. void wait_task_inactive(struct task_struct *p)
  962. {
  963. unsigned long flags;
  964. int running, on_rq;
  965. struct rq *rq;
  966. for (;;) {
  967. /*
  968. * We do the initial early heuristics without holding
  969. * any task-queue locks at all. We'll only try to get
  970. * the runqueue lock when things look like they will
  971. * work out!
  972. */
  973. rq = task_rq(p);
  974. /*
  975. * If the task is actively running on another CPU
  976. * still, just relax and busy-wait without holding
  977. * any locks.
  978. *
  979. * NOTE! Since we don't hold any locks, it's not
  980. * even sure that "rq" stays as the right runqueue!
  981. * But we don't care, since "task_running()" will
  982. * return false if the runqueue has changed and p
  983. * is actually now running somewhere else!
  984. */
  985. while (task_running(rq, p))
  986. cpu_relax();
  987. /*
  988. * Ok, time to look more closely! We need the rq
  989. * lock now, to be *sure*. If we're wrong, we'll
  990. * just go back and repeat.
  991. */
  992. rq = task_rq_lock(p, &flags);
  993. running = task_running(rq, p);
  994. on_rq = p->se.on_rq;
  995. task_rq_unlock(rq, &flags);
  996. /*
  997. * Was it really running after all now that we
  998. * checked with the proper locks actually held?
  999. *
  1000. * Oops. Go back and try again..
  1001. */
  1002. if (unlikely(running)) {
  1003. cpu_relax();
  1004. continue;
  1005. }
  1006. /*
  1007. * It's not enough that it's not actively running,
  1008. * it must be off the runqueue _entirely_, and not
  1009. * preempted!
  1010. *
  1011. * So if it wa still runnable (but just not actively
  1012. * running right now), it's preempted, and we should
  1013. * yield - it could be a while.
  1014. */
  1015. if (unlikely(on_rq)) {
  1016. schedule_timeout_uninterruptible(1);
  1017. continue;
  1018. }
  1019. /*
  1020. * Ahh, all good. It wasn't running, and it wasn't
  1021. * runnable, which means that it will never become
  1022. * running in the future either. We're all done!
  1023. */
  1024. break;
  1025. }
  1026. }
  1027. /***
  1028. * kick_process - kick a running thread to enter/exit the kernel
  1029. * @p: the to-be-kicked thread
  1030. *
  1031. * Cause a process which is running on another CPU to enter
  1032. * kernel-mode, without any delay. (to get signals handled.)
  1033. *
  1034. * NOTE: this function doesnt have to take the runqueue lock,
  1035. * because all it wants to ensure is that the remote task enters
  1036. * the kernel. If the IPI races and the task has been migrated
  1037. * to another CPU then no harm is done and the purpose has been
  1038. * achieved as well.
  1039. */
  1040. void kick_process(struct task_struct *p)
  1041. {
  1042. int cpu;
  1043. preempt_disable();
  1044. cpu = task_cpu(p);
  1045. if ((cpu != smp_processor_id()) && task_curr(p))
  1046. smp_send_reschedule(cpu);
  1047. preempt_enable();
  1048. }
  1049. /*
  1050. * Return a low guess at the load of a migration-source cpu weighted
  1051. * according to the scheduling class and "nice" value.
  1052. *
  1053. * We want to under-estimate the load of migration sources, to
  1054. * balance conservatively.
  1055. */
  1056. static unsigned long source_load(int cpu, int type)
  1057. {
  1058. struct rq *rq = cpu_rq(cpu);
  1059. unsigned long total = weighted_cpuload(cpu);
  1060. if (type == 0)
  1061. return total;
  1062. return min(rq->cpu_load[type-1], total);
  1063. }
  1064. /*
  1065. * Return a high guess at the load of a migration-target cpu weighted
  1066. * according to the scheduling class and "nice" value.
  1067. */
  1068. static unsigned long target_load(int cpu, int type)
  1069. {
  1070. struct rq *rq = cpu_rq(cpu);
  1071. unsigned long total = weighted_cpuload(cpu);
  1072. if (type == 0)
  1073. return total;
  1074. return max(rq->cpu_load[type-1], total);
  1075. }
  1076. /*
  1077. * Return the average load per task on the cpu's run queue
  1078. */
  1079. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1080. {
  1081. struct rq *rq = cpu_rq(cpu);
  1082. unsigned long total = weighted_cpuload(cpu);
  1083. unsigned long n = rq->nr_running;
  1084. return n ? total / n : SCHED_LOAD_SCALE;
  1085. }
  1086. /*
  1087. * find_idlest_group finds and returns the least busy CPU group within the
  1088. * domain.
  1089. */
  1090. static struct sched_group *
  1091. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1092. {
  1093. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1094. unsigned long min_load = ULONG_MAX, this_load = 0;
  1095. int load_idx = sd->forkexec_idx;
  1096. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1097. do {
  1098. unsigned long load, avg_load;
  1099. int local_group;
  1100. int i;
  1101. /* Skip over this group if it has no CPUs allowed */
  1102. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1103. continue;
  1104. local_group = cpu_isset(this_cpu, group->cpumask);
  1105. /* Tally up the load of all CPUs in the group */
  1106. avg_load = 0;
  1107. for_each_cpu_mask(i, group->cpumask) {
  1108. /* Bias balancing toward cpus of our domain */
  1109. if (local_group)
  1110. load = source_load(i, load_idx);
  1111. else
  1112. load = target_load(i, load_idx);
  1113. avg_load += load;
  1114. }
  1115. /* Adjust by relative CPU power of the group */
  1116. avg_load = sg_div_cpu_power(group,
  1117. avg_load * SCHED_LOAD_SCALE);
  1118. if (local_group) {
  1119. this_load = avg_load;
  1120. this = group;
  1121. } else if (avg_load < min_load) {
  1122. min_load = avg_load;
  1123. idlest = group;
  1124. }
  1125. } while (group = group->next, group != sd->groups);
  1126. if (!idlest || 100*this_load < imbalance*min_load)
  1127. return NULL;
  1128. return idlest;
  1129. }
  1130. /*
  1131. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1132. */
  1133. static int
  1134. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1135. {
  1136. cpumask_t tmp;
  1137. unsigned long load, min_load = ULONG_MAX;
  1138. int idlest = -1;
  1139. int i;
  1140. /* Traverse only the allowed CPUs */
  1141. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1142. for_each_cpu_mask(i, tmp) {
  1143. load = weighted_cpuload(i);
  1144. if (load < min_load || (load == min_load && i == this_cpu)) {
  1145. min_load = load;
  1146. idlest = i;
  1147. }
  1148. }
  1149. return idlest;
  1150. }
  1151. /*
  1152. * sched_balance_self: balance the current task (running on cpu) in domains
  1153. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1154. * SD_BALANCE_EXEC.
  1155. *
  1156. * Balance, ie. select the least loaded group.
  1157. *
  1158. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1159. *
  1160. * preempt must be disabled.
  1161. */
  1162. static int sched_balance_self(int cpu, int flag)
  1163. {
  1164. struct task_struct *t = current;
  1165. struct sched_domain *tmp, *sd = NULL;
  1166. for_each_domain(cpu, tmp) {
  1167. /*
  1168. * If power savings logic is enabled for a domain, stop there.
  1169. */
  1170. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1171. break;
  1172. if (tmp->flags & flag)
  1173. sd = tmp;
  1174. }
  1175. while (sd) {
  1176. cpumask_t span;
  1177. struct sched_group *group;
  1178. int new_cpu, weight;
  1179. if (!(sd->flags & flag)) {
  1180. sd = sd->child;
  1181. continue;
  1182. }
  1183. span = sd->span;
  1184. group = find_idlest_group(sd, t, cpu);
  1185. if (!group) {
  1186. sd = sd->child;
  1187. continue;
  1188. }
  1189. new_cpu = find_idlest_cpu(group, t, cpu);
  1190. if (new_cpu == -1 || new_cpu == cpu) {
  1191. /* Now try balancing at a lower domain level of cpu */
  1192. sd = sd->child;
  1193. continue;
  1194. }
  1195. /* Now try balancing at a lower domain level of new_cpu */
  1196. cpu = new_cpu;
  1197. sd = NULL;
  1198. weight = cpus_weight(span);
  1199. for_each_domain(cpu, tmp) {
  1200. if (weight <= cpus_weight(tmp->span))
  1201. break;
  1202. if (tmp->flags & flag)
  1203. sd = tmp;
  1204. }
  1205. /* while loop will break here if sd == NULL */
  1206. }
  1207. return cpu;
  1208. }
  1209. #endif /* CONFIG_SMP */
  1210. /*
  1211. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1212. * not idle and an idle cpu is available. The span of cpus to
  1213. * search starts with cpus closest then further out as needed,
  1214. * so we always favor a closer, idle cpu.
  1215. *
  1216. * Returns the CPU we should wake onto.
  1217. */
  1218. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1219. static int wake_idle(int cpu, struct task_struct *p)
  1220. {
  1221. cpumask_t tmp;
  1222. struct sched_domain *sd;
  1223. int i;
  1224. /*
  1225. * If it is idle, then it is the best cpu to run this task.
  1226. *
  1227. * This cpu is also the best, if it has more than one task already.
  1228. * Siblings must be also busy(in most cases) as they didn't already
  1229. * pickup the extra load from this cpu and hence we need not check
  1230. * sibling runqueue info. This will avoid the checks and cache miss
  1231. * penalities associated with that.
  1232. */
  1233. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1234. return cpu;
  1235. for_each_domain(cpu, sd) {
  1236. if (sd->flags & SD_WAKE_IDLE) {
  1237. cpus_and(tmp, sd->span, p->cpus_allowed);
  1238. for_each_cpu_mask(i, tmp) {
  1239. if (idle_cpu(i)) {
  1240. if (i != task_cpu(p)) {
  1241. schedstat_inc(p,
  1242. se.nr_wakeups_idle);
  1243. }
  1244. return i;
  1245. }
  1246. }
  1247. } else {
  1248. break;
  1249. }
  1250. }
  1251. return cpu;
  1252. }
  1253. #else
  1254. static inline int wake_idle(int cpu, struct task_struct *p)
  1255. {
  1256. return cpu;
  1257. }
  1258. #endif
  1259. /***
  1260. * try_to_wake_up - wake up a thread
  1261. * @p: the to-be-woken-up thread
  1262. * @state: the mask of task states that can be woken
  1263. * @sync: do a synchronous wakeup?
  1264. *
  1265. * Put it on the run-queue if it's not already there. The "current"
  1266. * thread is always on the run-queue (except when the actual
  1267. * re-schedule is in progress), and as such you're allowed to do
  1268. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1269. * runnable without the overhead of this.
  1270. *
  1271. * returns failure only if the task is already active.
  1272. */
  1273. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1274. {
  1275. int cpu, orig_cpu, this_cpu, success = 0;
  1276. unsigned long flags;
  1277. long old_state;
  1278. struct rq *rq;
  1279. #ifdef CONFIG_SMP
  1280. struct sched_domain *sd, *this_sd = NULL;
  1281. unsigned long load, this_load;
  1282. int new_cpu;
  1283. #endif
  1284. rq = task_rq_lock(p, &flags);
  1285. old_state = p->state;
  1286. if (!(old_state & state))
  1287. goto out;
  1288. if (p->se.on_rq)
  1289. goto out_running;
  1290. cpu = task_cpu(p);
  1291. orig_cpu = cpu;
  1292. this_cpu = smp_processor_id();
  1293. #ifdef CONFIG_SMP
  1294. if (unlikely(task_running(rq, p)))
  1295. goto out_activate;
  1296. new_cpu = cpu;
  1297. schedstat_inc(rq, ttwu_count);
  1298. if (cpu == this_cpu) {
  1299. schedstat_inc(rq, ttwu_local);
  1300. goto out_set_cpu;
  1301. }
  1302. for_each_domain(this_cpu, sd) {
  1303. if (cpu_isset(cpu, sd->span)) {
  1304. schedstat_inc(sd, ttwu_wake_remote);
  1305. this_sd = sd;
  1306. break;
  1307. }
  1308. }
  1309. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1310. goto out_set_cpu;
  1311. /*
  1312. * Check for affine wakeup and passive balancing possibilities.
  1313. */
  1314. if (this_sd) {
  1315. int idx = this_sd->wake_idx;
  1316. unsigned int imbalance;
  1317. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1318. load = source_load(cpu, idx);
  1319. this_load = target_load(this_cpu, idx);
  1320. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1321. if (this_sd->flags & SD_WAKE_AFFINE) {
  1322. unsigned long tl = this_load;
  1323. unsigned long tl_per_task;
  1324. /*
  1325. * Attract cache-cold tasks on sync wakeups:
  1326. */
  1327. if (sync && !task_hot(p, rq->clock, this_sd))
  1328. goto out_set_cpu;
  1329. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1330. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1331. /*
  1332. * If sync wakeup then subtract the (maximum possible)
  1333. * effect of the currently running task from the load
  1334. * of the current CPU:
  1335. */
  1336. if (sync)
  1337. tl -= current->se.load.weight;
  1338. if ((tl <= load &&
  1339. tl + target_load(cpu, idx) <= tl_per_task) ||
  1340. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1341. /*
  1342. * This domain has SD_WAKE_AFFINE and
  1343. * p is cache cold in this domain, and
  1344. * there is no bad imbalance.
  1345. */
  1346. schedstat_inc(this_sd, ttwu_move_affine);
  1347. schedstat_inc(p, se.nr_wakeups_affine);
  1348. goto out_set_cpu;
  1349. }
  1350. }
  1351. /*
  1352. * Start passive balancing when half the imbalance_pct
  1353. * limit is reached.
  1354. */
  1355. if (this_sd->flags & SD_WAKE_BALANCE) {
  1356. if (imbalance*this_load <= 100*load) {
  1357. schedstat_inc(this_sd, ttwu_move_balance);
  1358. schedstat_inc(p, se.nr_wakeups_passive);
  1359. goto out_set_cpu;
  1360. }
  1361. }
  1362. }
  1363. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1364. out_set_cpu:
  1365. new_cpu = wake_idle(new_cpu, p);
  1366. if (new_cpu != cpu) {
  1367. set_task_cpu(p, new_cpu);
  1368. task_rq_unlock(rq, &flags);
  1369. /* might preempt at this point */
  1370. rq = task_rq_lock(p, &flags);
  1371. old_state = p->state;
  1372. if (!(old_state & state))
  1373. goto out;
  1374. if (p->se.on_rq)
  1375. goto out_running;
  1376. this_cpu = smp_processor_id();
  1377. cpu = task_cpu(p);
  1378. }
  1379. out_activate:
  1380. #endif /* CONFIG_SMP */
  1381. schedstat_inc(p, se.nr_wakeups);
  1382. if (sync)
  1383. schedstat_inc(p, se.nr_wakeups_sync);
  1384. if (orig_cpu != cpu)
  1385. schedstat_inc(p, se.nr_wakeups_migrate);
  1386. if (cpu == this_cpu)
  1387. schedstat_inc(p, se.nr_wakeups_local);
  1388. else
  1389. schedstat_inc(p, se.nr_wakeups_remote);
  1390. update_rq_clock(rq);
  1391. activate_task(rq, p, 1);
  1392. check_preempt_curr(rq, p);
  1393. success = 1;
  1394. out_running:
  1395. p->state = TASK_RUNNING;
  1396. out:
  1397. task_rq_unlock(rq, &flags);
  1398. return success;
  1399. }
  1400. int fastcall wake_up_process(struct task_struct *p)
  1401. {
  1402. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1403. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1404. }
  1405. EXPORT_SYMBOL(wake_up_process);
  1406. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1407. {
  1408. return try_to_wake_up(p, state, 0);
  1409. }
  1410. /*
  1411. * Perform scheduler related setup for a newly forked process p.
  1412. * p is forked by current.
  1413. *
  1414. * __sched_fork() is basic setup used by init_idle() too:
  1415. */
  1416. static void __sched_fork(struct task_struct *p)
  1417. {
  1418. p->se.exec_start = 0;
  1419. p->se.sum_exec_runtime = 0;
  1420. p->se.prev_sum_exec_runtime = 0;
  1421. #ifdef CONFIG_SCHEDSTATS
  1422. p->se.wait_start = 0;
  1423. p->se.sum_sleep_runtime = 0;
  1424. p->se.sleep_start = 0;
  1425. p->se.block_start = 0;
  1426. p->se.sleep_max = 0;
  1427. p->se.block_max = 0;
  1428. p->se.exec_max = 0;
  1429. p->se.slice_max = 0;
  1430. p->se.wait_max = 0;
  1431. #endif
  1432. INIT_LIST_HEAD(&p->run_list);
  1433. p->se.on_rq = 0;
  1434. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1435. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1436. #endif
  1437. /*
  1438. * We mark the process as running here, but have not actually
  1439. * inserted it onto the runqueue yet. This guarantees that
  1440. * nobody will actually run it, and a signal or other external
  1441. * event cannot wake it up and insert it on the runqueue either.
  1442. */
  1443. p->state = TASK_RUNNING;
  1444. }
  1445. /*
  1446. * fork()/clone()-time setup:
  1447. */
  1448. void sched_fork(struct task_struct *p, int clone_flags)
  1449. {
  1450. int cpu = get_cpu();
  1451. __sched_fork(p);
  1452. #ifdef CONFIG_SMP
  1453. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1454. #endif
  1455. set_task_cpu(p, cpu);
  1456. /*
  1457. * Make sure we do not leak PI boosting priority to the child:
  1458. */
  1459. p->prio = current->normal_prio;
  1460. if (!rt_prio(p->prio))
  1461. p->sched_class = &fair_sched_class;
  1462. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1463. if (likely(sched_info_on()))
  1464. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1465. #endif
  1466. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1467. p->oncpu = 0;
  1468. #endif
  1469. #ifdef CONFIG_PREEMPT
  1470. /* Want to start with kernel preemption disabled. */
  1471. task_thread_info(p)->preempt_count = 1;
  1472. #endif
  1473. put_cpu();
  1474. }
  1475. /*
  1476. * wake_up_new_task - wake up a newly created task for the first time.
  1477. *
  1478. * This function will do some initial scheduler statistics housekeeping
  1479. * that must be done for every newly created context, then puts the task
  1480. * on the runqueue and wakes it.
  1481. */
  1482. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1483. {
  1484. unsigned long flags;
  1485. struct rq *rq;
  1486. rq = task_rq_lock(p, &flags);
  1487. BUG_ON(p->state != TASK_RUNNING);
  1488. update_rq_clock(rq);
  1489. p->prio = effective_prio(p);
  1490. if (!p->sched_class->task_new || !current->se.on_rq) {
  1491. activate_task(rq, p, 0);
  1492. } else {
  1493. /*
  1494. * Let the scheduling class do new task startup
  1495. * management (if any):
  1496. */
  1497. p->sched_class->task_new(rq, p);
  1498. inc_nr_running(p, rq);
  1499. }
  1500. check_preempt_curr(rq, p);
  1501. task_rq_unlock(rq, &flags);
  1502. }
  1503. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1504. /**
  1505. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1506. * @notifier: notifier struct to register
  1507. */
  1508. void preempt_notifier_register(struct preempt_notifier *notifier)
  1509. {
  1510. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1511. }
  1512. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1513. /**
  1514. * preempt_notifier_unregister - no longer interested in preemption notifications
  1515. * @notifier: notifier struct to unregister
  1516. *
  1517. * This is safe to call from within a preemption notifier.
  1518. */
  1519. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1520. {
  1521. hlist_del(&notifier->link);
  1522. }
  1523. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1524. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1525. {
  1526. struct preempt_notifier *notifier;
  1527. struct hlist_node *node;
  1528. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1529. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1530. }
  1531. static void
  1532. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1533. struct task_struct *next)
  1534. {
  1535. struct preempt_notifier *notifier;
  1536. struct hlist_node *node;
  1537. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1538. notifier->ops->sched_out(notifier, next);
  1539. }
  1540. #else
  1541. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1542. {
  1543. }
  1544. static void
  1545. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1546. struct task_struct *next)
  1547. {
  1548. }
  1549. #endif
  1550. /**
  1551. * prepare_task_switch - prepare to switch tasks
  1552. * @rq: the runqueue preparing to switch
  1553. * @prev: the current task that is being switched out
  1554. * @next: the task we are going to switch to.
  1555. *
  1556. * This is called with the rq lock held and interrupts off. It must
  1557. * be paired with a subsequent finish_task_switch after the context
  1558. * switch.
  1559. *
  1560. * prepare_task_switch sets up locking and calls architecture specific
  1561. * hooks.
  1562. */
  1563. static inline void
  1564. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1565. struct task_struct *next)
  1566. {
  1567. fire_sched_out_preempt_notifiers(prev, next);
  1568. prepare_lock_switch(rq, next);
  1569. prepare_arch_switch(next);
  1570. }
  1571. /**
  1572. * finish_task_switch - clean up after a task-switch
  1573. * @rq: runqueue associated with task-switch
  1574. * @prev: the thread we just switched away from.
  1575. *
  1576. * finish_task_switch must be called after the context switch, paired
  1577. * with a prepare_task_switch call before the context switch.
  1578. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1579. * and do any other architecture-specific cleanup actions.
  1580. *
  1581. * Note that we may have delayed dropping an mm in context_switch(). If
  1582. * so, we finish that here outside of the runqueue lock. (Doing it
  1583. * with the lock held can cause deadlocks; see schedule() for
  1584. * details.)
  1585. */
  1586. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1587. __releases(rq->lock)
  1588. {
  1589. struct mm_struct *mm = rq->prev_mm;
  1590. long prev_state;
  1591. rq->prev_mm = NULL;
  1592. /*
  1593. * A task struct has one reference for the use as "current".
  1594. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1595. * schedule one last time. The schedule call will never return, and
  1596. * the scheduled task must drop that reference.
  1597. * The test for TASK_DEAD must occur while the runqueue locks are
  1598. * still held, otherwise prev could be scheduled on another cpu, die
  1599. * there before we look at prev->state, and then the reference would
  1600. * be dropped twice.
  1601. * Manfred Spraul <manfred@colorfullife.com>
  1602. */
  1603. prev_state = prev->state;
  1604. finish_arch_switch(prev);
  1605. finish_lock_switch(rq, prev);
  1606. fire_sched_in_preempt_notifiers(current);
  1607. if (mm)
  1608. mmdrop(mm);
  1609. if (unlikely(prev_state == TASK_DEAD)) {
  1610. /*
  1611. * Remove function-return probe instances associated with this
  1612. * task and put them back on the free list.
  1613. */
  1614. kprobe_flush_task(prev);
  1615. put_task_struct(prev);
  1616. }
  1617. }
  1618. /**
  1619. * schedule_tail - first thing a freshly forked thread must call.
  1620. * @prev: the thread we just switched away from.
  1621. */
  1622. asmlinkage void schedule_tail(struct task_struct *prev)
  1623. __releases(rq->lock)
  1624. {
  1625. struct rq *rq = this_rq();
  1626. finish_task_switch(rq, prev);
  1627. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1628. /* In this case, finish_task_switch does not reenable preemption */
  1629. preempt_enable();
  1630. #endif
  1631. if (current->set_child_tid)
  1632. put_user(task_pid_vnr(current), current->set_child_tid);
  1633. }
  1634. /*
  1635. * context_switch - switch to the new MM and the new
  1636. * thread's register state.
  1637. */
  1638. static inline void
  1639. context_switch(struct rq *rq, struct task_struct *prev,
  1640. struct task_struct *next)
  1641. {
  1642. struct mm_struct *mm, *oldmm;
  1643. prepare_task_switch(rq, prev, next);
  1644. mm = next->mm;
  1645. oldmm = prev->active_mm;
  1646. /*
  1647. * For paravirt, this is coupled with an exit in switch_to to
  1648. * combine the page table reload and the switch backend into
  1649. * one hypercall.
  1650. */
  1651. arch_enter_lazy_cpu_mode();
  1652. if (unlikely(!mm)) {
  1653. next->active_mm = oldmm;
  1654. atomic_inc(&oldmm->mm_count);
  1655. enter_lazy_tlb(oldmm, next);
  1656. } else
  1657. switch_mm(oldmm, mm, next);
  1658. if (unlikely(!prev->mm)) {
  1659. prev->active_mm = NULL;
  1660. rq->prev_mm = oldmm;
  1661. }
  1662. /*
  1663. * Since the runqueue lock will be released by the next
  1664. * task (which is an invalid locking op but in the case
  1665. * of the scheduler it's an obvious special-case), so we
  1666. * do an early lockdep release here:
  1667. */
  1668. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1669. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1670. #endif
  1671. /* Here we just switch the register state and the stack. */
  1672. switch_to(prev, next, prev);
  1673. barrier();
  1674. /*
  1675. * this_rq must be evaluated again because prev may have moved
  1676. * CPUs since it called schedule(), thus the 'rq' on its stack
  1677. * frame will be invalid.
  1678. */
  1679. finish_task_switch(this_rq(), prev);
  1680. }
  1681. /*
  1682. * nr_running, nr_uninterruptible and nr_context_switches:
  1683. *
  1684. * externally visible scheduler statistics: current number of runnable
  1685. * threads, current number of uninterruptible-sleeping threads, total
  1686. * number of context switches performed since bootup.
  1687. */
  1688. unsigned long nr_running(void)
  1689. {
  1690. unsigned long i, sum = 0;
  1691. for_each_online_cpu(i)
  1692. sum += cpu_rq(i)->nr_running;
  1693. return sum;
  1694. }
  1695. unsigned long nr_uninterruptible(void)
  1696. {
  1697. unsigned long i, sum = 0;
  1698. for_each_possible_cpu(i)
  1699. sum += cpu_rq(i)->nr_uninterruptible;
  1700. /*
  1701. * Since we read the counters lockless, it might be slightly
  1702. * inaccurate. Do not allow it to go below zero though:
  1703. */
  1704. if (unlikely((long)sum < 0))
  1705. sum = 0;
  1706. return sum;
  1707. }
  1708. unsigned long long nr_context_switches(void)
  1709. {
  1710. int i;
  1711. unsigned long long sum = 0;
  1712. for_each_possible_cpu(i)
  1713. sum += cpu_rq(i)->nr_switches;
  1714. return sum;
  1715. }
  1716. unsigned long nr_iowait(void)
  1717. {
  1718. unsigned long i, sum = 0;
  1719. for_each_possible_cpu(i)
  1720. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1721. return sum;
  1722. }
  1723. unsigned long nr_active(void)
  1724. {
  1725. unsigned long i, running = 0, uninterruptible = 0;
  1726. for_each_online_cpu(i) {
  1727. running += cpu_rq(i)->nr_running;
  1728. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1729. }
  1730. if (unlikely((long)uninterruptible < 0))
  1731. uninterruptible = 0;
  1732. return running + uninterruptible;
  1733. }
  1734. /*
  1735. * Update rq->cpu_load[] statistics. This function is usually called every
  1736. * scheduler tick (TICK_NSEC).
  1737. */
  1738. static void update_cpu_load(struct rq *this_rq)
  1739. {
  1740. unsigned long this_load = this_rq->load.weight;
  1741. int i, scale;
  1742. this_rq->nr_load_updates++;
  1743. /* Update our load: */
  1744. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1745. unsigned long old_load, new_load;
  1746. /* scale is effectively 1 << i now, and >> i divides by scale */
  1747. old_load = this_rq->cpu_load[i];
  1748. new_load = this_load;
  1749. /*
  1750. * Round up the averaging division if load is increasing. This
  1751. * prevents us from getting stuck on 9 if the load is 10, for
  1752. * example.
  1753. */
  1754. if (new_load > old_load)
  1755. new_load += scale-1;
  1756. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1757. }
  1758. }
  1759. #ifdef CONFIG_SMP
  1760. /*
  1761. * double_rq_lock - safely lock two runqueues
  1762. *
  1763. * Note this does not disable interrupts like task_rq_lock,
  1764. * you need to do so manually before calling.
  1765. */
  1766. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1767. __acquires(rq1->lock)
  1768. __acquires(rq2->lock)
  1769. {
  1770. BUG_ON(!irqs_disabled());
  1771. if (rq1 == rq2) {
  1772. spin_lock(&rq1->lock);
  1773. __acquire(rq2->lock); /* Fake it out ;) */
  1774. } else {
  1775. if (rq1 < rq2) {
  1776. spin_lock(&rq1->lock);
  1777. spin_lock(&rq2->lock);
  1778. } else {
  1779. spin_lock(&rq2->lock);
  1780. spin_lock(&rq1->lock);
  1781. }
  1782. }
  1783. update_rq_clock(rq1);
  1784. update_rq_clock(rq2);
  1785. }
  1786. /*
  1787. * double_rq_unlock - safely unlock two runqueues
  1788. *
  1789. * Note this does not restore interrupts like task_rq_unlock,
  1790. * you need to do so manually after calling.
  1791. */
  1792. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1793. __releases(rq1->lock)
  1794. __releases(rq2->lock)
  1795. {
  1796. spin_unlock(&rq1->lock);
  1797. if (rq1 != rq2)
  1798. spin_unlock(&rq2->lock);
  1799. else
  1800. __release(rq2->lock);
  1801. }
  1802. /*
  1803. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1804. */
  1805. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1806. __releases(this_rq->lock)
  1807. __acquires(busiest->lock)
  1808. __acquires(this_rq->lock)
  1809. {
  1810. if (unlikely(!irqs_disabled())) {
  1811. /* printk() doesn't work good under rq->lock */
  1812. spin_unlock(&this_rq->lock);
  1813. BUG_ON(1);
  1814. }
  1815. if (unlikely(!spin_trylock(&busiest->lock))) {
  1816. if (busiest < this_rq) {
  1817. spin_unlock(&this_rq->lock);
  1818. spin_lock(&busiest->lock);
  1819. spin_lock(&this_rq->lock);
  1820. } else
  1821. spin_lock(&busiest->lock);
  1822. }
  1823. }
  1824. /*
  1825. * If dest_cpu is allowed for this process, migrate the task to it.
  1826. * This is accomplished by forcing the cpu_allowed mask to only
  1827. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1828. * the cpu_allowed mask is restored.
  1829. */
  1830. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1831. {
  1832. struct migration_req req;
  1833. unsigned long flags;
  1834. struct rq *rq;
  1835. rq = task_rq_lock(p, &flags);
  1836. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1837. || unlikely(cpu_is_offline(dest_cpu)))
  1838. goto out;
  1839. /* force the process onto the specified CPU */
  1840. if (migrate_task(p, dest_cpu, &req)) {
  1841. /* Need to wait for migration thread (might exit: take ref). */
  1842. struct task_struct *mt = rq->migration_thread;
  1843. get_task_struct(mt);
  1844. task_rq_unlock(rq, &flags);
  1845. wake_up_process(mt);
  1846. put_task_struct(mt);
  1847. wait_for_completion(&req.done);
  1848. return;
  1849. }
  1850. out:
  1851. task_rq_unlock(rq, &flags);
  1852. }
  1853. /*
  1854. * sched_exec - execve() is a valuable balancing opportunity, because at
  1855. * this point the task has the smallest effective memory and cache footprint.
  1856. */
  1857. void sched_exec(void)
  1858. {
  1859. int new_cpu, this_cpu = get_cpu();
  1860. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1861. put_cpu();
  1862. if (new_cpu != this_cpu)
  1863. sched_migrate_task(current, new_cpu);
  1864. }
  1865. /*
  1866. * pull_task - move a task from a remote runqueue to the local runqueue.
  1867. * Both runqueues must be locked.
  1868. */
  1869. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1870. struct rq *this_rq, int this_cpu)
  1871. {
  1872. deactivate_task(src_rq, p, 0);
  1873. set_task_cpu(p, this_cpu);
  1874. activate_task(this_rq, p, 0);
  1875. /*
  1876. * Note that idle threads have a prio of MAX_PRIO, for this test
  1877. * to be always true for them.
  1878. */
  1879. check_preempt_curr(this_rq, p);
  1880. }
  1881. /*
  1882. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1883. */
  1884. static
  1885. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1886. struct sched_domain *sd, enum cpu_idle_type idle,
  1887. int *all_pinned)
  1888. {
  1889. /*
  1890. * We do not migrate tasks that are:
  1891. * 1) running (obviously), or
  1892. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1893. * 3) are cache-hot on their current CPU.
  1894. */
  1895. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1896. schedstat_inc(p, se.nr_failed_migrations_affine);
  1897. return 0;
  1898. }
  1899. *all_pinned = 0;
  1900. if (task_running(rq, p)) {
  1901. schedstat_inc(p, se.nr_failed_migrations_running);
  1902. return 0;
  1903. }
  1904. /*
  1905. * Aggressive migration if:
  1906. * 1) task is cache cold, or
  1907. * 2) too many balance attempts have failed.
  1908. */
  1909. if (!task_hot(p, rq->clock, sd) ||
  1910. sd->nr_balance_failed > sd->cache_nice_tries) {
  1911. #ifdef CONFIG_SCHEDSTATS
  1912. if (task_hot(p, rq->clock, sd)) {
  1913. schedstat_inc(sd, lb_hot_gained[idle]);
  1914. schedstat_inc(p, se.nr_forced_migrations);
  1915. }
  1916. #endif
  1917. return 1;
  1918. }
  1919. if (task_hot(p, rq->clock, sd)) {
  1920. schedstat_inc(p, se.nr_failed_migrations_hot);
  1921. return 0;
  1922. }
  1923. return 1;
  1924. }
  1925. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1926. unsigned long max_nr_move, unsigned long max_load_move,
  1927. struct sched_domain *sd, enum cpu_idle_type idle,
  1928. int *all_pinned, unsigned long *load_moved,
  1929. int *this_best_prio, struct rq_iterator *iterator)
  1930. {
  1931. int pulled = 0, pinned = 0, skip_for_load;
  1932. struct task_struct *p;
  1933. long rem_load_move = max_load_move;
  1934. if (max_nr_move == 0 || max_load_move == 0)
  1935. goto out;
  1936. pinned = 1;
  1937. /*
  1938. * Start the load-balancing iterator:
  1939. */
  1940. p = iterator->start(iterator->arg);
  1941. next:
  1942. if (!p)
  1943. goto out;
  1944. /*
  1945. * To help distribute high priority tasks accross CPUs we don't
  1946. * skip a task if it will be the highest priority task (i.e. smallest
  1947. * prio value) on its new queue regardless of its load weight
  1948. */
  1949. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1950. SCHED_LOAD_SCALE_FUZZ;
  1951. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1952. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1953. p = iterator->next(iterator->arg);
  1954. goto next;
  1955. }
  1956. pull_task(busiest, p, this_rq, this_cpu);
  1957. pulled++;
  1958. rem_load_move -= p->se.load.weight;
  1959. /*
  1960. * We only want to steal up to the prescribed number of tasks
  1961. * and the prescribed amount of weighted load.
  1962. */
  1963. if (pulled < max_nr_move && rem_load_move > 0) {
  1964. if (p->prio < *this_best_prio)
  1965. *this_best_prio = p->prio;
  1966. p = iterator->next(iterator->arg);
  1967. goto next;
  1968. }
  1969. out:
  1970. /*
  1971. * Right now, this is the only place pull_task() is called,
  1972. * so we can safely collect pull_task() stats here rather than
  1973. * inside pull_task().
  1974. */
  1975. schedstat_add(sd, lb_gained[idle], pulled);
  1976. if (all_pinned)
  1977. *all_pinned = pinned;
  1978. *load_moved = max_load_move - rem_load_move;
  1979. return pulled;
  1980. }
  1981. /*
  1982. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1983. * this_rq, as part of a balancing operation within domain "sd".
  1984. * Returns 1 if successful and 0 otherwise.
  1985. *
  1986. * Called with both runqueues locked.
  1987. */
  1988. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1989. unsigned long max_load_move,
  1990. struct sched_domain *sd, enum cpu_idle_type idle,
  1991. int *all_pinned)
  1992. {
  1993. const struct sched_class *class = sched_class_highest;
  1994. unsigned long total_load_moved = 0;
  1995. int this_best_prio = this_rq->curr->prio;
  1996. do {
  1997. total_load_moved +=
  1998. class->load_balance(this_rq, this_cpu, busiest,
  1999. ULONG_MAX, max_load_move - total_load_moved,
  2000. sd, idle, all_pinned, &this_best_prio);
  2001. class = class->next;
  2002. } while (class && max_load_move > total_load_moved);
  2003. return total_load_moved > 0;
  2004. }
  2005. /*
  2006. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2007. * part of active balancing operations within "domain".
  2008. * Returns 1 if successful and 0 otherwise.
  2009. *
  2010. * Called with both runqueues locked.
  2011. */
  2012. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2013. struct sched_domain *sd, enum cpu_idle_type idle)
  2014. {
  2015. const struct sched_class *class;
  2016. int this_best_prio = MAX_PRIO;
  2017. for (class = sched_class_highest; class; class = class->next)
  2018. if (class->load_balance(this_rq, this_cpu, busiest,
  2019. 1, ULONG_MAX, sd, idle, NULL,
  2020. &this_best_prio))
  2021. return 1;
  2022. return 0;
  2023. }
  2024. /*
  2025. * find_busiest_group finds and returns the busiest CPU group within the
  2026. * domain. It calculates and returns the amount of weighted load which
  2027. * should be moved to restore balance via the imbalance parameter.
  2028. */
  2029. static struct sched_group *
  2030. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2031. unsigned long *imbalance, enum cpu_idle_type idle,
  2032. int *sd_idle, cpumask_t *cpus, int *balance)
  2033. {
  2034. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2035. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2036. unsigned long max_pull;
  2037. unsigned long busiest_load_per_task, busiest_nr_running;
  2038. unsigned long this_load_per_task, this_nr_running;
  2039. int load_idx, group_imb = 0;
  2040. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2041. int power_savings_balance = 1;
  2042. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2043. unsigned long min_nr_running = ULONG_MAX;
  2044. struct sched_group *group_min = NULL, *group_leader = NULL;
  2045. #endif
  2046. max_load = this_load = total_load = total_pwr = 0;
  2047. busiest_load_per_task = busiest_nr_running = 0;
  2048. this_load_per_task = this_nr_running = 0;
  2049. if (idle == CPU_NOT_IDLE)
  2050. load_idx = sd->busy_idx;
  2051. else if (idle == CPU_NEWLY_IDLE)
  2052. load_idx = sd->newidle_idx;
  2053. else
  2054. load_idx = sd->idle_idx;
  2055. do {
  2056. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2057. int local_group;
  2058. int i;
  2059. int __group_imb = 0;
  2060. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2061. unsigned long sum_nr_running, sum_weighted_load;
  2062. local_group = cpu_isset(this_cpu, group->cpumask);
  2063. if (local_group)
  2064. balance_cpu = first_cpu(group->cpumask);
  2065. /* Tally up the load of all CPUs in the group */
  2066. sum_weighted_load = sum_nr_running = avg_load = 0;
  2067. max_cpu_load = 0;
  2068. min_cpu_load = ~0UL;
  2069. for_each_cpu_mask(i, group->cpumask) {
  2070. struct rq *rq;
  2071. if (!cpu_isset(i, *cpus))
  2072. continue;
  2073. rq = cpu_rq(i);
  2074. if (*sd_idle && rq->nr_running)
  2075. *sd_idle = 0;
  2076. /* Bias balancing toward cpus of our domain */
  2077. if (local_group) {
  2078. if (idle_cpu(i) && !first_idle_cpu) {
  2079. first_idle_cpu = 1;
  2080. balance_cpu = i;
  2081. }
  2082. load = target_load(i, load_idx);
  2083. } else {
  2084. load = source_load(i, load_idx);
  2085. if (load > max_cpu_load)
  2086. max_cpu_load = load;
  2087. if (min_cpu_load > load)
  2088. min_cpu_load = load;
  2089. }
  2090. avg_load += load;
  2091. sum_nr_running += rq->nr_running;
  2092. sum_weighted_load += weighted_cpuload(i);
  2093. }
  2094. /*
  2095. * First idle cpu or the first cpu(busiest) in this sched group
  2096. * is eligible for doing load balancing at this and above
  2097. * domains. In the newly idle case, we will allow all the cpu's
  2098. * to do the newly idle load balance.
  2099. */
  2100. if (idle != CPU_NEWLY_IDLE && local_group &&
  2101. balance_cpu != this_cpu && balance) {
  2102. *balance = 0;
  2103. goto ret;
  2104. }
  2105. total_load += avg_load;
  2106. total_pwr += group->__cpu_power;
  2107. /* Adjust by relative CPU power of the group */
  2108. avg_load = sg_div_cpu_power(group,
  2109. avg_load * SCHED_LOAD_SCALE);
  2110. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2111. __group_imb = 1;
  2112. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2113. if (local_group) {
  2114. this_load = avg_load;
  2115. this = group;
  2116. this_nr_running = sum_nr_running;
  2117. this_load_per_task = sum_weighted_load;
  2118. } else if (avg_load > max_load &&
  2119. (sum_nr_running > group_capacity || __group_imb)) {
  2120. max_load = avg_load;
  2121. busiest = group;
  2122. busiest_nr_running = sum_nr_running;
  2123. busiest_load_per_task = sum_weighted_load;
  2124. group_imb = __group_imb;
  2125. }
  2126. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2127. /*
  2128. * Busy processors will not participate in power savings
  2129. * balance.
  2130. */
  2131. if (idle == CPU_NOT_IDLE ||
  2132. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2133. goto group_next;
  2134. /*
  2135. * If the local group is idle or completely loaded
  2136. * no need to do power savings balance at this domain
  2137. */
  2138. if (local_group && (this_nr_running >= group_capacity ||
  2139. !this_nr_running))
  2140. power_savings_balance = 0;
  2141. /*
  2142. * If a group is already running at full capacity or idle,
  2143. * don't include that group in power savings calculations
  2144. */
  2145. if (!power_savings_balance || sum_nr_running >= group_capacity
  2146. || !sum_nr_running)
  2147. goto group_next;
  2148. /*
  2149. * Calculate the group which has the least non-idle load.
  2150. * This is the group from where we need to pick up the load
  2151. * for saving power
  2152. */
  2153. if ((sum_nr_running < min_nr_running) ||
  2154. (sum_nr_running == min_nr_running &&
  2155. first_cpu(group->cpumask) <
  2156. first_cpu(group_min->cpumask))) {
  2157. group_min = group;
  2158. min_nr_running = sum_nr_running;
  2159. min_load_per_task = sum_weighted_load /
  2160. sum_nr_running;
  2161. }
  2162. /*
  2163. * Calculate the group which is almost near its
  2164. * capacity but still has some space to pick up some load
  2165. * from other group and save more power
  2166. */
  2167. if (sum_nr_running <= group_capacity - 1) {
  2168. if (sum_nr_running > leader_nr_running ||
  2169. (sum_nr_running == leader_nr_running &&
  2170. first_cpu(group->cpumask) >
  2171. first_cpu(group_leader->cpumask))) {
  2172. group_leader = group;
  2173. leader_nr_running = sum_nr_running;
  2174. }
  2175. }
  2176. group_next:
  2177. #endif
  2178. group = group->next;
  2179. } while (group != sd->groups);
  2180. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2181. goto out_balanced;
  2182. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2183. if (this_load >= avg_load ||
  2184. 100*max_load <= sd->imbalance_pct*this_load)
  2185. goto out_balanced;
  2186. busiest_load_per_task /= busiest_nr_running;
  2187. if (group_imb)
  2188. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2189. /*
  2190. * We're trying to get all the cpus to the average_load, so we don't
  2191. * want to push ourselves above the average load, nor do we wish to
  2192. * reduce the max loaded cpu below the average load, as either of these
  2193. * actions would just result in more rebalancing later, and ping-pong
  2194. * tasks around. Thus we look for the minimum possible imbalance.
  2195. * Negative imbalances (*we* are more loaded than anyone else) will
  2196. * be counted as no imbalance for these purposes -- we can't fix that
  2197. * by pulling tasks to us. Be careful of negative numbers as they'll
  2198. * appear as very large values with unsigned longs.
  2199. */
  2200. if (max_load <= busiest_load_per_task)
  2201. goto out_balanced;
  2202. /*
  2203. * In the presence of smp nice balancing, certain scenarios can have
  2204. * max load less than avg load(as we skip the groups at or below
  2205. * its cpu_power, while calculating max_load..)
  2206. */
  2207. if (max_load < avg_load) {
  2208. *imbalance = 0;
  2209. goto small_imbalance;
  2210. }
  2211. /* Don't want to pull so many tasks that a group would go idle */
  2212. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2213. /* How much load to actually move to equalise the imbalance */
  2214. *imbalance = min(max_pull * busiest->__cpu_power,
  2215. (avg_load - this_load) * this->__cpu_power)
  2216. / SCHED_LOAD_SCALE;
  2217. /*
  2218. * if *imbalance is less than the average load per runnable task
  2219. * there is no gaurantee that any tasks will be moved so we'll have
  2220. * a think about bumping its value to force at least one task to be
  2221. * moved
  2222. */
  2223. if (*imbalance < busiest_load_per_task) {
  2224. unsigned long tmp, pwr_now, pwr_move;
  2225. unsigned int imbn;
  2226. small_imbalance:
  2227. pwr_move = pwr_now = 0;
  2228. imbn = 2;
  2229. if (this_nr_running) {
  2230. this_load_per_task /= this_nr_running;
  2231. if (busiest_load_per_task > this_load_per_task)
  2232. imbn = 1;
  2233. } else
  2234. this_load_per_task = SCHED_LOAD_SCALE;
  2235. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2236. busiest_load_per_task * imbn) {
  2237. *imbalance = busiest_load_per_task;
  2238. return busiest;
  2239. }
  2240. /*
  2241. * OK, we don't have enough imbalance to justify moving tasks,
  2242. * however we may be able to increase total CPU power used by
  2243. * moving them.
  2244. */
  2245. pwr_now += busiest->__cpu_power *
  2246. min(busiest_load_per_task, max_load);
  2247. pwr_now += this->__cpu_power *
  2248. min(this_load_per_task, this_load);
  2249. pwr_now /= SCHED_LOAD_SCALE;
  2250. /* Amount of load we'd subtract */
  2251. tmp = sg_div_cpu_power(busiest,
  2252. busiest_load_per_task * SCHED_LOAD_SCALE);
  2253. if (max_load > tmp)
  2254. pwr_move += busiest->__cpu_power *
  2255. min(busiest_load_per_task, max_load - tmp);
  2256. /* Amount of load we'd add */
  2257. if (max_load * busiest->__cpu_power <
  2258. busiest_load_per_task * SCHED_LOAD_SCALE)
  2259. tmp = sg_div_cpu_power(this,
  2260. max_load * busiest->__cpu_power);
  2261. else
  2262. tmp = sg_div_cpu_power(this,
  2263. busiest_load_per_task * SCHED_LOAD_SCALE);
  2264. pwr_move += this->__cpu_power *
  2265. min(this_load_per_task, this_load + tmp);
  2266. pwr_move /= SCHED_LOAD_SCALE;
  2267. /* Move if we gain throughput */
  2268. if (pwr_move > pwr_now)
  2269. *imbalance = busiest_load_per_task;
  2270. }
  2271. return busiest;
  2272. out_balanced:
  2273. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2274. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2275. goto ret;
  2276. if (this == group_leader && group_leader != group_min) {
  2277. *imbalance = min_load_per_task;
  2278. return group_min;
  2279. }
  2280. #endif
  2281. ret:
  2282. *imbalance = 0;
  2283. return NULL;
  2284. }
  2285. /*
  2286. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2287. */
  2288. static struct rq *
  2289. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2290. unsigned long imbalance, cpumask_t *cpus)
  2291. {
  2292. struct rq *busiest = NULL, *rq;
  2293. unsigned long max_load = 0;
  2294. int i;
  2295. for_each_cpu_mask(i, group->cpumask) {
  2296. unsigned long wl;
  2297. if (!cpu_isset(i, *cpus))
  2298. continue;
  2299. rq = cpu_rq(i);
  2300. wl = weighted_cpuload(i);
  2301. if (rq->nr_running == 1 && wl > imbalance)
  2302. continue;
  2303. if (wl > max_load) {
  2304. max_load = wl;
  2305. busiest = rq;
  2306. }
  2307. }
  2308. return busiest;
  2309. }
  2310. /*
  2311. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2312. * so long as it is large enough.
  2313. */
  2314. #define MAX_PINNED_INTERVAL 512
  2315. /*
  2316. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2317. * tasks if there is an imbalance.
  2318. */
  2319. static int load_balance(int this_cpu, struct rq *this_rq,
  2320. struct sched_domain *sd, enum cpu_idle_type idle,
  2321. int *balance)
  2322. {
  2323. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2324. struct sched_group *group;
  2325. unsigned long imbalance;
  2326. struct rq *busiest;
  2327. cpumask_t cpus = CPU_MASK_ALL;
  2328. unsigned long flags;
  2329. /*
  2330. * When power savings policy is enabled for the parent domain, idle
  2331. * sibling can pick up load irrespective of busy siblings. In this case,
  2332. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2333. * portraying it as CPU_NOT_IDLE.
  2334. */
  2335. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2336. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2337. sd_idle = 1;
  2338. schedstat_inc(sd, lb_count[idle]);
  2339. redo:
  2340. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2341. &cpus, balance);
  2342. if (*balance == 0)
  2343. goto out_balanced;
  2344. if (!group) {
  2345. schedstat_inc(sd, lb_nobusyg[idle]);
  2346. goto out_balanced;
  2347. }
  2348. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2349. if (!busiest) {
  2350. schedstat_inc(sd, lb_nobusyq[idle]);
  2351. goto out_balanced;
  2352. }
  2353. BUG_ON(busiest == this_rq);
  2354. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2355. ld_moved = 0;
  2356. if (busiest->nr_running > 1) {
  2357. /*
  2358. * Attempt to move tasks. If find_busiest_group has found
  2359. * an imbalance but busiest->nr_running <= 1, the group is
  2360. * still unbalanced. ld_moved simply stays zero, so it is
  2361. * correctly treated as an imbalance.
  2362. */
  2363. local_irq_save(flags);
  2364. double_rq_lock(this_rq, busiest);
  2365. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2366. imbalance, sd, idle, &all_pinned);
  2367. double_rq_unlock(this_rq, busiest);
  2368. local_irq_restore(flags);
  2369. /*
  2370. * some other cpu did the load balance for us.
  2371. */
  2372. if (ld_moved && this_cpu != smp_processor_id())
  2373. resched_cpu(this_cpu);
  2374. /* All tasks on this runqueue were pinned by CPU affinity */
  2375. if (unlikely(all_pinned)) {
  2376. cpu_clear(cpu_of(busiest), cpus);
  2377. if (!cpus_empty(cpus))
  2378. goto redo;
  2379. goto out_balanced;
  2380. }
  2381. }
  2382. if (!ld_moved) {
  2383. schedstat_inc(sd, lb_failed[idle]);
  2384. sd->nr_balance_failed++;
  2385. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2386. spin_lock_irqsave(&busiest->lock, flags);
  2387. /* don't kick the migration_thread, if the curr
  2388. * task on busiest cpu can't be moved to this_cpu
  2389. */
  2390. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2391. spin_unlock_irqrestore(&busiest->lock, flags);
  2392. all_pinned = 1;
  2393. goto out_one_pinned;
  2394. }
  2395. if (!busiest->active_balance) {
  2396. busiest->active_balance = 1;
  2397. busiest->push_cpu = this_cpu;
  2398. active_balance = 1;
  2399. }
  2400. spin_unlock_irqrestore(&busiest->lock, flags);
  2401. if (active_balance)
  2402. wake_up_process(busiest->migration_thread);
  2403. /*
  2404. * We've kicked active balancing, reset the failure
  2405. * counter.
  2406. */
  2407. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2408. }
  2409. } else
  2410. sd->nr_balance_failed = 0;
  2411. if (likely(!active_balance)) {
  2412. /* We were unbalanced, so reset the balancing interval */
  2413. sd->balance_interval = sd->min_interval;
  2414. } else {
  2415. /*
  2416. * If we've begun active balancing, start to back off. This
  2417. * case may not be covered by the all_pinned logic if there
  2418. * is only 1 task on the busy runqueue (because we don't call
  2419. * move_tasks).
  2420. */
  2421. if (sd->balance_interval < sd->max_interval)
  2422. sd->balance_interval *= 2;
  2423. }
  2424. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2425. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2426. return -1;
  2427. return ld_moved;
  2428. out_balanced:
  2429. schedstat_inc(sd, lb_balanced[idle]);
  2430. sd->nr_balance_failed = 0;
  2431. out_one_pinned:
  2432. /* tune up the balancing interval */
  2433. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2434. (sd->balance_interval < sd->max_interval))
  2435. sd->balance_interval *= 2;
  2436. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2437. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2438. return -1;
  2439. return 0;
  2440. }
  2441. /*
  2442. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2443. * tasks if there is an imbalance.
  2444. *
  2445. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2446. * this_rq is locked.
  2447. */
  2448. static int
  2449. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2450. {
  2451. struct sched_group *group;
  2452. struct rq *busiest = NULL;
  2453. unsigned long imbalance;
  2454. int ld_moved = 0;
  2455. int sd_idle = 0;
  2456. int all_pinned = 0;
  2457. cpumask_t cpus = CPU_MASK_ALL;
  2458. /*
  2459. * When power savings policy is enabled for the parent domain, idle
  2460. * sibling can pick up load irrespective of busy siblings. In this case,
  2461. * let the state of idle sibling percolate up as IDLE, instead of
  2462. * portraying it as CPU_NOT_IDLE.
  2463. */
  2464. if (sd->flags & SD_SHARE_CPUPOWER &&
  2465. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2466. sd_idle = 1;
  2467. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2468. redo:
  2469. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2470. &sd_idle, &cpus, NULL);
  2471. if (!group) {
  2472. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2473. goto out_balanced;
  2474. }
  2475. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2476. &cpus);
  2477. if (!busiest) {
  2478. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2479. goto out_balanced;
  2480. }
  2481. BUG_ON(busiest == this_rq);
  2482. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2483. ld_moved = 0;
  2484. if (busiest->nr_running > 1) {
  2485. /* Attempt to move tasks */
  2486. double_lock_balance(this_rq, busiest);
  2487. /* this_rq->clock is already updated */
  2488. update_rq_clock(busiest);
  2489. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2490. imbalance, sd, CPU_NEWLY_IDLE,
  2491. &all_pinned);
  2492. spin_unlock(&busiest->lock);
  2493. if (unlikely(all_pinned)) {
  2494. cpu_clear(cpu_of(busiest), cpus);
  2495. if (!cpus_empty(cpus))
  2496. goto redo;
  2497. }
  2498. }
  2499. if (!ld_moved) {
  2500. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2501. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2502. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2503. return -1;
  2504. } else
  2505. sd->nr_balance_failed = 0;
  2506. return ld_moved;
  2507. out_balanced:
  2508. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2509. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2510. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2511. return -1;
  2512. sd->nr_balance_failed = 0;
  2513. return 0;
  2514. }
  2515. /*
  2516. * idle_balance is called by schedule() if this_cpu is about to become
  2517. * idle. Attempts to pull tasks from other CPUs.
  2518. */
  2519. static void idle_balance(int this_cpu, struct rq *this_rq)
  2520. {
  2521. struct sched_domain *sd;
  2522. int pulled_task = -1;
  2523. unsigned long next_balance = jiffies + HZ;
  2524. for_each_domain(this_cpu, sd) {
  2525. unsigned long interval;
  2526. if (!(sd->flags & SD_LOAD_BALANCE))
  2527. continue;
  2528. if (sd->flags & SD_BALANCE_NEWIDLE)
  2529. /* If we've pulled tasks over stop searching: */
  2530. pulled_task = load_balance_newidle(this_cpu,
  2531. this_rq, sd);
  2532. interval = msecs_to_jiffies(sd->balance_interval);
  2533. if (time_after(next_balance, sd->last_balance + interval))
  2534. next_balance = sd->last_balance + interval;
  2535. if (pulled_task)
  2536. break;
  2537. }
  2538. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2539. /*
  2540. * We are going idle. next_balance may be set based on
  2541. * a busy processor. So reset next_balance.
  2542. */
  2543. this_rq->next_balance = next_balance;
  2544. }
  2545. }
  2546. /*
  2547. * active_load_balance is run by migration threads. It pushes running tasks
  2548. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2549. * running on each physical CPU where possible, and avoids physical /
  2550. * logical imbalances.
  2551. *
  2552. * Called with busiest_rq locked.
  2553. */
  2554. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2555. {
  2556. int target_cpu = busiest_rq->push_cpu;
  2557. struct sched_domain *sd;
  2558. struct rq *target_rq;
  2559. /* Is there any task to move? */
  2560. if (busiest_rq->nr_running <= 1)
  2561. return;
  2562. target_rq = cpu_rq(target_cpu);
  2563. /*
  2564. * This condition is "impossible", if it occurs
  2565. * we need to fix it. Originally reported by
  2566. * Bjorn Helgaas on a 128-cpu setup.
  2567. */
  2568. BUG_ON(busiest_rq == target_rq);
  2569. /* move a task from busiest_rq to target_rq */
  2570. double_lock_balance(busiest_rq, target_rq);
  2571. update_rq_clock(busiest_rq);
  2572. update_rq_clock(target_rq);
  2573. /* Search for an sd spanning us and the target CPU. */
  2574. for_each_domain(target_cpu, sd) {
  2575. if ((sd->flags & SD_LOAD_BALANCE) &&
  2576. cpu_isset(busiest_cpu, sd->span))
  2577. break;
  2578. }
  2579. if (likely(sd)) {
  2580. schedstat_inc(sd, alb_count);
  2581. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2582. sd, CPU_IDLE))
  2583. schedstat_inc(sd, alb_pushed);
  2584. else
  2585. schedstat_inc(sd, alb_failed);
  2586. }
  2587. spin_unlock(&target_rq->lock);
  2588. }
  2589. #ifdef CONFIG_NO_HZ
  2590. static struct {
  2591. atomic_t load_balancer;
  2592. cpumask_t cpu_mask;
  2593. } nohz ____cacheline_aligned = {
  2594. .load_balancer = ATOMIC_INIT(-1),
  2595. .cpu_mask = CPU_MASK_NONE,
  2596. };
  2597. /*
  2598. * This routine will try to nominate the ilb (idle load balancing)
  2599. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2600. * load balancing on behalf of all those cpus. If all the cpus in the system
  2601. * go into this tickless mode, then there will be no ilb owner (as there is
  2602. * no need for one) and all the cpus will sleep till the next wakeup event
  2603. * arrives...
  2604. *
  2605. * For the ilb owner, tick is not stopped. And this tick will be used
  2606. * for idle load balancing. ilb owner will still be part of
  2607. * nohz.cpu_mask..
  2608. *
  2609. * While stopping the tick, this cpu will become the ilb owner if there
  2610. * is no other owner. And will be the owner till that cpu becomes busy
  2611. * or if all cpus in the system stop their ticks at which point
  2612. * there is no need for ilb owner.
  2613. *
  2614. * When the ilb owner becomes busy, it nominates another owner, during the
  2615. * next busy scheduler_tick()
  2616. */
  2617. int select_nohz_load_balancer(int stop_tick)
  2618. {
  2619. int cpu = smp_processor_id();
  2620. if (stop_tick) {
  2621. cpu_set(cpu, nohz.cpu_mask);
  2622. cpu_rq(cpu)->in_nohz_recently = 1;
  2623. /*
  2624. * If we are going offline and still the leader, give up!
  2625. */
  2626. if (cpu_is_offline(cpu) &&
  2627. atomic_read(&nohz.load_balancer) == cpu) {
  2628. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2629. BUG();
  2630. return 0;
  2631. }
  2632. /* time for ilb owner also to sleep */
  2633. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2634. if (atomic_read(&nohz.load_balancer) == cpu)
  2635. atomic_set(&nohz.load_balancer, -1);
  2636. return 0;
  2637. }
  2638. if (atomic_read(&nohz.load_balancer) == -1) {
  2639. /* make me the ilb owner */
  2640. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2641. return 1;
  2642. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2643. return 1;
  2644. } else {
  2645. if (!cpu_isset(cpu, nohz.cpu_mask))
  2646. return 0;
  2647. cpu_clear(cpu, nohz.cpu_mask);
  2648. if (atomic_read(&nohz.load_balancer) == cpu)
  2649. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2650. BUG();
  2651. }
  2652. return 0;
  2653. }
  2654. #endif
  2655. static DEFINE_SPINLOCK(balancing);
  2656. /*
  2657. * It checks each scheduling domain to see if it is due to be balanced,
  2658. * and initiates a balancing operation if so.
  2659. *
  2660. * Balancing parameters are set up in arch_init_sched_domains.
  2661. */
  2662. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2663. {
  2664. int balance = 1;
  2665. struct rq *rq = cpu_rq(cpu);
  2666. unsigned long interval;
  2667. struct sched_domain *sd;
  2668. /* Earliest time when we have to do rebalance again */
  2669. unsigned long next_balance = jiffies + 60*HZ;
  2670. int update_next_balance = 0;
  2671. for_each_domain(cpu, sd) {
  2672. if (!(sd->flags & SD_LOAD_BALANCE))
  2673. continue;
  2674. interval = sd->balance_interval;
  2675. if (idle != CPU_IDLE)
  2676. interval *= sd->busy_factor;
  2677. /* scale ms to jiffies */
  2678. interval = msecs_to_jiffies(interval);
  2679. if (unlikely(!interval))
  2680. interval = 1;
  2681. if (interval > HZ*NR_CPUS/10)
  2682. interval = HZ*NR_CPUS/10;
  2683. if (sd->flags & SD_SERIALIZE) {
  2684. if (!spin_trylock(&balancing))
  2685. goto out;
  2686. }
  2687. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2688. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2689. /*
  2690. * We've pulled tasks over so either we're no
  2691. * longer idle, or one of our SMT siblings is
  2692. * not idle.
  2693. */
  2694. idle = CPU_NOT_IDLE;
  2695. }
  2696. sd->last_balance = jiffies;
  2697. }
  2698. if (sd->flags & SD_SERIALIZE)
  2699. spin_unlock(&balancing);
  2700. out:
  2701. if (time_after(next_balance, sd->last_balance + interval)) {
  2702. next_balance = sd->last_balance + interval;
  2703. update_next_balance = 1;
  2704. }
  2705. /*
  2706. * Stop the load balance at this level. There is another
  2707. * CPU in our sched group which is doing load balancing more
  2708. * actively.
  2709. */
  2710. if (!balance)
  2711. break;
  2712. }
  2713. /*
  2714. * next_balance will be updated only when there is a need.
  2715. * When the cpu is attached to null domain for ex, it will not be
  2716. * updated.
  2717. */
  2718. if (likely(update_next_balance))
  2719. rq->next_balance = next_balance;
  2720. }
  2721. /*
  2722. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2723. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2724. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2725. */
  2726. static void run_rebalance_domains(struct softirq_action *h)
  2727. {
  2728. int this_cpu = smp_processor_id();
  2729. struct rq *this_rq = cpu_rq(this_cpu);
  2730. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2731. CPU_IDLE : CPU_NOT_IDLE;
  2732. rebalance_domains(this_cpu, idle);
  2733. #ifdef CONFIG_NO_HZ
  2734. /*
  2735. * If this cpu is the owner for idle load balancing, then do the
  2736. * balancing on behalf of the other idle cpus whose ticks are
  2737. * stopped.
  2738. */
  2739. if (this_rq->idle_at_tick &&
  2740. atomic_read(&nohz.load_balancer) == this_cpu) {
  2741. cpumask_t cpus = nohz.cpu_mask;
  2742. struct rq *rq;
  2743. int balance_cpu;
  2744. cpu_clear(this_cpu, cpus);
  2745. for_each_cpu_mask(balance_cpu, cpus) {
  2746. /*
  2747. * If this cpu gets work to do, stop the load balancing
  2748. * work being done for other cpus. Next load
  2749. * balancing owner will pick it up.
  2750. */
  2751. if (need_resched())
  2752. break;
  2753. rebalance_domains(balance_cpu, CPU_IDLE);
  2754. rq = cpu_rq(balance_cpu);
  2755. if (time_after(this_rq->next_balance, rq->next_balance))
  2756. this_rq->next_balance = rq->next_balance;
  2757. }
  2758. }
  2759. #endif
  2760. }
  2761. /*
  2762. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2763. *
  2764. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2765. * idle load balancing owner or decide to stop the periodic load balancing,
  2766. * if the whole system is idle.
  2767. */
  2768. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2769. {
  2770. #ifdef CONFIG_NO_HZ
  2771. /*
  2772. * If we were in the nohz mode recently and busy at the current
  2773. * scheduler tick, then check if we need to nominate new idle
  2774. * load balancer.
  2775. */
  2776. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2777. rq->in_nohz_recently = 0;
  2778. if (atomic_read(&nohz.load_balancer) == cpu) {
  2779. cpu_clear(cpu, nohz.cpu_mask);
  2780. atomic_set(&nohz.load_balancer, -1);
  2781. }
  2782. if (atomic_read(&nohz.load_balancer) == -1) {
  2783. /*
  2784. * simple selection for now: Nominate the
  2785. * first cpu in the nohz list to be the next
  2786. * ilb owner.
  2787. *
  2788. * TBD: Traverse the sched domains and nominate
  2789. * the nearest cpu in the nohz.cpu_mask.
  2790. */
  2791. int ilb = first_cpu(nohz.cpu_mask);
  2792. if (ilb != NR_CPUS)
  2793. resched_cpu(ilb);
  2794. }
  2795. }
  2796. /*
  2797. * If this cpu is idle and doing idle load balancing for all the
  2798. * cpus with ticks stopped, is it time for that to stop?
  2799. */
  2800. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2801. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2802. resched_cpu(cpu);
  2803. return;
  2804. }
  2805. /*
  2806. * If this cpu is idle and the idle load balancing is done by
  2807. * someone else, then no need raise the SCHED_SOFTIRQ
  2808. */
  2809. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2810. cpu_isset(cpu, nohz.cpu_mask))
  2811. return;
  2812. #endif
  2813. if (time_after_eq(jiffies, rq->next_balance))
  2814. raise_softirq(SCHED_SOFTIRQ);
  2815. }
  2816. #else /* CONFIG_SMP */
  2817. /*
  2818. * on UP we do not need to balance between CPUs:
  2819. */
  2820. static inline void idle_balance(int cpu, struct rq *rq)
  2821. {
  2822. }
  2823. /* Avoid "used but not defined" warning on UP */
  2824. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2825. unsigned long max_nr_move, unsigned long max_load_move,
  2826. struct sched_domain *sd, enum cpu_idle_type idle,
  2827. int *all_pinned, unsigned long *load_moved,
  2828. int *this_best_prio, struct rq_iterator *iterator)
  2829. {
  2830. *load_moved = 0;
  2831. return 0;
  2832. }
  2833. #endif
  2834. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2835. EXPORT_PER_CPU_SYMBOL(kstat);
  2836. /*
  2837. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2838. * that have not yet been banked in case the task is currently running.
  2839. */
  2840. unsigned long long task_sched_runtime(struct task_struct *p)
  2841. {
  2842. unsigned long flags;
  2843. u64 ns, delta_exec;
  2844. struct rq *rq;
  2845. rq = task_rq_lock(p, &flags);
  2846. ns = p->se.sum_exec_runtime;
  2847. if (rq->curr == p) {
  2848. update_rq_clock(rq);
  2849. delta_exec = rq->clock - p->se.exec_start;
  2850. if ((s64)delta_exec > 0)
  2851. ns += delta_exec;
  2852. }
  2853. task_rq_unlock(rq, &flags);
  2854. return ns;
  2855. }
  2856. /*
  2857. * Account user cpu time to a process.
  2858. * @p: the process that the cpu time gets accounted to
  2859. * @hardirq_offset: the offset to subtract from hardirq_count()
  2860. * @cputime: the cpu time spent in user space since the last update
  2861. */
  2862. void account_user_time(struct task_struct *p, cputime_t cputime)
  2863. {
  2864. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2865. cputime64_t tmp;
  2866. struct rq *rq = this_rq();
  2867. p->utime = cputime_add(p->utime, cputime);
  2868. if (p != rq->idle)
  2869. cpuacct_charge(p, cputime);
  2870. /* Add user time to cpustat. */
  2871. tmp = cputime_to_cputime64(cputime);
  2872. if (TASK_NICE(p) > 0)
  2873. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2874. else
  2875. cpustat->user = cputime64_add(cpustat->user, tmp);
  2876. }
  2877. /*
  2878. * Account guest cpu time to a process.
  2879. * @p: the process that the cpu time gets accounted to
  2880. * @cputime: the cpu time spent in virtual machine since the last update
  2881. */
  2882. void account_guest_time(struct task_struct *p, cputime_t cputime)
  2883. {
  2884. cputime64_t tmp;
  2885. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2886. tmp = cputime_to_cputime64(cputime);
  2887. p->utime = cputime_add(p->utime, cputime);
  2888. p->gtime = cputime_add(p->gtime, cputime);
  2889. cpustat->user = cputime64_add(cpustat->user, tmp);
  2890. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2891. }
  2892. /*
  2893. * Account scaled user cpu time to a process.
  2894. * @p: the process that the cpu time gets accounted to
  2895. * @cputime: the cpu time spent in user space since the last update
  2896. */
  2897. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2898. {
  2899. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2900. }
  2901. /*
  2902. * Account system cpu time to a process.
  2903. * @p: the process that the cpu time gets accounted to
  2904. * @hardirq_offset: the offset to subtract from hardirq_count()
  2905. * @cputime: the cpu time spent in kernel space since the last update
  2906. */
  2907. void account_system_time(struct task_struct *p, int hardirq_offset,
  2908. cputime_t cputime)
  2909. {
  2910. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2911. struct rq *rq = this_rq();
  2912. cputime64_t tmp;
  2913. if (p->flags & PF_VCPU) {
  2914. account_guest_time(p, cputime);
  2915. p->flags &= ~PF_VCPU;
  2916. return;
  2917. }
  2918. p->stime = cputime_add(p->stime, cputime);
  2919. /* Add system time to cpustat. */
  2920. tmp = cputime_to_cputime64(cputime);
  2921. if (hardirq_count() - hardirq_offset)
  2922. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2923. else if (softirq_count())
  2924. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2925. else if (p != rq->idle) {
  2926. cpustat->system = cputime64_add(cpustat->system, tmp);
  2927. cpuacct_charge(p, cputime);
  2928. } else if (atomic_read(&rq->nr_iowait) > 0)
  2929. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2930. else
  2931. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2932. /* Account for system time used */
  2933. acct_update_integrals(p);
  2934. }
  2935. /*
  2936. * Account scaled system cpu time to a process.
  2937. * @p: the process that the cpu time gets accounted to
  2938. * @hardirq_offset: the offset to subtract from hardirq_count()
  2939. * @cputime: the cpu time spent in kernel space since the last update
  2940. */
  2941. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2942. {
  2943. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2944. }
  2945. /*
  2946. * Account for involuntary wait time.
  2947. * @p: the process from which the cpu time has been stolen
  2948. * @steal: the cpu time spent in involuntary wait
  2949. */
  2950. void account_steal_time(struct task_struct *p, cputime_t steal)
  2951. {
  2952. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2953. cputime64_t tmp = cputime_to_cputime64(steal);
  2954. struct rq *rq = this_rq();
  2955. if (p == rq->idle) {
  2956. p->stime = cputime_add(p->stime, steal);
  2957. if (atomic_read(&rq->nr_iowait) > 0)
  2958. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2959. else
  2960. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2961. } else {
  2962. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2963. cpuacct_charge(p, -tmp);
  2964. }
  2965. }
  2966. /*
  2967. * This function gets called by the timer code, with HZ frequency.
  2968. * We call it with interrupts disabled.
  2969. *
  2970. * It also gets called by the fork code, when changing the parent's
  2971. * timeslices.
  2972. */
  2973. void scheduler_tick(void)
  2974. {
  2975. int cpu = smp_processor_id();
  2976. struct rq *rq = cpu_rq(cpu);
  2977. struct task_struct *curr = rq->curr;
  2978. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2979. spin_lock(&rq->lock);
  2980. __update_rq_clock(rq);
  2981. /*
  2982. * Let rq->clock advance by at least TICK_NSEC:
  2983. */
  2984. if (unlikely(rq->clock < next_tick))
  2985. rq->clock = next_tick;
  2986. rq->tick_timestamp = rq->clock;
  2987. update_cpu_load(rq);
  2988. if (curr != rq->idle) /* FIXME: needed? */
  2989. curr->sched_class->task_tick(rq, curr);
  2990. spin_unlock(&rq->lock);
  2991. #ifdef CONFIG_SMP
  2992. rq->idle_at_tick = idle_cpu(cpu);
  2993. trigger_load_balance(rq, cpu);
  2994. #endif
  2995. }
  2996. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2997. void fastcall add_preempt_count(int val)
  2998. {
  2999. /*
  3000. * Underflow?
  3001. */
  3002. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3003. return;
  3004. preempt_count() += val;
  3005. /*
  3006. * Spinlock count overflowing soon?
  3007. */
  3008. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3009. PREEMPT_MASK - 10);
  3010. }
  3011. EXPORT_SYMBOL(add_preempt_count);
  3012. void fastcall sub_preempt_count(int val)
  3013. {
  3014. /*
  3015. * Underflow?
  3016. */
  3017. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3018. return;
  3019. /*
  3020. * Is the spinlock portion underflowing?
  3021. */
  3022. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3023. !(preempt_count() & PREEMPT_MASK)))
  3024. return;
  3025. preempt_count() -= val;
  3026. }
  3027. EXPORT_SYMBOL(sub_preempt_count);
  3028. #endif
  3029. /*
  3030. * Print scheduling while atomic bug:
  3031. */
  3032. static noinline void __schedule_bug(struct task_struct *prev)
  3033. {
  3034. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  3035. prev->comm, preempt_count(), task_pid_nr(prev));
  3036. debug_show_held_locks(prev);
  3037. if (irqs_disabled())
  3038. print_irqtrace_events(prev);
  3039. dump_stack();
  3040. }
  3041. /*
  3042. * Various schedule()-time debugging checks and statistics:
  3043. */
  3044. static inline void schedule_debug(struct task_struct *prev)
  3045. {
  3046. /*
  3047. * Test if we are atomic. Since do_exit() needs to call into
  3048. * schedule() atomically, we ignore that path for now.
  3049. * Otherwise, whine if we are scheduling when we should not be.
  3050. */
  3051. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3052. __schedule_bug(prev);
  3053. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3054. schedstat_inc(this_rq(), sched_count);
  3055. #ifdef CONFIG_SCHEDSTATS
  3056. if (unlikely(prev->lock_depth >= 0)) {
  3057. schedstat_inc(this_rq(), bkl_count);
  3058. schedstat_inc(prev, sched_info.bkl_count);
  3059. }
  3060. #endif
  3061. }
  3062. /*
  3063. * Pick up the highest-prio task:
  3064. */
  3065. static inline struct task_struct *
  3066. pick_next_task(struct rq *rq, struct task_struct *prev)
  3067. {
  3068. const struct sched_class *class;
  3069. struct task_struct *p;
  3070. /*
  3071. * Optimization: we know that if all tasks are in
  3072. * the fair class we can call that function directly:
  3073. */
  3074. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3075. p = fair_sched_class.pick_next_task(rq);
  3076. if (likely(p))
  3077. return p;
  3078. }
  3079. class = sched_class_highest;
  3080. for ( ; ; ) {
  3081. p = class->pick_next_task(rq);
  3082. if (p)
  3083. return p;
  3084. /*
  3085. * Will never be NULL as the idle class always
  3086. * returns a non-NULL p:
  3087. */
  3088. class = class->next;
  3089. }
  3090. }
  3091. /*
  3092. * schedule() is the main scheduler function.
  3093. */
  3094. asmlinkage void __sched schedule(void)
  3095. {
  3096. struct task_struct *prev, *next;
  3097. long *switch_count;
  3098. struct rq *rq;
  3099. int cpu;
  3100. need_resched:
  3101. preempt_disable();
  3102. cpu = smp_processor_id();
  3103. rq = cpu_rq(cpu);
  3104. rcu_qsctr_inc(cpu);
  3105. prev = rq->curr;
  3106. switch_count = &prev->nivcsw;
  3107. release_kernel_lock(prev);
  3108. need_resched_nonpreemptible:
  3109. schedule_debug(prev);
  3110. /*
  3111. * Do the rq-clock update outside the rq lock:
  3112. */
  3113. local_irq_disable();
  3114. __update_rq_clock(rq);
  3115. spin_lock(&rq->lock);
  3116. clear_tsk_need_resched(prev);
  3117. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3118. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3119. unlikely(signal_pending(prev)))) {
  3120. prev->state = TASK_RUNNING;
  3121. } else {
  3122. deactivate_task(rq, prev, 1);
  3123. }
  3124. switch_count = &prev->nvcsw;
  3125. }
  3126. if (unlikely(!rq->nr_running))
  3127. idle_balance(cpu, rq);
  3128. prev->sched_class->put_prev_task(rq, prev);
  3129. next = pick_next_task(rq, prev);
  3130. sched_info_switch(prev, next);
  3131. if (likely(prev != next)) {
  3132. rq->nr_switches++;
  3133. rq->curr = next;
  3134. ++*switch_count;
  3135. context_switch(rq, prev, next); /* unlocks the rq */
  3136. } else
  3137. spin_unlock_irq(&rq->lock);
  3138. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3139. cpu = smp_processor_id();
  3140. rq = cpu_rq(cpu);
  3141. goto need_resched_nonpreemptible;
  3142. }
  3143. preempt_enable_no_resched();
  3144. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3145. goto need_resched;
  3146. }
  3147. EXPORT_SYMBOL(schedule);
  3148. #ifdef CONFIG_PREEMPT
  3149. /*
  3150. * this is the entry point to schedule() from in-kernel preemption
  3151. * off of preempt_enable. Kernel preemptions off return from interrupt
  3152. * occur there and call schedule directly.
  3153. */
  3154. asmlinkage void __sched preempt_schedule(void)
  3155. {
  3156. struct thread_info *ti = current_thread_info();
  3157. #ifdef CONFIG_PREEMPT_BKL
  3158. struct task_struct *task = current;
  3159. int saved_lock_depth;
  3160. #endif
  3161. /*
  3162. * If there is a non-zero preempt_count or interrupts are disabled,
  3163. * we do not want to preempt the current task. Just return..
  3164. */
  3165. if (likely(ti->preempt_count || irqs_disabled()))
  3166. return;
  3167. do {
  3168. add_preempt_count(PREEMPT_ACTIVE);
  3169. /*
  3170. * We keep the big kernel semaphore locked, but we
  3171. * clear ->lock_depth so that schedule() doesnt
  3172. * auto-release the semaphore:
  3173. */
  3174. #ifdef CONFIG_PREEMPT_BKL
  3175. saved_lock_depth = task->lock_depth;
  3176. task->lock_depth = -1;
  3177. #endif
  3178. schedule();
  3179. #ifdef CONFIG_PREEMPT_BKL
  3180. task->lock_depth = saved_lock_depth;
  3181. #endif
  3182. sub_preempt_count(PREEMPT_ACTIVE);
  3183. /*
  3184. * Check again in case we missed a preemption opportunity
  3185. * between schedule and now.
  3186. */
  3187. barrier();
  3188. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3189. }
  3190. EXPORT_SYMBOL(preempt_schedule);
  3191. /*
  3192. * this is the entry point to schedule() from kernel preemption
  3193. * off of irq context.
  3194. * Note, that this is called and return with irqs disabled. This will
  3195. * protect us against recursive calling from irq.
  3196. */
  3197. asmlinkage void __sched preempt_schedule_irq(void)
  3198. {
  3199. struct thread_info *ti = current_thread_info();
  3200. #ifdef CONFIG_PREEMPT_BKL
  3201. struct task_struct *task = current;
  3202. int saved_lock_depth;
  3203. #endif
  3204. /* Catch callers which need to be fixed */
  3205. BUG_ON(ti->preempt_count || !irqs_disabled());
  3206. do {
  3207. add_preempt_count(PREEMPT_ACTIVE);
  3208. /*
  3209. * We keep the big kernel semaphore locked, but we
  3210. * clear ->lock_depth so that schedule() doesnt
  3211. * auto-release the semaphore:
  3212. */
  3213. #ifdef CONFIG_PREEMPT_BKL
  3214. saved_lock_depth = task->lock_depth;
  3215. task->lock_depth = -1;
  3216. #endif
  3217. local_irq_enable();
  3218. schedule();
  3219. local_irq_disable();
  3220. #ifdef CONFIG_PREEMPT_BKL
  3221. task->lock_depth = saved_lock_depth;
  3222. #endif
  3223. sub_preempt_count(PREEMPT_ACTIVE);
  3224. /*
  3225. * Check again in case we missed a preemption opportunity
  3226. * between schedule and now.
  3227. */
  3228. barrier();
  3229. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3230. }
  3231. #endif /* CONFIG_PREEMPT */
  3232. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3233. void *key)
  3234. {
  3235. return try_to_wake_up(curr->private, mode, sync);
  3236. }
  3237. EXPORT_SYMBOL(default_wake_function);
  3238. /*
  3239. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3240. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3241. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3242. *
  3243. * There are circumstances in which we can try to wake a task which has already
  3244. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3245. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3246. */
  3247. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3248. int nr_exclusive, int sync, void *key)
  3249. {
  3250. wait_queue_t *curr, *next;
  3251. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3252. unsigned flags = curr->flags;
  3253. if (curr->func(curr, mode, sync, key) &&
  3254. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3255. break;
  3256. }
  3257. }
  3258. /**
  3259. * __wake_up - wake up threads blocked on a waitqueue.
  3260. * @q: the waitqueue
  3261. * @mode: which threads
  3262. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3263. * @key: is directly passed to the wakeup function
  3264. */
  3265. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3266. int nr_exclusive, void *key)
  3267. {
  3268. unsigned long flags;
  3269. spin_lock_irqsave(&q->lock, flags);
  3270. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3271. spin_unlock_irqrestore(&q->lock, flags);
  3272. }
  3273. EXPORT_SYMBOL(__wake_up);
  3274. /*
  3275. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3276. */
  3277. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3278. {
  3279. __wake_up_common(q, mode, 1, 0, NULL);
  3280. }
  3281. /**
  3282. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3283. * @q: the waitqueue
  3284. * @mode: which threads
  3285. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3286. *
  3287. * The sync wakeup differs that the waker knows that it will schedule
  3288. * away soon, so while the target thread will be woken up, it will not
  3289. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3290. * with each other. This can prevent needless bouncing between CPUs.
  3291. *
  3292. * On UP it can prevent extra preemption.
  3293. */
  3294. void fastcall
  3295. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3296. {
  3297. unsigned long flags;
  3298. int sync = 1;
  3299. if (unlikely(!q))
  3300. return;
  3301. if (unlikely(!nr_exclusive))
  3302. sync = 0;
  3303. spin_lock_irqsave(&q->lock, flags);
  3304. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3305. spin_unlock_irqrestore(&q->lock, flags);
  3306. }
  3307. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3308. void fastcall complete(struct completion *x)
  3309. {
  3310. unsigned long flags;
  3311. spin_lock_irqsave(&x->wait.lock, flags);
  3312. x->done++;
  3313. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3314. 1, 0, NULL);
  3315. spin_unlock_irqrestore(&x->wait.lock, flags);
  3316. }
  3317. EXPORT_SYMBOL(complete);
  3318. void fastcall complete_all(struct completion *x)
  3319. {
  3320. unsigned long flags;
  3321. spin_lock_irqsave(&x->wait.lock, flags);
  3322. x->done += UINT_MAX/2;
  3323. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3324. 0, 0, NULL);
  3325. spin_unlock_irqrestore(&x->wait.lock, flags);
  3326. }
  3327. EXPORT_SYMBOL(complete_all);
  3328. static inline long __sched
  3329. do_wait_for_common(struct completion *x, long timeout, int state)
  3330. {
  3331. if (!x->done) {
  3332. DECLARE_WAITQUEUE(wait, current);
  3333. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3334. __add_wait_queue_tail(&x->wait, &wait);
  3335. do {
  3336. if (state == TASK_INTERRUPTIBLE &&
  3337. signal_pending(current)) {
  3338. __remove_wait_queue(&x->wait, &wait);
  3339. return -ERESTARTSYS;
  3340. }
  3341. __set_current_state(state);
  3342. spin_unlock_irq(&x->wait.lock);
  3343. timeout = schedule_timeout(timeout);
  3344. spin_lock_irq(&x->wait.lock);
  3345. if (!timeout) {
  3346. __remove_wait_queue(&x->wait, &wait);
  3347. return timeout;
  3348. }
  3349. } while (!x->done);
  3350. __remove_wait_queue(&x->wait, &wait);
  3351. }
  3352. x->done--;
  3353. return timeout;
  3354. }
  3355. static long __sched
  3356. wait_for_common(struct completion *x, long timeout, int state)
  3357. {
  3358. might_sleep();
  3359. spin_lock_irq(&x->wait.lock);
  3360. timeout = do_wait_for_common(x, timeout, state);
  3361. spin_unlock_irq(&x->wait.lock);
  3362. return timeout;
  3363. }
  3364. void fastcall __sched wait_for_completion(struct completion *x)
  3365. {
  3366. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3367. }
  3368. EXPORT_SYMBOL(wait_for_completion);
  3369. unsigned long fastcall __sched
  3370. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3371. {
  3372. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3373. }
  3374. EXPORT_SYMBOL(wait_for_completion_timeout);
  3375. int __sched wait_for_completion_interruptible(struct completion *x)
  3376. {
  3377. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3378. if (t == -ERESTARTSYS)
  3379. return t;
  3380. return 0;
  3381. }
  3382. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3383. unsigned long fastcall __sched
  3384. wait_for_completion_interruptible_timeout(struct completion *x,
  3385. unsigned long timeout)
  3386. {
  3387. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3388. }
  3389. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3390. static long __sched
  3391. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3392. {
  3393. unsigned long flags;
  3394. wait_queue_t wait;
  3395. init_waitqueue_entry(&wait, current);
  3396. __set_current_state(state);
  3397. spin_lock_irqsave(&q->lock, flags);
  3398. __add_wait_queue(q, &wait);
  3399. spin_unlock(&q->lock);
  3400. timeout = schedule_timeout(timeout);
  3401. spin_lock_irq(&q->lock);
  3402. __remove_wait_queue(q, &wait);
  3403. spin_unlock_irqrestore(&q->lock, flags);
  3404. return timeout;
  3405. }
  3406. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3407. {
  3408. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3409. }
  3410. EXPORT_SYMBOL(interruptible_sleep_on);
  3411. long __sched
  3412. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3413. {
  3414. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3415. }
  3416. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3417. void __sched sleep_on(wait_queue_head_t *q)
  3418. {
  3419. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3420. }
  3421. EXPORT_SYMBOL(sleep_on);
  3422. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3423. {
  3424. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3425. }
  3426. EXPORT_SYMBOL(sleep_on_timeout);
  3427. #ifdef CONFIG_RT_MUTEXES
  3428. /*
  3429. * rt_mutex_setprio - set the current priority of a task
  3430. * @p: task
  3431. * @prio: prio value (kernel-internal form)
  3432. *
  3433. * This function changes the 'effective' priority of a task. It does
  3434. * not touch ->normal_prio like __setscheduler().
  3435. *
  3436. * Used by the rt_mutex code to implement priority inheritance logic.
  3437. */
  3438. void rt_mutex_setprio(struct task_struct *p, int prio)
  3439. {
  3440. unsigned long flags;
  3441. int oldprio, on_rq, running;
  3442. struct rq *rq;
  3443. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3444. rq = task_rq_lock(p, &flags);
  3445. update_rq_clock(rq);
  3446. oldprio = p->prio;
  3447. on_rq = p->se.on_rq;
  3448. running = task_running(rq, p);
  3449. if (on_rq) {
  3450. dequeue_task(rq, p, 0);
  3451. if (running)
  3452. p->sched_class->put_prev_task(rq, p);
  3453. }
  3454. if (rt_prio(prio))
  3455. p->sched_class = &rt_sched_class;
  3456. else
  3457. p->sched_class = &fair_sched_class;
  3458. p->prio = prio;
  3459. if (on_rq) {
  3460. if (running)
  3461. p->sched_class->set_curr_task(rq);
  3462. enqueue_task(rq, p, 0);
  3463. /*
  3464. * Reschedule if we are currently running on this runqueue and
  3465. * our priority decreased, or if we are not currently running on
  3466. * this runqueue and our priority is higher than the current's
  3467. */
  3468. if (running) {
  3469. if (p->prio > oldprio)
  3470. resched_task(rq->curr);
  3471. } else {
  3472. check_preempt_curr(rq, p);
  3473. }
  3474. }
  3475. task_rq_unlock(rq, &flags);
  3476. }
  3477. #endif
  3478. void set_user_nice(struct task_struct *p, long nice)
  3479. {
  3480. int old_prio, delta, on_rq;
  3481. unsigned long flags;
  3482. struct rq *rq;
  3483. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3484. return;
  3485. /*
  3486. * We have to be careful, if called from sys_setpriority(),
  3487. * the task might be in the middle of scheduling on another CPU.
  3488. */
  3489. rq = task_rq_lock(p, &flags);
  3490. update_rq_clock(rq);
  3491. /*
  3492. * The RT priorities are set via sched_setscheduler(), but we still
  3493. * allow the 'normal' nice value to be set - but as expected
  3494. * it wont have any effect on scheduling until the task is
  3495. * SCHED_FIFO/SCHED_RR:
  3496. */
  3497. if (task_has_rt_policy(p)) {
  3498. p->static_prio = NICE_TO_PRIO(nice);
  3499. goto out_unlock;
  3500. }
  3501. on_rq = p->se.on_rq;
  3502. if (on_rq) {
  3503. dequeue_task(rq, p, 0);
  3504. dec_load(rq, p);
  3505. }
  3506. p->static_prio = NICE_TO_PRIO(nice);
  3507. set_load_weight(p);
  3508. old_prio = p->prio;
  3509. p->prio = effective_prio(p);
  3510. delta = p->prio - old_prio;
  3511. if (on_rq) {
  3512. enqueue_task(rq, p, 0);
  3513. inc_load(rq, p);
  3514. /*
  3515. * If the task increased its priority or is running and
  3516. * lowered its priority, then reschedule its CPU:
  3517. */
  3518. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3519. resched_task(rq->curr);
  3520. }
  3521. out_unlock:
  3522. task_rq_unlock(rq, &flags);
  3523. }
  3524. EXPORT_SYMBOL(set_user_nice);
  3525. /*
  3526. * can_nice - check if a task can reduce its nice value
  3527. * @p: task
  3528. * @nice: nice value
  3529. */
  3530. int can_nice(const struct task_struct *p, const int nice)
  3531. {
  3532. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3533. int nice_rlim = 20 - nice;
  3534. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3535. capable(CAP_SYS_NICE));
  3536. }
  3537. #ifdef __ARCH_WANT_SYS_NICE
  3538. /*
  3539. * sys_nice - change the priority of the current process.
  3540. * @increment: priority increment
  3541. *
  3542. * sys_setpriority is a more generic, but much slower function that
  3543. * does similar things.
  3544. */
  3545. asmlinkage long sys_nice(int increment)
  3546. {
  3547. long nice, retval;
  3548. /*
  3549. * Setpriority might change our priority at the same moment.
  3550. * We don't have to worry. Conceptually one call occurs first
  3551. * and we have a single winner.
  3552. */
  3553. if (increment < -40)
  3554. increment = -40;
  3555. if (increment > 40)
  3556. increment = 40;
  3557. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3558. if (nice < -20)
  3559. nice = -20;
  3560. if (nice > 19)
  3561. nice = 19;
  3562. if (increment < 0 && !can_nice(current, nice))
  3563. return -EPERM;
  3564. retval = security_task_setnice(current, nice);
  3565. if (retval)
  3566. return retval;
  3567. set_user_nice(current, nice);
  3568. return 0;
  3569. }
  3570. #endif
  3571. /**
  3572. * task_prio - return the priority value of a given task.
  3573. * @p: the task in question.
  3574. *
  3575. * This is the priority value as seen by users in /proc.
  3576. * RT tasks are offset by -200. Normal tasks are centered
  3577. * around 0, value goes from -16 to +15.
  3578. */
  3579. int task_prio(const struct task_struct *p)
  3580. {
  3581. return p->prio - MAX_RT_PRIO;
  3582. }
  3583. /**
  3584. * task_nice - return the nice value of a given task.
  3585. * @p: the task in question.
  3586. */
  3587. int task_nice(const struct task_struct *p)
  3588. {
  3589. return TASK_NICE(p);
  3590. }
  3591. EXPORT_SYMBOL_GPL(task_nice);
  3592. /**
  3593. * idle_cpu - is a given cpu idle currently?
  3594. * @cpu: the processor in question.
  3595. */
  3596. int idle_cpu(int cpu)
  3597. {
  3598. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3599. }
  3600. /**
  3601. * idle_task - return the idle task for a given cpu.
  3602. * @cpu: the processor in question.
  3603. */
  3604. struct task_struct *idle_task(int cpu)
  3605. {
  3606. return cpu_rq(cpu)->idle;
  3607. }
  3608. /**
  3609. * find_process_by_pid - find a process with a matching PID value.
  3610. * @pid: the pid in question.
  3611. */
  3612. static struct task_struct *find_process_by_pid(pid_t pid)
  3613. {
  3614. return pid ? find_task_by_vpid(pid) : current;
  3615. }
  3616. /* Actually do priority change: must hold rq lock. */
  3617. static void
  3618. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3619. {
  3620. BUG_ON(p->se.on_rq);
  3621. p->policy = policy;
  3622. switch (p->policy) {
  3623. case SCHED_NORMAL:
  3624. case SCHED_BATCH:
  3625. case SCHED_IDLE:
  3626. p->sched_class = &fair_sched_class;
  3627. break;
  3628. case SCHED_FIFO:
  3629. case SCHED_RR:
  3630. p->sched_class = &rt_sched_class;
  3631. break;
  3632. }
  3633. p->rt_priority = prio;
  3634. p->normal_prio = normal_prio(p);
  3635. /* we are holding p->pi_lock already */
  3636. p->prio = rt_mutex_getprio(p);
  3637. set_load_weight(p);
  3638. }
  3639. /**
  3640. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3641. * @p: the task in question.
  3642. * @policy: new policy.
  3643. * @param: structure containing the new RT priority.
  3644. *
  3645. * NOTE that the task may be already dead.
  3646. */
  3647. int sched_setscheduler(struct task_struct *p, int policy,
  3648. struct sched_param *param)
  3649. {
  3650. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3651. unsigned long flags;
  3652. struct rq *rq;
  3653. /* may grab non-irq protected spin_locks */
  3654. BUG_ON(in_interrupt());
  3655. recheck:
  3656. /* double check policy once rq lock held */
  3657. if (policy < 0)
  3658. policy = oldpolicy = p->policy;
  3659. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3660. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3661. policy != SCHED_IDLE)
  3662. return -EINVAL;
  3663. /*
  3664. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3665. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3666. * SCHED_BATCH and SCHED_IDLE is 0.
  3667. */
  3668. if (param->sched_priority < 0 ||
  3669. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3670. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3671. return -EINVAL;
  3672. if (rt_policy(policy) != (param->sched_priority != 0))
  3673. return -EINVAL;
  3674. /*
  3675. * Allow unprivileged RT tasks to decrease priority:
  3676. */
  3677. if (!capable(CAP_SYS_NICE)) {
  3678. if (rt_policy(policy)) {
  3679. unsigned long rlim_rtprio;
  3680. if (!lock_task_sighand(p, &flags))
  3681. return -ESRCH;
  3682. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3683. unlock_task_sighand(p, &flags);
  3684. /* can't set/change the rt policy */
  3685. if (policy != p->policy && !rlim_rtprio)
  3686. return -EPERM;
  3687. /* can't increase priority */
  3688. if (param->sched_priority > p->rt_priority &&
  3689. param->sched_priority > rlim_rtprio)
  3690. return -EPERM;
  3691. }
  3692. /*
  3693. * Like positive nice levels, dont allow tasks to
  3694. * move out of SCHED_IDLE either:
  3695. */
  3696. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3697. return -EPERM;
  3698. /* can't change other user's priorities */
  3699. if ((current->euid != p->euid) &&
  3700. (current->euid != p->uid))
  3701. return -EPERM;
  3702. }
  3703. retval = security_task_setscheduler(p, policy, param);
  3704. if (retval)
  3705. return retval;
  3706. /*
  3707. * make sure no PI-waiters arrive (or leave) while we are
  3708. * changing the priority of the task:
  3709. */
  3710. spin_lock_irqsave(&p->pi_lock, flags);
  3711. /*
  3712. * To be able to change p->policy safely, the apropriate
  3713. * runqueue lock must be held.
  3714. */
  3715. rq = __task_rq_lock(p);
  3716. /* recheck policy now with rq lock held */
  3717. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3718. policy = oldpolicy = -1;
  3719. __task_rq_unlock(rq);
  3720. spin_unlock_irqrestore(&p->pi_lock, flags);
  3721. goto recheck;
  3722. }
  3723. update_rq_clock(rq);
  3724. on_rq = p->se.on_rq;
  3725. running = task_running(rq, p);
  3726. if (on_rq) {
  3727. deactivate_task(rq, p, 0);
  3728. if (running)
  3729. p->sched_class->put_prev_task(rq, p);
  3730. }
  3731. oldprio = p->prio;
  3732. __setscheduler(rq, p, policy, param->sched_priority);
  3733. if (on_rq) {
  3734. if (running)
  3735. p->sched_class->set_curr_task(rq);
  3736. activate_task(rq, p, 0);
  3737. /*
  3738. * Reschedule if we are currently running on this runqueue and
  3739. * our priority decreased, or if we are not currently running on
  3740. * this runqueue and our priority is higher than the current's
  3741. */
  3742. if (running) {
  3743. if (p->prio > oldprio)
  3744. resched_task(rq->curr);
  3745. } else {
  3746. check_preempt_curr(rq, p);
  3747. }
  3748. }
  3749. __task_rq_unlock(rq);
  3750. spin_unlock_irqrestore(&p->pi_lock, flags);
  3751. rt_mutex_adjust_pi(p);
  3752. return 0;
  3753. }
  3754. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3755. static int
  3756. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3757. {
  3758. struct sched_param lparam;
  3759. struct task_struct *p;
  3760. int retval;
  3761. if (!param || pid < 0)
  3762. return -EINVAL;
  3763. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3764. return -EFAULT;
  3765. rcu_read_lock();
  3766. retval = -ESRCH;
  3767. p = find_process_by_pid(pid);
  3768. if (p != NULL)
  3769. retval = sched_setscheduler(p, policy, &lparam);
  3770. rcu_read_unlock();
  3771. return retval;
  3772. }
  3773. /**
  3774. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3775. * @pid: the pid in question.
  3776. * @policy: new policy.
  3777. * @param: structure containing the new RT priority.
  3778. */
  3779. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3780. struct sched_param __user *param)
  3781. {
  3782. /* negative values for policy are not valid */
  3783. if (policy < 0)
  3784. return -EINVAL;
  3785. return do_sched_setscheduler(pid, policy, param);
  3786. }
  3787. /**
  3788. * sys_sched_setparam - set/change the RT priority of a thread
  3789. * @pid: the pid in question.
  3790. * @param: structure containing the new RT priority.
  3791. */
  3792. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3793. {
  3794. return do_sched_setscheduler(pid, -1, param);
  3795. }
  3796. /**
  3797. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3798. * @pid: the pid in question.
  3799. */
  3800. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3801. {
  3802. struct task_struct *p;
  3803. int retval;
  3804. if (pid < 0)
  3805. return -EINVAL;
  3806. retval = -ESRCH;
  3807. read_lock(&tasklist_lock);
  3808. p = find_process_by_pid(pid);
  3809. if (p) {
  3810. retval = security_task_getscheduler(p);
  3811. if (!retval)
  3812. retval = p->policy;
  3813. }
  3814. read_unlock(&tasklist_lock);
  3815. return retval;
  3816. }
  3817. /**
  3818. * sys_sched_getscheduler - get the RT priority of a thread
  3819. * @pid: the pid in question.
  3820. * @param: structure containing the RT priority.
  3821. */
  3822. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3823. {
  3824. struct sched_param lp;
  3825. struct task_struct *p;
  3826. int retval;
  3827. if (!param || pid < 0)
  3828. return -EINVAL;
  3829. read_lock(&tasklist_lock);
  3830. p = find_process_by_pid(pid);
  3831. retval = -ESRCH;
  3832. if (!p)
  3833. goto out_unlock;
  3834. retval = security_task_getscheduler(p);
  3835. if (retval)
  3836. goto out_unlock;
  3837. lp.sched_priority = p->rt_priority;
  3838. read_unlock(&tasklist_lock);
  3839. /*
  3840. * This one might sleep, we cannot do it with a spinlock held ...
  3841. */
  3842. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3843. return retval;
  3844. out_unlock:
  3845. read_unlock(&tasklist_lock);
  3846. return retval;
  3847. }
  3848. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3849. {
  3850. cpumask_t cpus_allowed;
  3851. struct task_struct *p;
  3852. int retval;
  3853. mutex_lock(&sched_hotcpu_mutex);
  3854. read_lock(&tasklist_lock);
  3855. p = find_process_by_pid(pid);
  3856. if (!p) {
  3857. read_unlock(&tasklist_lock);
  3858. mutex_unlock(&sched_hotcpu_mutex);
  3859. return -ESRCH;
  3860. }
  3861. /*
  3862. * It is not safe to call set_cpus_allowed with the
  3863. * tasklist_lock held. We will bump the task_struct's
  3864. * usage count and then drop tasklist_lock.
  3865. */
  3866. get_task_struct(p);
  3867. read_unlock(&tasklist_lock);
  3868. retval = -EPERM;
  3869. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3870. !capable(CAP_SYS_NICE))
  3871. goto out_unlock;
  3872. retval = security_task_setscheduler(p, 0, NULL);
  3873. if (retval)
  3874. goto out_unlock;
  3875. cpus_allowed = cpuset_cpus_allowed(p);
  3876. cpus_and(new_mask, new_mask, cpus_allowed);
  3877. again:
  3878. retval = set_cpus_allowed(p, new_mask);
  3879. if (!retval) {
  3880. cpus_allowed = cpuset_cpus_allowed(p);
  3881. if (!cpus_subset(new_mask, cpus_allowed)) {
  3882. /*
  3883. * We must have raced with a concurrent cpuset
  3884. * update. Just reset the cpus_allowed to the
  3885. * cpuset's cpus_allowed
  3886. */
  3887. new_mask = cpus_allowed;
  3888. goto again;
  3889. }
  3890. }
  3891. out_unlock:
  3892. put_task_struct(p);
  3893. mutex_unlock(&sched_hotcpu_mutex);
  3894. return retval;
  3895. }
  3896. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3897. cpumask_t *new_mask)
  3898. {
  3899. if (len < sizeof(cpumask_t)) {
  3900. memset(new_mask, 0, sizeof(cpumask_t));
  3901. } else if (len > sizeof(cpumask_t)) {
  3902. len = sizeof(cpumask_t);
  3903. }
  3904. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3905. }
  3906. /**
  3907. * sys_sched_setaffinity - set the cpu affinity of a process
  3908. * @pid: pid of the process
  3909. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3910. * @user_mask_ptr: user-space pointer to the new cpu mask
  3911. */
  3912. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3913. unsigned long __user *user_mask_ptr)
  3914. {
  3915. cpumask_t new_mask;
  3916. int retval;
  3917. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3918. if (retval)
  3919. return retval;
  3920. return sched_setaffinity(pid, new_mask);
  3921. }
  3922. /*
  3923. * Represents all cpu's present in the system
  3924. * In systems capable of hotplug, this map could dynamically grow
  3925. * as new cpu's are detected in the system via any platform specific
  3926. * method, such as ACPI for e.g.
  3927. */
  3928. cpumask_t cpu_present_map __read_mostly;
  3929. EXPORT_SYMBOL(cpu_present_map);
  3930. #ifndef CONFIG_SMP
  3931. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3932. EXPORT_SYMBOL(cpu_online_map);
  3933. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3934. EXPORT_SYMBOL(cpu_possible_map);
  3935. #endif
  3936. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3937. {
  3938. struct task_struct *p;
  3939. int retval;
  3940. mutex_lock(&sched_hotcpu_mutex);
  3941. read_lock(&tasklist_lock);
  3942. retval = -ESRCH;
  3943. p = find_process_by_pid(pid);
  3944. if (!p)
  3945. goto out_unlock;
  3946. retval = security_task_getscheduler(p);
  3947. if (retval)
  3948. goto out_unlock;
  3949. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3950. out_unlock:
  3951. read_unlock(&tasklist_lock);
  3952. mutex_unlock(&sched_hotcpu_mutex);
  3953. return retval;
  3954. }
  3955. /**
  3956. * sys_sched_getaffinity - get the cpu affinity of a process
  3957. * @pid: pid of the process
  3958. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3959. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3960. */
  3961. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3962. unsigned long __user *user_mask_ptr)
  3963. {
  3964. int ret;
  3965. cpumask_t mask;
  3966. if (len < sizeof(cpumask_t))
  3967. return -EINVAL;
  3968. ret = sched_getaffinity(pid, &mask);
  3969. if (ret < 0)
  3970. return ret;
  3971. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3972. return -EFAULT;
  3973. return sizeof(cpumask_t);
  3974. }
  3975. /**
  3976. * sys_sched_yield - yield the current processor to other threads.
  3977. *
  3978. * This function yields the current CPU to other tasks. If there are no
  3979. * other threads running on this CPU then this function will return.
  3980. */
  3981. asmlinkage long sys_sched_yield(void)
  3982. {
  3983. struct rq *rq = this_rq_lock();
  3984. schedstat_inc(rq, yld_count);
  3985. current->sched_class->yield_task(rq);
  3986. /*
  3987. * Since we are going to call schedule() anyway, there's
  3988. * no need to preempt or enable interrupts:
  3989. */
  3990. __release(rq->lock);
  3991. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3992. _raw_spin_unlock(&rq->lock);
  3993. preempt_enable_no_resched();
  3994. schedule();
  3995. return 0;
  3996. }
  3997. static void __cond_resched(void)
  3998. {
  3999. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4000. __might_sleep(__FILE__, __LINE__);
  4001. #endif
  4002. /*
  4003. * The BKS might be reacquired before we have dropped
  4004. * PREEMPT_ACTIVE, which could trigger a second
  4005. * cond_resched() call.
  4006. */
  4007. do {
  4008. add_preempt_count(PREEMPT_ACTIVE);
  4009. schedule();
  4010. sub_preempt_count(PREEMPT_ACTIVE);
  4011. } while (need_resched());
  4012. }
  4013. int __sched cond_resched(void)
  4014. {
  4015. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4016. system_state == SYSTEM_RUNNING) {
  4017. __cond_resched();
  4018. return 1;
  4019. }
  4020. return 0;
  4021. }
  4022. EXPORT_SYMBOL(cond_resched);
  4023. /*
  4024. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4025. * call schedule, and on return reacquire the lock.
  4026. *
  4027. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4028. * operations here to prevent schedule() from being called twice (once via
  4029. * spin_unlock(), once by hand).
  4030. */
  4031. int cond_resched_lock(spinlock_t *lock)
  4032. {
  4033. int ret = 0;
  4034. if (need_lockbreak(lock)) {
  4035. spin_unlock(lock);
  4036. cpu_relax();
  4037. ret = 1;
  4038. spin_lock(lock);
  4039. }
  4040. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4041. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4042. _raw_spin_unlock(lock);
  4043. preempt_enable_no_resched();
  4044. __cond_resched();
  4045. ret = 1;
  4046. spin_lock(lock);
  4047. }
  4048. return ret;
  4049. }
  4050. EXPORT_SYMBOL(cond_resched_lock);
  4051. int __sched cond_resched_softirq(void)
  4052. {
  4053. BUG_ON(!in_softirq());
  4054. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4055. local_bh_enable();
  4056. __cond_resched();
  4057. local_bh_disable();
  4058. return 1;
  4059. }
  4060. return 0;
  4061. }
  4062. EXPORT_SYMBOL(cond_resched_softirq);
  4063. /**
  4064. * yield - yield the current processor to other threads.
  4065. *
  4066. * This is a shortcut for kernel-space yielding - it marks the
  4067. * thread runnable and calls sys_sched_yield().
  4068. */
  4069. void __sched yield(void)
  4070. {
  4071. set_current_state(TASK_RUNNING);
  4072. sys_sched_yield();
  4073. }
  4074. EXPORT_SYMBOL(yield);
  4075. /*
  4076. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4077. * that process accounting knows that this is a task in IO wait state.
  4078. *
  4079. * But don't do that if it is a deliberate, throttling IO wait (this task
  4080. * has set its backing_dev_info: the queue against which it should throttle)
  4081. */
  4082. void __sched io_schedule(void)
  4083. {
  4084. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4085. delayacct_blkio_start();
  4086. atomic_inc(&rq->nr_iowait);
  4087. schedule();
  4088. atomic_dec(&rq->nr_iowait);
  4089. delayacct_blkio_end();
  4090. }
  4091. EXPORT_SYMBOL(io_schedule);
  4092. long __sched io_schedule_timeout(long timeout)
  4093. {
  4094. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4095. long ret;
  4096. delayacct_blkio_start();
  4097. atomic_inc(&rq->nr_iowait);
  4098. ret = schedule_timeout(timeout);
  4099. atomic_dec(&rq->nr_iowait);
  4100. delayacct_blkio_end();
  4101. return ret;
  4102. }
  4103. /**
  4104. * sys_sched_get_priority_max - return maximum RT priority.
  4105. * @policy: scheduling class.
  4106. *
  4107. * this syscall returns the maximum rt_priority that can be used
  4108. * by a given scheduling class.
  4109. */
  4110. asmlinkage long sys_sched_get_priority_max(int policy)
  4111. {
  4112. int ret = -EINVAL;
  4113. switch (policy) {
  4114. case SCHED_FIFO:
  4115. case SCHED_RR:
  4116. ret = MAX_USER_RT_PRIO-1;
  4117. break;
  4118. case SCHED_NORMAL:
  4119. case SCHED_BATCH:
  4120. case SCHED_IDLE:
  4121. ret = 0;
  4122. break;
  4123. }
  4124. return ret;
  4125. }
  4126. /**
  4127. * sys_sched_get_priority_min - return minimum RT priority.
  4128. * @policy: scheduling class.
  4129. *
  4130. * this syscall returns the minimum rt_priority that can be used
  4131. * by a given scheduling class.
  4132. */
  4133. asmlinkage long sys_sched_get_priority_min(int policy)
  4134. {
  4135. int ret = -EINVAL;
  4136. switch (policy) {
  4137. case SCHED_FIFO:
  4138. case SCHED_RR:
  4139. ret = 1;
  4140. break;
  4141. case SCHED_NORMAL:
  4142. case SCHED_BATCH:
  4143. case SCHED_IDLE:
  4144. ret = 0;
  4145. }
  4146. return ret;
  4147. }
  4148. /**
  4149. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4150. * @pid: pid of the process.
  4151. * @interval: userspace pointer to the timeslice value.
  4152. *
  4153. * this syscall writes the default timeslice value of a given process
  4154. * into the user-space timespec buffer. A value of '0' means infinity.
  4155. */
  4156. asmlinkage
  4157. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4158. {
  4159. struct task_struct *p;
  4160. unsigned int time_slice;
  4161. int retval;
  4162. struct timespec t;
  4163. if (pid < 0)
  4164. return -EINVAL;
  4165. retval = -ESRCH;
  4166. read_lock(&tasklist_lock);
  4167. p = find_process_by_pid(pid);
  4168. if (!p)
  4169. goto out_unlock;
  4170. retval = security_task_getscheduler(p);
  4171. if (retval)
  4172. goto out_unlock;
  4173. if (p->policy == SCHED_FIFO)
  4174. time_slice = 0;
  4175. else if (p->policy == SCHED_RR)
  4176. time_slice = DEF_TIMESLICE;
  4177. else {
  4178. struct sched_entity *se = &p->se;
  4179. unsigned long flags;
  4180. struct rq *rq;
  4181. rq = task_rq_lock(p, &flags);
  4182. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4183. task_rq_unlock(rq, &flags);
  4184. }
  4185. read_unlock(&tasklist_lock);
  4186. jiffies_to_timespec(time_slice, &t);
  4187. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4188. return retval;
  4189. out_unlock:
  4190. read_unlock(&tasklist_lock);
  4191. return retval;
  4192. }
  4193. static const char stat_nam[] = "RSDTtZX";
  4194. static void show_task(struct task_struct *p)
  4195. {
  4196. unsigned long free = 0;
  4197. unsigned state;
  4198. state = p->state ? __ffs(p->state) + 1 : 0;
  4199. printk(KERN_INFO "%-13.13s %c", p->comm,
  4200. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4201. #if BITS_PER_LONG == 32
  4202. if (state == TASK_RUNNING)
  4203. printk(KERN_CONT " running ");
  4204. else
  4205. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4206. #else
  4207. if (state == TASK_RUNNING)
  4208. printk(KERN_CONT " running task ");
  4209. else
  4210. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4211. #endif
  4212. #ifdef CONFIG_DEBUG_STACK_USAGE
  4213. {
  4214. unsigned long *n = end_of_stack(p);
  4215. while (!*n)
  4216. n++;
  4217. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4218. }
  4219. #endif
  4220. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4221. task_pid_nr(p), task_pid_nr(p->parent));
  4222. if (state != TASK_RUNNING)
  4223. show_stack(p, NULL);
  4224. }
  4225. void show_state_filter(unsigned long state_filter)
  4226. {
  4227. struct task_struct *g, *p;
  4228. #if BITS_PER_LONG == 32
  4229. printk(KERN_INFO
  4230. " task PC stack pid father\n");
  4231. #else
  4232. printk(KERN_INFO
  4233. " task PC stack pid father\n");
  4234. #endif
  4235. read_lock(&tasklist_lock);
  4236. do_each_thread(g, p) {
  4237. /*
  4238. * reset the NMI-timeout, listing all files on a slow
  4239. * console might take alot of time:
  4240. */
  4241. touch_nmi_watchdog();
  4242. if (!state_filter || (p->state & state_filter))
  4243. show_task(p);
  4244. } while_each_thread(g, p);
  4245. touch_all_softlockup_watchdogs();
  4246. #ifdef CONFIG_SCHED_DEBUG
  4247. sysrq_sched_debug_show();
  4248. #endif
  4249. read_unlock(&tasklist_lock);
  4250. /*
  4251. * Only show locks if all tasks are dumped:
  4252. */
  4253. if (state_filter == -1)
  4254. debug_show_all_locks();
  4255. }
  4256. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4257. {
  4258. idle->sched_class = &idle_sched_class;
  4259. }
  4260. /**
  4261. * init_idle - set up an idle thread for a given CPU
  4262. * @idle: task in question
  4263. * @cpu: cpu the idle task belongs to
  4264. *
  4265. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4266. * flag, to make booting more robust.
  4267. */
  4268. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4269. {
  4270. struct rq *rq = cpu_rq(cpu);
  4271. unsigned long flags;
  4272. __sched_fork(idle);
  4273. idle->se.exec_start = sched_clock();
  4274. idle->prio = idle->normal_prio = MAX_PRIO;
  4275. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4276. __set_task_cpu(idle, cpu);
  4277. spin_lock_irqsave(&rq->lock, flags);
  4278. rq->curr = rq->idle = idle;
  4279. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4280. idle->oncpu = 1;
  4281. #endif
  4282. spin_unlock_irqrestore(&rq->lock, flags);
  4283. /* Set the preempt count _outside_ the spinlocks! */
  4284. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4285. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4286. #else
  4287. task_thread_info(idle)->preempt_count = 0;
  4288. #endif
  4289. /*
  4290. * The idle tasks have their own, simple scheduling class:
  4291. */
  4292. idle->sched_class = &idle_sched_class;
  4293. }
  4294. /*
  4295. * In a system that switches off the HZ timer nohz_cpu_mask
  4296. * indicates which cpus entered this state. This is used
  4297. * in the rcu update to wait only for active cpus. For system
  4298. * which do not switch off the HZ timer nohz_cpu_mask should
  4299. * always be CPU_MASK_NONE.
  4300. */
  4301. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4302. #ifdef CONFIG_SMP
  4303. /*
  4304. * This is how migration works:
  4305. *
  4306. * 1) we queue a struct migration_req structure in the source CPU's
  4307. * runqueue and wake up that CPU's migration thread.
  4308. * 2) we down() the locked semaphore => thread blocks.
  4309. * 3) migration thread wakes up (implicitly it forces the migrated
  4310. * thread off the CPU)
  4311. * 4) it gets the migration request and checks whether the migrated
  4312. * task is still in the wrong runqueue.
  4313. * 5) if it's in the wrong runqueue then the migration thread removes
  4314. * it and puts it into the right queue.
  4315. * 6) migration thread up()s the semaphore.
  4316. * 7) we wake up and the migration is done.
  4317. */
  4318. /*
  4319. * Change a given task's CPU affinity. Migrate the thread to a
  4320. * proper CPU and schedule it away if the CPU it's executing on
  4321. * is removed from the allowed bitmask.
  4322. *
  4323. * NOTE: the caller must have a valid reference to the task, the
  4324. * task must not exit() & deallocate itself prematurely. The
  4325. * call is not atomic; no spinlocks may be held.
  4326. */
  4327. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4328. {
  4329. struct migration_req req;
  4330. unsigned long flags;
  4331. struct rq *rq;
  4332. int ret = 0;
  4333. rq = task_rq_lock(p, &flags);
  4334. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4335. ret = -EINVAL;
  4336. goto out;
  4337. }
  4338. p->cpus_allowed = new_mask;
  4339. /* Can the task run on the task's current CPU? If so, we're done */
  4340. if (cpu_isset(task_cpu(p), new_mask))
  4341. goto out;
  4342. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4343. /* Need help from migration thread: drop lock and wait. */
  4344. task_rq_unlock(rq, &flags);
  4345. wake_up_process(rq->migration_thread);
  4346. wait_for_completion(&req.done);
  4347. tlb_migrate_finish(p->mm);
  4348. return 0;
  4349. }
  4350. out:
  4351. task_rq_unlock(rq, &flags);
  4352. return ret;
  4353. }
  4354. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4355. /*
  4356. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4357. * this because either it can't run here any more (set_cpus_allowed()
  4358. * away from this CPU, or CPU going down), or because we're
  4359. * attempting to rebalance this task on exec (sched_exec).
  4360. *
  4361. * So we race with normal scheduler movements, but that's OK, as long
  4362. * as the task is no longer on this CPU.
  4363. *
  4364. * Returns non-zero if task was successfully migrated.
  4365. */
  4366. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4367. {
  4368. struct rq *rq_dest, *rq_src;
  4369. int ret = 0, on_rq;
  4370. if (unlikely(cpu_is_offline(dest_cpu)))
  4371. return ret;
  4372. rq_src = cpu_rq(src_cpu);
  4373. rq_dest = cpu_rq(dest_cpu);
  4374. double_rq_lock(rq_src, rq_dest);
  4375. /* Already moved. */
  4376. if (task_cpu(p) != src_cpu)
  4377. goto out;
  4378. /* Affinity changed (again). */
  4379. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4380. goto out;
  4381. on_rq = p->se.on_rq;
  4382. if (on_rq)
  4383. deactivate_task(rq_src, p, 0);
  4384. set_task_cpu(p, dest_cpu);
  4385. if (on_rq) {
  4386. activate_task(rq_dest, p, 0);
  4387. check_preempt_curr(rq_dest, p);
  4388. }
  4389. ret = 1;
  4390. out:
  4391. double_rq_unlock(rq_src, rq_dest);
  4392. return ret;
  4393. }
  4394. /*
  4395. * migration_thread - this is a highprio system thread that performs
  4396. * thread migration by bumping thread off CPU then 'pushing' onto
  4397. * another runqueue.
  4398. */
  4399. static int migration_thread(void *data)
  4400. {
  4401. int cpu = (long)data;
  4402. struct rq *rq;
  4403. rq = cpu_rq(cpu);
  4404. BUG_ON(rq->migration_thread != current);
  4405. set_current_state(TASK_INTERRUPTIBLE);
  4406. while (!kthread_should_stop()) {
  4407. struct migration_req *req;
  4408. struct list_head *head;
  4409. spin_lock_irq(&rq->lock);
  4410. if (cpu_is_offline(cpu)) {
  4411. spin_unlock_irq(&rq->lock);
  4412. goto wait_to_die;
  4413. }
  4414. if (rq->active_balance) {
  4415. active_load_balance(rq, cpu);
  4416. rq->active_balance = 0;
  4417. }
  4418. head = &rq->migration_queue;
  4419. if (list_empty(head)) {
  4420. spin_unlock_irq(&rq->lock);
  4421. schedule();
  4422. set_current_state(TASK_INTERRUPTIBLE);
  4423. continue;
  4424. }
  4425. req = list_entry(head->next, struct migration_req, list);
  4426. list_del_init(head->next);
  4427. spin_unlock(&rq->lock);
  4428. __migrate_task(req->task, cpu, req->dest_cpu);
  4429. local_irq_enable();
  4430. complete(&req->done);
  4431. }
  4432. __set_current_state(TASK_RUNNING);
  4433. return 0;
  4434. wait_to_die:
  4435. /* Wait for kthread_stop */
  4436. set_current_state(TASK_INTERRUPTIBLE);
  4437. while (!kthread_should_stop()) {
  4438. schedule();
  4439. set_current_state(TASK_INTERRUPTIBLE);
  4440. }
  4441. __set_current_state(TASK_RUNNING);
  4442. return 0;
  4443. }
  4444. #ifdef CONFIG_HOTPLUG_CPU
  4445. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4446. {
  4447. int ret;
  4448. local_irq_disable();
  4449. ret = __migrate_task(p, src_cpu, dest_cpu);
  4450. local_irq_enable();
  4451. return ret;
  4452. }
  4453. /*
  4454. * Figure out where task on dead CPU should go, use force if neccessary.
  4455. * NOTE: interrupts should be disabled by the caller
  4456. */
  4457. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4458. {
  4459. unsigned long flags;
  4460. cpumask_t mask;
  4461. struct rq *rq;
  4462. int dest_cpu;
  4463. do {
  4464. /* On same node? */
  4465. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4466. cpus_and(mask, mask, p->cpus_allowed);
  4467. dest_cpu = any_online_cpu(mask);
  4468. /* On any allowed CPU? */
  4469. if (dest_cpu == NR_CPUS)
  4470. dest_cpu = any_online_cpu(p->cpus_allowed);
  4471. /* No more Mr. Nice Guy. */
  4472. if (dest_cpu == NR_CPUS) {
  4473. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4474. /*
  4475. * Try to stay on the same cpuset, where the
  4476. * current cpuset may be a subset of all cpus.
  4477. * The cpuset_cpus_allowed_locked() variant of
  4478. * cpuset_cpus_allowed() will not block. It must be
  4479. * called within calls to cpuset_lock/cpuset_unlock.
  4480. */
  4481. rq = task_rq_lock(p, &flags);
  4482. p->cpus_allowed = cpus_allowed;
  4483. dest_cpu = any_online_cpu(p->cpus_allowed);
  4484. task_rq_unlock(rq, &flags);
  4485. /*
  4486. * Don't tell them about moving exiting tasks or
  4487. * kernel threads (both mm NULL), since they never
  4488. * leave kernel.
  4489. */
  4490. if (p->mm && printk_ratelimit())
  4491. printk(KERN_INFO "process %d (%s) no "
  4492. "longer affine to cpu%d\n",
  4493. task_pid_nr(p), p->comm, dead_cpu);
  4494. }
  4495. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4496. }
  4497. /*
  4498. * While a dead CPU has no uninterruptible tasks queued at this point,
  4499. * it might still have a nonzero ->nr_uninterruptible counter, because
  4500. * for performance reasons the counter is not stricly tracking tasks to
  4501. * their home CPUs. So we just add the counter to another CPU's counter,
  4502. * to keep the global sum constant after CPU-down:
  4503. */
  4504. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4505. {
  4506. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4507. unsigned long flags;
  4508. local_irq_save(flags);
  4509. double_rq_lock(rq_src, rq_dest);
  4510. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4511. rq_src->nr_uninterruptible = 0;
  4512. double_rq_unlock(rq_src, rq_dest);
  4513. local_irq_restore(flags);
  4514. }
  4515. /* Run through task list and migrate tasks from the dead cpu. */
  4516. static void migrate_live_tasks(int src_cpu)
  4517. {
  4518. struct task_struct *p, *t;
  4519. read_lock(&tasklist_lock);
  4520. do_each_thread(t, p) {
  4521. if (p == current)
  4522. continue;
  4523. if (task_cpu(p) == src_cpu)
  4524. move_task_off_dead_cpu(src_cpu, p);
  4525. } while_each_thread(t, p);
  4526. read_unlock(&tasklist_lock);
  4527. }
  4528. /*
  4529. * activate_idle_task - move idle task to the _front_ of runqueue.
  4530. */
  4531. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4532. {
  4533. update_rq_clock(rq);
  4534. if (p->state == TASK_UNINTERRUPTIBLE)
  4535. rq->nr_uninterruptible--;
  4536. enqueue_task(rq, p, 0);
  4537. inc_nr_running(p, rq);
  4538. }
  4539. /*
  4540. * Schedules idle task to be the next runnable task on current CPU.
  4541. * It does so by boosting its priority to highest possible and adding it to
  4542. * the _front_ of the runqueue. Used by CPU offline code.
  4543. */
  4544. void sched_idle_next(void)
  4545. {
  4546. int this_cpu = smp_processor_id();
  4547. struct rq *rq = cpu_rq(this_cpu);
  4548. struct task_struct *p = rq->idle;
  4549. unsigned long flags;
  4550. /* cpu has to be offline */
  4551. BUG_ON(cpu_online(this_cpu));
  4552. /*
  4553. * Strictly not necessary since rest of the CPUs are stopped by now
  4554. * and interrupts disabled on the current cpu.
  4555. */
  4556. spin_lock_irqsave(&rq->lock, flags);
  4557. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4558. /* Add idle task to the _front_ of its priority queue: */
  4559. activate_idle_task(p, rq);
  4560. spin_unlock_irqrestore(&rq->lock, flags);
  4561. }
  4562. /*
  4563. * Ensures that the idle task is using init_mm right before its cpu goes
  4564. * offline.
  4565. */
  4566. void idle_task_exit(void)
  4567. {
  4568. struct mm_struct *mm = current->active_mm;
  4569. BUG_ON(cpu_online(smp_processor_id()));
  4570. if (mm != &init_mm)
  4571. switch_mm(mm, &init_mm, current);
  4572. mmdrop(mm);
  4573. }
  4574. /* called under rq->lock with disabled interrupts */
  4575. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4576. {
  4577. struct rq *rq = cpu_rq(dead_cpu);
  4578. /* Must be exiting, otherwise would be on tasklist. */
  4579. BUG_ON(!p->exit_state);
  4580. /* Cannot have done final schedule yet: would have vanished. */
  4581. BUG_ON(p->state == TASK_DEAD);
  4582. get_task_struct(p);
  4583. /*
  4584. * Drop lock around migration; if someone else moves it,
  4585. * that's OK. No task can be added to this CPU, so iteration is
  4586. * fine.
  4587. */
  4588. spin_unlock_irq(&rq->lock);
  4589. move_task_off_dead_cpu(dead_cpu, p);
  4590. spin_lock_irq(&rq->lock);
  4591. put_task_struct(p);
  4592. }
  4593. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4594. static void migrate_dead_tasks(unsigned int dead_cpu)
  4595. {
  4596. struct rq *rq = cpu_rq(dead_cpu);
  4597. struct task_struct *next;
  4598. for ( ; ; ) {
  4599. if (!rq->nr_running)
  4600. break;
  4601. update_rq_clock(rq);
  4602. next = pick_next_task(rq, rq->curr);
  4603. if (!next)
  4604. break;
  4605. migrate_dead(dead_cpu, next);
  4606. }
  4607. }
  4608. #endif /* CONFIG_HOTPLUG_CPU */
  4609. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4610. static struct ctl_table sd_ctl_dir[] = {
  4611. {
  4612. .procname = "sched_domain",
  4613. .mode = 0555,
  4614. },
  4615. {0,},
  4616. };
  4617. static struct ctl_table sd_ctl_root[] = {
  4618. {
  4619. .ctl_name = CTL_KERN,
  4620. .procname = "kernel",
  4621. .mode = 0555,
  4622. .child = sd_ctl_dir,
  4623. },
  4624. {0,},
  4625. };
  4626. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4627. {
  4628. struct ctl_table *entry =
  4629. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4630. return entry;
  4631. }
  4632. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4633. {
  4634. struct ctl_table *entry;
  4635. /*
  4636. * In the intermediate directories, both the child directory and
  4637. * procname are dynamically allocated and could fail but the mode
  4638. * will always be set. In the lowest directory the names are
  4639. * static strings and all have proc handlers.
  4640. */
  4641. for (entry = *tablep; entry->mode; entry++) {
  4642. if (entry->child)
  4643. sd_free_ctl_entry(&entry->child);
  4644. if (entry->proc_handler == NULL)
  4645. kfree(entry->procname);
  4646. }
  4647. kfree(*tablep);
  4648. *tablep = NULL;
  4649. }
  4650. static void
  4651. set_table_entry(struct ctl_table *entry,
  4652. const char *procname, void *data, int maxlen,
  4653. mode_t mode, proc_handler *proc_handler)
  4654. {
  4655. entry->procname = procname;
  4656. entry->data = data;
  4657. entry->maxlen = maxlen;
  4658. entry->mode = mode;
  4659. entry->proc_handler = proc_handler;
  4660. }
  4661. static struct ctl_table *
  4662. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4663. {
  4664. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4665. if (table == NULL)
  4666. return NULL;
  4667. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4668. sizeof(long), 0644, proc_doulongvec_minmax);
  4669. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4670. sizeof(long), 0644, proc_doulongvec_minmax);
  4671. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4672. sizeof(int), 0644, proc_dointvec_minmax);
  4673. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4674. sizeof(int), 0644, proc_dointvec_minmax);
  4675. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4676. sizeof(int), 0644, proc_dointvec_minmax);
  4677. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4678. sizeof(int), 0644, proc_dointvec_minmax);
  4679. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4680. sizeof(int), 0644, proc_dointvec_minmax);
  4681. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4682. sizeof(int), 0644, proc_dointvec_minmax);
  4683. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4684. sizeof(int), 0644, proc_dointvec_minmax);
  4685. set_table_entry(&table[9], "cache_nice_tries",
  4686. &sd->cache_nice_tries,
  4687. sizeof(int), 0644, proc_dointvec_minmax);
  4688. set_table_entry(&table[10], "flags", &sd->flags,
  4689. sizeof(int), 0644, proc_dointvec_minmax);
  4690. /* &table[11] is terminator */
  4691. return table;
  4692. }
  4693. static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
  4694. {
  4695. struct ctl_table *entry, *table;
  4696. struct sched_domain *sd;
  4697. int domain_num = 0, i;
  4698. char buf[32];
  4699. for_each_domain(cpu, sd)
  4700. domain_num++;
  4701. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4702. if (table == NULL)
  4703. return NULL;
  4704. i = 0;
  4705. for_each_domain(cpu, sd) {
  4706. snprintf(buf, 32, "domain%d", i);
  4707. entry->procname = kstrdup(buf, GFP_KERNEL);
  4708. entry->mode = 0555;
  4709. entry->child = sd_alloc_ctl_domain_table(sd);
  4710. entry++;
  4711. i++;
  4712. }
  4713. return table;
  4714. }
  4715. static struct ctl_table_header *sd_sysctl_header;
  4716. static void register_sched_domain_sysctl(void)
  4717. {
  4718. int i, cpu_num = num_online_cpus();
  4719. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4720. char buf[32];
  4721. if (entry == NULL)
  4722. return;
  4723. sd_ctl_dir[0].child = entry;
  4724. for_each_online_cpu(i) {
  4725. snprintf(buf, 32, "cpu%d", i);
  4726. entry->procname = kstrdup(buf, GFP_KERNEL);
  4727. entry->mode = 0555;
  4728. entry->child = sd_alloc_ctl_cpu_table(i);
  4729. entry++;
  4730. }
  4731. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4732. }
  4733. static void unregister_sched_domain_sysctl(void)
  4734. {
  4735. unregister_sysctl_table(sd_sysctl_header);
  4736. sd_sysctl_header = NULL;
  4737. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4738. }
  4739. #else
  4740. static void register_sched_domain_sysctl(void)
  4741. {
  4742. }
  4743. static void unregister_sched_domain_sysctl(void)
  4744. {
  4745. }
  4746. #endif
  4747. /*
  4748. * migration_call - callback that gets triggered when a CPU is added.
  4749. * Here we can start up the necessary migration thread for the new CPU.
  4750. */
  4751. static int __cpuinit
  4752. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4753. {
  4754. struct task_struct *p;
  4755. int cpu = (long)hcpu;
  4756. unsigned long flags;
  4757. struct rq *rq;
  4758. switch (action) {
  4759. case CPU_LOCK_ACQUIRE:
  4760. mutex_lock(&sched_hotcpu_mutex);
  4761. break;
  4762. case CPU_UP_PREPARE:
  4763. case CPU_UP_PREPARE_FROZEN:
  4764. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4765. if (IS_ERR(p))
  4766. return NOTIFY_BAD;
  4767. kthread_bind(p, cpu);
  4768. /* Must be high prio: stop_machine expects to yield to it. */
  4769. rq = task_rq_lock(p, &flags);
  4770. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4771. task_rq_unlock(rq, &flags);
  4772. cpu_rq(cpu)->migration_thread = p;
  4773. break;
  4774. case CPU_ONLINE:
  4775. case CPU_ONLINE_FROZEN:
  4776. /* Strictly unneccessary, as first user will wake it. */
  4777. wake_up_process(cpu_rq(cpu)->migration_thread);
  4778. break;
  4779. #ifdef CONFIG_HOTPLUG_CPU
  4780. case CPU_UP_CANCELED:
  4781. case CPU_UP_CANCELED_FROZEN:
  4782. if (!cpu_rq(cpu)->migration_thread)
  4783. break;
  4784. /* Unbind it from offline cpu so it can run. Fall thru. */
  4785. kthread_bind(cpu_rq(cpu)->migration_thread,
  4786. any_online_cpu(cpu_online_map));
  4787. kthread_stop(cpu_rq(cpu)->migration_thread);
  4788. cpu_rq(cpu)->migration_thread = NULL;
  4789. break;
  4790. case CPU_DEAD:
  4791. case CPU_DEAD_FROZEN:
  4792. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4793. migrate_live_tasks(cpu);
  4794. rq = cpu_rq(cpu);
  4795. kthread_stop(rq->migration_thread);
  4796. rq->migration_thread = NULL;
  4797. /* Idle task back to normal (off runqueue, low prio) */
  4798. spin_lock_irq(&rq->lock);
  4799. update_rq_clock(rq);
  4800. deactivate_task(rq, rq->idle, 0);
  4801. rq->idle->static_prio = MAX_PRIO;
  4802. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4803. rq->idle->sched_class = &idle_sched_class;
  4804. migrate_dead_tasks(cpu);
  4805. spin_unlock_irq(&rq->lock);
  4806. cpuset_unlock();
  4807. migrate_nr_uninterruptible(rq);
  4808. BUG_ON(rq->nr_running != 0);
  4809. /* No need to migrate the tasks: it was best-effort if
  4810. * they didn't take sched_hotcpu_mutex. Just wake up
  4811. * the requestors. */
  4812. spin_lock_irq(&rq->lock);
  4813. while (!list_empty(&rq->migration_queue)) {
  4814. struct migration_req *req;
  4815. req = list_entry(rq->migration_queue.next,
  4816. struct migration_req, list);
  4817. list_del_init(&req->list);
  4818. complete(&req->done);
  4819. }
  4820. spin_unlock_irq(&rq->lock);
  4821. break;
  4822. #endif
  4823. case CPU_LOCK_RELEASE:
  4824. mutex_unlock(&sched_hotcpu_mutex);
  4825. break;
  4826. }
  4827. return NOTIFY_OK;
  4828. }
  4829. /* Register at highest priority so that task migration (migrate_all_tasks)
  4830. * happens before everything else.
  4831. */
  4832. static struct notifier_block __cpuinitdata migration_notifier = {
  4833. .notifier_call = migration_call,
  4834. .priority = 10
  4835. };
  4836. int __init migration_init(void)
  4837. {
  4838. void *cpu = (void *)(long)smp_processor_id();
  4839. int err;
  4840. /* Start one for the boot CPU: */
  4841. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4842. BUG_ON(err == NOTIFY_BAD);
  4843. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4844. register_cpu_notifier(&migration_notifier);
  4845. return 0;
  4846. }
  4847. #endif
  4848. #ifdef CONFIG_SMP
  4849. /* Number of possible processor ids */
  4850. int nr_cpu_ids __read_mostly = NR_CPUS;
  4851. EXPORT_SYMBOL(nr_cpu_ids);
  4852. #ifdef CONFIG_SCHED_DEBUG
  4853. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4854. {
  4855. int level = 0;
  4856. if (!sd) {
  4857. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4858. return;
  4859. }
  4860. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4861. do {
  4862. int i;
  4863. char str[NR_CPUS];
  4864. struct sched_group *group = sd->groups;
  4865. cpumask_t groupmask;
  4866. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4867. cpus_clear(groupmask);
  4868. printk(KERN_DEBUG);
  4869. for (i = 0; i < level + 1; i++)
  4870. printk(" ");
  4871. printk("domain %d: ", level);
  4872. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4873. printk("does not load-balance\n");
  4874. if (sd->parent)
  4875. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4876. " has parent");
  4877. break;
  4878. }
  4879. printk("span %s\n", str);
  4880. if (!cpu_isset(cpu, sd->span))
  4881. printk(KERN_ERR "ERROR: domain->span does not contain "
  4882. "CPU%d\n", cpu);
  4883. if (!cpu_isset(cpu, group->cpumask))
  4884. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4885. " CPU%d\n", cpu);
  4886. printk(KERN_DEBUG);
  4887. for (i = 0; i < level + 2; i++)
  4888. printk(" ");
  4889. printk("groups:");
  4890. do {
  4891. if (!group) {
  4892. printk("\n");
  4893. printk(KERN_ERR "ERROR: group is NULL\n");
  4894. break;
  4895. }
  4896. if (!group->__cpu_power) {
  4897. printk(KERN_CONT "\n");
  4898. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4899. "set\n");
  4900. break;
  4901. }
  4902. if (!cpus_weight(group->cpumask)) {
  4903. printk(KERN_CONT "\n");
  4904. printk(KERN_ERR "ERROR: empty group\n");
  4905. break;
  4906. }
  4907. if (cpus_intersects(groupmask, group->cpumask)) {
  4908. printk(KERN_CONT "\n");
  4909. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4910. break;
  4911. }
  4912. cpus_or(groupmask, groupmask, group->cpumask);
  4913. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4914. printk(KERN_CONT " %s", str);
  4915. group = group->next;
  4916. } while (group != sd->groups);
  4917. printk(KERN_CONT "\n");
  4918. if (!cpus_equal(sd->span, groupmask))
  4919. printk(KERN_ERR "ERROR: groups don't span "
  4920. "domain->span\n");
  4921. level++;
  4922. sd = sd->parent;
  4923. if (!sd)
  4924. continue;
  4925. if (!cpus_subset(groupmask, sd->span))
  4926. printk(KERN_ERR "ERROR: parent span is not a superset "
  4927. "of domain->span\n");
  4928. } while (sd);
  4929. }
  4930. #else
  4931. # define sched_domain_debug(sd, cpu) do { } while (0)
  4932. #endif
  4933. static int sd_degenerate(struct sched_domain *sd)
  4934. {
  4935. if (cpus_weight(sd->span) == 1)
  4936. return 1;
  4937. /* Following flags need at least 2 groups */
  4938. if (sd->flags & (SD_LOAD_BALANCE |
  4939. SD_BALANCE_NEWIDLE |
  4940. SD_BALANCE_FORK |
  4941. SD_BALANCE_EXEC |
  4942. SD_SHARE_CPUPOWER |
  4943. SD_SHARE_PKG_RESOURCES)) {
  4944. if (sd->groups != sd->groups->next)
  4945. return 0;
  4946. }
  4947. /* Following flags don't use groups */
  4948. if (sd->flags & (SD_WAKE_IDLE |
  4949. SD_WAKE_AFFINE |
  4950. SD_WAKE_BALANCE))
  4951. return 0;
  4952. return 1;
  4953. }
  4954. static int
  4955. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4956. {
  4957. unsigned long cflags = sd->flags, pflags = parent->flags;
  4958. if (sd_degenerate(parent))
  4959. return 1;
  4960. if (!cpus_equal(sd->span, parent->span))
  4961. return 0;
  4962. /* Does parent contain flags not in child? */
  4963. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4964. if (cflags & SD_WAKE_AFFINE)
  4965. pflags &= ~SD_WAKE_BALANCE;
  4966. /* Flags needing groups don't count if only 1 group in parent */
  4967. if (parent->groups == parent->groups->next) {
  4968. pflags &= ~(SD_LOAD_BALANCE |
  4969. SD_BALANCE_NEWIDLE |
  4970. SD_BALANCE_FORK |
  4971. SD_BALANCE_EXEC |
  4972. SD_SHARE_CPUPOWER |
  4973. SD_SHARE_PKG_RESOURCES);
  4974. }
  4975. if (~cflags & pflags)
  4976. return 0;
  4977. return 1;
  4978. }
  4979. /*
  4980. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4981. * hold the hotplug lock.
  4982. */
  4983. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4984. {
  4985. struct rq *rq = cpu_rq(cpu);
  4986. struct sched_domain *tmp;
  4987. /* Remove the sched domains which do not contribute to scheduling. */
  4988. for (tmp = sd; tmp; tmp = tmp->parent) {
  4989. struct sched_domain *parent = tmp->parent;
  4990. if (!parent)
  4991. break;
  4992. if (sd_parent_degenerate(tmp, parent)) {
  4993. tmp->parent = parent->parent;
  4994. if (parent->parent)
  4995. parent->parent->child = tmp;
  4996. }
  4997. }
  4998. if (sd && sd_degenerate(sd)) {
  4999. sd = sd->parent;
  5000. if (sd)
  5001. sd->child = NULL;
  5002. }
  5003. sched_domain_debug(sd, cpu);
  5004. rcu_assign_pointer(rq->sd, sd);
  5005. }
  5006. /* cpus with isolated domains */
  5007. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5008. /* Setup the mask of cpus configured for isolated domains */
  5009. static int __init isolated_cpu_setup(char *str)
  5010. {
  5011. int ints[NR_CPUS], i;
  5012. str = get_options(str, ARRAY_SIZE(ints), ints);
  5013. cpus_clear(cpu_isolated_map);
  5014. for (i = 1; i <= ints[0]; i++)
  5015. if (ints[i] < NR_CPUS)
  5016. cpu_set(ints[i], cpu_isolated_map);
  5017. return 1;
  5018. }
  5019. __setup("isolcpus=", isolated_cpu_setup);
  5020. /*
  5021. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5022. * to a function which identifies what group(along with sched group) a CPU
  5023. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5024. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5025. *
  5026. * init_sched_build_groups will build a circular linked list of the groups
  5027. * covered by the given span, and will set each group's ->cpumask correctly,
  5028. * and ->cpu_power to 0.
  5029. */
  5030. static void
  5031. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5032. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5033. struct sched_group **sg))
  5034. {
  5035. struct sched_group *first = NULL, *last = NULL;
  5036. cpumask_t covered = CPU_MASK_NONE;
  5037. int i;
  5038. for_each_cpu_mask(i, span) {
  5039. struct sched_group *sg;
  5040. int group = group_fn(i, cpu_map, &sg);
  5041. int j;
  5042. if (cpu_isset(i, covered))
  5043. continue;
  5044. sg->cpumask = CPU_MASK_NONE;
  5045. sg->__cpu_power = 0;
  5046. for_each_cpu_mask(j, span) {
  5047. if (group_fn(j, cpu_map, NULL) != group)
  5048. continue;
  5049. cpu_set(j, covered);
  5050. cpu_set(j, sg->cpumask);
  5051. }
  5052. if (!first)
  5053. first = sg;
  5054. if (last)
  5055. last->next = sg;
  5056. last = sg;
  5057. }
  5058. last->next = first;
  5059. }
  5060. #define SD_NODES_PER_DOMAIN 16
  5061. #ifdef CONFIG_NUMA
  5062. /**
  5063. * find_next_best_node - find the next node to include in a sched_domain
  5064. * @node: node whose sched_domain we're building
  5065. * @used_nodes: nodes already in the sched_domain
  5066. *
  5067. * Find the next node to include in a given scheduling domain. Simply
  5068. * finds the closest node not already in the @used_nodes map.
  5069. *
  5070. * Should use nodemask_t.
  5071. */
  5072. static int find_next_best_node(int node, unsigned long *used_nodes)
  5073. {
  5074. int i, n, val, min_val, best_node = 0;
  5075. min_val = INT_MAX;
  5076. for (i = 0; i < MAX_NUMNODES; i++) {
  5077. /* Start at @node */
  5078. n = (node + i) % MAX_NUMNODES;
  5079. if (!nr_cpus_node(n))
  5080. continue;
  5081. /* Skip already used nodes */
  5082. if (test_bit(n, used_nodes))
  5083. continue;
  5084. /* Simple min distance search */
  5085. val = node_distance(node, n);
  5086. if (val < min_val) {
  5087. min_val = val;
  5088. best_node = n;
  5089. }
  5090. }
  5091. set_bit(best_node, used_nodes);
  5092. return best_node;
  5093. }
  5094. /**
  5095. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5096. * @node: node whose cpumask we're constructing
  5097. * @size: number of nodes to include in this span
  5098. *
  5099. * Given a node, construct a good cpumask for its sched_domain to span. It
  5100. * should be one that prevents unnecessary balancing, but also spreads tasks
  5101. * out optimally.
  5102. */
  5103. static cpumask_t sched_domain_node_span(int node)
  5104. {
  5105. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5106. cpumask_t span, nodemask;
  5107. int i;
  5108. cpus_clear(span);
  5109. bitmap_zero(used_nodes, MAX_NUMNODES);
  5110. nodemask = node_to_cpumask(node);
  5111. cpus_or(span, span, nodemask);
  5112. set_bit(node, used_nodes);
  5113. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5114. int next_node = find_next_best_node(node, used_nodes);
  5115. nodemask = node_to_cpumask(next_node);
  5116. cpus_or(span, span, nodemask);
  5117. }
  5118. return span;
  5119. }
  5120. #endif
  5121. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5122. /*
  5123. * SMT sched-domains:
  5124. */
  5125. #ifdef CONFIG_SCHED_SMT
  5126. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5127. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5128. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5129. struct sched_group **sg)
  5130. {
  5131. if (sg)
  5132. *sg = &per_cpu(sched_group_cpus, cpu);
  5133. return cpu;
  5134. }
  5135. #endif
  5136. /*
  5137. * multi-core sched-domains:
  5138. */
  5139. #ifdef CONFIG_SCHED_MC
  5140. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5141. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5142. #endif
  5143. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5144. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5145. struct sched_group **sg)
  5146. {
  5147. int group;
  5148. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5149. cpus_and(mask, mask, *cpu_map);
  5150. group = first_cpu(mask);
  5151. if (sg)
  5152. *sg = &per_cpu(sched_group_core, group);
  5153. return group;
  5154. }
  5155. #elif defined(CONFIG_SCHED_MC)
  5156. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5157. struct sched_group **sg)
  5158. {
  5159. if (sg)
  5160. *sg = &per_cpu(sched_group_core, cpu);
  5161. return cpu;
  5162. }
  5163. #endif
  5164. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5165. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5166. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5167. struct sched_group **sg)
  5168. {
  5169. int group;
  5170. #ifdef CONFIG_SCHED_MC
  5171. cpumask_t mask = cpu_coregroup_map(cpu);
  5172. cpus_and(mask, mask, *cpu_map);
  5173. group = first_cpu(mask);
  5174. #elif defined(CONFIG_SCHED_SMT)
  5175. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5176. cpus_and(mask, mask, *cpu_map);
  5177. group = first_cpu(mask);
  5178. #else
  5179. group = cpu;
  5180. #endif
  5181. if (sg)
  5182. *sg = &per_cpu(sched_group_phys, group);
  5183. return group;
  5184. }
  5185. #ifdef CONFIG_NUMA
  5186. /*
  5187. * The init_sched_build_groups can't handle what we want to do with node
  5188. * groups, so roll our own. Now each node has its own list of groups which
  5189. * gets dynamically allocated.
  5190. */
  5191. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5192. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5193. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5194. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5195. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5196. struct sched_group **sg)
  5197. {
  5198. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5199. int group;
  5200. cpus_and(nodemask, nodemask, *cpu_map);
  5201. group = first_cpu(nodemask);
  5202. if (sg)
  5203. *sg = &per_cpu(sched_group_allnodes, group);
  5204. return group;
  5205. }
  5206. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5207. {
  5208. struct sched_group *sg = group_head;
  5209. int j;
  5210. if (!sg)
  5211. return;
  5212. do {
  5213. for_each_cpu_mask(j, sg->cpumask) {
  5214. struct sched_domain *sd;
  5215. sd = &per_cpu(phys_domains, j);
  5216. if (j != first_cpu(sd->groups->cpumask)) {
  5217. /*
  5218. * Only add "power" once for each
  5219. * physical package.
  5220. */
  5221. continue;
  5222. }
  5223. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5224. }
  5225. sg = sg->next;
  5226. } while (sg != group_head);
  5227. }
  5228. #endif
  5229. #ifdef CONFIG_NUMA
  5230. /* Free memory allocated for various sched_group structures */
  5231. static void free_sched_groups(const cpumask_t *cpu_map)
  5232. {
  5233. int cpu, i;
  5234. for_each_cpu_mask(cpu, *cpu_map) {
  5235. struct sched_group **sched_group_nodes
  5236. = sched_group_nodes_bycpu[cpu];
  5237. if (!sched_group_nodes)
  5238. continue;
  5239. for (i = 0; i < MAX_NUMNODES; i++) {
  5240. cpumask_t nodemask = node_to_cpumask(i);
  5241. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5242. cpus_and(nodemask, nodemask, *cpu_map);
  5243. if (cpus_empty(nodemask))
  5244. continue;
  5245. if (sg == NULL)
  5246. continue;
  5247. sg = sg->next;
  5248. next_sg:
  5249. oldsg = sg;
  5250. sg = sg->next;
  5251. kfree(oldsg);
  5252. if (oldsg != sched_group_nodes[i])
  5253. goto next_sg;
  5254. }
  5255. kfree(sched_group_nodes);
  5256. sched_group_nodes_bycpu[cpu] = NULL;
  5257. }
  5258. }
  5259. #else
  5260. static void free_sched_groups(const cpumask_t *cpu_map)
  5261. {
  5262. }
  5263. #endif
  5264. /*
  5265. * Initialize sched groups cpu_power.
  5266. *
  5267. * cpu_power indicates the capacity of sched group, which is used while
  5268. * distributing the load between different sched groups in a sched domain.
  5269. * Typically cpu_power for all the groups in a sched domain will be same unless
  5270. * there are asymmetries in the topology. If there are asymmetries, group
  5271. * having more cpu_power will pickup more load compared to the group having
  5272. * less cpu_power.
  5273. *
  5274. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5275. * the maximum number of tasks a group can handle in the presence of other idle
  5276. * or lightly loaded groups in the same sched domain.
  5277. */
  5278. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5279. {
  5280. struct sched_domain *child;
  5281. struct sched_group *group;
  5282. WARN_ON(!sd || !sd->groups);
  5283. if (cpu != first_cpu(sd->groups->cpumask))
  5284. return;
  5285. child = sd->child;
  5286. sd->groups->__cpu_power = 0;
  5287. /*
  5288. * For perf policy, if the groups in child domain share resources
  5289. * (for example cores sharing some portions of the cache hierarchy
  5290. * or SMT), then set this domain groups cpu_power such that each group
  5291. * can handle only one task, when there are other idle groups in the
  5292. * same sched domain.
  5293. */
  5294. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5295. (child->flags &
  5296. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5297. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5298. return;
  5299. }
  5300. /*
  5301. * add cpu_power of each child group to this groups cpu_power
  5302. */
  5303. group = child->groups;
  5304. do {
  5305. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5306. group = group->next;
  5307. } while (group != child->groups);
  5308. }
  5309. /*
  5310. * Build sched domains for a given set of cpus and attach the sched domains
  5311. * to the individual cpus
  5312. */
  5313. static int build_sched_domains(const cpumask_t *cpu_map)
  5314. {
  5315. int i;
  5316. #ifdef CONFIG_NUMA
  5317. struct sched_group **sched_group_nodes = NULL;
  5318. int sd_allnodes = 0;
  5319. /*
  5320. * Allocate the per-node list of sched groups
  5321. */
  5322. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5323. GFP_KERNEL);
  5324. if (!sched_group_nodes) {
  5325. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5326. return -ENOMEM;
  5327. }
  5328. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5329. #endif
  5330. /*
  5331. * Set up domains for cpus specified by the cpu_map.
  5332. */
  5333. for_each_cpu_mask(i, *cpu_map) {
  5334. struct sched_domain *sd = NULL, *p;
  5335. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5336. cpus_and(nodemask, nodemask, *cpu_map);
  5337. #ifdef CONFIG_NUMA
  5338. if (cpus_weight(*cpu_map) >
  5339. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5340. sd = &per_cpu(allnodes_domains, i);
  5341. *sd = SD_ALLNODES_INIT;
  5342. sd->span = *cpu_map;
  5343. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5344. p = sd;
  5345. sd_allnodes = 1;
  5346. } else
  5347. p = NULL;
  5348. sd = &per_cpu(node_domains, i);
  5349. *sd = SD_NODE_INIT;
  5350. sd->span = sched_domain_node_span(cpu_to_node(i));
  5351. sd->parent = p;
  5352. if (p)
  5353. p->child = sd;
  5354. cpus_and(sd->span, sd->span, *cpu_map);
  5355. #endif
  5356. p = sd;
  5357. sd = &per_cpu(phys_domains, i);
  5358. *sd = SD_CPU_INIT;
  5359. sd->span = nodemask;
  5360. sd->parent = p;
  5361. if (p)
  5362. p->child = sd;
  5363. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5364. #ifdef CONFIG_SCHED_MC
  5365. p = sd;
  5366. sd = &per_cpu(core_domains, i);
  5367. *sd = SD_MC_INIT;
  5368. sd->span = cpu_coregroup_map(i);
  5369. cpus_and(sd->span, sd->span, *cpu_map);
  5370. sd->parent = p;
  5371. p->child = sd;
  5372. cpu_to_core_group(i, cpu_map, &sd->groups);
  5373. #endif
  5374. #ifdef CONFIG_SCHED_SMT
  5375. p = sd;
  5376. sd = &per_cpu(cpu_domains, i);
  5377. *sd = SD_SIBLING_INIT;
  5378. sd->span = per_cpu(cpu_sibling_map, i);
  5379. cpus_and(sd->span, sd->span, *cpu_map);
  5380. sd->parent = p;
  5381. p->child = sd;
  5382. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5383. #endif
  5384. }
  5385. #ifdef CONFIG_SCHED_SMT
  5386. /* Set up CPU (sibling) groups */
  5387. for_each_cpu_mask(i, *cpu_map) {
  5388. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5389. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5390. if (i != first_cpu(this_sibling_map))
  5391. continue;
  5392. init_sched_build_groups(this_sibling_map, cpu_map,
  5393. &cpu_to_cpu_group);
  5394. }
  5395. #endif
  5396. #ifdef CONFIG_SCHED_MC
  5397. /* Set up multi-core groups */
  5398. for_each_cpu_mask(i, *cpu_map) {
  5399. cpumask_t this_core_map = cpu_coregroup_map(i);
  5400. cpus_and(this_core_map, this_core_map, *cpu_map);
  5401. if (i != first_cpu(this_core_map))
  5402. continue;
  5403. init_sched_build_groups(this_core_map, cpu_map,
  5404. &cpu_to_core_group);
  5405. }
  5406. #endif
  5407. /* Set up physical groups */
  5408. for (i = 0; i < MAX_NUMNODES; i++) {
  5409. cpumask_t nodemask = node_to_cpumask(i);
  5410. cpus_and(nodemask, nodemask, *cpu_map);
  5411. if (cpus_empty(nodemask))
  5412. continue;
  5413. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5414. }
  5415. #ifdef CONFIG_NUMA
  5416. /* Set up node groups */
  5417. if (sd_allnodes)
  5418. init_sched_build_groups(*cpu_map, cpu_map,
  5419. &cpu_to_allnodes_group);
  5420. for (i = 0; i < MAX_NUMNODES; i++) {
  5421. /* Set up node groups */
  5422. struct sched_group *sg, *prev;
  5423. cpumask_t nodemask = node_to_cpumask(i);
  5424. cpumask_t domainspan;
  5425. cpumask_t covered = CPU_MASK_NONE;
  5426. int j;
  5427. cpus_and(nodemask, nodemask, *cpu_map);
  5428. if (cpus_empty(nodemask)) {
  5429. sched_group_nodes[i] = NULL;
  5430. continue;
  5431. }
  5432. domainspan = sched_domain_node_span(i);
  5433. cpus_and(domainspan, domainspan, *cpu_map);
  5434. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5435. if (!sg) {
  5436. printk(KERN_WARNING "Can not alloc domain group for "
  5437. "node %d\n", i);
  5438. goto error;
  5439. }
  5440. sched_group_nodes[i] = sg;
  5441. for_each_cpu_mask(j, nodemask) {
  5442. struct sched_domain *sd;
  5443. sd = &per_cpu(node_domains, j);
  5444. sd->groups = sg;
  5445. }
  5446. sg->__cpu_power = 0;
  5447. sg->cpumask = nodemask;
  5448. sg->next = sg;
  5449. cpus_or(covered, covered, nodemask);
  5450. prev = sg;
  5451. for (j = 0; j < MAX_NUMNODES; j++) {
  5452. cpumask_t tmp, notcovered;
  5453. int n = (i + j) % MAX_NUMNODES;
  5454. cpus_complement(notcovered, covered);
  5455. cpus_and(tmp, notcovered, *cpu_map);
  5456. cpus_and(tmp, tmp, domainspan);
  5457. if (cpus_empty(tmp))
  5458. break;
  5459. nodemask = node_to_cpumask(n);
  5460. cpus_and(tmp, tmp, nodemask);
  5461. if (cpus_empty(tmp))
  5462. continue;
  5463. sg = kmalloc_node(sizeof(struct sched_group),
  5464. GFP_KERNEL, i);
  5465. if (!sg) {
  5466. printk(KERN_WARNING
  5467. "Can not alloc domain group for node %d\n", j);
  5468. goto error;
  5469. }
  5470. sg->__cpu_power = 0;
  5471. sg->cpumask = tmp;
  5472. sg->next = prev->next;
  5473. cpus_or(covered, covered, tmp);
  5474. prev->next = sg;
  5475. prev = sg;
  5476. }
  5477. }
  5478. #endif
  5479. /* Calculate CPU power for physical packages and nodes */
  5480. #ifdef CONFIG_SCHED_SMT
  5481. for_each_cpu_mask(i, *cpu_map) {
  5482. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5483. init_sched_groups_power(i, sd);
  5484. }
  5485. #endif
  5486. #ifdef CONFIG_SCHED_MC
  5487. for_each_cpu_mask(i, *cpu_map) {
  5488. struct sched_domain *sd = &per_cpu(core_domains, i);
  5489. init_sched_groups_power(i, sd);
  5490. }
  5491. #endif
  5492. for_each_cpu_mask(i, *cpu_map) {
  5493. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5494. init_sched_groups_power(i, sd);
  5495. }
  5496. #ifdef CONFIG_NUMA
  5497. for (i = 0; i < MAX_NUMNODES; i++)
  5498. init_numa_sched_groups_power(sched_group_nodes[i]);
  5499. if (sd_allnodes) {
  5500. struct sched_group *sg;
  5501. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5502. init_numa_sched_groups_power(sg);
  5503. }
  5504. #endif
  5505. /* Attach the domains */
  5506. for_each_cpu_mask(i, *cpu_map) {
  5507. struct sched_domain *sd;
  5508. #ifdef CONFIG_SCHED_SMT
  5509. sd = &per_cpu(cpu_domains, i);
  5510. #elif defined(CONFIG_SCHED_MC)
  5511. sd = &per_cpu(core_domains, i);
  5512. #else
  5513. sd = &per_cpu(phys_domains, i);
  5514. #endif
  5515. cpu_attach_domain(sd, i);
  5516. }
  5517. return 0;
  5518. #ifdef CONFIG_NUMA
  5519. error:
  5520. free_sched_groups(cpu_map);
  5521. return -ENOMEM;
  5522. #endif
  5523. }
  5524. static cpumask_t *doms_cur; /* current sched domains */
  5525. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5526. /*
  5527. * Special case: If a kmalloc of a doms_cur partition (array of
  5528. * cpumask_t) fails, then fallback to a single sched domain,
  5529. * as determined by the single cpumask_t fallback_doms.
  5530. */
  5531. static cpumask_t fallback_doms;
  5532. /*
  5533. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5534. * For now this just excludes isolated cpus, but could be used to
  5535. * exclude other special cases in the future.
  5536. */
  5537. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5538. {
  5539. ndoms_cur = 1;
  5540. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5541. if (!doms_cur)
  5542. doms_cur = &fallback_doms;
  5543. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5544. register_sched_domain_sysctl();
  5545. return build_sched_domains(doms_cur);
  5546. }
  5547. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5548. {
  5549. free_sched_groups(cpu_map);
  5550. }
  5551. /*
  5552. * Detach sched domains from a group of cpus specified in cpu_map
  5553. * These cpus will now be attached to the NULL domain
  5554. */
  5555. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5556. {
  5557. int i;
  5558. unregister_sched_domain_sysctl();
  5559. for_each_cpu_mask(i, *cpu_map)
  5560. cpu_attach_domain(NULL, i);
  5561. synchronize_sched();
  5562. arch_destroy_sched_domains(cpu_map);
  5563. }
  5564. /*
  5565. * Partition sched domains as specified by the 'ndoms_new'
  5566. * cpumasks in the array doms_new[] of cpumasks. This compares
  5567. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5568. * It destroys each deleted domain and builds each new domain.
  5569. *
  5570. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5571. * The masks don't intersect (don't overlap.) We should setup one
  5572. * sched domain for each mask. CPUs not in any of the cpumasks will
  5573. * not be load balanced. If the same cpumask appears both in the
  5574. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5575. * it as it is.
  5576. *
  5577. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5578. * ownership of it and will kfree it when done with it. If the caller
  5579. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5580. * and partition_sched_domains() will fallback to the single partition
  5581. * 'fallback_doms'.
  5582. *
  5583. * Call with hotplug lock held
  5584. */
  5585. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5586. {
  5587. int i, j;
  5588. if (doms_new == NULL) {
  5589. ndoms_new = 1;
  5590. doms_new = &fallback_doms;
  5591. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5592. }
  5593. /* Destroy deleted domains */
  5594. for (i = 0; i < ndoms_cur; i++) {
  5595. for (j = 0; j < ndoms_new; j++) {
  5596. if (cpus_equal(doms_cur[i], doms_new[j]))
  5597. goto match1;
  5598. }
  5599. /* no match - a current sched domain not in new doms_new[] */
  5600. detach_destroy_domains(doms_cur + i);
  5601. match1:
  5602. ;
  5603. }
  5604. /* Build new domains */
  5605. for (i = 0; i < ndoms_new; i++) {
  5606. for (j = 0; j < ndoms_cur; j++) {
  5607. if (cpus_equal(doms_new[i], doms_cur[j]))
  5608. goto match2;
  5609. }
  5610. /* no match - add a new doms_new */
  5611. build_sched_domains(doms_new + i);
  5612. match2:
  5613. ;
  5614. }
  5615. /* Remember the new sched domains */
  5616. if (doms_cur != &fallback_doms)
  5617. kfree(doms_cur);
  5618. doms_cur = doms_new;
  5619. ndoms_cur = ndoms_new;
  5620. }
  5621. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5622. static int arch_reinit_sched_domains(void)
  5623. {
  5624. int err;
  5625. mutex_lock(&sched_hotcpu_mutex);
  5626. detach_destroy_domains(&cpu_online_map);
  5627. err = arch_init_sched_domains(&cpu_online_map);
  5628. mutex_unlock(&sched_hotcpu_mutex);
  5629. return err;
  5630. }
  5631. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5632. {
  5633. int ret;
  5634. if (buf[0] != '0' && buf[0] != '1')
  5635. return -EINVAL;
  5636. if (smt)
  5637. sched_smt_power_savings = (buf[0] == '1');
  5638. else
  5639. sched_mc_power_savings = (buf[0] == '1');
  5640. ret = arch_reinit_sched_domains();
  5641. return ret ? ret : count;
  5642. }
  5643. #ifdef CONFIG_SCHED_MC
  5644. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5645. {
  5646. return sprintf(page, "%u\n", sched_mc_power_savings);
  5647. }
  5648. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5649. const char *buf, size_t count)
  5650. {
  5651. return sched_power_savings_store(buf, count, 0);
  5652. }
  5653. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5654. sched_mc_power_savings_store);
  5655. #endif
  5656. #ifdef CONFIG_SCHED_SMT
  5657. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5658. {
  5659. return sprintf(page, "%u\n", sched_smt_power_savings);
  5660. }
  5661. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5662. const char *buf, size_t count)
  5663. {
  5664. return sched_power_savings_store(buf, count, 1);
  5665. }
  5666. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5667. sched_smt_power_savings_store);
  5668. #endif
  5669. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5670. {
  5671. int err = 0;
  5672. #ifdef CONFIG_SCHED_SMT
  5673. if (smt_capable())
  5674. err = sysfs_create_file(&cls->kset.kobj,
  5675. &attr_sched_smt_power_savings.attr);
  5676. #endif
  5677. #ifdef CONFIG_SCHED_MC
  5678. if (!err && mc_capable())
  5679. err = sysfs_create_file(&cls->kset.kobj,
  5680. &attr_sched_mc_power_savings.attr);
  5681. #endif
  5682. return err;
  5683. }
  5684. #endif
  5685. /*
  5686. * Force a reinitialization of the sched domains hierarchy. The domains
  5687. * and groups cannot be updated in place without racing with the balancing
  5688. * code, so we temporarily attach all running cpus to the NULL domain
  5689. * which will prevent rebalancing while the sched domains are recalculated.
  5690. */
  5691. static int update_sched_domains(struct notifier_block *nfb,
  5692. unsigned long action, void *hcpu)
  5693. {
  5694. switch (action) {
  5695. case CPU_UP_PREPARE:
  5696. case CPU_UP_PREPARE_FROZEN:
  5697. case CPU_DOWN_PREPARE:
  5698. case CPU_DOWN_PREPARE_FROZEN:
  5699. detach_destroy_domains(&cpu_online_map);
  5700. return NOTIFY_OK;
  5701. case CPU_UP_CANCELED:
  5702. case CPU_UP_CANCELED_FROZEN:
  5703. case CPU_DOWN_FAILED:
  5704. case CPU_DOWN_FAILED_FROZEN:
  5705. case CPU_ONLINE:
  5706. case CPU_ONLINE_FROZEN:
  5707. case CPU_DEAD:
  5708. case CPU_DEAD_FROZEN:
  5709. /*
  5710. * Fall through and re-initialise the domains.
  5711. */
  5712. break;
  5713. default:
  5714. return NOTIFY_DONE;
  5715. }
  5716. /* The hotplug lock is already held by cpu_up/cpu_down */
  5717. arch_init_sched_domains(&cpu_online_map);
  5718. return NOTIFY_OK;
  5719. }
  5720. void __init sched_init_smp(void)
  5721. {
  5722. cpumask_t non_isolated_cpus;
  5723. mutex_lock(&sched_hotcpu_mutex);
  5724. arch_init_sched_domains(&cpu_online_map);
  5725. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5726. if (cpus_empty(non_isolated_cpus))
  5727. cpu_set(smp_processor_id(), non_isolated_cpus);
  5728. mutex_unlock(&sched_hotcpu_mutex);
  5729. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5730. hotcpu_notifier(update_sched_domains, 0);
  5731. /* Move init over to a non-isolated CPU */
  5732. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5733. BUG();
  5734. }
  5735. #else
  5736. void __init sched_init_smp(void)
  5737. {
  5738. }
  5739. #endif /* CONFIG_SMP */
  5740. int in_sched_functions(unsigned long addr)
  5741. {
  5742. /* Linker adds these: start and end of __sched functions */
  5743. extern char __sched_text_start[], __sched_text_end[];
  5744. return in_lock_functions(addr) ||
  5745. (addr >= (unsigned long)__sched_text_start
  5746. && addr < (unsigned long)__sched_text_end);
  5747. }
  5748. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5749. {
  5750. cfs_rq->tasks_timeline = RB_ROOT;
  5751. #ifdef CONFIG_FAIR_GROUP_SCHED
  5752. cfs_rq->rq = rq;
  5753. #endif
  5754. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5755. }
  5756. void __init sched_init(void)
  5757. {
  5758. int highest_cpu = 0;
  5759. int i, j;
  5760. for_each_possible_cpu(i) {
  5761. struct rt_prio_array *array;
  5762. struct rq *rq;
  5763. rq = cpu_rq(i);
  5764. spin_lock_init(&rq->lock);
  5765. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5766. rq->nr_running = 0;
  5767. rq->clock = 1;
  5768. init_cfs_rq(&rq->cfs, rq);
  5769. #ifdef CONFIG_FAIR_GROUP_SCHED
  5770. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5771. {
  5772. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5773. struct sched_entity *se =
  5774. &per_cpu(init_sched_entity, i);
  5775. init_cfs_rq_p[i] = cfs_rq;
  5776. init_cfs_rq(cfs_rq, rq);
  5777. cfs_rq->tg = &init_task_group;
  5778. list_add(&cfs_rq->leaf_cfs_rq_list,
  5779. &rq->leaf_cfs_rq_list);
  5780. init_sched_entity_p[i] = se;
  5781. se->cfs_rq = &rq->cfs;
  5782. se->my_q = cfs_rq;
  5783. se->load.weight = init_task_group_load;
  5784. se->load.inv_weight =
  5785. div64_64(1ULL<<32, init_task_group_load);
  5786. se->parent = NULL;
  5787. }
  5788. init_task_group.shares = init_task_group_load;
  5789. spin_lock_init(&init_task_group.lock);
  5790. #endif
  5791. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5792. rq->cpu_load[j] = 0;
  5793. #ifdef CONFIG_SMP
  5794. rq->sd = NULL;
  5795. rq->active_balance = 0;
  5796. rq->next_balance = jiffies;
  5797. rq->push_cpu = 0;
  5798. rq->cpu = i;
  5799. rq->migration_thread = NULL;
  5800. INIT_LIST_HEAD(&rq->migration_queue);
  5801. #endif
  5802. atomic_set(&rq->nr_iowait, 0);
  5803. array = &rq->rt.active;
  5804. for (j = 0; j < MAX_RT_PRIO; j++) {
  5805. INIT_LIST_HEAD(array->queue + j);
  5806. __clear_bit(j, array->bitmap);
  5807. }
  5808. highest_cpu = i;
  5809. /* delimiter for bitsearch: */
  5810. __set_bit(MAX_RT_PRIO, array->bitmap);
  5811. }
  5812. set_load_weight(&init_task);
  5813. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5814. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5815. #endif
  5816. #ifdef CONFIG_SMP
  5817. nr_cpu_ids = highest_cpu + 1;
  5818. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5819. #endif
  5820. #ifdef CONFIG_RT_MUTEXES
  5821. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5822. #endif
  5823. /*
  5824. * The boot idle thread does lazy MMU switching as well:
  5825. */
  5826. atomic_inc(&init_mm.mm_count);
  5827. enter_lazy_tlb(&init_mm, current);
  5828. /*
  5829. * Make us the idle thread. Technically, schedule() should not be
  5830. * called from this thread, however somewhere below it might be,
  5831. * but because we are the idle thread, we just pick up running again
  5832. * when this runqueue becomes "idle".
  5833. */
  5834. init_idle(current, smp_processor_id());
  5835. /*
  5836. * During early bootup we pretend to be a normal task:
  5837. */
  5838. current->sched_class = &fair_sched_class;
  5839. }
  5840. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5841. void __might_sleep(char *file, int line)
  5842. {
  5843. #ifdef in_atomic
  5844. static unsigned long prev_jiffy; /* ratelimiting */
  5845. if ((in_atomic() || irqs_disabled()) &&
  5846. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5847. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5848. return;
  5849. prev_jiffy = jiffies;
  5850. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5851. " context at %s:%d\n", file, line);
  5852. printk("in_atomic():%d, irqs_disabled():%d\n",
  5853. in_atomic(), irqs_disabled());
  5854. debug_show_held_locks(current);
  5855. if (irqs_disabled())
  5856. print_irqtrace_events(current);
  5857. dump_stack();
  5858. }
  5859. #endif
  5860. }
  5861. EXPORT_SYMBOL(__might_sleep);
  5862. #endif
  5863. #ifdef CONFIG_MAGIC_SYSRQ
  5864. static void normalize_task(struct rq *rq, struct task_struct *p)
  5865. {
  5866. int on_rq;
  5867. update_rq_clock(rq);
  5868. on_rq = p->se.on_rq;
  5869. if (on_rq)
  5870. deactivate_task(rq, p, 0);
  5871. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5872. if (on_rq) {
  5873. activate_task(rq, p, 0);
  5874. resched_task(rq->curr);
  5875. }
  5876. }
  5877. void normalize_rt_tasks(void)
  5878. {
  5879. struct task_struct *g, *p;
  5880. unsigned long flags;
  5881. struct rq *rq;
  5882. read_lock_irq(&tasklist_lock);
  5883. do_each_thread(g, p) {
  5884. /*
  5885. * Only normalize user tasks:
  5886. */
  5887. if (!p->mm)
  5888. continue;
  5889. p->se.exec_start = 0;
  5890. #ifdef CONFIG_SCHEDSTATS
  5891. p->se.wait_start = 0;
  5892. p->se.sleep_start = 0;
  5893. p->se.block_start = 0;
  5894. #endif
  5895. task_rq(p)->clock = 0;
  5896. if (!rt_task(p)) {
  5897. /*
  5898. * Renice negative nice level userspace
  5899. * tasks back to 0:
  5900. */
  5901. if (TASK_NICE(p) < 0 && p->mm)
  5902. set_user_nice(p, 0);
  5903. continue;
  5904. }
  5905. spin_lock_irqsave(&p->pi_lock, flags);
  5906. rq = __task_rq_lock(p);
  5907. normalize_task(rq, p);
  5908. __task_rq_unlock(rq);
  5909. spin_unlock_irqrestore(&p->pi_lock, flags);
  5910. } while_each_thread(g, p);
  5911. read_unlock_irq(&tasklist_lock);
  5912. }
  5913. #endif /* CONFIG_MAGIC_SYSRQ */
  5914. #ifdef CONFIG_IA64
  5915. /*
  5916. * These functions are only useful for the IA64 MCA handling.
  5917. *
  5918. * They can only be called when the whole system has been
  5919. * stopped - every CPU needs to be quiescent, and no scheduling
  5920. * activity can take place. Using them for anything else would
  5921. * be a serious bug, and as a result, they aren't even visible
  5922. * under any other configuration.
  5923. */
  5924. /**
  5925. * curr_task - return the current task for a given cpu.
  5926. * @cpu: the processor in question.
  5927. *
  5928. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5929. */
  5930. struct task_struct *curr_task(int cpu)
  5931. {
  5932. return cpu_curr(cpu);
  5933. }
  5934. /**
  5935. * set_curr_task - set the current task for a given cpu.
  5936. * @cpu: the processor in question.
  5937. * @p: the task pointer to set.
  5938. *
  5939. * Description: This function must only be used when non-maskable interrupts
  5940. * are serviced on a separate stack. It allows the architecture to switch the
  5941. * notion of the current task on a cpu in a non-blocking manner. This function
  5942. * must be called with all CPU's synchronized, and interrupts disabled, the
  5943. * and caller must save the original value of the current task (see
  5944. * curr_task() above) and restore that value before reenabling interrupts and
  5945. * re-starting the system.
  5946. *
  5947. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5948. */
  5949. void set_curr_task(int cpu, struct task_struct *p)
  5950. {
  5951. cpu_curr(cpu) = p;
  5952. }
  5953. #endif
  5954. #ifdef CONFIG_FAIR_GROUP_SCHED
  5955. /* allocate runqueue etc for a new task group */
  5956. struct task_group *sched_create_group(void)
  5957. {
  5958. struct task_group *tg;
  5959. struct cfs_rq *cfs_rq;
  5960. struct sched_entity *se;
  5961. struct rq *rq;
  5962. int i;
  5963. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5964. if (!tg)
  5965. return ERR_PTR(-ENOMEM);
  5966. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  5967. if (!tg->cfs_rq)
  5968. goto err;
  5969. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  5970. if (!tg->se)
  5971. goto err;
  5972. for_each_possible_cpu(i) {
  5973. rq = cpu_rq(i);
  5974. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  5975. cpu_to_node(i));
  5976. if (!cfs_rq)
  5977. goto err;
  5978. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  5979. cpu_to_node(i));
  5980. if (!se)
  5981. goto err;
  5982. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  5983. memset(se, 0, sizeof(struct sched_entity));
  5984. tg->cfs_rq[i] = cfs_rq;
  5985. init_cfs_rq(cfs_rq, rq);
  5986. cfs_rq->tg = tg;
  5987. tg->se[i] = se;
  5988. se->cfs_rq = &rq->cfs;
  5989. se->my_q = cfs_rq;
  5990. se->load.weight = NICE_0_LOAD;
  5991. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  5992. se->parent = NULL;
  5993. }
  5994. for_each_possible_cpu(i) {
  5995. rq = cpu_rq(i);
  5996. cfs_rq = tg->cfs_rq[i];
  5997. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5998. }
  5999. tg->shares = NICE_0_LOAD;
  6000. spin_lock_init(&tg->lock);
  6001. return tg;
  6002. err:
  6003. for_each_possible_cpu(i) {
  6004. if (tg->cfs_rq)
  6005. kfree(tg->cfs_rq[i]);
  6006. if (tg->se)
  6007. kfree(tg->se[i]);
  6008. }
  6009. kfree(tg->cfs_rq);
  6010. kfree(tg->se);
  6011. kfree(tg);
  6012. return ERR_PTR(-ENOMEM);
  6013. }
  6014. /* rcu callback to free various structures associated with a task group */
  6015. static void free_sched_group(struct rcu_head *rhp)
  6016. {
  6017. struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
  6018. struct task_group *tg = cfs_rq->tg;
  6019. struct sched_entity *se;
  6020. int i;
  6021. /* now it should be safe to free those cfs_rqs */
  6022. for_each_possible_cpu(i) {
  6023. cfs_rq = tg->cfs_rq[i];
  6024. kfree(cfs_rq);
  6025. se = tg->se[i];
  6026. kfree(se);
  6027. }
  6028. kfree(tg->cfs_rq);
  6029. kfree(tg->se);
  6030. kfree(tg);
  6031. }
  6032. /* Destroy runqueue etc associated with a task group */
  6033. void sched_destroy_group(struct task_group *tg)
  6034. {
  6035. struct cfs_rq *cfs_rq;
  6036. int i;
  6037. for_each_possible_cpu(i) {
  6038. cfs_rq = tg->cfs_rq[i];
  6039. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6040. }
  6041. cfs_rq = tg->cfs_rq[0];
  6042. /* wait for possible concurrent references to cfs_rqs complete */
  6043. call_rcu(&cfs_rq->rcu, free_sched_group);
  6044. }
  6045. /* change task's runqueue when it moves between groups.
  6046. * The caller of this function should have put the task in its new group
  6047. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6048. * reflect its new group.
  6049. */
  6050. void sched_move_task(struct task_struct *tsk)
  6051. {
  6052. int on_rq, running;
  6053. unsigned long flags;
  6054. struct rq *rq;
  6055. rq = task_rq_lock(tsk, &flags);
  6056. if (tsk->sched_class != &fair_sched_class)
  6057. goto done;
  6058. update_rq_clock(rq);
  6059. running = task_running(rq, tsk);
  6060. on_rq = tsk->se.on_rq;
  6061. if (on_rq) {
  6062. dequeue_task(rq, tsk, 0);
  6063. if (unlikely(running))
  6064. tsk->sched_class->put_prev_task(rq, tsk);
  6065. }
  6066. set_task_cfs_rq(tsk);
  6067. if (on_rq) {
  6068. if (unlikely(running))
  6069. tsk->sched_class->set_curr_task(rq);
  6070. enqueue_task(rq, tsk, 0);
  6071. }
  6072. done:
  6073. task_rq_unlock(rq, &flags);
  6074. }
  6075. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6076. {
  6077. struct cfs_rq *cfs_rq = se->cfs_rq;
  6078. struct rq *rq = cfs_rq->rq;
  6079. int on_rq;
  6080. spin_lock_irq(&rq->lock);
  6081. on_rq = se->on_rq;
  6082. if (on_rq)
  6083. dequeue_entity(cfs_rq, se, 0);
  6084. se->load.weight = shares;
  6085. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6086. if (on_rq)
  6087. enqueue_entity(cfs_rq, se, 0);
  6088. spin_unlock_irq(&rq->lock);
  6089. }
  6090. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6091. {
  6092. int i;
  6093. spin_lock(&tg->lock);
  6094. if (tg->shares == shares)
  6095. goto done;
  6096. tg->shares = shares;
  6097. for_each_possible_cpu(i)
  6098. set_se_shares(tg->se[i], shares);
  6099. done:
  6100. spin_unlock(&tg->lock);
  6101. return 0;
  6102. }
  6103. unsigned long sched_group_shares(struct task_group *tg)
  6104. {
  6105. return tg->shares;
  6106. }
  6107. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6108. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6109. /* return corresponding task_group object of a cgroup */
  6110. static inline struct task_group *cgroup_tg(struct cgroup *cont)
  6111. {
  6112. return container_of(cgroup_subsys_state(cont, cpu_cgroup_subsys_id),
  6113. struct task_group, css);
  6114. }
  6115. static struct cgroup_subsys_state *
  6116. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
  6117. {
  6118. struct task_group *tg;
  6119. if (!cont->parent) {
  6120. /* This is early initialization for the top cgroup */
  6121. init_task_group.css.cgroup = cont;
  6122. return &init_task_group.css;
  6123. }
  6124. /* we support only 1-level deep hierarchical scheduler atm */
  6125. if (cont->parent->parent)
  6126. return ERR_PTR(-EINVAL);
  6127. tg = sched_create_group();
  6128. if (IS_ERR(tg))
  6129. return ERR_PTR(-ENOMEM);
  6130. /* Bind the cgroup to task_group object we just created */
  6131. tg->css.cgroup = cont;
  6132. return &tg->css;
  6133. }
  6134. static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
  6135. struct cgroup *cont)
  6136. {
  6137. struct task_group *tg = cgroup_tg(cont);
  6138. sched_destroy_group(tg);
  6139. }
  6140. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
  6141. struct cgroup *cont, struct task_struct *tsk)
  6142. {
  6143. /* We don't support RT-tasks being in separate groups */
  6144. if (tsk->sched_class != &fair_sched_class)
  6145. return -EINVAL;
  6146. return 0;
  6147. }
  6148. static void
  6149. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cont,
  6150. struct cgroup *old_cont, struct task_struct *tsk)
  6151. {
  6152. sched_move_task(tsk);
  6153. }
  6154. static ssize_t cpu_shares_write(struct cgroup *cont, struct cftype *cftype,
  6155. struct file *file, const char __user *userbuf,
  6156. size_t nbytes, loff_t *ppos)
  6157. {
  6158. unsigned long shareval;
  6159. struct task_group *tg = cgroup_tg(cont);
  6160. char buffer[2*sizeof(unsigned long) + 1];
  6161. int rc;
  6162. if (nbytes > 2*sizeof(unsigned long)) /* safety check */
  6163. return -E2BIG;
  6164. if (copy_from_user(buffer, userbuf, nbytes))
  6165. return -EFAULT;
  6166. buffer[nbytes] = 0; /* nul-terminate */
  6167. shareval = simple_strtoul(buffer, NULL, 10);
  6168. rc = sched_group_set_shares(tg, shareval);
  6169. return (rc < 0 ? rc : nbytes);
  6170. }
  6171. static u64 cpu_shares_read_uint(struct cgroup *cont, struct cftype *cft)
  6172. {
  6173. struct task_group *tg = cgroup_tg(cont);
  6174. return (u64) tg->shares;
  6175. }
  6176. static struct cftype cpu_shares = {
  6177. .name = "shares",
  6178. .read_uint = cpu_shares_read_uint,
  6179. .write = cpu_shares_write,
  6180. };
  6181. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6182. {
  6183. return cgroup_add_file(cont, ss, &cpu_shares);
  6184. }
  6185. struct cgroup_subsys cpu_cgroup_subsys = {
  6186. .name = "cpu",
  6187. .create = cpu_cgroup_create,
  6188. .destroy = cpu_cgroup_destroy,
  6189. .can_attach = cpu_cgroup_can_attach,
  6190. .attach = cpu_cgroup_attach,
  6191. .populate = cpu_cgroup_populate,
  6192. .subsys_id = cpu_cgroup_subsys_id,
  6193. .early_init = 1,
  6194. };
  6195. #endif /* CONFIG_FAIR_CGROUP_SCHED */