tcp_output.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. #include <linux/static_key.h>
  41. #include <trace/events/tcp.h>
  42. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  43. int push_one, gfp_t gfp);
  44. /* Account for new data that has been sent to the network. */
  45. static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  46. {
  47. struct inet_connection_sock *icsk = inet_csk(sk);
  48. struct tcp_sock *tp = tcp_sk(sk);
  49. unsigned int prior_packets = tp->packets_out;
  50. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  51. __skb_unlink(skb, &sk->sk_write_queue);
  52. tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  53. tp->packets_out += tcp_skb_pcount(skb);
  54. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  55. tcp_rearm_rto(sk);
  56. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  57. tcp_skb_pcount(skb));
  58. }
  59. /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  60. * window scaling factor due to loss of precision.
  61. * If window has been shrunk, what should we make? It is not clear at all.
  62. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  63. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  64. * invalid. OK, let's make this for now:
  65. */
  66. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  67. {
  68. const struct tcp_sock *tp = tcp_sk(sk);
  69. if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  70. (tp->rx_opt.wscale_ok &&
  71. ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  72. return tp->snd_nxt;
  73. else
  74. return tcp_wnd_end(tp);
  75. }
  76. /* Calculate mss to advertise in SYN segment.
  77. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  78. *
  79. * 1. It is independent of path mtu.
  80. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  81. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  82. * attached devices, because some buggy hosts are confused by
  83. * large MSS.
  84. * 4. We do not make 3, we advertise MSS, calculated from first
  85. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  86. * This may be overridden via information stored in routing table.
  87. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  88. * probably even Jumbo".
  89. */
  90. static __u16 tcp_advertise_mss(struct sock *sk)
  91. {
  92. struct tcp_sock *tp = tcp_sk(sk);
  93. const struct dst_entry *dst = __sk_dst_get(sk);
  94. int mss = tp->advmss;
  95. if (dst) {
  96. unsigned int metric = dst_metric_advmss(dst);
  97. if (metric < mss) {
  98. mss = metric;
  99. tp->advmss = mss;
  100. }
  101. }
  102. return (__u16)mss;
  103. }
  104. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  105. * This is the first part of cwnd validation mechanism.
  106. */
  107. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  108. {
  109. struct tcp_sock *tp = tcp_sk(sk);
  110. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  111. u32 cwnd = tp->snd_cwnd;
  112. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  113. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  114. restart_cwnd = min(restart_cwnd, cwnd);
  115. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  116. cwnd >>= 1;
  117. tp->snd_cwnd = max(cwnd, restart_cwnd);
  118. tp->snd_cwnd_stamp = tcp_jiffies32;
  119. tp->snd_cwnd_used = 0;
  120. }
  121. /* Congestion state accounting after a packet has been sent. */
  122. static void tcp_event_data_sent(struct tcp_sock *tp,
  123. struct sock *sk)
  124. {
  125. struct inet_connection_sock *icsk = inet_csk(sk);
  126. const u32 now = tcp_jiffies32;
  127. if (tcp_packets_in_flight(tp) == 0)
  128. tcp_ca_event(sk, CA_EVENT_TX_START);
  129. tp->lsndtime = now;
  130. /* If it is a reply for ato after last received
  131. * packet, enter pingpong mode.
  132. */
  133. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  134. icsk->icsk_ack.pingpong = 1;
  135. }
  136. /* Account for an ACK we sent. */
  137. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
  138. {
  139. tcp_dec_quickack_mode(sk, pkts);
  140. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  141. }
  142. u32 tcp_default_init_rwnd(u32 mss)
  143. {
  144. /* Initial receive window should be twice of TCP_INIT_CWND to
  145. * enable proper sending of new unsent data during fast recovery
  146. * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
  147. * limit when mss is larger than 1460.
  148. */
  149. u32 init_rwnd = TCP_INIT_CWND * 2;
  150. if (mss > 1460)
  151. init_rwnd = max((1460 * init_rwnd) / mss, 2U);
  152. return init_rwnd;
  153. }
  154. /* Determine a window scaling and initial window to offer.
  155. * Based on the assumption that the given amount of space
  156. * will be offered. Store the results in the tp structure.
  157. * NOTE: for smooth operation initial space offering should
  158. * be a multiple of mss if possible. We assume here that mss >= 1.
  159. * This MUST be enforced by all callers.
  160. */
  161. void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
  162. __u32 *rcv_wnd, __u32 *window_clamp,
  163. int wscale_ok, __u8 *rcv_wscale,
  164. __u32 init_rcv_wnd)
  165. {
  166. unsigned int space = (__space < 0 ? 0 : __space);
  167. /* If no clamp set the clamp to the max possible scaled window */
  168. if (*window_clamp == 0)
  169. (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
  170. space = min(*window_clamp, space);
  171. /* Quantize space offering to a multiple of mss if possible. */
  172. if (space > mss)
  173. space = rounddown(space, mss);
  174. /* NOTE: offering an initial window larger than 32767
  175. * will break some buggy TCP stacks. If the admin tells us
  176. * it is likely we could be speaking with such a buggy stack
  177. * we will truncate our initial window offering to 32K-1
  178. * unless the remote has sent us a window scaling option,
  179. * which we interpret as a sign the remote TCP is not
  180. * misinterpreting the window field as a signed quantity.
  181. */
  182. if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  183. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  184. else
  185. (*rcv_wnd) = space;
  186. (*rcv_wscale) = 0;
  187. if (wscale_ok) {
  188. /* Set window scaling on max possible window */
  189. space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  190. space = max_t(u32, space, sysctl_rmem_max);
  191. space = min_t(u32, space, *window_clamp);
  192. while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
  193. space >>= 1;
  194. (*rcv_wscale)++;
  195. }
  196. }
  197. if (mss > (1 << *rcv_wscale)) {
  198. if (!init_rcv_wnd) /* Use default unless specified otherwise */
  199. init_rcv_wnd = tcp_default_init_rwnd(mss);
  200. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  201. }
  202. /* Set the clamp no higher than max representable value */
  203. (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
  204. }
  205. EXPORT_SYMBOL(tcp_select_initial_window);
  206. /* Chose a new window to advertise, update state in tcp_sock for the
  207. * socket, and return result with RFC1323 scaling applied. The return
  208. * value can be stuffed directly into th->window for an outgoing
  209. * frame.
  210. */
  211. static u16 tcp_select_window(struct sock *sk)
  212. {
  213. struct tcp_sock *tp = tcp_sk(sk);
  214. u32 old_win = tp->rcv_wnd;
  215. u32 cur_win = tcp_receive_window(tp);
  216. u32 new_win = __tcp_select_window(sk);
  217. /* Never shrink the offered window */
  218. if (new_win < cur_win) {
  219. /* Danger Will Robinson!
  220. * Don't update rcv_wup/rcv_wnd here or else
  221. * we will not be able to advertise a zero
  222. * window in time. --DaveM
  223. *
  224. * Relax Will Robinson.
  225. */
  226. if (new_win == 0)
  227. NET_INC_STATS(sock_net(sk),
  228. LINUX_MIB_TCPWANTZEROWINDOWADV);
  229. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  230. }
  231. tp->rcv_wnd = new_win;
  232. tp->rcv_wup = tp->rcv_nxt;
  233. /* Make sure we do not exceed the maximum possible
  234. * scaled window.
  235. */
  236. if (!tp->rx_opt.rcv_wscale &&
  237. sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  238. new_win = min(new_win, MAX_TCP_WINDOW);
  239. else
  240. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  241. /* RFC1323 scaling applied */
  242. new_win >>= tp->rx_opt.rcv_wscale;
  243. /* If we advertise zero window, disable fast path. */
  244. if (new_win == 0) {
  245. tp->pred_flags = 0;
  246. if (old_win)
  247. NET_INC_STATS(sock_net(sk),
  248. LINUX_MIB_TCPTOZEROWINDOWADV);
  249. } else if (old_win == 0) {
  250. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  251. }
  252. return new_win;
  253. }
  254. /* Packet ECN state for a SYN-ACK */
  255. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  256. {
  257. const struct tcp_sock *tp = tcp_sk(sk);
  258. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  259. if (!(tp->ecn_flags & TCP_ECN_OK))
  260. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  261. else if (tcp_ca_needs_ecn(sk) ||
  262. tcp_bpf_ca_needs_ecn(sk))
  263. INET_ECN_xmit(sk);
  264. }
  265. /* Packet ECN state for a SYN. */
  266. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  267. {
  268. struct tcp_sock *tp = tcp_sk(sk);
  269. bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
  270. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  271. tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
  272. if (!use_ecn) {
  273. const struct dst_entry *dst = __sk_dst_get(sk);
  274. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  275. use_ecn = true;
  276. }
  277. tp->ecn_flags = 0;
  278. if (use_ecn) {
  279. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  280. tp->ecn_flags = TCP_ECN_OK;
  281. if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
  282. INET_ECN_xmit(sk);
  283. }
  284. }
  285. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  286. {
  287. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  288. /* tp->ecn_flags are cleared at a later point in time when
  289. * SYN ACK is ultimatively being received.
  290. */
  291. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  292. }
  293. static void
  294. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  295. {
  296. if (inet_rsk(req)->ecn_ok)
  297. th->ece = 1;
  298. }
  299. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  300. * be sent.
  301. */
  302. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  303. struct tcphdr *th, int tcp_header_len)
  304. {
  305. struct tcp_sock *tp = tcp_sk(sk);
  306. if (tp->ecn_flags & TCP_ECN_OK) {
  307. /* Not-retransmitted data segment: set ECT and inject CWR. */
  308. if (skb->len != tcp_header_len &&
  309. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  310. INET_ECN_xmit(sk);
  311. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  312. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  313. th->cwr = 1;
  314. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  315. }
  316. } else if (!tcp_ca_needs_ecn(sk)) {
  317. /* ACK or retransmitted segment: clear ECT|CE */
  318. INET_ECN_dontxmit(sk);
  319. }
  320. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  321. th->ece = 1;
  322. }
  323. }
  324. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  325. * auto increment end seqno.
  326. */
  327. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  328. {
  329. skb->ip_summed = CHECKSUM_PARTIAL;
  330. TCP_SKB_CB(skb)->tcp_flags = flags;
  331. TCP_SKB_CB(skb)->sacked = 0;
  332. tcp_skb_pcount_set(skb, 1);
  333. TCP_SKB_CB(skb)->seq = seq;
  334. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  335. seq++;
  336. TCP_SKB_CB(skb)->end_seq = seq;
  337. }
  338. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  339. {
  340. return tp->snd_una != tp->snd_up;
  341. }
  342. #define OPTION_SACK_ADVERTISE (1 << 0)
  343. #define OPTION_TS (1 << 1)
  344. #define OPTION_MD5 (1 << 2)
  345. #define OPTION_WSCALE (1 << 3)
  346. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  347. #define OPTION_SMC (1 << 9)
  348. static void smc_options_write(__be32 *ptr, u16 *options)
  349. {
  350. #if IS_ENABLED(CONFIG_SMC)
  351. if (static_branch_unlikely(&tcp_have_smc)) {
  352. if (unlikely(OPTION_SMC & *options)) {
  353. *ptr++ = htonl((TCPOPT_NOP << 24) |
  354. (TCPOPT_NOP << 16) |
  355. (TCPOPT_EXP << 8) |
  356. (TCPOLEN_EXP_SMC_BASE));
  357. *ptr++ = htonl(TCPOPT_SMC_MAGIC);
  358. }
  359. }
  360. #endif
  361. }
  362. struct tcp_out_options {
  363. u16 options; /* bit field of OPTION_* */
  364. u16 mss; /* 0 to disable */
  365. u8 ws; /* window scale, 0 to disable */
  366. u8 num_sack_blocks; /* number of SACK blocks to include */
  367. u8 hash_size; /* bytes in hash_location */
  368. __u8 *hash_location; /* temporary pointer, overloaded */
  369. __u32 tsval, tsecr; /* need to include OPTION_TS */
  370. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  371. };
  372. /* Write previously computed TCP options to the packet.
  373. *
  374. * Beware: Something in the Internet is very sensitive to the ordering of
  375. * TCP options, we learned this through the hard way, so be careful here.
  376. * Luckily we can at least blame others for their non-compliance but from
  377. * inter-operability perspective it seems that we're somewhat stuck with
  378. * the ordering which we have been using if we want to keep working with
  379. * those broken things (not that it currently hurts anybody as there isn't
  380. * particular reason why the ordering would need to be changed).
  381. *
  382. * At least SACK_PERM as the first option is known to lead to a disaster
  383. * (but it may well be that other scenarios fail similarly).
  384. */
  385. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  386. struct tcp_out_options *opts)
  387. {
  388. u16 options = opts->options; /* mungable copy */
  389. if (unlikely(OPTION_MD5 & options)) {
  390. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  391. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  392. /* overload cookie hash location */
  393. opts->hash_location = (__u8 *)ptr;
  394. ptr += 4;
  395. }
  396. if (unlikely(opts->mss)) {
  397. *ptr++ = htonl((TCPOPT_MSS << 24) |
  398. (TCPOLEN_MSS << 16) |
  399. opts->mss);
  400. }
  401. if (likely(OPTION_TS & options)) {
  402. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  403. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  404. (TCPOLEN_SACK_PERM << 16) |
  405. (TCPOPT_TIMESTAMP << 8) |
  406. TCPOLEN_TIMESTAMP);
  407. options &= ~OPTION_SACK_ADVERTISE;
  408. } else {
  409. *ptr++ = htonl((TCPOPT_NOP << 24) |
  410. (TCPOPT_NOP << 16) |
  411. (TCPOPT_TIMESTAMP << 8) |
  412. TCPOLEN_TIMESTAMP);
  413. }
  414. *ptr++ = htonl(opts->tsval);
  415. *ptr++ = htonl(opts->tsecr);
  416. }
  417. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  418. *ptr++ = htonl((TCPOPT_NOP << 24) |
  419. (TCPOPT_NOP << 16) |
  420. (TCPOPT_SACK_PERM << 8) |
  421. TCPOLEN_SACK_PERM);
  422. }
  423. if (unlikely(OPTION_WSCALE & options)) {
  424. *ptr++ = htonl((TCPOPT_NOP << 24) |
  425. (TCPOPT_WINDOW << 16) |
  426. (TCPOLEN_WINDOW << 8) |
  427. opts->ws);
  428. }
  429. if (unlikely(opts->num_sack_blocks)) {
  430. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  431. tp->duplicate_sack : tp->selective_acks;
  432. int this_sack;
  433. *ptr++ = htonl((TCPOPT_NOP << 24) |
  434. (TCPOPT_NOP << 16) |
  435. (TCPOPT_SACK << 8) |
  436. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  437. TCPOLEN_SACK_PERBLOCK)));
  438. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  439. ++this_sack) {
  440. *ptr++ = htonl(sp[this_sack].start_seq);
  441. *ptr++ = htonl(sp[this_sack].end_seq);
  442. }
  443. tp->rx_opt.dsack = 0;
  444. }
  445. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  446. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  447. u8 *p = (u8 *)ptr;
  448. u32 len; /* Fast Open option length */
  449. if (foc->exp) {
  450. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  451. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  452. TCPOPT_FASTOPEN_MAGIC);
  453. p += TCPOLEN_EXP_FASTOPEN_BASE;
  454. } else {
  455. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  456. *p++ = TCPOPT_FASTOPEN;
  457. *p++ = len;
  458. }
  459. memcpy(p, foc->val, foc->len);
  460. if ((len & 3) == 2) {
  461. p[foc->len] = TCPOPT_NOP;
  462. p[foc->len + 1] = TCPOPT_NOP;
  463. }
  464. ptr += (len + 3) >> 2;
  465. }
  466. smc_options_write(ptr, &options);
  467. }
  468. static void smc_set_option(const struct tcp_sock *tp,
  469. struct tcp_out_options *opts,
  470. unsigned int *remaining)
  471. {
  472. #if IS_ENABLED(CONFIG_SMC)
  473. if (static_branch_unlikely(&tcp_have_smc)) {
  474. if (tp->syn_smc) {
  475. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  476. opts->options |= OPTION_SMC;
  477. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  478. }
  479. }
  480. }
  481. #endif
  482. }
  483. static void smc_set_option_cond(const struct tcp_sock *tp,
  484. const struct inet_request_sock *ireq,
  485. struct tcp_out_options *opts,
  486. unsigned int *remaining)
  487. {
  488. #if IS_ENABLED(CONFIG_SMC)
  489. if (static_branch_unlikely(&tcp_have_smc)) {
  490. if (tp->syn_smc && ireq->smc_ok) {
  491. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  492. opts->options |= OPTION_SMC;
  493. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  494. }
  495. }
  496. }
  497. #endif
  498. }
  499. /* Compute TCP options for SYN packets. This is not the final
  500. * network wire format yet.
  501. */
  502. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  503. struct tcp_out_options *opts,
  504. struct tcp_md5sig_key **md5)
  505. {
  506. struct tcp_sock *tp = tcp_sk(sk);
  507. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  508. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  509. #ifdef CONFIG_TCP_MD5SIG
  510. *md5 = tp->af_specific->md5_lookup(sk, sk);
  511. if (*md5) {
  512. opts->options |= OPTION_MD5;
  513. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  514. }
  515. #else
  516. *md5 = NULL;
  517. #endif
  518. /* We always get an MSS option. The option bytes which will be seen in
  519. * normal data packets should timestamps be used, must be in the MSS
  520. * advertised. But we subtract them from tp->mss_cache so that
  521. * calculations in tcp_sendmsg are simpler etc. So account for this
  522. * fact here if necessary. If we don't do this correctly, as a
  523. * receiver we won't recognize data packets as being full sized when we
  524. * should, and thus we won't abide by the delayed ACK rules correctly.
  525. * SACKs don't matter, we never delay an ACK when we have any of those
  526. * going out. */
  527. opts->mss = tcp_advertise_mss(sk);
  528. remaining -= TCPOLEN_MSS_ALIGNED;
  529. if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
  530. opts->options |= OPTION_TS;
  531. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  532. opts->tsecr = tp->rx_opt.ts_recent;
  533. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  534. }
  535. if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
  536. opts->ws = tp->rx_opt.rcv_wscale;
  537. opts->options |= OPTION_WSCALE;
  538. remaining -= TCPOLEN_WSCALE_ALIGNED;
  539. }
  540. if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
  541. opts->options |= OPTION_SACK_ADVERTISE;
  542. if (unlikely(!(OPTION_TS & opts->options)))
  543. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  544. }
  545. if (fastopen && fastopen->cookie.len >= 0) {
  546. u32 need = fastopen->cookie.len;
  547. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  548. TCPOLEN_FASTOPEN_BASE;
  549. need = (need + 3) & ~3U; /* Align to 32 bits */
  550. if (remaining >= need) {
  551. opts->options |= OPTION_FAST_OPEN_COOKIE;
  552. opts->fastopen_cookie = &fastopen->cookie;
  553. remaining -= need;
  554. tp->syn_fastopen = 1;
  555. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  556. }
  557. }
  558. smc_set_option(tp, opts, &remaining);
  559. return MAX_TCP_OPTION_SPACE - remaining;
  560. }
  561. /* Set up TCP options for SYN-ACKs. */
  562. static unsigned int tcp_synack_options(const struct sock *sk,
  563. struct request_sock *req,
  564. unsigned int mss, struct sk_buff *skb,
  565. struct tcp_out_options *opts,
  566. const struct tcp_md5sig_key *md5,
  567. struct tcp_fastopen_cookie *foc)
  568. {
  569. struct inet_request_sock *ireq = inet_rsk(req);
  570. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  571. #ifdef CONFIG_TCP_MD5SIG
  572. if (md5) {
  573. opts->options |= OPTION_MD5;
  574. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  575. /* We can't fit any SACK blocks in a packet with MD5 + TS
  576. * options. There was discussion about disabling SACK
  577. * rather than TS in order to fit in better with old,
  578. * buggy kernels, but that was deemed to be unnecessary.
  579. */
  580. ireq->tstamp_ok &= !ireq->sack_ok;
  581. }
  582. #endif
  583. /* We always send an MSS option. */
  584. opts->mss = mss;
  585. remaining -= TCPOLEN_MSS_ALIGNED;
  586. if (likely(ireq->wscale_ok)) {
  587. opts->ws = ireq->rcv_wscale;
  588. opts->options |= OPTION_WSCALE;
  589. remaining -= TCPOLEN_WSCALE_ALIGNED;
  590. }
  591. if (likely(ireq->tstamp_ok)) {
  592. opts->options |= OPTION_TS;
  593. opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
  594. opts->tsecr = req->ts_recent;
  595. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  596. }
  597. if (likely(ireq->sack_ok)) {
  598. opts->options |= OPTION_SACK_ADVERTISE;
  599. if (unlikely(!ireq->tstamp_ok))
  600. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  601. }
  602. if (foc != NULL && foc->len >= 0) {
  603. u32 need = foc->len;
  604. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  605. TCPOLEN_FASTOPEN_BASE;
  606. need = (need + 3) & ~3U; /* Align to 32 bits */
  607. if (remaining >= need) {
  608. opts->options |= OPTION_FAST_OPEN_COOKIE;
  609. opts->fastopen_cookie = foc;
  610. remaining -= need;
  611. }
  612. }
  613. smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
  614. return MAX_TCP_OPTION_SPACE - remaining;
  615. }
  616. /* Compute TCP options for ESTABLISHED sockets. This is not the
  617. * final wire format yet.
  618. */
  619. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  620. struct tcp_out_options *opts,
  621. struct tcp_md5sig_key **md5)
  622. {
  623. struct tcp_sock *tp = tcp_sk(sk);
  624. unsigned int size = 0;
  625. unsigned int eff_sacks;
  626. opts->options = 0;
  627. #ifdef CONFIG_TCP_MD5SIG
  628. *md5 = tp->af_specific->md5_lookup(sk, sk);
  629. if (unlikely(*md5)) {
  630. opts->options |= OPTION_MD5;
  631. size += TCPOLEN_MD5SIG_ALIGNED;
  632. }
  633. #else
  634. *md5 = NULL;
  635. #endif
  636. if (likely(tp->rx_opt.tstamp_ok)) {
  637. opts->options |= OPTION_TS;
  638. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  639. opts->tsecr = tp->rx_opt.ts_recent;
  640. size += TCPOLEN_TSTAMP_ALIGNED;
  641. }
  642. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  643. if (unlikely(eff_sacks)) {
  644. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  645. opts->num_sack_blocks =
  646. min_t(unsigned int, eff_sacks,
  647. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  648. TCPOLEN_SACK_PERBLOCK);
  649. size += TCPOLEN_SACK_BASE_ALIGNED +
  650. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  651. }
  652. return size;
  653. }
  654. /* TCP SMALL QUEUES (TSQ)
  655. *
  656. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  657. * to reduce RTT and bufferbloat.
  658. * We do this using a special skb destructor (tcp_wfree).
  659. *
  660. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  661. * needs to be reallocated in a driver.
  662. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  663. *
  664. * Since transmit from skb destructor is forbidden, we use a tasklet
  665. * to process all sockets that eventually need to send more skbs.
  666. * We use one tasklet per cpu, with its own queue of sockets.
  667. */
  668. struct tsq_tasklet {
  669. struct tasklet_struct tasklet;
  670. struct list_head head; /* queue of tcp sockets */
  671. };
  672. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  673. static void tcp_tsq_handler(struct sock *sk)
  674. {
  675. if ((1 << sk->sk_state) &
  676. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  677. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  678. struct tcp_sock *tp = tcp_sk(sk);
  679. if (tp->lost_out > tp->retrans_out &&
  680. tp->snd_cwnd > tcp_packets_in_flight(tp)) {
  681. tcp_mstamp_refresh(tp);
  682. tcp_xmit_retransmit_queue(sk);
  683. }
  684. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  685. 0, GFP_ATOMIC);
  686. }
  687. }
  688. /*
  689. * One tasklet per cpu tries to send more skbs.
  690. * We run in tasklet context but need to disable irqs when
  691. * transferring tsq->head because tcp_wfree() might
  692. * interrupt us (non NAPI drivers)
  693. */
  694. static void tcp_tasklet_func(unsigned long data)
  695. {
  696. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  697. LIST_HEAD(list);
  698. unsigned long flags;
  699. struct list_head *q, *n;
  700. struct tcp_sock *tp;
  701. struct sock *sk;
  702. local_irq_save(flags);
  703. list_splice_init(&tsq->head, &list);
  704. local_irq_restore(flags);
  705. list_for_each_safe(q, n, &list) {
  706. tp = list_entry(q, struct tcp_sock, tsq_node);
  707. list_del(&tp->tsq_node);
  708. sk = (struct sock *)tp;
  709. smp_mb__before_atomic();
  710. clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
  711. if (!sk->sk_lock.owned &&
  712. test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
  713. bh_lock_sock(sk);
  714. if (!sock_owned_by_user(sk)) {
  715. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  716. tcp_tsq_handler(sk);
  717. }
  718. bh_unlock_sock(sk);
  719. }
  720. sk_free(sk);
  721. }
  722. }
  723. #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
  724. TCPF_WRITE_TIMER_DEFERRED | \
  725. TCPF_DELACK_TIMER_DEFERRED | \
  726. TCPF_MTU_REDUCED_DEFERRED)
  727. /**
  728. * tcp_release_cb - tcp release_sock() callback
  729. * @sk: socket
  730. *
  731. * called from release_sock() to perform protocol dependent
  732. * actions before socket release.
  733. */
  734. void tcp_release_cb(struct sock *sk)
  735. {
  736. unsigned long flags, nflags;
  737. /* perform an atomic operation only if at least one flag is set */
  738. do {
  739. flags = sk->sk_tsq_flags;
  740. if (!(flags & TCP_DEFERRED_ALL))
  741. return;
  742. nflags = flags & ~TCP_DEFERRED_ALL;
  743. } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
  744. if (flags & TCPF_TSQ_DEFERRED)
  745. tcp_tsq_handler(sk);
  746. /* Here begins the tricky part :
  747. * We are called from release_sock() with :
  748. * 1) BH disabled
  749. * 2) sk_lock.slock spinlock held
  750. * 3) socket owned by us (sk->sk_lock.owned == 1)
  751. *
  752. * But following code is meant to be called from BH handlers,
  753. * so we should keep BH disabled, but early release socket ownership
  754. */
  755. sock_release_ownership(sk);
  756. if (flags & TCPF_WRITE_TIMER_DEFERRED) {
  757. tcp_write_timer_handler(sk);
  758. __sock_put(sk);
  759. }
  760. if (flags & TCPF_DELACK_TIMER_DEFERRED) {
  761. tcp_delack_timer_handler(sk);
  762. __sock_put(sk);
  763. }
  764. if (flags & TCPF_MTU_REDUCED_DEFERRED) {
  765. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  766. __sock_put(sk);
  767. }
  768. }
  769. EXPORT_SYMBOL(tcp_release_cb);
  770. void __init tcp_tasklet_init(void)
  771. {
  772. int i;
  773. for_each_possible_cpu(i) {
  774. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  775. INIT_LIST_HEAD(&tsq->head);
  776. tasklet_init(&tsq->tasklet,
  777. tcp_tasklet_func,
  778. (unsigned long)tsq);
  779. }
  780. }
  781. /*
  782. * Write buffer destructor automatically called from kfree_skb.
  783. * We can't xmit new skbs from this context, as we might already
  784. * hold qdisc lock.
  785. */
  786. void tcp_wfree(struct sk_buff *skb)
  787. {
  788. struct sock *sk = skb->sk;
  789. struct tcp_sock *tp = tcp_sk(sk);
  790. unsigned long flags, nval, oval;
  791. /* Keep one reference on sk_wmem_alloc.
  792. * Will be released by sk_free() from here or tcp_tasklet_func()
  793. */
  794. WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
  795. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  796. * Wait until our queues (qdisc + devices) are drained.
  797. * This gives :
  798. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  799. * - chance for incoming ACK (processed by another cpu maybe)
  800. * to migrate this flow (skb->ooo_okay will be eventually set)
  801. */
  802. if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  803. goto out;
  804. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  805. struct tsq_tasklet *tsq;
  806. bool empty;
  807. if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
  808. goto out;
  809. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
  810. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  811. if (nval != oval)
  812. continue;
  813. /* queue this socket to tasklet queue */
  814. local_irq_save(flags);
  815. tsq = this_cpu_ptr(&tsq_tasklet);
  816. empty = list_empty(&tsq->head);
  817. list_add(&tp->tsq_node, &tsq->head);
  818. if (empty)
  819. tasklet_schedule(&tsq->tasklet);
  820. local_irq_restore(flags);
  821. return;
  822. }
  823. out:
  824. sk_free(sk);
  825. }
  826. /* Note: Called under hard irq.
  827. * We can not call TCP stack right away.
  828. */
  829. enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
  830. {
  831. struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
  832. struct sock *sk = (struct sock *)tp;
  833. unsigned long nval, oval;
  834. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  835. struct tsq_tasklet *tsq;
  836. bool empty;
  837. if (oval & TSQF_QUEUED)
  838. break;
  839. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
  840. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  841. if (nval != oval)
  842. continue;
  843. if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
  844. break;
  845. /* queue this socket to tasklet queue */
  846. tsq = this_cpu_ptr(&tsq_tasklet);
  847. empty = list_empty(&tsq->head);
  848. list_add(&tp->tsq_node, &tsq->head);
  849. if (empty)
  850. tasklet_schedule(&tsq->tasklet);
  851. break;
  852. }
  853. return HRTIMER_NORESTART;
  854. }
  855. /* BBR congestion control needs pacing.
  856. * Same remark for SO_MAX_PACING_RATE.
  857. * sch_fq packet scheduler is efficiently handling pacing,
  858. * but is not always installed/used.
  859. * Return true if TCP stack should pace packets itself.
  860. */
  861. static bool tcp_needs_internal_pacing(const struct sock *sk)
  862. {
  863. return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
  864. }
  865. static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
  866. {
  867. u64 len_ns;
  868. u32 rate;
  869. if (!tcp_needs_internal_pacing(sk))
  870. return;
  871. rate = sk->sk_pacing_rate;
  872. if (!rate || rate == ~0U)
  873. return;
  874. /* Should account for header sizes as sch_fq does,
  875. * but lets make things simple.
  876. */
  877. len_ns = (u64)skb->len * NSEC_PER_SEC;
  878. do_div(len_ns, rate);
  879. hrtimer_start(&tcp_sk(sk)->pacing_timer,
  880. ktime_add_ns(ktime_get(), len_ns),
  881. HRTIMER_MODE_ABS_PINNED);
  882. }
  883. static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
  884. {
  885. skb->skb_mstamp = tp->tcp_mstamp;
  886. list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
  887. }
  888. /* This routine actually transmits TCP packets queued in by
  889. * tcp_do_sendmsg(). This is used by both the initial
  890. * transmission and possible later retransmissions.
  891. * All SKB's seen here are completely headerless. It is our
  892. * job to build the TCP header, and pass the packet down to
  893. * IP so it can do the same plus pass the packet off to the
  894. * device.
  895. *
  896. * We are working here with either a clone of the original
  897. * SKB, or a fresh unique copy made by the retransmit engine.
  898. */
  899. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  900. gfp_t gfp_mask)
  901. {
  902. const struct inet_connection_sock *icsk = inet_csk(sk);
  903. struct inet_sock *inet;
  904. struct tcp_sock *tp;
  905. struct tcp_skb_cb *tcb;
  906. struct tcp_out_options opts;
  907. unsigned int tcp_options_size, tcp_header_size;
  908. struct sk_buff *oskb = NULL;
  909. struct tcp_md5sig_key *md5;
  910. struct tcphdr *th;
  911. int err;
  912. BUG_ON(!skb || !tcp_skb_pcount(skb));
  913. tp = tcp_sk(sk);
  914. if (clone_it) {
  915. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  916. - tp->snd_una;
  917. oskb = skb;
  918. tcp_skb_tsorted_save(oskb) {
  919. if (unlikely(skb_cloned(oskb)))
  920. skb = pskb_copy(oskb, gfp_mask);
  921. else
  922. skb = skb_clone(oskb, gfp_mask);
  923. } tcp_skb_tsorted_restore(oskb);
  924. if (unlikely(!skb))
  925. return -ENOBUFS;
  926. }
  927. skb->skb_mstamp = tp->tcp_mstamp;
  928. inet = inet_sk(sk);
  929. tcb = TCP_SKB_CB(skb);
  930. memset(&opts, 0, sizeof(opts));
  931. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  932. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  933. else
  934. tcp_options_size = tcp_established_options(sk, skb, &opts,
  935. &md5);
  936. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  937. /* if no packet is in qdisc/device queue, then allow XPS to select
  938. * another queue. We can be called from tcp_tsq_handler()
  939. * which holds one reference to sk_wmem_alloc.
  940. *
  941. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  942. * One way to get this would be to set skb->truesize = 2 on them.
  943. */
  944. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  945. /* If we had to use memory reserve to allocate this skb,
  946. * this might cause drops if packet is looped back :
  947. * Other socket might not have SOCK_MEMALLOC.
  948. * Packets not looped back do not care about pfmemalloc.
  949. */
  950. skb->pfmemalloc = 0;
  951. skb_push(skb, tcp_header_size);
  952. skb_reset_transport_header(skb);
  953. skb_orphan(skb);
  954. skb->sk = sk;
  955. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  956. skb_set_hash_from_sk(skb, sk);
  957. refcount_add(skb->truesize, &sk->sk_wmem_alloc);
  958. skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
  959. /* Build TCP header and checksum it. */
  960. th = (struct tcphdr *)skb->data;
  961. th->source = inet->inet_sport;
  962. th->dest = inet->inet_dport;
  963. th->seq = htonl(tcb->seq);
  964. th->ack_seq = htonl(tp->rcv_nxt);
  965. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  966. tcb->tcp_flags);
  967. th->check = 0;
  968. th->urg_ptr = 0;
  969. /* The urg_mode check is necessary during a below snd_una win probe */
  970. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  971. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  972. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  973. th->urg = 1;
  974. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  975. th->urg_ptr = htons(0xFFFF);
  976. th->urg = 1;
  977. }
  978. }
  979. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  980. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  981. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  982. th->window = htons(tcp_select_window(sk));
  983. tcp_ecn_send(sk, skb, th, tcp_header_size);
  984. } else {
  985. /* RFC1323: The window in SYN & SYN/ACK segments
  986. * is never scaled.
  987. */
  988. th->window = htons(min(tp->rcv_wnd, 65535U));
  989. }
  990. #ifdef CONFIG_TCP_MD5SIG
  991. /* Calculate the MD5 hash, as we have all we need now */
  992. if (md5) {
  993. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  994. tp->af_specific->calc_md5_hash(opts.hash_location,
  995. md5, sk, skb);
  996. }
  997. #endif
  998. icsk->icsk_af_ops->send_check(sk, skb);
  999. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  1000. tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
  1001. if (skb->len != tcp_header_size) {
  1002. tcp_event_data_sent(tp, sk);
  1003. tp->data_segs_out += tcp_skb_pcount(skb);
  1004. tcp_internal_pacing(sk, skb);
  1005. }
  1006. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  1007. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  1008. tcp_skb_pcount(skb));
  1009. tp->segs_out += tcp_skb_pcount(skb);
  1010. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  1011. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  1012. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  1013. /* Our usage of tstamp should remain private */
  1014. skb->tstamp = 0;
  1015. /* Cleanup our debris for IP stacks */
  1016. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  1017. sizeof(struct inet6_skb_parm)));
  1018. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  1019. if (unlikely(err > 0)) {
  1020. tcp_enter_cwr(sk);
  1021. err = net_xmit_eval(err);
  1022. }
  1023. if (!err && oskb) {
  1024. tcp_update_skb_after_send(tp, oskb);
  1025. tcp_rate_skb_sent(sk, oskb);
  1026. }
  1027. return err;
  1028. }
  1029. /* This routine just queues the buffer for sending.
  1030. *
  1031. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  1032. * otherwise socket can stall.
  1033. */
  1034. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  1035. {
  1036. struct tcp_sock *tp = tcp_sk(sk);
  1037. /* Advance write_seq and place onto the write_queue. */
  1038. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  1039. __skb_header_release(skb);
  1040. tcp_add_write_queue_tail(sk, skb);
  1041. sk->sk_wmem_queued += skb->truesize;
  1042. sk_mem_charge(sk, skb->truesize);
  1043. }
  1044. /* Initialize TSO segments for a packet. */
  1045. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1046. {
  1047. if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
  1048. /* Avoid the costly divide in the normal
  1049. * non-TSO case.
  1050. */
  1051. tcp_skb_pcount_set(skb, 1);
  1052. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1053. } else {
  1054. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  1055. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  1056. }
  1057. }
  1058. /* Pcount in the middle of the write queue got changed, we need to do various
  1059. * tweaks to fix counters
  1060. */
  1061. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  1062. {
  1063. struct tcp_sock *tp = tcp_sk(sk);
  1064. tp->packets_out -= decr;
  1065. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1066. tp->sacked_out -= decr;
  1067. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1068. tp->retrans_out -= decr;
  1069. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  1070. tp->lost_out -= decr;
  1071. /* Reno case is special. Sigh... */
  1072. if (tcp_is_reno(tp) && decr > 0)
  1073. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  1074. if (tp->lost_skb_hint &&
  1075. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  1076. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1077. tp->lost_cnt_hint -= decr;
  1078. tcp_verify_left_out(tp);
  1079. }
  1080. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  1081. {
  1082. return TCP_SKB_CB(skb)->txstamp_ack ||
  1083. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  1084. }
  1085. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  1086. {
  1087. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1088. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  1089. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  1090. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  1091. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  1092. shinfo->tx_flags &= ~tsflags;
  1093. shinfo2->tx_flags |= tsflags;
  1094. swap(shinfo->tskey, shinfo2->tskey);
  1095. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  1096. TCP_SKB_CB(skb)->txstamp_ack = 0;
  1097. }
  1098. }
  1099. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  1100. {
  1101. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  1102. TCP_SKB_CB(skb)->eor = 0;
  1103. }
  1104. /* Insert buff after skb on the write or rtx queue of sk. */
  1105. static void tcp_insert_write_queue_after(struct sk_buff *skb,
  1106. struct sk_buff *buff,
  1107. struct sock *sk,
  1108. enum tcp_queue tcp_queue)
  1109. {
  1110. if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
  1111. __skb_queue_after(&sk->sk_write_queue, skb, buff);
  1112. else
  1113. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  1114. }
  1115. /* Function to create two new TCP segments. Shrinks the given segment
  1116. * to the specified size and appends a new segment with the rest of the
  1117. * packet to the list. This won't be called frequently, I hope.
  1118. * Remember, these are still headerless SKBs at this point.
  1119. */
  1120. int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1121. struct sk_buff *skb, u32 len,
  1122. unsigned int mss_now, gfp_t gfp)
  1123. {
  1124. struct tcp_sock *tp = tcp_sk(sk);
  1125. struct sk_buff *buff;
  1126. int nsize, old_factor;
  1127. int nlen;
  1128. u8 flags;
  1129. if (WARN_ON(len > skb->len))
  1130. return -EINVAL;
  1131. nsize = skb_headlen(skb) - len;
  1132. if (nsize < 0)
  1133. nsize = 0;
  1134. if (skb_unclone(skb, gfp))
  1135. return -ENOMEM;
  1136. /* Get a new skb... force flag on. */
  1137. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1138. if (!buff)
  1139. return -ENOMEM; /* We'll just try again later. */
  1140. sk->sk_wmem_queued += buff->truesize;
  1141. sk_mem_charge(sk, buff->truesize);
  1142. nlen = skb->len - len - nsize;
  1143. buff->truesize += nlen;
  1144. skb->truesize -= nlen;
  1145. /* Correct the sequence numbers. */
  1146. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1147. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1148. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1149. /* PSH and FIN should only be set in the second packet. */
  1150. flags = TCP_SKB_CB(skb)->tcp_flags;
  1151. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1152. TCP_SKB_CB(buff)->tcp_flags = flags;
  1153. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1154. tcp_skb_fragment_eor(skb, buff);
  1155. if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
  1156. /* Copy and checksum data tail into the new buffer. */
  1157. buff->csum = csum_partial_copy_nocheck(skb->data + len,
  1158. skb_put(buff, nsize),
  1159. nsize, 0);
  1160. skb_trim(skb, len);
  1161. skb->csum = csum_block_sub(skb->csum, buff->csum, len);
  1162. } else {
  1163. skb->ip_summed = CHECKSUM_PARTIAL;
  1164. skb_split(skb, buff, len);
  1165. }
  1166. buff->ip_summed = skb->ip_summed;
  1167. buff->tstamp = skb->tstamp;
  1168. tcp_fragment_tstamp(skb, buff);
  1169. old_factor = tcp_skb_pcount(skb);
  1170. /* Fix up tso_factor for both original and new SKB. */
  1171. tcp_set_skb_tso_segs(skb, mss_now);
  1172. tcp_set_skb_tso_segs(buff, mss_now);
  1173. /* Update delivered info for the new segment */
  1174. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1175. /* If this packet has been sent out already, we must
  1176. * adjust the various packet counters.
  1177. */
  1178. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1179. int diff = old_factor - tcp_skb_pcount(skb) -
  1180. tcp_skb_pcount(buff);
  1181. if (diff)
  1182. tcp_adjust_pcount(sk, skb, diff);
  1183. }
  1184. /* Link BUFF into the send queue. */
  1185. __skb_header_release(buff);
  1186. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1187. if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
  1188. list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
  1189. return 0;
  1190. }
  1191. /* This is similar to __pskb_pull_tail(). The difference is that pulled
  1192. * data is not copied, but immediately discarded.
  1193. */
  1194. static int __pskb_trim_head(struct sk_buff *skb, int len)
  1195. {
  1196. struct skb_shared_info *shinfo;
  1197. int i, k, eat;
  1198. eat = min_t(int, len, skb_headlen(skb));
  1199. if (eat) {
  1200. __skb_pull(skb, eat);
  1201. len -= eat;
  1202. if (!len)
  1203. return 0;
  1204. }
  1205. eat = len;
  1206. k = 0;
  1207. shinfo = skb_shinfo(skb);
  1208. for (i = 0; i < shinfo->nr_frags; i++) {
  1209. int size = skb_frag_size(&shinfo->frags[i]);
  1210. if (size <= eat) {
  1211. skb_frag_unref(skb, i);
  1212. eat -= size;
  1213. } else {
  1214. shinfo->frags[k] = shinfo->frags[i];
  1215. if (eat) {
  1216. shinfo->frags[k].page_offset += eat;
  1217. skb_frag_size_sub(&shinfo->frags[k], eat);
  1218. eat = 0;
  1219. }
  1220. k++;
  1221. }
  1222. }
  1223. shinfo->nr_frags = k;
  1224. skb->data_len -= len;
  1225. skb->len = skb->data_len;
  1226. return len;
  1227. }
  1228. /* Remove acked data from a packet in the transmit queue. */
  1229. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1230. {
  1231. u32 delta_truesize;
  1232. if (skb_unclone(skb, GFP_ATOMIC))
  1233. return -ENOMEM;
  1234. delta_truesize = __pskb_trim_head(skb, len);
  1235. TCP_SKB_CB(skb)->seq += len;
  1236. skb->ip_summed = CHECKSUM_PARTIAL;
  1237. if (delta_truesize) {
  1238. skb->truesize -= delta_truesize;
  1239. sk->sk_wmem_queued -= delta_truesize;
  1240. sk_mem_uncharge(sk, delta_truesize);
  1241. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1242. }
  1243. /* Any change of skb->len requires recalculation of tso factor. */
  1244. if (tcp_skb_pcount(skb) > 1)
  1245. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1246. return 0;
  1247. }
  1248. /* Calculate MSS not accounting any TCP options. */
  1249. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1250. {
  1251. const struct tcp_sock *tp = tcp_sk(sk);
  1252. const struct inet_connection_sock *icsk = inet_csk(sk);
  1253. int mss_now;
  1254. /* Calculate base mss without TCP options:
  1255. It is MMS_S - sizeof(tcphdr) of rfc1122
  1256. */
  1257. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1258. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1259. if (icsk->icsk_af_ops->net_frag_header_len) {
  1260. const struct dst_entry *dst = __sk_dst_get(sk);
  1261. if (dst && dst_allfrag(dst))
  1262. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1263. }
  1264. /* Clamp it (mss_clamp does not include tcp options) */
  1265. if (mss_now > tp->rx_opt.mss_clamp)
  1266. mss_now = tp->rx_opt.mss_clamp;
  1267. /* Now subtract optional transport overhead */
  1268. mss_now -= icsk->icsk_ext_hdr_len;
  1269. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1270. if (mss_now < 48)
  1271. mss_now = 48;
  1272. return mss_now;
  1273. }
  1274. /* Calculate MSS. Not accounting for SACKs here. */
  1275. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1276. {
  1277. /* Subtract TCP options size, not including SACKs */
  1278. return __tcp_mtu_to_mss(sk, pmtu) -
  1279. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1280. }
  1281. /* Inverse of above */
  1282. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1283. {
  1284. const struct tcp_sock *tp = tcp_sk(sk);
  1285. const struct inet_connection_sock *icsk = inet_csk(sk);
  1286. int mtu;
  1287. mtu = mss +
  1288. tp->tcp_header_len +
  1289. icsk->icsk_ext_hdr_len +
  1290. icsk->icsk_af_ops->net_header_len;
  1291. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1292. if (icsk->icsk_af_ops->net_frag_header_len) {
  1293. const struct dst_entry *dst = __sk_dst_get(sk);
  1294. if (dst && dst_allfrag(dst))
  1295. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1296. }
  1297. return mtu;
  1298. }
  1299. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1300. /* MTU probing init per socket */
  1301. void tcp_mtup_init(struct sock *sk)
  1302. {
  1303. struct tcp_sock *tp = tcp_sk(sk);
  1304. struct inet_connection_sock *icsk = inet_csk(sk);
  1305. struct net *net = sock_net(sk);
  1306. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1307. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1308. icsk->icsk_af_ops->net_header_len;
  1309. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1310. icsk->icsk_mtup.probe_size = 0;
  1311. if (icsk->icsk_mtup.enabled)
  1312. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1313. }
  1314. EXPORT_SYMBOL(tcp_mtup_init);
  1315. /* This function synchronize snd mss to current pmtu/exthdr set.
  1316. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1317. for TCP options, but includes only bare TCP header.
  1318. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1319. It is minimum of user_mss and mss received with SYN.
  1320. It also does not include TCP options.
  1321. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1322. tp->mss_cache is current effective sending mss, including
  1323. all tcp options except for SACKs. It is evaluated,
  1324. taking into account current pmtu, but never exceeds
  1325. tp->rx_opt.mss_clamp.
  1326. NOTE1. rfc1122 clearly states that advertised MSS
  1327. DOES NOT include either tcp or ip options.
  1328. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1329. are READ ONLY outside this function. --ANK (980731)
  1330. */
  1331. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1332. {
  1333. struct tcp_sock *tp = tcp_sk(sk);
  1334. struct inet_connection_sock *icsk = inet_csk(sk);
  1335. int mss_now;
  1336. if (icsk->icsk_mtup.search_high > pmtu)
  1337. icsk->icsk_mtup.search_high = pmtu;
  1338. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1339. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1340. /* And store cached results */
  1341. icsk->icsk_pmtu_cookie = pmtu;
  1342. if (icsk->icsk_mtup.enabled)
  1343. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1344. tp->mss_cache = mss_now;
  1345. return mss_now;
  1346. }
  1347. EXPORT_SYMBOL(tcp_sync_mss);
  1348. /* Compute the current effective MSS, taking SACKs and IP options,
  1349. * and even PMTU discovery events into account.
  1350. */
  1351. unsigned int tcp_current_mss(struct sock *sk)
  1352. {
  1353. const struct tcp_sock *tp = tcp_sk(sk);
  1354. const struct dst_entry *dst = __sk_dst_get(sk);
  1355. u32 mss_now;
  1356. unsigned int header_len;
  1357. struct tcp_out_options opts;
  1358. struct tcp_md5sig_key *md5;
  1359. mss_now = tp->mss_cache;
  1360. if (dst) {
  1361. u32 mtu = dst_mtu(dst);
  1362. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1363. mss_now = tcp_sync_mss(sk, mtu);
  1364. }
  1365. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1366. sizeof(struct tcphdr);
  1367. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1368. * some common options. If this is an odd packet (because we have SACK
  1369. * blocks etc) then our calculated header_len will be different, and
  1370. * we have to adjust mss_now correspondingly */
  1371. if (header_len != tp->tcp_header_len) {
  1372. int delta = (int) header_len - tp->tcp_header_len;
  1373. mss_now -= delta;
  1374. }
  1375. return mss_now;
  1376. }
  1377. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1378. * As additional protections, we do not touch cwnd in retransmission phases,
  1379. * and if application hit its sndbuf limit recently.
  1380. */
  1381. static void tcp_cwnd_application_limited(struct sock *sk)
  1382. {
  1383. struct tcp_sock *tp = tcp_sk(sk);
  1384. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1385. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1386. /* Limited by application or receiver window. */
  1387. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1388. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1389. if (win_used < tp->snd_cwnd) {
  1390. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1391. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1392. }
  1393. tp->snd_cwnd_used = 0;
  1394. }
  1395. tp->snd_cwnd_stamp = tcp_jiffies32;
  1396. }
  1397. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1398. {
  1399. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1400. struct tcp_sock *tp = tcp_sk(sk);
  1401. /* Track the maximum number of outstanding packets in each
  1402. * window, and remember whether we were cwnd-limited then.
  1403. */
  1404. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1405. tp->packets_out > tp->max_packets_out) {
  1406. tp->max_packets_out = tp->packets_out;
  1407. tp->max_packets_seq = tp->snd_nxt;
  1408. tp->is_cwnd_limited = is_cwnd_limited;
  1409. }
  1410. if (tcp_is_cwnd_limited(sk)) {
  1411. /* Network is feed fully. */
  1412. tp->snd_cwnd_used = 0;
  1413. tp->snd_cwnd_stamp = tcp_jiffies32;
  1414. } else {
  1415. /* Network starves. */
  1416. if (tp->packets_out > tp->snd_cwnd_used)
  1417. tp->snd_cwnd_used = tp->packets_out;
  1418. if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
  1419. (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
  1420. !ca_ops->cong_control)
  1421. tcp_cwnd_application_limited(sk);
  1422. /* The following conditions together indicate the starvation
  1423. * is caused by insufficient sender buffer:
  1424. * 1) just sent some data (see tcp_write_xmit)
  1425. * 2) not cwnd limited (this else condition)
  1426. * 3) no more data to send (tcp_write_queue_empty())
  1427. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1428. */
  1429. if (tcp_write_queue_empty(sk) && sk->sk_socket &&
  1430. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1431. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1432. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1433. }
  1434. }
  1435. /* Minshall's variant of the Nagle send check. */
  1436. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1437. {
  1438. return after(tp->snd_sml, tp->snd_una) &&
  1439. !after(tp->snd_sml, tp->snd_nxt);
  1440. }
  1441. /* Update snd_sml if this skb is under mss
  1442. * Note that a TSO packet might end with a sub-mss segment
  1443. * The test is really :
  1444. * if ((skb->len % mss) != 0)
  1445. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1446. * But we can avoid doing the divide again given we already have
  1447. * skb_pcount = skb->len / mss_now
  1448. */
  1449. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1450. const struct sk_buff *skb)
  1451. {
  1452. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1453. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1454. }
  1455. /* Return false, if packet can be sent now without violation Nagle's rules:
  1456. * 1. It is full sized. (provided by caller in %partial bool)
  1457. * 2. Or it contains FIN. (already checked by caller)
  1458. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1459. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1460. * With Minshall's modification: all sent small packets are ACKed.
  1461. */
  1462. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1463. int nonagle)
  1464. {
  1465. return partial &&
  1466. ((nonagle & TCP_NAGLE_CORK) ||
  1467. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1468. }
  1469. /* Return how many segs we'd like on a TSO packet,
  1470. * to send one TSO packet per ms
  1471. */
  1472. u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1473. int min_tso_segs)
  1474. {
  1475. u32 bytes, segs;
  1476. bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
  1477. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1478. /* Goal is to send at least one packet per ms,
  1479. * not one big TSO packet every 100 ms.
  1480. * This preserves ACK clocking and is consistent
  1481. * with tcp_tso_should_defer() heuristic.
  1482. */
  1483. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1484. return min_t(u32, segs, sk->sk_gso_max_segs);
  1485. }
  1486. EXPORT_SYMBOL(tcp_tso_autosize);
  1487. /* Return the number of segments we want in the skb we are transmitting.
  1488. * See if congestion control module wants to decide; otherwise, autosize.
  1489. */
  1490. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1491. {
  1492. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1493. u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
  1494. return tso_segs ? :
  1495. tcp_tso_autosize(sk, mss_now,
  1496. sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
  1497. }
  1498. /* Returns the portion of skb which can be sent right away */
  1499. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1500. const struct sk_buff *skb,
  1501. unsigned int mss_now,
  1502. unsigned int max_segs,
  1503. int nonagle)
  1504. {
  1505. const struct tcp_sock *tp = tcp_sk(sk);
  1506. u32 partial, needed, window, max_len;
  1507. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1508. max_len = mss_now * max_segs;
  1509. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1510. return max_len;
  1511. needed = min(skb->len, window);
  1512. if (max_len <= needed)
  1513. return max_len;
  1514. partial = needed % mss_now;
  1515. /* If last segment is not a full MSS, check if Nagle rules allow us
  1516. * to include this last segment in this skb.
  1517. * Otherwise, we'll split the skb at last MSS boundary
  1518. */
  1519. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1520. return needed - partial;
  1521. return needed;
  1522. }
  1523. /* Can at least one segment of SKB be sent right now, according to the
  1524. * congestion window rules? If so, return how many segments are allowed.
  1525. */
  1526. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1527. const struct sk_buff *skb)
  1528. {
  1529. u32 in_flight, cwnd, halfcwnd;
  1530. /* Don't be strict about the congestion window for the final FIN. */
  1531. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1532. tcp_skb_pcount(skb) == 1)
  1533. return 1;
  1534. in_flight = tcp_packets_in_flight(tp);
  1535. cwnd = tp->snd_cwnd;
  1536. if (in_flight >= cwnd)
  1537. return 0;
  1538. /* For better scheduling, ensure we have at least
  1539. * 2 GSO packets in flight.
  1540. */
  1541. halfcwnd = max(cwnd >> 1, 1U);
  1542. return min(halfcwnd, cwnd - in_flight);
  1543. }
  1544. /* Initialize TSO state of a skb.
  1545. * This must be invoked the first time we consider transmitting
  1546. * SKB onto the wire.
  1547. */
  1548. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1549. {
  1550. int tso_segs = tcp_skb_pcount(skb);
  1551. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1552. tcp_set_skb_tso_segs(skb, mss_now);
  1553. tso_segs = tcp_skb_pcount(skb);
  1554. }
  1555. return tso_segs;
  1556. }
  1557. /* Return true if the Nagle test allows this packet to be
  1558. * sent now.
  1559. */
  1560. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1561. unsigned int cur_mss, int nonagle)
  1562. {
  1563. /* Nagle rule does not apply to frames, which sit in the middle of the
  1564. * write_queue (they have no chances to get new data).
  1565. *
  1566. * This is implemented in the callers, where they modify the 'nonagle'
  1567. * argument based upon the location of SKB in the send queue.
  1568. */
  1569. if (nonagle & TCP_NAGLE_PUSH)
  1570. return true;
  1571. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1572. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1573. return true;
  1574. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1575. return true;
  1576. return false;
  1577. }
  1578. /* Does at least the first segment of SKB fit into the send window? */
  1579. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1580. const struct sk_buff *skb,
  1581. unsigned int cur_mss)
  1582. {
  1583. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1584. if (skb->len > cur_mss)
  1585. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1586. return !after(end_seq, tcp_wnd_end(tp));
  1587. }
  1588. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1589. * which is put after SKB on the list. It is very much like
  1590. * tcp_fragment() except that it may make several kinds of assumptions
  1591. * in order to speed up the splitting operation. In particular, we
  1592. * know that all the data is in scatter-gather pages, and that the
  1593. * packet has never been sent out before (and thus is not cloned).
  1594. */
  1595. static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1596. struct sk_buff *skb, unsigned int len,
  1597. unsigned int mss_now, gfp_t gfp)
  1598. {
  1599. struct sk_buff *buff;
  1600. int nlen = skb->len - len;
  1601. u8 flags;
  1602. /* All of a TSO frame must be composed of paged data. */
  1603. if (skb->len != skb->data_len)
  1604. return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
  1605. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1606. if (unlikely(!buff))
  1607. return -ENOMEM;
  1608. sk->sk_wmem_queued += buff->truesize;
  1609. sk_mem_charge(sk, buff->truesize);
  1610. buff->truesize += nlen;
  1611. skb->truesize -= nlen;
  1612. /* Correct the sequence numbers. */
  1613. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1614. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1615. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1616. /* PSH and FIN should only be set in the second packet. */
  1617. flags = TCP_SKB_CB(skb)->tcp_flags;
  1618. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1619. TCP_SKB_CB(buff)->tcp_flags = flags;
  1620. /* This packet was never sent out yet, so no SACK bits. */
  1621. TCP_SKB_CB(buff)->sacked = 0;
  1622. tcp_skb_fragment_eor(skb, buff);
  1623. buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
  1624. skb_split(skb, buff, len);
  1625. tcp_fragment_tstamp(skb, buff);
  1626. /* Fix up tso_factor for both original and new SKB. */
  1627. tcp_set_skb_tso_segs(skb, mss_now);
  1628. tcp_set_skb_tso_segs(buff, mss_now);
  1629. /* Link BUFF into the send queue. */
  1630. __skb_header_release(buff);
  1631. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1632. return 0;
  1633. }
  1634. /* Try to defer sending, if possible, in order to minimize the amount
  1635. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1636. *
  1637. * This algorithm is from John Heffner.
  1638. */
  1639. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1640. bool *is_cwnd_limited, u32 max_segs)
  1641. {
  1642. const struct inet_connection_sock *icsk = inet_csk(sk);
  1643. u32 age, send_win, cong_win, limit, in_flight;
  1644. struct tcp_sock *tp = tcp_sk(sk);
  1645. struct sk_buff *head;
  1646. int win_divisor;
  1647. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1648. goto send_now;
  1649. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1650. goto send_now;
  1651. /* Avoid bursty behavior by allowing defer
  1652. * only if the last write was recent.
  1653. */
  1654. if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
  1655. goto send_now;
  1656. in_flight = tcp_packets_in_flight(tp);
  1657. BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
  1658. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1659. /* From in_flight test above, we know that cwnd > in_flight. */
  1660. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1661. limit = min(send_win, cong_win);
  1662. /* If a full-sized TSO skb can be sent, do it. */
  1663. if (limit >= max_segs * tp->mss_cache)
  1664. goto send_now;
  1665. /* Middle in queue won't get any more data, full sendable already? */
  1666. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1667. goto send_now;
  1668. win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
  1669. if (win_divisor) {
  1670. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1671. /* If at least some fraction of a window is available,
  1672. * just use it.
  1673. */
  1674. chunk /= win_divisor;
  1675. if (limit >= chunk)
  1676. goto send_now;
  1677. } else {
  1678. /* Different approach, try not to defer past a single
  1679. * ACK. Receiver should ACK every other full sized
  1680. * frame, so if we have space for more than 3 frames
  1681. * then send now.
  1682. */
  1683. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1684. goto send_now;
  1685. }
  1686. /* TODO : use tsorted_sent_queue ? */
  1687. head = tcp_rtx_queue_head(sk);
  1688. if (!head)
  1689. goto send_now;
  1690. age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
  1691. /* If next ACK is likely to come too late (half srtt), do not defer */
  1692. if (age < (tp->srtt_us >> 4))
  1693. goto send_now;
  1694. /* Ok, it looks like it is advisable to defer. */
  1695. if (cong_win < send_win && cong_win <= skb->len)
  1696. *is_cwnd_limited = true;
  1697. return true;
  1698. send_now:
  1699. return false;
  1700. }
  1701. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1702. {
  1703. struct inet_connection_sock *icsk = inet_csk(sk);
  1704. struct tcp_sock *tp = tcp_sk(sk);
  1705. struct net *net = sock_net(sk);
  1706. u32 interval;
  1707. s32 delta;
  1708. interval = net->ipv4.sysctl_tcp_probe_interval;
  1709. delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
  1710. if (unlikely(delta >= interval * HZ)) {
  1711. int mss = tcp_current_mss(sk);
  1712. /* Update current search range */
  1713. icsk->icsk_mtup.probe_size = 0;
  1714. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1715. sizeof(struct tcphdr) +
  1716. icsk->icsk_af_ops->net_header_len;
  1717. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1718. /* Update probe time stamp */
  1719. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1720. }
  1721. }
  1722. /* Create a new MTU probe if we are ready.
  1723. * MTU probe is regularly attempting to increase the path MTU by
  1724. * deliberately sending larger packets. This discovers routing
  1725. * changes resulting in larger path MTUs.
  1726. *
  1727. * Returns 0 if we should wait to probe (no cwnd available),
  1728. * 1 if a probe was sent,
  1729. * -1 otherwise
  1730. */
  1731. static int tcp_mtu_probe(struct sock *sk)
  1732. {
  1733. struct inet_connection_sock *icsk = inet_csk(sk);
  1734. struct tcp_sock *tp = tcp_sk(sk);
  1735. struct sk_buff *skb, *nskb, *next;
  1736. struct net *net = sock_net(sk);
  1737. int probe_size;
  1738. int size_needed;
  1739. int copy, len;
  1740. int mss_now;
  1741. int interval;
  1742. /* Not currently probing/verifying,
  1743. * not in recovery,
  1744. * have enough cwnd, and
  1745. * not SACKing (the variable headers throw things off)
  1746. */
  1747. if (likely(!icsk->icsk_mtup.enabled ||
  1748. icsk->icsk_mtup.probe_size ||
  1749. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1750. tp->snd_cwnd < 11 ||
  1751. tp->rx_opt.num_sacks || tp->rx_opt.dsack))
  1752. return -1;
  1753. /* Use binary search for probe_size between tcp_mss_base,
  1754. * and current mss_clamp. if (search_high - search_low)
  1755. * smaller than a threshold, backoff from probing.
  1756. */
  1757. mss_now = tcp_current_mss(sk);
  1758. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1759. icsk->icsk_mtup.search_low) >> 1);
  1760. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1761. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1762. /* When misfortune happens, we are reprobing actively,
  1763. * and then reprobe timer has expired. We stick with current
  1764. * probing process by not resetting search range to its orignal.
  1765. */
  1766. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1767. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1768. /* Check whether enough time has elaplased for
  1769. * another round of probing.
  1770. */
  1771. tcp_mtu_check_reprobe(sk);
  1772. return -1;
  1773. }
  1774. /* Have enough data in the send queue to probe? */
  1775. if (tp->write_seq - tp->snd_nxt < size_needed)
  1776. return -1;
  1777. if (tp->snd_wnd < size_needed)
  1778. return -1;
  1779. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1780. return 0;
  1781. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1782. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1783. if (!tcp_packets_in_flight(tp))
  1784. return -1;
  1785. else
  1786. return 0;
  1787. }
  1788. /* We're allowed to probe. Build it now. */
  1789. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1790. if (!nskb)
  1791. return -1;
  1792. sk->sk_wmem_queued += nskb->truesize;
  1793. sk_mem_charge(sk, nskb->truesize);
  1794. skb = tcp_send_head(sk);
  1795. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1796. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1797. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1798. TCP_SKB_CB(nskb)->sacked = 0;
  1799. nskb->csum = 0;
  1800. nskb->ip_summed = skb->ip_summed;
  1801. tcp_insert_write_queue_before(nskb, skb, sk);
  1802. tcp_highest_sack_replace(sk, skb, nskb);
  1803. len = 0;
  1804. tcp_for_write_queue_from_safe(skb, next, sk) {
  1805. copy = min_t(int, skb->len, probe_size - len);
  1806. if (nskb->ip_summed) {
  1807. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1808. } else {
  1809. __wsum csum = skb_copy_and_csum_bits(skb, 0,
  1810. skb_put(nskb, copy),
  1811. copy, 0);
  1812. nskb->csum = csum_block_add(nskb->csum, csum, len);
  1813. }
  1814. if (skb->len <= copy) {
  1815. /* We've eaten all the data from this skb.
  1816. * Throw it away. */
  1817. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1818. tcp_unlink_write_queue(skb, sk);
  1819. sk_wmem_free_skb(sk, skb);
  1820. } else {
  1821. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1822. ~(TCPHDR_FIN|TCPHDR_PSH);
  1823. if (!skb_shinfo(skb)->nr_frags) {
  1824. skb_pull(skb, copy);
  1825. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1826. skb->csum = csum_partial(skb->data,
  1827. skb->len, 0);
  1828. } else {
  1829. __pskb_trim_head(skb, copy);
  1830. tcp_set_skb_tso_segs(skb, mss_now);
  1831. }
  1832. TCP_SKB_CB(skb)->seq += copy;
  1833. }
  1834. len += copy;
  1835. if (len >= probe_size)
  1836. break;
  1837. }
  1838. tcp_init_tso_segs(nskb, nskb->len);
  1839. /* We're ready to send. If this fails, the probe will
  1840. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1841. */
  1842. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1843. /* Decrement cwnd here because we are sending
  1844. * effectively two packets. */
  1845. tp->snd_cwnd--;
  1846. tcp_event_new_data_sent(sk, nskb);
  1847. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1848. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1849. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1850. return 1;
  1851. }
  1852. return -1;
  1853. }
  1854. static bool tcp_pacing_check(const struct sock *sk)
  1855. {
  1856. return tcp_needs_internal_pacing(sk) &&
  1857. hrtimer_active(&tcp_sk(sk)->pacing_timer);
  1858. }
  1859. /* TCP Small Queues :
  1860. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1861. * (These limits are doubled for retransmits)
  1862. * This allows for :
  1863. * - better RTT estimation and ACK scheduling
  1864. * - faster recovery
  1865. * - high rates
  1866. * Alas, some drivers / subsystems require a fair amount
  1867. * of queued bytes to ensure line rate.
  1868. * One example is wifi aggregation (802.11 AMPDU)
  1869. */
  1870. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1871. unsigned int factor)
  1872. {
  1873. unsigned int limit;
  1874. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
  1875. limit = min_t(u32, limit,
  1876. sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
  1877. limit <<= factor;
  1878. if (refcount_read(&sk->sk_wmem_alloc) > limit) {
  1879. /* Always send skb if rtx queue is empty.
  1880. * No need to wait for TX completion to call us back,
  1881. * after softirq/tasklet schedule.
  1882. * This helps when TX completions are delayed too much.
  1883. */
  1884. if (tcp_rtx_queue_empty(sk))
  1885. return false;
  1886. set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
  1887. /* It is possible TX completion already happened
  1888. * before we set TSQ_THROTTLED, so we must
  1889. * test again the condition.
  1890. */
  1891. smp_mb__after_atomic();
  1892. if (refcount_read(&sk->sk_wmem_alloc) > limit)
  1893. return true;
  1894. }
  1895. return false;
  1896. }
  1897. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1898. {
  1899. const u32 now = tcp_jiffies32;
  1900. enum tcp_chrono old = tp->chrono_type;
  1901. if (old > TCP_CHRONO_UNSPEC)
  1902. tp->chrono_stat[old - 1] += now - tp->chrono_start;
  1903. tp->chrono_start = now;
  1904. tp->chrono_type = new;
  1905. }
  1906. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1907. {
  1908. struct tcp_sock *tp = tcp_sk(sk);
  1909. /* If there are multiple conditions worthy of tracking in a
  1910. * chronograph then the highest priority enum takes precedence
  1911. * over the other conditions. So that if something "more interesting"
  1912. * starts happening, stop the previous chrono and start a new one.
  1913. */
  1914. if (type > tp->chrono_type)
  1915. tcp_chrono_set(tp, type);
  1916. }
  1917. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1918. {
  1919. struct tcp_sock *tp = tcp_sk(sk);
  1920. /* There are multiple conditions worthy of tracking in a
  1921. * chronograph, so that the highest priority enum takes
  1922. * precedence over the other conditions (see tcp_chrono_start).
  1923. * If a condition stops, we only stop chrono tracking if
  1924. * it's the "most interesting" or current chrono we are
  1925. * tracking and starts busy chrono if we have pending data.
  1926. */
  1927. if (tcp_rtx_and_write_queues_empty(sk))
  1928. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1929. else if (type == tp->chrono_type)
  1930. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1931. }
  1932. /* This routine writes packets to the network. It advances the
  1933. * send_head. This happens as incoming acks open up the remote
  1934. * window for us.
  1935. *
  1936. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1937. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1938. * account rare use of URG, this is not a big flaw.
  1939. *
  1940. * Send at most one packet when push_one > 0. Temporarily ignore
  1941. * cwnd limit to force at most one packet out when push_one == 2.
  1942. * Returns true, if no segments are in flight and we have queued segments,
  1943. * but cannot send anything now because of SWS or another problem.
  1944. */
  1945. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1946. int push_one, gfp_t gfp)
  1947. {
  1948. struct tcp_sock *tp = tcp_sk(sk);
  1949. struct sk_buff *skb;
  1950. unsigned int tso_segs, sent_pkts;
  1951. int cwnd_quota;
  1952. int result;
  1953. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1954. u32 max_segs;
  1955. sent_pkts = 0;
  1956. tcp_mstamp_refresh(tp);
  1957. if (!push_one) {
  1958. /* Do MTU probing. */
  1959. result = tcp_mtu_probe(sk);
  1960. if (!result) {
  1961. return false;
  1962. } else if (result > 0) {
  1963. sent_pkts = 1;
  1964. }
  1965. }
  1966. max_segs = tcp_tso_segs(sk, mss_now);
  1967. while ((skb = tcp_send_head(sk))) {
  1968. unsigned int limit;
  1969. if (tcp_pacing_check(sk))
  1970. break;
  1971. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1972. BUG_ON(!tso_segs);
  1973. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1974. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1975. tcp_update_skb_after_send(tp, skb);
  1976. goto repair; /* Skip network transmission */
  1977. }
  1978. cwnd_quota = tcp_cwnd_test(tp, skb);
  1979. if (!cwnd_quota) {
  1980. if (push_one == 2)
  1981. /* Force out a loss probe pkt. */
  1982. cwnd_quota = 1;
  1983. else
  1984. break;
  1985. }
  1986. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  1987. is_rwnd_limited = true;
  1988. break;
  1989. }
  1990. if (tso_segs == 1) {
  1991. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  1992. (tcp_skb_is_last(sk, skb) ?
  1993. nonagle : TCP_NAGLE_PUSH))))
  1994. break;
  1995. } else {
  1996. if (!push_one &&
  1997. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  1998. max_segs))
  1999. break;
  2000. }
  2001. limit = mss_now;
  2002. if (tso_segs > 1 && !tcp_urg_mode(tp))
  2003. limit = tcp_mss_split_point(sk, skb, mss_now,
  2004. min_t(unsigned int,
  2005. cwnd_quota,
  2006. max_segs),
  2007. nonagle);
  2008. if (skb->len > limit &&
  2009. unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  2010. skb, limit, mss_now, gfp)))
  2011. break;
  2012. if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
  2013. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  2014. if (tcp_small_queue_check(sk, skb, 0))
  2015. break;
  2016. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  2017. break;
  2018. repair:
  2019. /* Advance the send_head. This one is sent out.
  2020. * This call will increment packets_out.
  2021. */
  2022. tcp_event_new_data_sent(sk, skb);
  2023. tcp_minshall_update(tp, mss_now, skb);
  2024. sent_pkts += tcp_skb_pcount(skb);
  2025. if (push_one)
  2026. break;
  2027. }
  2028. if (is_rwnd_limited)
  2029. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  2030. else
  2031. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  2032. if (likely(sent_pkts)) {
  2033. if (tcp_in_cwnd_reduction(sk))
  2034. tp->prr_out += sent_pkts;
  2035. /* Send one loss probe per tail loss episode. */
  2036. if (push_one != 2)
  2037. tcp_schedule_loss_probe(sk, false);
  2038. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  2039. tcp_cwnd_validate(sk, is_cwnd_limited);
  2040. return false;
  2041. }
  2042. return !tp->packets_out && !tcp_write_queue_empty(sk);
  2043. }
  2044. bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
  2045. {
  2046. struct inet_connection_sock *icsk = inet_csk(sk);
  2047. struct tcp_sock *tp = tcp_sk(sk);
  2048. u32 timeout, rto_delta_us;
  2049. int early_retrans;
  2050. /* Don't do any loss probe on a Fast Open connection before 3WHS
  2051. * finishes.
  2052. */
  2053. if (tp->fastopen_rsk)
  2054. return false;
  2055. early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
  2056. /* Schedule a loss probe in 2*RTT for SACK capable connections
  2057. * in Open state, that are either limited by cwnd or application.
  2058. */
  2059. if ((early_retrans != 3 && early_retrans != 4) ||
  2060. !tp->packets_out || !tcp_is_sack(tp) ||
  2061. icsk->icsk_ca_state != TCP_CA_Open)
  2062. return false;
  2063. if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
  2064. !tcp_write_queue_empty(sk))
  2065. return false;
  2066. /* Probe timeout is 2*rtt. Add minimum RTO to account
  2067. * for delayed ack when there's one outstanding packet. If no RTT
  2068. * sample is available then probe after TCP_TIMEOUT_INIT.
  2069. */
  2070. if (tp->srtt_us) {
  2071. timeout = usecs_to_jiffies(tp->srtt_us >> 2);
  2072. if (tp->packets_out == 1)
  2073. timeout += TCP_RTO_MIN;
  2074. else
  2075. timeout += TCP_TIMEOUT_MIN;
  2076. } else {
  2077. timeout = TCP_TIMEOUT_INIT;
  2078. }
  2079. /* If the RTO formula yields an earlier time, then use that time. */
  2080. rto_delta_us = advancing_rto ?
  2081. jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
  2082. tcp_rto_delta_us(sk); /* How far in future is RTO? */
  2083. if (rto_delta_us > 0)
  2084. timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
  2085. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  2086. TCP_RTO_MAX);
  2087. return true;
  2088. }
  2089. /* Thanks to skb fast clones, we can detect if a prior transmit of
  2090. * a packet is still in a qdisc or driver queue.
  2091. * In this case, there is very little point doing a retransmit !
  2092. */
  2093. static bool skb_still_in_host_queue(const struct sock *sk,
  2094. const struct sk_buff *skb)
  2095. {
  2096. if (unlikely(skb_fclone_busy(sk, skb))) {
  2097. NET_INC_STATS(sock_net(sk),
  2098. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  2099. return true;
  2100. }
  2101. return false;
  2102. }
  2103. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  2104. * retransmit the last segment.
  2105. */
  2106. void tcp_send_loss_probe(struct sock *sk)
  2107. {
  2108. struct tcp_sock *tp = tcp_sk(sk);
  2109. struct sk_buff *skb;
  2110. int pcount;
  2111. int mss = tcp_current_mss(sk);
  2112. skb = tcp_send_head(sk);
  2113. if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
  2114. pcount = tp->packets_out;
  2115. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  2116. if (tp->packets_out > pcount)
  2117. goto probe_sent;
  2118. goto rearm_timer;
  2119. }
  2120. skb = skb_rb_last(&sk->tcp_rtx_queue);
  2121. /* At most one outstanding TLP retransmission. */
  2122. if (tp->tlp_high_seq)
  2123. goto rearm_timer;
  2124. /* Retransmit last segment. */
  2125. if (WARN_ON(!skb))
  2126. goto rearm_timer;
  2127. if (skb_still_in_host_queue(sk, skb))
  2128. goto rearm_timer;
  2129. pcount = tcp_skb_pcount(skb);
  2130. if (WARN_ON(!pcount))
  2131. goto rearm_timer;
  2132. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2133. if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  2134. (pcount - 1) * mss, mss,
  2135. GFP_ATOMIC)))
  2136. goto rearm_timer;
  2137. skb = skb_rb_next(skb);
  2138. }
  2139. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2140. goto rearm_timer;
  2141. if (__tcp_retransmit_skb(sk, skb, 1))
  2142. goto rearm_timer;
  2143. /* Record snd_nxt for loss detection. */
  2144. tp->tlp_high_seq = tp->snd_nxt;
  2145. probe_sent:
  2146. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2147. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2148. inet_csk(sk)->icsk_pending = 0;
  2149. rearm_timer:
  2150. tcp_rearm_rto(sk);
  2151. }
  2152. /* Push out any pending frames which were held back due to
  2153. * TCP_CORK or attempt at coalescing tiny packets.
  2154. * The socket must be locked by the caller.
  2155. */
  2156. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2157. int nonagle)
  2158. {
  2159. /* If we are closed, the bytes will have to remain here.
  2160. * In time closedown will finish, we empty the write queue and
  2161. * all will be happy.
  2162. */
  2163. if (unlikely(sk->sk_state == TCP_CLOSE))
  2164. return;
  2165. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2166. sk_gfp_mask(sk, GFP_ATOMIC)))
  2167. tcp_check_probe_timer(sk);
  2168. }
  2169. /* Send _single_ skb sitting at the send head. This function requires
  2170. * true push pending frames to setup probe timer etc.
  2171. */
  2172. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2173. {
  2174. struct sk_buff *skb = tcp_send_head(sk);
  2175. BUG_ON(!skb || skb->len < mss_now);
  2176. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2177. }
  2178. /* This function returns the amount that we can raise the
  2179. * usable window based on the following constraints
  2180. *
  2181. * 1. The window can never be shrunk once it is offered (RFC 793)
  2182. * 2. We limit memory per socket
  2183. *
  2184. * RFC 1122:
  2185. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2186. * RECV.NEXT + RCV.WIN fixed until:
  2187. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2188. *
  2189. * i.e. don't raise the right edge of the window until you can raise
  2190. * it at least MSS bytes.
  2191. *
  2192. * Unfortunately, the recommended algorithm breaks header prediction,
  2193. * since header prediction assumes th->window stays fixed.
  2194. *
  2195. * Strictly speaking, keeping th->window fixed violates the receiver
  2196. * side SWS prevention criteria. The problem is that under this rule
  2197. * a stream of single byte packets will cause the right side of the
  2198. * window to always advance by a single byte.
  2199. *
  2200. * Of course, if the sender implements sender side SWS prevention
  2201. * then this will not be a problem.
  2202. *
  2203. * BSD seems to make the following compromise:
  2204. *
  2205. * If the free space is less than the 1/4 of the maximum
  2206. * space available and the free space is less than 1/2 mss,
  2207. * then set the window to 0.
  2208. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2209. * Otherwise, just prevent the window from shrinking
  2210. * and from being larger than the largest representable value.
  2211. *
  2212. * This prevents incremental opening of the window in the regime
  2213. * where TCP is limited by the speed of the reader side taking
  2214. * data out of the TCP receive queue. It does nothing about
  2215. * those cases where the window is constrained on the sender side
  2216. * because the pipeline is full.
  2217. *
  2218. * BSD also seems to "accidentally" limit itself to windows that are a
  2219. * multiple of MSS, at least until the free space gets quite small.
  2220. * This would appear to be a side effect of the mbuf implementation.
  2221. * Combining these two algorithms results in the observed behavior
  2222. * of having a fixed window size at almost all times.
  2223. *
  2224. * Below we obtain similar behavior by forcing the offered window to
  2225. * a multiple of the mss when it is feasible to do so.
  2226. *
  2227. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2228. * Regular options like TIMESTAMP are taken into account.
  2229. */
  2230. u32 __tcp_select_window(struct sock *sk)
  2231. {
  2232. struct inet_connection_sock *icsk = inet_csk(sk);
  2233. struct tcp_sock *tp = tcp_sk(sk);
  2234. /* MSS for the peer's data. Previous versions used mss_clamp
  2235. * here. I don't know if the value based on our guesses
  2236. * of peer's MSS is better for the performance. It's more correct
  2237. * but may be worse for the performance because of rcv_mss
  2238. * fluctuations. --SAW 1998/11/1
  2239. */
  2240. int mss = icsk->icsk_ack.rcv_mss;
  2241. int free_space = tcp_space(sk);
  2242. int allowed_space = tcp_full_space(sk);
  2243. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2244. int window;
  2245. if (unlikely(mss > full_space)) {
  2246. mss = full_space;
  2247. if (mss <= 0)
  2248. return 0;
  2249. }
  2250. if (free_space < (full_space >> 1)) {
  2251. icsk->icsk_ack.quick = 0;
  2252. if (tcp_under_memory_pressure(sk))
  2253. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2254. 4U * tp->advmss);
  2255. /* free_space might become our new window, make sure we don't
  2256. * increase it due to wscale.
  2257. */
  2258. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2259. /* if free space is less than mss estimate, or is below 1/16th
  2260. * of the maximum allowed, try to move to zero-window, else
  2261. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2262. * new incoming data is dropped due to memory limits.
  2263. * With large window, mss test triggers way too late in order
  2264. * to announce zero window in time before rmem limit kicks in.
  2265. */
  2266. if (free_space < (allowed_space >> 4) || free_space < mss)
  2267. return 0;
  2268. }
  2269. if (free_space > tp->rcv_ssthresh)
  2270. free_space = tp->rcv_ssthresh;
  2271. /* Don't do rounding if we are using window scaling, since the
  2272. * scaled window will not line up with the MSS boundary anyway.
  2273. */
  2274. if (tp->rx_opt.rcv_wscale) {
  2275. window = free_space;
  2276. /* Advertise enough space so that it won't get scaled away.
  2277. * Import case: prevent zero window announcement if
  2278. * 1<<rcv_wscale > mss.
  2279. */
  2280. window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
  2281. } else {
  2282. window = tp->rcv_wnd;
  2283. /* Get the largest window that is a nice multiple of mss.
  2284. * Window clamp already applied above.
  2285. * If our current window offering is within 1 mss of the
  2286. * free space we just keep it. This prevents the divide
  2287. * and multiply from happening most of the time.
  2288. * We also don't do any window rounding when the free space
  2289. * is too small.
  2290. */
  2291. if (window <= free_space - mss || window > free_space)
  2292. window = rounddown(free_space, mss);
  2293. else if (mss == full_space &&
  2294. free_space > window + (full_space >> 1))
  2295. window = free_space;
  2296. }
  2297. return window;
  2298. }
  2299. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2300. const struct sk_buff *next_skb)
  2301. {
  2302. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2303. const struct skb_shared_info *next_shinfo =
  2304. skb_shinfo(next_skb);
  2305. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2306. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2307. shinfo->tskey = next_shinfo->tskey;
  2308. TCP_SKB_CB(skb)->txstamp_ack |=
  2309. TCP_SKB_CB(next_skb)->txstamp_ack;
  2310. }
  2311. }
  2312. /* Collapses two adjacent SKB's during retransmission. */
  2313. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2314. {
  2315. struct tcp_sock *tp = tcp_sk(sk);
  2316. struct sk_buff *next_skb = skb_rb_next(skb);
  2317. int skb_size, next_skb_size;
  2318. skb_size = skb->len;
  2319. next_skb_size = next_skb->len;
  2320. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2321. if (next_skb_size) {
  2322. if (next_skb_size <= skb_availroom(skb))
  2323. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2324. next_skb_size);
  2325. else if (!skb_shift(skb, next_skb, next_skb_size))
  2326. return false;
  2327. }
  2328. tcp_highest_sack_replace(sk, next_skb, skb);
  2329. if (next_skb->ip_summed == CHECKSUM_PARTIAL)
  2330. skb->ip_summed = CHECKSUM_PARTIAL;
  2331. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2332. skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
  2333. /* Update sequence range on original skb. */
  2334. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2335. /* Merge over control information. This moves PSH/FIN etc. over */
  2336. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2337. /* All done, get rid of second SKB and account for it so
  2338. * packet counting does not break.
  2339. */
  2340. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2341. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2342. /* changed transmit queue under us so clear hints */
  2343. tcp_clear_retrans_hints_partial(tp);
  2344. if (next_skb == tp->retransmit_skb_hint)
  2345. tp->retransmit_skb_hint = skb;
  2346. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2347. tcp_skb_collapse_tstamp(skb, next_skb);
  2348. tcp_rtx_queue_unlink_and_free(next_skb, sk);
  2349. return true;
  2350. }
  2351. /* Check if coalescing SKBs is legal. */
  2352. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2353. {
  2354. if (tcp_skb_pcount(skb) > 1)
  2355. return false;
  2356. if (skb_cloned(skb))
  2357. return false;
  2358. /* Some heuristics for collapsing over SACK'd could be invented */
  2359. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2360. return false;
  2361. return true;
  2362. }
  2363. /* Collapse packets in the retransmit queue to make to create
  2364. * less packets on the wire. This is only done on retransmission.
  2365. */
  2366. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2367. int space)
  2368. {
  2369. struct tcp_sock *tp = tcp_sk(sk);
  2370. struct sk_buff *skb = to, *tmp;
  2371. bool first = true;
  2372. if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
  2373. return;
  2374. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2375. return;
  2376. skb_rbtree_walk_from_safe(skb, tmp) {
  2377. if (!tcp_can_collapse(sk, skb))
  2378. break;
  2379. if (!tcp_skb_can_collapse_to(to))
  2380. break;
  2381. space -= skb->len;
  2382. if (first) {
  2383. first = false;
  2384. continue;
  2385. }
  2386. if (space < 0)
  2387. break;
  2388. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2389. break;
  2390. if (!tcp_collapse_retrans(sk, to))
  2391. break;
  2392. }
  2393. }
  2394. /* This retransmits one SKB. Policy decisions and retransmit queue
  2395. * state updates are done by the caller. Returns non-zero if an
  2396. * error occurred which prevented the send.
  2397. */
  2398. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2399. {
  2400. struct inet_connection_sock *icsk = inet_csk(sk);
  2401. struct tcp_sock *tp = tcp_sk(sk);
  2402. unsigned int cur_mss;
  2403. int diff, len, err;
  2404. /* Inconclusive MTU probe */
  2405. if (icsk->icsk_mtup.probe_size)
  2406. icsk->icsk_mtup.probe_size = 0;
  2407. /* Do not sent more than we queued. 1/4 is reserved for possible
  2408. * copying overhead: fragmentation, tunneling, mangling etc.
  2409. */
  2410. if (refcount_read(&sk->sk_wmem_alloc) >
  2411. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2412. sk->sk_sndbuf))
  2413. return -EAGAIN;
  2414. if (skb_still_in_host_queue(sk, skb))
  2415. return -EBUSY;
  2416. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2417. if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  2418. BUG();
  2419. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2420. return -ENOMEM;
  2421. }
  2422. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2423. return -EHOSTUNREACH; /* Routing failure or similar. */
  2424. cur_mss = tcp_current_mss(sk);
  2425. /* If receiver has shrunk his window, and skb is out of
  2426. * new window, do not retransmit it. The exception is the
  2427. * case, when window is shrunk to zero. In this case
  2428. * our retransmit serves as a zero window probe.
  2429. */
  2430. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2431. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2432. return -EAGAIN;
  2433. len = cur_mss * segs;
  2434. if (skb->len > len) {
  2435. if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
  2436. cur_mss, GFP_ATOMIC))
  2437. return -ENOMEM; /* We'll try again later. */
  2438. } else {
  2439. if (skb_unclone(skb, GFP_ATOMIC))
  2440. return -ENOMEM;
  2441. diff = tcp_skb_pcount(skb);
  2442. tcp_set_skb_tso_segs(skb, cur_mss);
  2443. diff -= tcp_skb_pcount(skb);
  2444. if (diff)
  2445. tcp_adjust_pcount(sk, skb, diff);
  2446. if (skb->len < cur_mss)
  2447. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2448. }
  2449. /* RFC3168, section 6.1.1.1. ECN fallback */
  2450. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2451. tcp_ecn_clear_syn(sk, skb);
  2452. /* Update global and local TCP statistics. */
  2453. segs = tcp_skb_pcount(skb);
  2454. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2455. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2456. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2457. tp->total_retrans += segs;
  2458. /* make sure skb->data is aligned on arches that require it
  2459. * and check if ack-trimming & collapsing extended the headroom
  2460. * beyond what csum_start can cover.
  2461. */
  2462. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2463. skb_headroom(skb) >= 0xFFFF)) {
  2464. struct sk_buff *nskb;
  2465. tcp_skb_tsorted_save(skb) {
  2466. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2467. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2468. -ENOBUFS;
  2469. } tcp_skb_tsorted_restore(skb);
  2470. if (!err) {
  2471. tcp_update_skb_after_send(tp, skb);
  2472. tcp_rate_skb_sent(sk, skb);
  2473. }
  2474. } else {
  2475. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2476. }
  2477. if (likely(!err)) {
  2478. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2479. trace_tcp_retransmit_skb(sk, skb);
  2480. } else if (err != -EBUSY) {
  2481. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
  2482. }
  2483. return err;
  2484. }
  2485. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2486. {
  2487. struct tcp_sock *tp = tcp_sk(sk);
  2488. int err = __tcp_retransmit_skb(sk, skb, segs);
  2489. if (err == 0) {
  2490. #if FASTRETRANS_DEBUG > 0
  2491. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2492. net_dbg_ratelimited("retrans_out leaked\n");
  2493. }
  2494. #endif
  2495. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2496. tp->retrans_out += tcp_skb_pcount(skb);
  2497. /* Save stamp of the first retransmit. */
  2498. if (!tp->retrans_stamp)
  2499. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2500. }
  2501. if (tp->undo_retrans < 0)
  2502. tp->undo_retrans = 0;
  2503. tp->undo_retrans += tcp_skb_pcount(skb);
  2504. return err;
  2505. }
  2506. /* This gets called after a retransmit timeout, and the initially
  2507. * retransmitted data is acknowledged. It tries to continue
  2508. * resending the rest of the retransmit queue, until either
  2509. * we've sent it all or the congestion window limit is reached.
  2510. */
  2511. void tcp_xmit_retransmit_queue(struct sock *sk)
  2512. {
  2513. const struct inet_connection_sock *icsk = inet_csk(sk);
  2514. struct sk_buff *skb, *rtx_head, *hole = NULL;
  2515. struct tcp_sock *tp = tcp_sk(sk);
  2516. u32 max_segs;
  2517. int mib_idx;
  2518. if (!tp->packets_out)
  2519. return;
  2520. rtx_head = tcp_rtx_queue_head(sk);
  2521. skb = tp->retransmit_skb_hint ?: rtx_head;
  2522. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2523. skb_rbtree_walk_from(skb) {
  2524. __u8 sacked;
  2525. int segs;
  2526. if (tcp_pacing_check(sk))
  2527. break;
  2528. /* we could do better than to assign each time */
  2529. if (!hole)
  2530. tp->retransmit_skb_hint = skb;
  2531. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2532. if (segs <= 0)
  2533. return;
  2534. sacked = TCP_SKB_CB(skb)->sacked;
  2535. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2536. * we need to make sure not sending too bigs TSO packets
  2537. */
  2538. segs = min_t(int, segs, max_segs);
  2539. if (tp->retrans_out >= tp->lost_out) {
  2540. break;
  2541. } else if (!(sacked & TCPCB_LOST)) {
  2542. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2543. hole = skb;
  2544. continue;
  2545. } else {
  2546. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2547. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2548. else
  2549. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2550. }
  2551. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2552. continue;
  2553. if (tcp_small_queue_check(sk, skb, 1))
  2554. return;
  2555. if (tcp_retransmit_skb(sk, skb, segs))
  2556. return;
  2557. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2558. if (tcp_in_cwnd_reduction(sk))
  2559. tp->prr_out += tcp_skb_pcount(skb);
  2560. if (skb == rtx_head &&
  2561. icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
  2562. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2563. inet_csk(sk)->icsk_rto,
  2564. TCP_RTO_MAX);
  2565. }
  2566. }
  2567. /* We allow to exceed memory limits for FIN packets to expedite
  2568. * connection tear down and (memory) recovery.
  2569. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2570. * or even be forced to close flow without any FIN.
  2571. * In general, we want to allow one skb per socket to avoid hangs
  2572. * with edge trigger epoll()
  2573. */
  2574. void sk_forced_mem_schedule(struct sock *sk, int size)
  2575. {
  2576. int amt;
  2577. if (size <= sk->sk_forward_alloc)
  2578. return;
  2579. amt = sk_mem_pages(size);
  2580. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2581. sk_memory_allocated_add(sk, amt);
  2582. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2583. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2584. }
  2585. /* Send a FIN. The caller locks the socket for us.
  2586. * We should try to send a FIN packet really hard, but eventually give up.
  2587. */
  2588. void tcp_send_fin(struct sock *sk)
  2589. {
  2590. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2591. struct tcp_sock *tp = tcp_sk(sk);
  2592. /* Optimization, tack on the FIN if we have one skb in write queue and
  2593. * this skb was not yet sent, or we are under memory pressure.
  2594. * Note: in the latter case, FIN packet will be sent after a timeout,
  2595. * as TCP stack thinks it has already been transmitted.
  2596. */
  2597. if (!tskb && tcp_under_memory_pressure(sk))
  2598. tskb = skb_rb_last(&sk->tcp_rtx_queue);
  2599. if (tskb) {
  2600. coalesce:
  2601. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2602. TCP_SKB_CB(tskb)->end_seq++;
  2603. tp->write_seq++;
  2604. if (tcp_write_queue_empty(sk)) {
  2605. /* This means tskb was already sent.
  2606. * Pretend we included the FIN on previous transmit.
  2607. * We need to set tp->snd_nxt to the value it would have
  2608. * if FIN had been sent. This is because retransmit path
  2609. * does not change tp->snd_nxt.
  2610. */
  2611. tp->snd_nxt++;
  2612. return;
  2613. }
  2614. } else {
  2615. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2616. if (unlikely(!skb)) {
  2617. if (tskb)
  2618. goto coalesce;
  2619. return;
  2620. }
  2621. INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
  2622. skb_reserve(skb, MAX_TCP_HEADER);
  2623. sk_forced_mem_schedule(sk, skb->truesize);
  2624. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2625. tcp_init_nondata_skb(skb, tp->write_seq,
  2626. TCPHDR_ACK | TCPHDR_FIN);
  2627. tcp_queue_skb(sk, skb);
  2628. }
  2629. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2630. }
  2631. /* We get here when a process closes a file descriptor (either due to
  2632. * an explicit close() or as a byproduct of exit()'ing) and there
  2633. * was unread data in the receive queue. This behavior is recommended
  2634. * by RFC 2525, section 2.17. -DaveM
  2635. */
  2636. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2637. {
  2638. struct sk_buff *skb;
  2639. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2640. /* NOTE: No TCP options attached and we never retransmit this. */
  2641. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2642. if (!skb) {
  2643. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2644. return;
  2645. }
  2646. /* Reserve space for headers and prepare control bits. */
  2647. skb_reserve(skb, MAX_TCP_HEADER);
  2648. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2649. TCPHDR_ACK | TCPHDR_RST);
  2650. tcp_mstamp_refresh(tcp_sk(sk));
  2651. /* Send it off. */
  2652. if (tcp_transmit_skb(sk, skb, 0, priority))
  2653. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2654. /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
  2655. * skb here is different to the troublesome skb, so use NULL
  2656. */
  2657. trace_tcp_send_reset(sk, NULL);
  2658. }
  2659. /* Send a crossed SYN-ACK during socket establishment.
  2660. * WARNING: This routine must only be called when we have already sent
  2661. * a SYN packet that crossed the incoming SYN that caused this routine
  2662. * to get called. If this assumption fails then the initial rcv_wnd
  2663. * and rcv_wscale values will not be correct.
  2664. */
  2665. int tcp_send_synack(struct sock *sk)
  2666. {
  2667. struct sk_buff *skb;
  2668. skb = tcp_rtx_queue_head(sk);
  2669. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2670. pr_err("%s: wrong queue state\n", __func__);
  2671. return -EFAULT;
  2672. }
  2673. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2674. if (skb_cloned(skb)) {
  2675. struct sk_buff *nskb;
  2676. tcp_skb_tsorted_save(skb) {
  2677. nskb = skb_copy(skb, GFP_ATOMIC);
  2678. } tcp_skb_tsorted_restore(skb);
  2679. if (!nskb)
  2680. return -ENOMEM;
  2681. INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
  2682. tcp_rtx_queue_unlink_and_free(skb, sk);
  2683. __skb_header_release(nskb);
  2684. tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
  2685. sk->sk_wmem_queued += nskb->truesize;
  2686. sk_mem_charge(sk, nskb->truesize);
  2687. skb = nskb;
  2688. }
  2689. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2690. tcp_ecn_send_synack(sk, skb);
  2691. }
  2692. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2693. }
  2694. /**
  2695. * tcp_make_synack - Prepare a SYN-ACK.
  2696. * sk: listener socket
  2697. * dst: dst entry attached to the SYNACK
  2698. * req: request_sock pointer
  2699. *
  2700. * Allocate one skb and build a SYNACK packet.
  2701. * @dst is consumed : Caller should not use it again.
  2702. */
  2703. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2704. struct request_sock *req,
  2705. struct tcp_fastopen_cookie *foc,
  2706. enum tcp_synack_type synack_type)
  2707. {
  2708. struct inet_request_sock *ireq = inet_rsk(req);
  2709. const struct tcp_sock *tp = tcp_sk(sk);
  2710. struct tcp_md5sig_key *md5 = NULL;
  2711. struct tcp_out_options opts;
  2712. struct sk_buff *skb;
  2713. int tcp_header_size;
  2714. struct tcphdr *th;
  2715. int mss;
  2716. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2717. if (unlikely(!skb)) {
  2718. dst_release(dst);
  2719. return NULL;
  2720. }
  2721. /* Reserve space for headers. */
  2722. skb_reserve(skb, MAX_TCP_HEADER);
  2723. switch (synack_type) {
  2724. case TCP_SYNACK_NORMAL:
  2725. skb_set_owner_w(skb, req_to_sk(req));
  2726. break;
  2727. case TCP_SYNACK_COOKIE:
  2728. /* Under synflood, we do not attach skb to a socket,
  2729. * to avoid false sharing.
  2730. */
  2731. break;
  2732. case TCP_SYNACK_FASTOPEN:
  2733. /* sk is a const pointer, because we want to express multiple
  2734. * cpu might call us concurrently.
  2735. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2736. */
  2737. skb_set_owner_w(skb, (struct sock *)sk);
  2738. break;
  2739. }
  2740. skb_dst_set(skb, dst);
  2741. mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2742. memset(&opts, 0, sizeof(opts));
  2743. #ifdef CONFIG_SYN_COOKIES
  2744. if (unlikely(req->cookie_ts))
  2745. skb->skb_mstamp = cookie_init_timestamp(req);
  2746. else
  2747. #endif
  2748. skb->skb_mstamp = tcp_clock_us();
  2749. #ifdef CONFIG_TCP_MD5SIG
  2750. rcu_read_lock();
  2751. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2752. #endif
  2753. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2754. tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
  2755. foc) + sizeof(*th);
  2756. skb_push(skb, tcp_header_size);
  2757. skb_reset_transport_header(skb);
  2758. th = (struct tcphdr *)skb->data;
  2759. memset(th, 0, sizeof(struct tcphdr));
  2760. th->syn = 1;
  2761. th->ack = 1;
  2762. tcp_ecn_make_synack(req, th);
  2763. th->source = htons(ireq->ir_num);
  2764. th->dest = ireq->ir_rmt_port;
  2765. skb->mark = ireq->ir_mark;
  2766. skb->ip_summed = CHECKSUM_PARTIAL;
  2767. th->seq = htonl(tcp_rsk(req)->snt_isn);
  2768. /* XXX data is queued and acked as is. No buffer/window check */
  2769. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2770. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2771. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2772. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2773. th->doff = (tcp_header_size >> 2);
  2774. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2775. #ifdef CONFIG_TCP_MD5SIG
  2776. /* Okay, we have all we need - do the md5 hash if needed */
  2777. if (md5)
  2778. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2779. md5, req_to_sk(req), skb);
  2780. rcu_read_unlock();
  2781. #endif
  2782. /* Do not fool tcpdump (if any), clean our debris */
  2783. skb->tstamp = 0;
  2784. return skb;
  2785. }
  2786. EXPORT_SYMBOL(tcp_make_synack);
  2787. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2788. {
  2789. struct inet_connection_sock *icsk = inet_csk(sk);
  2790. const struct tcp_congestion_ops *ca;
  2791. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2792. if (ca_key == TCP_CA_UNSPEC)
  2793. return;
  2794. rcu_read_lock();
  2795. ca = tcp_ca_find_key(ca_key);
  2796. if (likely(ca && try_module_get(ca->owner))) {
  2797. module_put(icsk->icsk_ca_ops->owner);
  2798. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2799. icsk->icsk_ca_ops = ca;
  2800. }
  2801. rcu_read_unlock();
  2802. }
  2803. /* Do all connect socket setups that can be done AF independent. */
  2804. static void tcp_connect_init(struct sock *sk)
  2805. {
  2806. const struct dst_entry *dst = __sk_dst_get(sk);
  2807. struct tcp_sock *tp = tcp_sk(sk);
  2808. __u8 rcv_wscale;
  2809. u32 rcv_wnd;
  2810. /* We'll fix this up when we get a response from the other end.
  2811. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2812. */
  2813. tp->tcp_header_len = sizeof(struct tcphdr);
  2814. if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
  2815. tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
  2816. #ifdef CONFIG_TCP_MD5SIG
  2817. if (tp->af_specific->md5_lookup(sk, sk))
  2818. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2819. #endif
  2820. /* If user gave his TCP_MAXSEG, record it to clamp */
  2821. if (tp->rx_opt.user_mss)
  2822. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2823. tp->max_window = 0;
  2824. tcp_mtup_init(sk);
  2825. tcp_sync_mss(sk, dst_mtu(dst));
  2826. tcp_ca_dst_init(sk, dst);
  2827. if (!tp->window_clamp)
  2828. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2829. tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2830. tcp_initialize_rcv_mss(sk);
  2831. /* limit the window selection if the user enforce a smaller rx buffer */
  2832. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2833. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2834. tp->window_clamp = tcp_full_space(sk);
  2835. rcv_wnd = tcp_rwnd_init_bpf(sk);
  2836. if (rcv_wnd == 0)
  2837. rcv_wnd = dst_metric(dst, RTAX_INITRWND);
  2838. tcp_select_initial_window(sk, tcp_full_space(sk),
  2839. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2840. &tp->rcv_wnd,
  2841. &tp->window_clamp,
  2842. sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
  2843. &rcv_wscale,
  2844. rcv_wnd);
  2845. tp->rx_opt.rcv_wscale = rcv_wscale;
  2846. tp->rcv_ssthresh = tp->rcv_wnd;
  2847. sk->sk_err = 0;
  2848. sock_reset_flag(sk, SOCK_DONE);
  2849. tp->snd_wnd = 0;
  2850. tcp_init_wl(tp, 0);
  2851. tp->snd_una = tp->write_seq;
  2852. tp->snd_sml = tp->write_seq;
  2853. tp->snd_up = tp->write_seq;
  2854. tp->snd_nxt = tp->write_seq;
  2855. if (likely(!tp->repair))
  2856. tp->rcv_nxt = 0;
  2857. else
  2858. tp->rcv_tstamp = tcp_jiffies32;
  2859. tp->rcv_wup = tp->rcv_nxt;
  2860. tp->copied_seq = tp->rcv_nxt;
  2861. inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
  2862. inet_csk(sk)->icsk_retransmits = 0;
  2863. tcp_clear_retrans(tp);
  2864. }
  2865. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2866. {
  2867. struct tcp_sock *tp = tcp_sk(sk);
  2868. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2869. tcb->end_seq += skb->len;
  2870. __skb_header_release(skb);
  2871. sk->sk_wmem_queued += skb->truesize;
  2872. sk_mem_charge(sk, skb->truesize);
  2873. tp->write_seq = tcb->end_seq;
  2874. tp->packets_out += tcp_skb_pcount(skb);
  2875. }
  2876. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2877. * queue a data-only packet after the regular SYN, such that regular SYNs
  2878. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2879. * only the SYN sequence, the data are retransmitted in the first ACK.
  2880. * If cookie is not cached or other error occurs, falls back to send a
  2881. * regular SYN with Fast Open cookie request option.
  2882. */
  2883. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2884. {
  2885. struct tcp_sock *tp = tcp_sk(sk);
  2886. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2887. int space, err = 0;
  2888. struct sk_buff *syn_data;
  2889. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2890. if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
  2891. goto fallback;
  2892. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2893. * user-MSS. Reserve maximum option space for middleboxes that add
  2894. * private TCP options. The cost is reduced data space in SYN :(
  2895. */
  2896. tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
  2897. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2898. MAX_TCP_OPTION_SPACE;
  2899. space = min_t(size_t, space, fo->size);
  2900. /* limit to order-0 allocations */
  2901. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2902. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2903. if (!syn_data)
  2904. goto fallback;
  2905. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2906. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2907. if (space) {
  2908. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2909. &fo->data->msg_iter);
  2910. if (unlikely(!copied)) {
  2911. tcp_skb_tsorted_anchor_cleanup(syn_data);
  2912. kfree_skb(syn_data);
  2913. goto fallback;
  2914. }
  2915. if (copied != space) {
  2916. skb_trim(syn_data, copied);
  2917. space = copied;
  2918. }
  2919. }
  2920. /* No more data pending in inet_wait_for_connect() */
  2921. if (space == fo->size)
  2922. fo->data = NULL;
  2923. fo->copied = space;
  2924. tcp_connect_queue_skb(sk, syn_data);
  2925. if (syn_data->len)
  2926. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2927. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2928. syn->skb_mstamp = syn_data->skb_mstamp;
  2929. /* Now full SYN+DATA was cloned and sent (or not),
  2930. * remove the SYN from the original skb (syn_data)
  2931. * we keep in write queue in case of a retransmit, as we
  2932. * also have the SYN packet (with no data) in the same queue.
  2933. */
  2934. TCP_SKB_CB(syn_data)->seq++;
  2935. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2936. if (!err) {
  2937. tp->syn_data = (fo->copied > 0);
  2938. tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
  2939. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2940. goto done;
  2941. }
  2942. /* data was not sent, put it in write_queue */
  2943. __skb_queue_tail(&sk->sk_write_queue, syn_data);
  2944. tp->packets_out -= tcp_skb_pcount(syn_data);
  2945. fallback:
  2946. /* Send a regular SYN with Fast Open cookie request option */
  2947. if (fo->cookie.len > 0)
  2948. fo->cookie.len = 0;
  2949. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2950. if (err)
  2951. tp->syn_fastopen = 0;
  2952. done:
  2953. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2954. return err;
  2955. }
  2956. /* Build a SYN and send it off. */
  2957. int tcp_connect(struct sock *sk)
  2958. {
  2959. struct tcp_sock *tp = tcp_sk(sk);
  2960. struct sk_buff *buff;
  2961. int err;
  2962. tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
  2963. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2964. return -EHOSTUNREACH; /* Routing failure or similar. */
  2965. tcp_connect_init(sk);
  2966. if (unlikely(tp->repair)) {
  2967. tcp_finish_connect(sk, NULL);
  2968. return 0;
  2969. }
  2970. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2971. if (unlikely(!buff))
  2972. return -ENOBUFS;
  2973. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2974. tcp_mstamp_refresh(tp);
  2975. tp->retrans_stamp = tcp_time_stamp(tp);
  2976. tcp_connect_queue_skb(sk, buff);
  2977. tcp_ecn_send_syn(sk, buff);
  2978. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  2979. /* Send off SYN; include data in Fast Open. */
  2980. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  2981. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  2982. if (err == -ECONNREFUSED)
  2983. return err;
  2984. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  2985. * in order to make this packet get counted in tcpOutSegs.
  2986. */
  2987. tp->snd_nxt = tp->write_seq;
  2988. tp->pushed_seq = tp->write_seq;
  2989. buff = tcp_send_head(sk);
  2990. if (unlikely(buff)) {
  2991. tp->snd_nxt = TCP_SKB_CB(buff)->seq;
  2992. tp->pushed_seq = TCP_SKB_CB(buff)->seq;
  2993. }
  2994. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  2995. /* Timer for repeating the SYN until an answer. */
  2996. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2997. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2998. return 0;
  2999. }
  3000. EXPORT_SYMBOL(tcp_connect);
  3001. /* Send out a delayed ack, the caller does the policy checking
  3002. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  3003. * for details.
  3004. */
  3005. void tcp_send_delayed_ack(struct sock *sk)
  3006. {
  3007. struct inet_connection_sock *icsk = inet_csk(sk);
  3008. int ato = icsk->icsk_ack.ato;
  3009. unsigned long timeout;
  3010. tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
  3011. if (ato > TCP_DELACK_MIN) {
  3012. const struct tcp_sock *tp = tcp_sk(sk);
  3013. int max_ato = HZ / 2;
  3014. if (icsk->icsk_ack.pingpong ||
  3015. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  3016. max_ato = TCP_DELACK_MAX;
  3017. /* Slow path, intersegment interval is "high". */
  3018. /* If some rtt estimate is known, use it to bound delayed ack.
  3019. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  3020. * directly.
  3021. */
  3022. if (tp->srtt_us) {
  3023. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  3024. TCP_DELACK_MIN);
  3025. if (rtt < max_ato)
  3026. max_ato = rtt;
  3027. }
  3028. ato = min(ato, max_ato);
  3029. }
  3030. /* Stay within the limit we were given */
  3031. timeout = jiffies + ato;
  3032. /* Use new timeout only if there wasn't a older one earlier. */
  3033. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  3034. /* If delack timer was blocked or is about to expire,
  3035. * send ACK now.
  3036. */
  3037. if (icsk->icsk_ack.blocked ||
  3038. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  3039. tcp_send_ack(sk);
  3040. return;
  3041. }
  3042. if (!time_before(timeout, icsk->icsk_ack.timeout))
  3043. timeout = icsk->icsk_ack.timeout;
  3044. }
  3045. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  3046. icsk->icsk_ack.timeout = timeout;
  3047. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  3048. }
  3049. /* This routine sends an ack and also updates the window. */
  3050. void tcp_send_ack(struct sock *sk)
  3051. {
  3052. struct sk_buff *buff;
  3053. /* If we have been reset, we may not send again. */
  3054. if (sk->sk_state == TCP_CLOSE)
  3055. return;
  3056. tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
  3057. /* We are not putting this on the write queue, so
  3058. * tcp_transmit_skb() will set the ownership to this
  3059. * sock.
  3060. */
  3061. buff = alloc_skb(MAX_TCP_HEADER,
  3062. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3063. if (unlikely(!buff)) {
  3064. inet_csk_schedule_ack(sk);
  3065. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  3066. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  3067. TCP_DELACK_MAX, TCP_RTO_MAX);
  3068. return;
  3069. }
  3070. /* Reserve space for headers and prepare control bits. */
  3071. skb_reserve(buff, MAX_TCP_HEADER);
  3072. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  3073. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  3074. * too much.
  3075. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  3076. */
  3077. skb_set_tcp_pure_ack(buff);
  3078. /* Send it off, this clears delayed acks for us. */
  3079. tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
  3080. }
  3081. EXPORT_SYMBOL_GPL(tcp_send_ack);
  3082. /* This routine sends a packet with an out of date sequence
  3083. * number. It assumes the other end will try to ack it.
  3084. *
  3085. * Question: what should we make while urgent mode?
  3086. * 4.4BSD forces sending single byte of data. We cannot send
  3087. * out of window data, because we have SND.NXT==SND.MAX...
  3088. *
  3089. * Current solution: to send TWO zero-length segments in urgent mode:
  3090. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  3091. * out-of-date with SND.UNA-1 to probe window.
  3092. */
  3093. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  3094. {
  3095. struct tcp_sock *tp = tcp_sk(sk);
  3096. struct sk_buff *skb;
  3097. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  3098. skb = alloc_skb(MAX_TCP_HEADER,
  3099. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3100. if (!skb)
  3101. return -1;
  3102. /* Reserve space for headers and set control bits. */
  3103. skb_reserve(skb, MAX_TCP_HEADER);
  3104. /* Use a previous sequence. This should cause the other
  3105. * end to send an ack. Don't queue or clone SKB, just
  3106. * send it.
  3107. */
  3108. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3109. NET_INC_STATS(sock_net(sk), mib);
  3110. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3111. }
  3112. /* Called from setsockopt( ... TCP_REPAIR ) */
  3113. void tcp_send_window_probe(struct sock *sk)
  3114. {
  3115. if (sk->sk_state == TCP_ESTABLISHED) {
  3116. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3117. tcp_mstamp_refresh(tcp_sk(sk));
  3118. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3119. }
  3120. }
  3121. /* Initiate keepalive or window probe from timer. */
  3122. int tcp_write_wakeup(struct sock *sk, int mib)
  3123. {
  3124. struct tcp_sock *tp = tcp_sk(sk);
  3125. struct sk_buff *skb;
  3126. if (sk->sk_state == TCP_CLOSE)
  3127. return -1;
  3128. skb = tcp_send_head(sk);
  3129. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3130. int err;
  3131. unsigned int mss = tcp_current_mss(sk);
  3132. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3133. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3134. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3135. /* We are probing the opening of a window
  3136. * but the window size is != 0
  3137. * must have been a result SWS avoidance ( sender )
  3138. */
  3139. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3140. skb->len > mss) {
  3141. seg_size = min(seg_size, mss);
  3142. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3143. if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  3144. skb, seg_size, mss, GFP_ATOMIC))
  3145. return -1;
  3146. } else if (!tcp_skb_pcount(skb))
  3147. tcp_set_skb_tso_segs(skb, mss);
  3148. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3149. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3150. if (!err)
  3151. tcp_event_new_data_sent(sk, skb);
  3152. return err;
  3153. } else {
  3154. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3155. tcp_xmit_probe_skb(sk, 1, mib);
  3156. return tcp_xmit_probe_skb(sk, 0, mib);
  3157. }
  3158. }
  3159. /* A window probe timeout has occurred. If window is not closed send
  3160. * a partial packet else a zero probe.
  3161. */
  3162. void tcp_send_probe0(struct sock *sk)
  3163. {
  3164. struct inet_connection_sock *icsk = inet_csk(sk);
  3165. struct tcp_sock *tp = tcp_sk(sk);
  3166. struct net *net = sock_net(sk);
  3167. unsigned long probe_max;
  3168. int err;
  3169. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3170. if (tp->packets_out || tcp_write_queue_empty(sk)) {
  3171. /* Cancel probe timer, if it is not required. */
  3172. icsk->icsk_probes_out = 0;
  3173. icsk->icsk_backoff = 0;
  3174. return;
  3175. }
  3176. if (err <= 0) {
  3177. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3178. icsk->icsk_backoff++;
  3179. icsk->icsk_probes_out++;
  3180. probe_max = TCP_RTO_MAX;
  3181. } else {
  3182. /* If packet was not sent due to local congestion,
  3183. * do not backoff and do not remember icsk_probes_out.
  3184. * Let local senders to fight for local resources.
  3185. *
  3186. * Use accumulated backoff yet.
  3187. */
  3188. if (!icsk->icsk_probes_out)
  3189. icsk->icsk_probes_out = 1;
  3190. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3191. }
  3192. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3193. tcp_probe0_when(sk, probe_max),
  3194. TCP_RTO_MAX);
  3195. }
  3196. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3197. {
  3198. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3199. struct flowi fl;
  3200. int res;
  3201. tcp_rsk(req)->txhash = net_tx_rndhash();
  3202. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3203. if (!res) {
  3204. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3205. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3206. if (unlikely(tcp_passive_fastopen(sk)))
  3207. tcp_sk(sk)->total_retrans++;
  3208. trace_tcp_retransmit_synack(sk, req);
  3209. }
  3210. return res;
  3211. }
  3212. EXPORT_SYMBOL(tcp_rtx_synack);