tcp_input.c 180 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * INET An implementation of the TCP/IP protocol suite for the LINUX
  4. * operating system. INET is implemented using the BSD Socket
  5. * interface as the means of communication with the user level.
  6. *
  7. * Implementation of the Transmission Control Protocol(TCP).
  8. *
  9. * Authors: Ross Biro
  10. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  12. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  13. * Florian La Roche, <flla@stud.uni-sb.de>
  14. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  16. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  17. * Matthew Dillon, <dillon@apollo.west.oic.com>
  18. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19. * Jorge Cwik, <jorge@laser.satlink.net>
  20. */
  21. /*
  22. * Changes:
  23. * Pedro Roque : Fast Retransmit/Recovery.
  24. * Two receive queues.
  25. * Retransmit queue handled by TCP.
  26. * Better retransmit timer handling.
  27. * New congestion avoidance.
  28. * Header prediction.
  29. * Variable renaming.
  30. *
  31. * Eric : Fast Retransmit.
  32. * Randy Scott : MSS option defines.
  33. * Eric Schenk : Fixes to slow start algorithm.
  34. * Eric Schenk : Yet another double ACK bug.
  35. * Eric Schenk : Delayed ACK bug fixes.
  36. * Eric Schenk : Floyd style fast retrans war avoidance.
  37. * David S. Miller : Don't allow zero congestion window.
  38. * Eric Schenk : Fix retransmitter so that it sends
  39. * next packet on ack of previous packet.
  40. * Andi Kleen : Moved open_request checking here
  41. * and process RSTs for open_requests.
  42. * Andi Kleen : Better prune_queue, and other fixes.
  43. * Andrey Savochkin: Fix RTT measurements in the presence of
  44. * timestamps.
  45. * Andrey Savochkin: Check sequence numbers correctly when
  46. * removing SACKs due to in sequence incoming
  47. * data segments.
  48. * Andi Kleen: Make sure we never ack data there is not
  49. * enough room for. Also make this condition
  50. * a fatal error if it might still happen.
  51. * Andi Kleen: Add tcp_measure_rcv_mss to make
  52. * connections with MSS<min(MTU,ann. MSS)
  53. * work without delayed acks.
  54. * Andi Kleen: Process packets with PSH set in the
  55. * fast path.
  56. * J Hadi Salim: ECN support
  57. * Andrei Gurtov,
  58. * Pasi Sarolahti,
  59. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  60. * engine. Lots of bugs are found.
  61. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  62. */
  63. #define pr_fmt(fmt) "TCP: " fmt
  64. #include <linux/mm.h>
  65. #include <linux/slab.h>
  66. #include <linux/module.h>
  67. #include <linux/sysctl.h>
  68. #include <linux/kernel.h>
  69. #include <linux/prefetch.h>
  70. #include <net/dst.h>
  71. #include <net/tcp.h>
  72. #include <net/inet_common.h>
  73. #include <linux/ipsec.h>
  74. #include <asm/unaligned.h>
  75. #include <linux/errqueue.h>
  76. #include <trace/events/tcp.h>
  77. #include <linux/static_key.h>
  78. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  79. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  80. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  81. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  82. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  83. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  84. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  85. #define FLAG_ECE 0x40 /* ECE in this ACK */
  86. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  87. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  88. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  89. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  90. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  91. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  92. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  93. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  94. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  95. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  96. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  97. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
  98. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  99. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  100. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  101. #define REXMIT_NONE 0 /* no loss recovery to do */
  102. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  103. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  104. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  105. unsigned int len)
  106. {
  107. static bool __once __read_mostly;
  108. if (!__once) {
  109. struct net_device *dev;
  110. __once = true;
  111. rcu_read_lock();
  112. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  113. if (!dev || len >= dev->mtu)
  114. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  115. dev ? dev->name : "Unknown driver");
  116. rcu_read_unlock();
  117. }
  118. }
  119. /* Adapt the MSS value used to make delayed ack decision to the
  120. * real world.
  121. */
  122. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  123. {
  124. struct inet_connection_sock *icsk = inet_csk(sk);
  125. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  126. unsigned int len;
  127. icsk->icsk_ack.last_seg_size = 0;
  128. /* skb->len may jitter because of SACKs, even if peer
  129. * sends good full-sized frames.
  130. */
  131. len = skb_shinfo(skb)->gso_size ? : skb->len;
  132. if (len >= icsk->icsk_ack.rcv_mss) {
  133. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  134. tcp_sk(sk)->advmss);
  135. /* Account for possibly-removed options */
  136. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  137. MAX_TCP_OPTION_SPACE))
  138. tcp_gro_dev_warn(sk, skb, len);
  139. } else {
  140. /* Otherwise, we make more careful check taking into account,
  141. * that SACKs block is variable.
  142. *
  143. * "len" is invariant segment length, including TCP header.
  144. */
  145. len += skb->data - skb_transport_header(skb);
  146. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  147. /* If PSH is not set, packet should be
  148. * full sized, provided peer TCP is not badly broken.
  149. * This observation (if it is correct 8)) allows
  150. * to handle super-low mtu links fairly.
  151. */
  152. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  153. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  154. /* Subtract also invariant (if peer is RFC compliant),
  155. * tcp header plus fixed timestamp option length.
  156. * Resulting "len" is MSS free of SACK jitter.
  157. */
  158. len -= tcp_sk(sk)->tcp_header_len;
  159. icsk->icsk_ack.last_seg_size = len;
  160. if (len == lss) {
  161. icsk->icsk_ack.rcv_mss = len;
  162. return;
  163. }
  164. }
  165. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  166. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  167. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  168. }
  169. }
  170. static void tcp_incr_quickack(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  174. if (quickacks == 0)
  175. quickacks = 2;
  176. if (quickacks > icsk->icsk_ack.quick)
  177. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  178. }
  179. static void tcp_enter_quickack_mode(struct sock *sk)
  180. {
  181. struct inet_connection_sock *icsk = inet_csk(sk);
  182. tcp_incr_quickack(sk);
  183. icsk->icsk_ack.pingpong = 0;
  184. icsk->icsk_ack.ato = TCP_ATO_MIN;
  185. }
  186. /* Send ACKs quickly, if "quick" count is not exhausted
  187. * and the session is not interactive.
  188. */
  189. static bool tcp_in_quickack_mode(struct sock *sk)
  190. {
  191. const struct inet_connection_sock *icsk = inet_csk(sk);
  192. const struct dst_entry *dst = __sk_dst_get(sk);
  193. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  194. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  195. }
  196. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  197. {
  198. if (tp->ecn_flags & TCP_ECN_OK)
  199. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  200. }
  201. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  202. {
  203. if (tcp_hdr(skb)->cwr)
  204. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  205. }
  206. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  207. {
  208. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  209. }
  210. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  211. {
  212. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  213. case INET_ECN_NOT_ECT:
  214. /* Funny extension: if ECT is not set on a segment,
  215. * and we already seen ECT on a previous segment,
  216. * it is probably a retransmit.
  217. */
  218. if (tp->ecn_flags & TCP_ECN_SEEN)
  219. tcp_enter_quickack_mode((struct sock *)tp);
  220. break;
  221. case INET_ECN_CE:
  222. if (tcp_ca_needs_ecn((struct sock *)tp))
  223. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  224. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  225. /* Better not delay acks, sender can have a very low cwnd */
  226. tcp_enter_quickack_mode((struct sock *)tp);
  227. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  228. }
  229. tp->ecn_flags |= TCP_ECN_SEEN;
  230. break;
  231. default:
  232. if (tcp_ca_needs_ecn((struct sock *)tp))
  233. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  234. tp->ecn_flags |= TCP_ECN_SEEN;
  235. break;
  236. }
  237. }
  238. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  239. {
  240. if (tp->ecn_flags & TCP_ECN_OK)
  241. __tcp_ecn_check_ce(tp, skb);
  242. }
  243. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  244. {
  245. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  246. tp->ecn_flags &= ~TCP_ECN_OK;
  247. }
  248. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  249. {
  250. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  251. tp->ecn_flags &= ~TCP_ECN_OK;
  252. }
  253. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  254. {
  255. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  256. return true;
  257. return false;
  258. }
  259. /* Buffer size and advertised window tuning.
  260. *
  261. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  262. */
  263. static void tcp_sndbuf_expand(struct sock *sk)
  264. {
  265. const struct tcp_sock *tp = tcp_sk(sk);
  266. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  267. int sndmem, per_mss;
  268. u32 nr_segs;
  269. /* Worst case is non GSO/TSO : each frame consumes one skb
  270. * and skb->head is kmalloced using power of two area of memory
  271. */
  272. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  273. MAX_TCP_HEADER +
  274. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  275. per_mss = roundup_pow_of_two(per_mss) +
  276. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  277. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  278. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  279. /* Fast Recovery (RFC 5681 3.2) :
  280. * Cubic needs 1.7 factor, rounded to 2 to include
  281. * extra cushion (application might react slowly to POLLOUT)
  282. */
  283. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  284. sndmem *= nr_segs * per_mss;
  285. if (sk->sk_sndbuf < sndmem)
  286. sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
  287. }
  288. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  289. *
  290. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  291. * forward and advertised in receiver window (tp->rcv_wnd) and
  292. * "application buffer", required to isolate scheduling/application
  293. * latencies from network.
  294. * window_clamp is maximal advertised window. It can be less than
  295. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  296. * is reserved for "application" buffer. The less window_clamp is
  297. * the smoother our behaviour from viewpoint of network, but the lower
  298. * throughput and the higher sensitivity of the connection to losses. 8)
  299. *
  300. * rcv_ssthresh is more strict window_clamp used at "slow start"
  301. * phase to predict further behaviour of this connection.
  302. * It is used for two goals:
  303. * - to enforce header prediction at sender, even when application
  304. * requires some significant "application buffer". It is check #1.
  305. * - to prevent pruning of receive queue because of misprediction
  306. * of receiver window. Check #2.
  307. *
  308. * The scheme does not work when sender sends good segments opening
  309. * window and then starts to feed us spaghetti. But it should work
  310. * in common situations. Otherwise, we have to rely on queue collapsing.
  311. */
  312. /* Slow part of check#2. */
  313. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  314. {
  315. struct tcp_sock *tp = tcp_sk(sk);
  316. /* Optimize this! */
  317. int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
  318. int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
  319. while (tp->rcv_ssthresh <= window) {
  320. if (truesize <= skb->len)
  321. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  322. truesize >>= 1;
  323. window >>= 1;
  324. }
  325. return 0;
  326. }
  327. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  328. {
  329. struct tcp_sock *tp = tcp_sk(sk);
  330. /* Check #1 */
  331. if (tp->rcv_ssthresh < tp->window_clamp &&
  332. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  333. !tcp_under_memory_pressure(sk)) {
  334. int incr;
  335. /* Check #2. Increase window, if skb with such overhead
  336. * will fit to rcvbuf in future.
  337. */
  338. if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
  339. incr = 2 * tp->advmss;
  340. else
  341. incr = __tcp_grow_window(sk, skb);
  342. if (incr) {
  343. incr = max_t(int, incr, 2 * skb->len);
  344. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  345. tp->window_clamp);
  346. inet_csk(sk)->icsk_ack.quick |= 1;
  347. }
  348. }
  349. }
  350. /* 3. Tuning rcvbuf, when connection enters established state. */
  351. static void tcp_fixup_rcvbuf(struct sock *sk)
  352. {
  353. u32 mss = tcp_sk(sk)->advmss;
  354. int rcvmem;
  355. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  356. tcp_default_init_rwnd(mss);
  357. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  358. * Allow enough cushion so that sender is not limited by our window
  359. */
  360. if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
  361. rcvmem <<= 2;
  362. if (sk->sk_rcvbuf < rcvmem)
  363. sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  364. }
  365. /* 4. Try to fixup all. It is made immediately after connection enters
  366. * established state.
  367. */
  368. void tcp_init_buffer_space(struct sock *sk)
  369. {
  370. int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
  371. struct tcp_sock *tp = tcp_sk(sk);
  372. int maxwin;
  373. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  374. tcp_fixup_rcvbuf(sk);
  375. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  376. tcp_sndbuf_expand(sk);
  377. tp->rcvq_space.space = tp->rcv_wnd;
  378. tcp_mstamp_refresh(tp);
  379. tp->rcvq_space.time = tp->tcp_mstamp;
  380. tp->rcvq_space.seq = tp->copied_seq;
  381. maxwin = tcp_full_space(sk);
  382. if (tp->window_clamp >= maxwin) {
  383. tp->window_clamp = maxwin;
  384. if (tcp_app_win && maxwin > 4 * tp->advmss)
  385. tp->window_clamp = max(maxwin -
  386. (maxwin >> tcp_app_win),
  387. 4 * tp->advmss);
  388. }
  389. /* Force reservation of one segment. */
  390. if (tcp_app_win &&
  391. tp->window_clamp > 2 * tp->advmss &&
  392. tp->window_clamp + tp->advmss > maxwin)
  393. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  394. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  395. tp->snd_cwnd_stamp = tcp_jiffies32;
  396. }
  397. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  398. static void tcp_clamp_window(struct sock *sk)
  399. {
  400. struct tcp_sock *tp = tcp_sk(sk);
  401. struct inet_connection_sock *icsk = inet_csk(sk);
  402. struct net *net = sock_net(sk);
  403. icsk->icsk_ack.quick = 0;
  404. if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
  405. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  406. !tcp_under_memory_pressure(sk) &&
  407. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  408. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  409. net->ipv4.sysctl_tcp_rmem[2]);
  410. }
  411. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  412. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  413. }
  414. /* Initialize RCV_MSS value.
  415. * RCV_MSS is an our guess about MSS used by the peer.
  416. * We haven't any direct information about the MSS.
  417. * It's better to underestimate the RCV_MSS rather than overestimate.
  418. * Overestimations make us ACKing less frequently than needed.
  419. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  420. */
  421. void tcp_initialize_rcv_mss(struct sock *sk)
  422. {
  423. const struct tcp_sock *tp = tcp_sk(sk);
  424. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  425. hint = min(hint, tp->rcv_wnd / 2);
  426. hint = min(hint, TCP_MSS_DEFAULT);
  427. hint = max(hint, TCP_MIN_MSS);
  428. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  429. }
  430. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  431. /* Receiver "autotuning" code.
  432. *
  433. * The algorithm for RTT estimation w/o timestamps is based on
  434. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  435. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  436. *
  437. * More detail on this code can be found at
  438. * <http://staff.psc.edu/jheffner/>,
  439. * though this reference is out of date. A new paper
  440. * is pending.
  441. */
  442. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  443. {
  444. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  445. long m = sample;
  446. if (m == 0)
  447. m = 1;
  448. if (new_sample != 0) {
  449. /* If we sample in larger samples in the non-timestamp
  450. * case, we could grossly overestimate the RTT especially
  451. * with chatty applications or bulk transfer apps which
  452. * are stalled on filesystem I/O.
  453. *
  454. * Also, since we are only going for a minimum in the
  455. * non-timestamp case, we do not smooth things out
  456. * else with timestamps disabled convergence takes too
  457. * long.
  458. */
  459. if (!win_dep) {
  460. m -= (new_sample >> 3);
  461. new_sample += m;
  462. } else {
  463. m <<= 3;
  464. if (m < new_sample)
  465. new_sample = m;
  466. }
  467. } else {
  468. /* No previous measure. */
  469. new_sample = m << 3;
  470. }
  471. tp->rcv_rtt_est.rtt_us = new_sample;
  472. }
  473. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  474. {
  475. u32 delta_us;
  476. if (tp->rcv_rtt_est.time == 0)
  477. goto new_measure;
  478. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  479. return;
  480. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  481. tcp_rcv_rtt_update(tp, delta_us, 1);
  482. new_measure:
  483. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  484. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  485. }
  486. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  487. const struct sk_buff *skb)
  488. {
  489. struct tcp_sock *tp = tcp_sk(sk);
  490. if (tp->rx_opt.rcv_tsecr &&
  491. (TCP_SKB_CB(skb)->end_seq -
  492. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  493. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  494. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  495. tcp_rcv_rtt_update(tp, delta_us, 0);
  496. }
  497. }
  498. /*
  499. * This function should be called every time data is copied to user space.
  500. * It calculates the appropriate TCP receive buffer space.
  501. */
  502. void tcp_rcv_space_adjust(struct sock *sk)
  503. {
  504. struct tcp_sock *tp = tcp_sk(sk);
  505. int time;
  506. int copied;
  507. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  508. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  509. return;
  510. /* Number of bytes copied to user in last RTT */
  511. copied = tp->copied_seq - tp->rcvq_space.seq;
  512. if (copied <= tp->rcvq_space.space)
  513. goto new_measure;
  514. /* A bit of theory :
  515. * copied = bytes received in previous RTT, our base window
  516. * To cope with packet losses, we need a 2x factor
  517. * To cope with slow start, and sender growing its cwin by 100 %
  518. * every RTT, we need a 4x factor, because the ACK we are sending
  519. * now is for the next RTT, not the current one :
  520. * <prev RTT . ><current RTT .. ><next RTT .... >
  521. */
  522. if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
  523. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  524. int rcvwin, rcvmem, rcvbuf;
  525. /* minimal window to cope with packet losses, assuming
  526. * steady state. Add some cushion because of small variations.
  527. */
  528. rcvwin = (copied << 1) + 16 * tp->advmss;
  529. /* If rate increased by 25%,
  530. * assume slow start, rcvwin = 3 * copied
  531. * If rate increased by 50%,
  532. * assume sender can use 2x growth, rcvwin = 4 * copied
  533. */
  534. if (copied >=
  535. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  536. if (copied >=
  537. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  538. rcvwin <<= 1;
  539. else
  540. rcvwin += (rcvwin >> 1);
  541. }
  542. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  543. while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
  544. rcvmem += 128;
  545. rcvbuf = min(rcvwin / tp->advmss * rcvmem,
  546. sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  547. if (rcvbuf > sk->sk_rcvbuf) {
  548. sk->sk_rcvbuf = rcvbuf;
  549. /* Make the window clamp follow along. */
  550. tp->window_clamp = rcvwin;
  551. }
  552. }
  553. tp->rcvq_space.space = copied;
  554. new_measure:
  555. tp->rcvq_space.seq = tp->copied_seq;
  556. tp->rcvq_space.time = tp->tcp_mstamp;
  557. }
  558. /* There is something which you must keep in mind when you analyze the
  559. * behavior of the tp->ato delayed ack timeout interval. When a
  560. * connection starts up, we want to ack as quickly as possible. The
  561. * problem is that "good" TCP's do slow start at the beginning of data
  562. * transmission. The means that until we send the first few ACK's the
  563. * sender will sit on his end and only queue most of his data, because
  564. * he can only send snd_cwnd unacked packets at any given time. For
  565. * each ACK we send, he increments snd_cwnd and transmits more of his
  566. * queue. -DaveM
  567. */
  568. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  569. {
  570. struct tcp_sock *tp = tcp_sk(sk);
  571. struct inet_connection_sock *icsk = inet_csk(sk);
  572. u32 now;
  573. inet_csk_schedule_ack(sk);
  574. tcp_measure_rcv_mss(sk, skb);
  575. tcp_rcv_rtt_measure(tp);
  576. now = tcp_jiffies32;
  577. if (!icsk->icsk_ack.ato) {
  578. /* The _first_ data packet received, initialize
  579. * delayed ACK engine.
  580. */
  581. tcp_incr_quickack(sk);
  582. icsk->icsk_ack.ato = TCP_ATO_MIN;
  583. } else {
  584. int m = now - icsk->icsk_ack.lrcvtime;
  585. if (m <= TCP_ATO_MIN / 2) {
  586. /* The fastest case is the first. */
  587. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  588. } else if (m < icsk->icsk_ack.ato) {
  589. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  590. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  591. icsk->icsk_ack.ato = icsk->icsk_rto;
  592. } else if (m > icsk->icsk_rto) {
  593. /* Too long gap. Apparently sender failed to
  594. * restart window, so that we send ACKs quickly.
  595. */
  596. tcp_incr_quickack(sk);
  597. sk_mem_reclaim(sk);
  598. }
  599. }
  600. icsk->icsk_ack.lrcvtime = now;
  601. tcp_ecn_check_ce(tp, skb);
  602. if (skb->len >= 128)
  603. tcp_grow_window(sk, skb);
  604. }
  605. /* Called to compute a smoothed rtt estimate. The data fed to this
  606. * routine either comes from timestamps, or from segments that were
  607. * known _not_ to have been retransmitted [see Karn/Partridge
  608. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  609. * piece by Van Jacobson.
  610. * NOTE: the next three routines used to be one big routine.
  611. * To save cycles in the RFC 1323 implementation it was better to break
  612. * it up into three procedures. -- erics
  613. */
  614. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  615. {
  616. struct tcp_sock *tp = tcp_sk(sk);
  617. long m = mrtt_us; /* RTT */
  618. u32 srtt = tp->srtt_us;
  619. /* The following amusing code comes from Jacobson's
  620. * article in SIGCOMM '88. Note that rtt and mdev
  621. * are scaled versions of rtt and mean deviation.
  622. * This is designed to be as fast as possible
  623. * m stands for "measurement".
  624. *
  625. * On a 1990 paper the rto value is changed to:
  626. * RTO = rtt + 4 * mdev
  627. *
  628. * Funny. This algorithm seems to be very broken.
  629. * These formulae increase RTO, when it should be decreased, increase
  630. * too slowly, when it should be increased quickly, decrease too quickly
  631. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  632. * does not matter how to _calculate_ it. Seems, it was trap
  633. * that VJ failed to avoid. 8)
  634. */
  635. if (srtt != 0) {
  636. m -= (srtt >> 3); /* m is now error in rtt est */
  637. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  638. if (m < 0) {
  639. m = -m; /* m is now abs(error) */
  640. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  641. /* This is similar to one of Eifel findings.
  642. * Eifel blocks mdev updates when rtt decreases.
  643. * This solution is a bit different: we use finer gain
  644. * for mdev in this case (alpha*beta).
  645. * Like Eifel it also prevents growth of rto,
  646. * but also it limits too fast rto decreases,
  647. * happening in pure Eifel.
  648. */
  649. if (m > 0)
  650. m >>= 3;
  651. } else {
  652. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  653. }
  654. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  655. if (tp->mdev_us > tp->mdev_max_us) {
  656. tp->mdev_max_us = tp->mdev_us;
  657. if (tp->mdev_max_us > tp->rttvar_us)
  658. tp->rttvar_us = tp->mdev_max_us;
  659. }
  660. if (after(tp->snd_una, tp->rtt_seq)) {
  661. if (tp->mdev_max_us < tp->rttvar_us)
  662. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  663. tp->rtt_seq = tp->snd_nxt;
  664. tp->mdev_max_us = tcp_rto_min_us(sk);
  665. }
  666. } else {
  667. /* no previous measure. */
  668. srtt = m << 3; /* take the measured time to be rtt */
  669. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  670. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  671. tp->mdev_max_us = tp->rttvar_us;
  672. tp->rtt_seq = tp->snd_nxt;
  673. }
  674. tp->srtt_us = max(1U, srtt);
  675. }
  676. static void tcp_update_pacing_rate(struct sock *sk)
  677. {
  678. const struct tcp_sock *tp = tcp_sk(sk);
  679. u64 rate;
  680. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  681. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  682. /* current rate is (cwnd * mss) / srtt
  683. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  684. * In Congestion Avoidance phase, set it to 120 % the current rate.
  685. *
  686. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  687. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  688. * end of slow start and should slow down.
  689. */
  690. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  691. rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
  692. else
  693. rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
  694. rate *= max(tp->snd_cwnd, tp->packets_out);
  695. if (likely(tp->srtt_us))
  696. do_div(rate, tp->srtt_us);
  697. /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
  698. * without any lock. We want to make sure compiler wont store
  699. * intermediate values in this location.
  700. */
  701. WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
  702. sk->sk_max_pacing_rate));
  703. }
  704. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  705. * routine referred to above.
  706. */
  707. static void tcp_set_rto(struct sock *sk)
  708. {
  709. const struct tcp_sock *tp = tcp_sk(sk);
  710. /* Old crap is replaced with new one. 8)
  711. *
  712. * More seriously:
  713. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  714. * It cannot be less due to utterly erratic ACK generation made
  715. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  716. * to do with delayed acks, because at cwnd>2 true delack timeout
  717. * is invisible. Actually, Linux-2.4 also generates erratic
  718. * ACKs in some circumstances.
  719. */
  720. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  721. /* 2. Fixups made earlier cannot be right.
  722. * If we do not estimate RTO correctly without them,
  723. * all the algo is pure shit and should be replaced
  724. * with correct one. It is exactly, which we pretend to do.
  725. */
  726. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  727. * guarantees that rto is higher.
  728. */
  729. tcp_bound_rto(sk);
  730. }
  731. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  732. {
  733. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  734. if (!cwnd)
  735. cwnd = TCP_INIT_CWND;
  736. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  737. }
  738. /* Take a notice that peer is sending D-SACKs */
  739. static void tcp_dsack_seen(struct tcp_sock *tp)
  740. {
  741. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  742. tp->rack.dsack_seen = 1;
  743. }
  744. /* It's reordering when higher sequence was delivered (i.e. sacked) before
  745. * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
  746. * distance is approximated in full-mss packet distance ("reordering").
  747. */
  748. static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
  749. const int ts)
  750. {
  751. struct tcp_sock *tp = tcp_sk(sk);
  752. const u32 mss = tp->mss_cache;
  753. u32 fack, metric;
  754. fack = tcp_highest_sack_seq(tp);
  755. if (!before(low_seq, fack))
  756. return;
  757. metric = fack - low_seq;
  758. if ((metric > tp->reordering * mss) && mss) {
  759. #if FASTRETRANS_DEBUG > 1
  760. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  761. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  762. tp->reordering,
  763. 0,
  764. tp->sacked_out,
  765. tp->undo_marker ? tp->undo_retrans : 0);
  766. #endif
  767. tp->reordering = min_t(u32, (metric + mss - 1) / mss,
  768. sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
  769. }
  770. tp->rack.reord = 1;
  771. /* This exciting event is worth to be remembered. 8) */
  772. NET_INC_STATS(sock_net(sk),
  773. ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
  774. }
  775. /* This must be called before lost_out is incremented */
  776. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  777. {
  778. if (!tp->retransmit_skb_hint ||
  779. before(TCP_SKB_CB(skb)->seq,
  780. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  781. tp->retransmit_skb_hint = skb;
  782. }
  783. /* Sum the number of packets on the wire we have marked as lost.
  784. * There are two cases we care about here:
  785. * a) Packet hasn't been marked lost (nor retransmitted),
  786. * and this is the first loss.
  787. * b) Packet has been marked both lost and retransmitted,
  788. * and this means we think it was lost again.
  789. */
  790. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  791. {
  792. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  793. if (!(sacked & TCPCB_LOST) ||
  794. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  795. tp->lost += tcp_skb_pcount(skb);
  796. }
  797. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  798. {
  799. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  800. tcp_verify_retransmit_hint(tp, skb);
  801. tp->lost_out += tcp_skb_pcount(skb);
  802. tcp_sum_lost(tp, skb);
  803. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  804. }
  805. }
  806. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  807. {
  808. tcp_verify_retransmit_hint(tp, skb);
  809. tcp_sum_lost(tp, skb);
  810. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  811. tp->lost_out += tcp_skb_pcount(skb);
  812. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  813. }
  814. }
  815. /* This procedure tags the retransmission queue when SACKs arrive.
  816. *
  817. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  818. * Packets in queue with these bits set are counted in variables
  819. * sacked_out, retrans_out and lost_out, correspondingly.
  820. *
  821. * Valid combinations are:
  822. * Tag InFlight Description
  823. * 0 1 - orig segment is in flight.
  824. * S 0 - nothing flies, orig reached receiver.
  825. * L 0 - nothing flies, orig lost by net.
  826. * R 2 - both orig and retransmit are in flight.
  827. * L|R 1 - orig is lost, retransmit is in flight.
  828. * S|R 1 - orig reached receiver, retrans is still in flight.
  829. * (L|S|R is logically valid, it could occur when L|R is sacked,
  830. * but it is equivalent to plain S and code short-curcuits it to S.
  831. * L|S is logically invalid, it would mean -1 packet in flight 8))
  832. *
  833. * These 6 states form finite state machine, controlled by the following events:
  834. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  835. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  836. * 3. Loss detection event of two flavors:
  837. * A. Scoreboard estimator decided the packet is lost.
  838. * A'. Reno "three dupacks" marks head of queue lost.
  839. * B. SACK arrives sacking SND.NXT at the moment, when the
  840. * segment was retransmitted.
  841. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  842. *
  843. * It is pleasant to note, that state diagram turns out to be commutative,
  844. * so that we are allowed not to be bothered by order of our actions,
  845. * when multiple events arrive simultaneously. (see the function below).
  846. *
  847. * Reordering detection.
  848. * --------------------
  849. * Reordering metric is maximal distance, which a packet can be displaced
  850. * in packet stream. With SACKs we can estimate it:
  851. *
  852. * 1. SACK fills old hole and the corresponding segment was not
  853. * ever retransmitted -> reordering. Alas, we cannot use it
  854. * when segment was retransmitted.
  855. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  856. * for retransmitted and already SACKed segment -> reordering..
  857. * Both of these heuristics are not used in Loss state, when we cannot
  858. * account for retransmits accurately.
  859. *
  860. * SACK block validation.
  861. * ----------------------
  862. *
  863. * SACK block range validation checks that the received SACK block fits to
  864. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  865. * Note that SND.UNA is not included to the range though being valid because
  866. * it means that the receiver is rather inconsistent with itself reporting
  867. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  868. * perfectly valid, however, in light of RFC2018 which explicitly states
  869. * that "SACK block MUST reflect the newest segment. Even if the newest
  870. * segment is going to be discarded ...", not that it looks very clever
  871. * in case of head skb. Due to potentional receiver driven attacks, we
  872. * choose to avoid immediate execution of a walk in write queue due to
  873. * reneging and defer head skb's loss recovery to standard loss recovery
  874. * procedure that will eventually trigger (nothing forbids us doing this).
  875. *
  876. * Implements also blockage to start_seq wrap-around. Problem lies in the
  877. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  878. * there's no guarantee that it will be before snd_nxt (n). The problem
  879. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  880. * wrap (s_w):
  881. *
  882. * <- outs wnd -> <- wrapzone ->
  883. * u e n u_w e_w s n_w
  884. * | | | | | | |
  885. * |<------------+------+----- TCP seqno space --------------+---------->|
  886. * ...-- <2^31 ->| |<--------...
  887. * ...---- >2^31 ------>| |<--------...
  888. *
  889. * Current code wouldn't be vulnerable but it's better still to discard such
  890. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  891. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  892. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  893. * equal to the ideal case (infinite seqno space without wrap caused issues).
  894. *
  895. * With D-SACK the lower bound is extended to cover sequence space below
  896. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  897. * again, D-SACK block must not to go across snd_una (for the same reason as
  898. * for the normal SACK blocks, explained above). But there all simplicity
  899. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  900. * fully below undo_marker they do not affect behavior in anyway and can
  901. * therefore be safely ignored. In rare cases (which are more or less
  902. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  903. * fragmentation and packet reordering past skb's retransmission. To consider
  904. * them correctly, the acceptable range must be extended even more though
  905. * the exact amount is rather hard to quantify. However, tp->max_window can
  906. * be used as an exaggerated estimate.
  907. */
  908. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  909. u32 start_seq, u32 end_seq)
  910. {
  911. /* Too far in future, or reversed (interpretation is ambiguous) */
  912. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  913. return false;
  914. /* Nasty start_seq wrap-around check (see comments above) */
  915. if (!before(start_seq, tp->snd_nxt))
  916. return false;
  917. /* In outstanding window? ...This is valid exit for D-SACKs too.
  918. * start_seq == snd_una is non-sensical (see comments above)
  919. */
  920. if (after(start_seq, tp->snd_una))
  921. return true;
  922. if (!is_dsack || !tp->undo_marker)
  923. return false;
  924. /* ...Then it's D-SACK, and must reside below snd_una completely */
  925. if (after(end_seq, tp->snd_una))
  926. return false;
  927. if (!before(start_seq, tp->undo_marker))
  928. return true;
  929. /* Too old */
  930. if (!after(end_seq, tp->undo_marker))
  931. return false;
  932. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  933. * start_seq < undo_marker and end_seq >= undo_marker.
  934. */
  935. return !before(start_seq, end_seq - tp->max_window);
  936. }
  937. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  938. struct tcp_sack_block_wire *sp, int num_sacks,
  939. u32 prior_snd_una)
  940. {
  941. struct tcp_sock *tp = tcp_sk(sk);
  942. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  943. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  944. bool dup_sack = false;
  945. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  946. dup_sack = true;
  947. tcp_dsack_seen(tp);
  948. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  949. } else if (num_sacks > 1) {
  950. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  951. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  952. if (!after(end_seq_0, end_seq_1) &&
  953. !before(start_seq_0, start_seq_1)) {
  954. dup_sack = true;
  955. tcp_dsack_seen(tp);
  956. NET_INC_STATS(sock_net(sk),
  957. LINUX_MIB_TCPDSACKOFORECV);
  958. }
  959. }
  960. /* D-SACK for already forgotten data... Do dumb counting. */
  961. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  962. !after(end_seq_0, prior_snd_una) &&
  963. after(end_seq_0, tp->undo_marker))
  964. tp->undo_retrans--;
  965. return dup_sack;
  966. }
  967. struct tcp_sacktag_state {
  968. u32 reord;
  969. /* Timestamps for earliest and latest never-retransmitted segment
  970. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  971. * but congestion control should still get an accurate delay signal.
  972. */
  973. u64 first_sackt;
  974. u64 last_sackt;
  975. struct rate_sample *rate;
  976. int flag;
  977. unsigned int mss_now;
  978. };
  979. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  980. * the incoming SACK may not exactly match but we can find smaller MSS
  981. * aligned portion of it that matches. Therefore we might need to fragment
  982. * which may fail and creates some hassle (caller must handle error case
  983. * returns).
  984. *
  985. * FIXME: this could be merged to shift decision code
  986. */
  987. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  988. u32 start_seq, u32 end_seq)
  989. {
  990. int err;
  991. bool in_sack;
  992. unsigned int pkt_len;
  993. unsigned int mss;
  994. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  995. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  996. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  997. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  998. mss = tcp_skb_mss(skb);
  999. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1000. if (!in_sack) {
  1001. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1002. if (pkt_len < mss)
  1003. pkt_len = mss;
  1004. } else {
  1005. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1006. if (pkt_len < mss)
  1007. return -EINVAL;
  1008. }
  1009. /* Round if necessary so that SACKs cover only full MSSes
  1010. * and/or the remaining small portion (if present)
  1011. */
  1012. if (pkt_len > mss) {
  1013. unsigned int new_len = (pkt_len / mss) * mss;
  1014. if (!in_sack && new_len < pkt_len)
  1015. new_len += mss;
  1016. pkt_len = new_len;
  1017. }
  1018. if (pkt_len >= skb->len && !in_sack)
  1019. return 0;
  1020. err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1021. pkt_len, mss, GFP_ATOMIC);
  1022. if (err < 0)
  1023. return err;
  1024. }
  1025. return in_sack;
  1026. }
  1027. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1028. static u8 tcp_sacktag_one(struct sock *sk,
  1029. struct tcp_sacktag_state *state, u8 sacked,
  1030. u32 start_seq, u32 end_seq,
  1031. int dup_sack, int pcount,
  1032. u64 xmit_time)
  1033. {
  1034. struct tcp_sock *tp = tcp_sk(sk);
  1035. /* Account D-SACK for retransmitted packet. */
  1036. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1037. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1038. after(end_seq, tp->undo_marker))
  1039. tp->undo_retrans--;
  1040. if ((sacked & TCPCB_SACKED_ACKED) &&
  1041. before(start_seq, state->reord))
  1042. state->reord = start_seq;
  1043. }
  1044. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1045. if (!after(end_seq, tp->snd_una))
  1046. return sacked;
  1047. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1048. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1049. if (sacked & TCPCB_SACKED_RETRANS) {
  1050. /* If the segment is not tagged as lost,
  1051. * we do not clear RETRANS, believing
  1052. * that retransmission is still in flight.
  1053. */
  1054. if (sacked & TCPCB_LOST) {
  1055. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1056. tp->lost_out -= pcount;
  1057. tp->retrans_out -= pcount;
  1058. }
  1059. } else {
  1060. if (!(sacked & TCPCB_RETRANS)) {
  1061. /* New sack for not retransmitted frame,
  1062. * which was in hole. It is reordering.
  1063. */
  1064. if (before(start_seq,
  1065. tcp_highest_sack_seq(tp)) &&
  1066. before(start_seq, state->reord))
  1067. state->reord = start_seq;
  1068. if (!after(end_seq, tp->high_seq))
  1069. state->flag |= FLAG_ORIG_SACK_ACKED;
  1070. if (state->first_sackt == 0)
  1071. state->first_sackt = xmit_time;
  1072. state->last_sackt = xmit_time;
  1073. }
  1074. if (sacked & TCPCB_LOST) {
  1075. sacked &= ~TCPCB_LOST;
  1076. tp->lost_out -= pcount;
  1077. }
  1078. }
  1079. sacked |= TCPCB_SACKED_ACKED;
  1080. state->flag |= FLAG_DATA_SACKED;
  1081. tp->sacked_out += pcount;
  1082. tp->delivered += pcount; /* Out-of-order packets delivered */
  1083. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1084. if (tp->lost_skb_hint &&
  1085. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1086. tp->lost_cnt_hint += pcount;
  1087. }
  1088. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1089. * frames and clear it. undo_retrans is decreased above, L|R frames
  1090. * are accounted above as well.
  1091. */
  1092. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1093. sacked &= ~TCPCB_SACKED_RETRANS;
  1094. tp->retrans_out -= pcount;
  1095. }
  1096. return sacked;
  1097. }
  1098. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1099. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1100. */
  1101. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
  1102. struct sk_buff *skb,
  1103. struct tcp_sacktag_state *state,
  1104. unsigned int pcount, int shifted, int mss,
  1105. bool dup_sack)
  1106. {
  1107. struct tcp_sock *tp = tcp_sk(sk);
  1108. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1109. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1110. BUG_ON(!pcount);
  1111. /* Adjust counters and hints for the newly sacked sequence
  1112. * range but discard the return value since prev is already
  1113. * marked. We must tag the range first because the seq
  1114. * advancement below implicitly advances
  1115. * tcp_highest_sack_seq() when skb is highest_sack.
  1116. */
  1117. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1118. start_seq, end_seq, dup_sack, pcount,
  1119. skb->skb_mstamp);
  1120. tcp_rate_skb_delivered(sk, skb, state->rate);
  1121. if (skb == tp->lost_skb_hint)
  1122. tp->lost_cnt_hint += pcount;
  1123. TCP_SKB_CB(prev)->end_seq += shifted;
  1124. TCP_SKB_CB(skb)->seq += shifted;
  1125. tcp_skb_pcount_add(prev, pcount);
  1126. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1127. tcp_skb_pcount_add(skb, -pcount);
  1128. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1129. * in theory this shouldn't be necessary but as long as DSACK
  1130. * code can come after this skb later on it's better to keep
  1131. * setting gso_size to something.
  1132. */
  1133. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1134. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1135. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1136. if (tcp_skb_pcount(skb) <= 1)
  1137. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1138. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1139. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1140. if (skb->len > 0) {
  1141. BUG_ON(!tcp_skb_pcount(skb));
  1142. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1143. return false;
  1144. }
  1145. /* Whole SKB was eaten :-) */
  1146. if (skb == tp->retransmit_skb_hint)
  1147. tp->retransmit_skb_hint = prev;
  1148. if (skb == tp->lost_skb_hint) {
  1149. tp->lost_skb_hint = prev;
  1150. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1151. }
  1152. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1153. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1154. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1155. TCP_SKB_CB(prev)->end_seq++;
  1156. if (skb == tcp_highest_sack(sk))
  1157. tcp_advance_highest_sack(sk, skb);
  1158. tcp_skb_collapse_tstamp(prev, skb);
  1159. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1160. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1161. tcp_rtx_queue_unlink_and_free(skb, sk);
  1162. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1163. return true;
  1164. }
  1165. /* I wish gso_size would have a bit more sane initialization than
  1166. * something-or-zero which complicates things
  1167. */
  1168. static int tcp_skb_seglen(const struct sk_buff *skb)
  1169. {
  1170. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1171. }
  1172. /* Shifting pages past head area doesn't work */
  1173. static int skb_can_shift(const struct sk_buff *skb)
  1174. {
  1175. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1176. }
  1177. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1178. * skb.
  1179. */
  1180. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1181. struct tcp_sacktag_state *state,
  1182. u32 start_seq, u32 end_seq,
  1183. bool dup_sack)
  1184. {
  1185. struct tcp_sock *tp = tcp_sk(sk);
  1186. struct sk_buff *prev;
  1187. int mss;
  1188. int pcount = 0;
  1189. int len;
  1190. int in_sack;
  1191. if (!sk_can_gso(sk))
  1192. goto fallback;
  1193. /* Normally R but no L won't result in plain S */
  1194. if (!dup_sack &&
  1195. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1196. goto fallback;
  1197. if (!skb_can_shift(skb))
  1198. goto fallback;
  1199. /* This frame is about to be dropped (was ACKed). */
  1200. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1201. goto fallback;
  1202. /* Can only happen with delayed DSACK + discard craziness */
  1203. prev = skb_rb_prev(skb);
  1204. if (!prev)
  1205. goto fallback;
  1206. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1207. goto fallback;
  1208. if (!tcp_skb_can_collapse_to(prev))
  1209. goto fallback;
  1210. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1211. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1212. if (in_sack) {
  1213. len = skb->len;
  1214. pcount = tcp_skb_pcount(skb);
  1215. mss = tcp_skb_seglen(skb);
  1216. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1217. * drop this restriction as unnecessary
  1218. */
  1219. if (mss != tcp_skb_seglen(prev))
  1220. goto fallback;
  1221. } else {
  1222. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1223. goto noop;
  1224. /* CHECKME: This is non-MSS split case only?, this will
  1225. * cause skipped skbs due to advancing loop btw, original
  1226. * has that feature too
  1227. */
  1228. if (tcp_skb_pcount(skb) <= 1)
  1229. goto noop;
  1230. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1231. if (!in_sack) {
  1232. /* TODO: head merge to next could be attempted here
  1233. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1234. * though it might not be worth of the additional hassle
  1235. *
  1236. * ...we can probably just fallback to what was done
  1237. * previously. We could try merging non-SACKed ones
  1238. * as well but it probably isn't going to buy off
  1239. * because later SACKs might again split them, and
  1240. * it would make skb timestamp tracking considerably
  1241. * harder problem.
  1242. */
  1243. goto fallback;
  1244. }
  1245. len = end_seq - TCP_SKB_CB(skb)->seq;
  1246. BUG_ON(len < 0);
  1247. BUG_ON(len > skb->len);
  1248. /* MSS boundaries should be honoured or else pcount will
  1249. * severely break even though it makes things bit trickier.
  1250. * Optimize common case to avoid most of the divides
  1251. */
  1252. mss = tcp_skb_mss(skb);
  1253. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1254. * drop this restriction as unnecessary
  1255. */
  1256. if (mss != tcp_skb_seglen(prev))
  1257. goto fallback;
  1258. if (len == mss) {
  1259. pcount = 1;
  1260. } else if (len < mss) {
  1261. goto noop;
  1262. } else {
  1263. pcount = len / mss;
  1264. len = pcount * mss;
  1265. }
  1266. }
  1267. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1268. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1269. goto fallback;
  1270. if (!skb_shift(prev, skb, len))
  1271. goto fallback;
  1272. if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
  1273. goto out;
  1274. /* Hole filled allows collapsing with the next as well, this is very
  1275. * useful when hole on every nth skb pattern happens
  1276. */
  1277. skb = skb_rb_next(prev);
  1278. if (!skb)
  1279. goto out;
  1280. if (!skb_can_shift(skb) ||
  1281. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1282. (mss != tcp_skb_seglen(skb)))
  1283. goto out;
  1284. len = skb->len;
  1285. if (skb_shift(prev, skb, len)) {
  1286. pcount += tcp_skb_pcount(skb);
  1287. tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
  1288. len, mss, 0);
  1289. }
  1290. out:
  1291. return prev;
  1292. noop:
  1293. return skb;
  1294. fallback:
  1295. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1296. return NULL;
  1297. }
  1298. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1299. struct tcp_sack_block *next_dup,
  1300. struct tcp_sacktag_state *state,
  1301. u32 start_seq, u32 end_seq,
  1302. bool dup_sack_in)
  1303. {
  1304. struct tcp_sock *tp = tcp_sk(sk);
  1305. struct sk_buff *tmp;
  1306. skb_rbtree_walk_from(skb) {
  1307. int in_sack = 0;
  1308. bool dup_sack = dup_sack_in;
  1309. /* queue is in-order => we can short-circuit the walk early */
  1310. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1311. break;
  1312. if (next_dup &&
  1313. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1314. in_sack = tcp_match_skb_to_sack(sk, skb,
  1315. next_dup->start_seq,
  1316. next_dup->end_seq);
  1317. if (in_sack > 0)
  1318. dup_sack = true;
  1319. }
  1320. /* skb reference here is a bit tricky to get right, since
  1321. * shifting can eat and free both this skb and the next,
  1322. * so not even _safe variant of the loop is enough.
  1323. */
  1324. if (in_sack <= 0) {
  1325. tmp = tcp_shift_skb_data(sk, skb, state,
  1326. start_seq, end_seq, dup_sack);
  1327. if (tmp) {
  1328. if (tmp != skb) {
  1329. skb = tmp;
  1330. continue;
  1331. }
  1332. in_sack = 0;
  1333. } else {
  1334. in_sack = tcp_match_skb_to_sack(sk, skb,
  1335. start_seq,
  1336. end_seq);
  1337. }
  1338. }
  1339. if (unlikely(in_sack < 0))
  1340. break;
  1341. if (in_sack) {
  1342. TCP_SKB_CB(skb)->sacked =
  1343. tcp_sacktag_one(sk,
  1344. state,
  1345. TCP_SKB_CB(skb)->sacked,
  1346. TCP_SKB_CB(skb)->seq,
  1347. TCP_SKB_CB(skb)->end_seq,
  1348. dup_sack,
  1349. tcp_skb_pcount(skb),
  1350. skb->skb_mstamp);
  1351. tcp_rate_skb_delivered(sk, skb, state->rate);
  1352. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1353. list_del_init(&skb->tcp_tsorted_anchor);
  1354. if (!before(TCP_SKB_CB(skb)->seq,
  1355. tcp_highest_sack_seq(tp)))
  1356. tcp_advance_highest_sack(sk, skb);
  1357. }
  1358. }
  1359. return skb;
  1360. }
  1361. static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
  1362. struct tcp_sacktag_state *state,
  1363. u32 seq)
  1364. {
  1365. struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
  1366. struct sk_buff *skb;
  1367. while (*p) {
  1368. parent = *p;
  1369. skb = rb_to_skb(parent);
  1370. if (before(seq, TCP_SKB_CB(skb)->seq)) {
  1371. p = &parent->rb_left;
  1372. continue;
  1373. }
  1374. if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
  1375. p = &parent->rb_right;
  1376. continue;
  1377. }
  1378. return skb;
  1379. }
  1380. return NULL;
  1381. }
  1382. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1383. struct tcp_sacktag_state *state,
  1384. u32 skip_to_seq)
  1385. {
  1386. if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
  1387. return skb;
  1388. return tcp_sacktag_bsearch(sk, state, skip_to_seq);
  1389. }
  1390. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1391. struct sock *sk,
  1392. struct tcp_sack_block *next_dup,
  1393. struct tcp_sacktag_state *state,
  1394. u32 skip_to_seq)
  1395. {
  1396. if (!next_dup)
  1397. return skb;
  1398. if (before(next_dup->start_seq, skip_to_seq)) {
  1399. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1400. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1401. next_dup->start_seq, next_dup->end_seq,
  1402. 1);
  1403. }
  1404. return skb;
  1405. }
  1406. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1407. {
  1408. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1409. }
  1410. static int
  1411. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1412. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1413. {
  1414. struct tcp_sock *tp = tcp_sk(sk);
  1415. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1416. TCP_SKB_CB(ack_skb)->sacked);
  1417. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1418. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1419. struct tcp_sack_block *cache;
  1420. struct sk_buff *skb;
  1421. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1422. int used_sacks;
  1423. bool found_dup_sack = false;
  1424. int i, j;
  1425. int first_sack_index;
  1426. state->flag = 0;
  1427. state->reord = tp->snd_nxt;
  1428. if (!tp->sacked_out)
  1429. tcp_highest_sack_reset(sk);
  1430. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1431. num_sacks, prior_snd_una);
  1432. if (found_dup_sack) {
  1433. state->flag |= FLAG_DSACKING_ACK;
  1434. tp->delivered++; /* A spurious retransmission is delivered */
  1435. }
  1436. /* Eliminate too old ACKs, but take into
  1437. * account more or less fresh ones, they can
  1438. * contain valid SACK info.
  1439. */
  1440. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1441. return 0;
  1442. if (!tp->packets_out)
  1443. goto out;
  1444. used_sacks = 0;
  1445. first_sack_index = 0;
  1446. for (i = 0; i < num_sacks; i++) {
  1447. bool dup_sack = !i && found_dup_sack;
  1448. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1449. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1450. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1451. sp[used_sacks].start_seq,
  1452. sp[used_sacks].end_seq)) {
  1453. int mib_idx;
  1454. if (dup_sack) {
  1455. if (!tp->undo_marker)
  1456. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1457. else
  1458. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1459. } else {
  1460. /* Don't count olds caused by ACK reordering */
  1461. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1462. !after(sp[used_sacks].end_seq, tp->snd_una))
  1463. continue;
  1464. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1465. }
  1466. NET_INC_STATS(sock_net(sk), mib_idx);
  1467. if (i == 0)
  1468. first_sack_index = -1;
  1469. continue;
  1470. }
  1471. /* Ignore very old stuff early */
  1472. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1473. continue;
  1474. used_sacks++;
  1475. }
  1476. /* order SACK blocks to allow in order walk of the retrans queue */
  1477. for (i = used_sacks - 1; i > 0; i--) {
  1478. for (j = 0; j < i; j++) {
  1479. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1480. swap(sp[j], sp[j + 1]);
  1481. /* Track where the first SACK block goes to */
  1482. if (j == first_sack_index)
  1483. first_sack_index = j + 1;
  1484. }
  1485. }
  1486. }
  1487. state->mss_now = tcp_current_mss(sk);
  1488. skb = NULL;
  1489. i = 0;
  1490. if (!tp->sacked_out) {
  1491. /* It's already past, so skip checking against it */
  1492. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1493. } else {
  1494. cache = tp->recv_sack_cache;
  1495. /* Skip empty blocks in at head of the cache */
  1496. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1497. !cache->end_seq)
  1498. cache++;
  1499. }
  1500. while (i < used_sacks) {
  1501. u32 start_seq = sp[i].start_seq;
  1502. u32 end_seq = sp[i].end_seq;
  1503. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1504. struct tcp_sack_block *next_dup = NULL;
  1505. if (found_dup_sack && ((i + 1) == first_sack_index))
  1506. next_dup = &sp[i + 1];
  1507. /* Skip too early cached blocks */
  1508. while (tcp_sack_cache_ok(tp, cache) &&
  1509. !before(start_seq, cache->end_seq))
  1510. cache++;
  1511. /* Can skip some work by looking recv_sack_cache? */
  1512. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1513. after(end_seq, cache->start_seq)) {
  1514. /* Head todo? */
  1515. if (before(start_seq, cache->start_seq)) {
  1516. skb = tcp_sacktag_skip(skb, sk, state,
  1517. start_seq);
  1518. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1519. state,
  1520. start_seq,
  1521. cache->start_seq,
  1522. dup_sack);
  1523. }
  1524. /* Rest of the block already fully processed? */
  1525. if (!after(end_seq, cache->end_seq))
  1526. goto advance_sp;
  1527. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1528. state,
  1529. cache->end_seq);
  1530. /* ...tail remains todo... */
  1531. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1532. /* ...but better entrypoint exists! */
  1533. skb = tcp_highest_sack(sk);
  1534. if (!skb)
  1535. break;
  1536. cache++;
  1537. goto walk;
  1538. }
  1539. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1540. /* Check overlap against next cached too (past this one already) */
  1541. cache++;
  1542. continue;
  1543. }
  1544. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1545. skb = tcp_highest_sack(sk);
  1546. if (!skb)
  1547. break;
  1548. }
  1549. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1550. walk:
  1551. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1552. start_seq, end_seq, dup_sack);
  1553. advance_sp:
  1554. i++;
  1555. }
  1556. /* Clear the head of the cache sack blocks so we can skip it next time */
  1557. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1558. tp->recv_sack_cache[i].start_seq = 0;
  1559. tp->recv_sack_cache[i].end_seq = 0;
  1560. }
  1561. for (j = 0; j < used_sacks; j++)
  1562. tp->recv_sack_cache[i++] = sp[j];
  1563. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
  1564. tcp_check_sack_reordering(sk, state->reord, 0);
  1565. tcp_verify_left_out(tp);
  1566. out:
  1567. #if FASTRETRANS_DEBUG > 0
  1568. WARN_ON((int)tp->sacked_out < 0);
  1569. WARN_ON((int)tp->lost_out < 0);
  1570. WARN_ON((int)tp->retrans_out < 0);
  1571. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1572. #endif
  1573. return state->flag;
  1574. }
  1575. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1576. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1577. */
  1578. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1579. {
  1580. u32 holes;
  1581. holes = max(tp->lost_out, 1U);
  1582. holes = min(holes, tp->packets_out);
  1583. if ((tp->sacked_out + holes) > tp->packets_out) {
  1584. tp->sacked_out = tp->packets_out - holes;
  1585. return true;
  1586. }
  1587. return false;
  1588. }
  1589. /* If we receive more dupacks than we expected counting segments
  1590. * in assumption of absent reordering, interpret this as reordering.
  1591. * The only another reason could be bug in receiver TCP.
  1592. */
  1593. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1594. {
  1595. struct tcp_sock *tp = tcp_sk(sk);
  1596. if (!tcp_limit_reno_sacked(tp))
  1597. return;
  1598. tp->reordering = min_t(u32, tp->packets_out + addend,
  1599. sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
  1600. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
  1601. }
  1602. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1603. static void tcp_add_reno_sack(struct sock *sk)
  1604. {
  1605. struct tcp_sock *tp = tcp_sk(sk);
  1606. u32 prior_sacked = tp->sacked_out;
  1607. tp->sacked_out++;
  1608. tcp_check_reno_reordering(sk, 0);
  1609. if (tp->sacked_out > prior_sacked)
  1610. tp->delivered++; /* Some out-of-order packet is delivered */
  1611. tcp_verify_left_out(tp);
  1612. }
  1613. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1614. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1615. {
  1616. struct tcp_sock *tp = tcp_sk(sk);
  1617. if (acked > 0) {
  1618. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1619. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1620. if (acked - 1 >= tp->sacked_out)
  1621. tp->sacked_out = 0;
  1622. else
  1623. tp->sacked_out -= acked - 1;
  1624. }
  1625. tcp_check_reno_reordering(sk, acked);
  1626. tcp_verify_left_out(tp);
  1627. }
  1628. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1629. {
  1630. tp->sacked_out = 0;
  1631. }
  1632. void tcp_clear_retrans(struct tcp_sock *tp)
  1633. {
  1634. tp->retrans_out = 0;
  1635. tp->lost_out = 0;
  1636. tp->undo_marker = 0;
  1637. tp->undo_retrans = -1;
  1638. tp->sacked_out = 0;
  1639. }
  1640. static inline void tcp_init_undo(struct tcp_sock *tp)
  1641. {
  1642. tp->undo_marker = tp->snd_una;
  1643. /* Retransmission still in flight may cause DSACKs later. */
  1644. tp->undo_retrans = tp->retrans_out ? : -1;
  1645. }
  1646. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1647. * and reset tags completely, otherwise preserve SACKs. If receiver
  1648. * dropped its ofo queue, we will know this due to reneging detection.
  1649. */
  1650. void tcp_enter_loss(struct sock *sk)
  1651. {
  1652. const struct inet_connection_sock *icsk = inet_csk(sk);
  1653. struct tcp_sock *tp = tcp_sk(sk);
  1654. struct net *net = sock_net(sk);
  1655. struct sk_buff *skb;
  1656. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1657. bool is_reneg; /* is receiver reneging on SACKs? */
  1658. bool mark_lost;
  1659. /* Reduce ssthresh if it has not yet been made inside this window. */
  1660. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1661. !after(tp->high_seq, tp->snd_una) ||
  1662. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1663. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1664. tp->prior_cwnd = tp->snd_cwnd;
  1665. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1666. tcp_ca_event(sk, CA_EVENT_LOSS);
  1667. tcp_init_undo(tp);
  1668. }
  1669. tp->snd_cwnd = 1;
  1670. tp->snd_cwnd_cnt = 0;
  1671. tp->snd_cwnd_stamp = tcp_jiffies32;
  1672. tp->retrans_out = 0;
  1673. tp->lost_out = 0;
  1674. if (tcp_is_reno(tp))
  1675. tcp_reset_reno_sack(tp);
  1676. skb = tcp_rtx_queue_head(sk);
  1677. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1678. if (is_reneg) {
  1679. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1680. tp->sacked_out = 0;
  1681. }
  1682. tcp_clear_all_retrans_hints(tp);
  1683. skb_rbtree_walk_from(skb) {
  1684. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1685. is_reneg);
  1686. if (mark_lost)
  1687. tcp_sum_lost(tp, skb);
  1688. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1689. if (mark_lost) {
  1690. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1691. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1692. tp->lost_out += tcp_skb_pcount(skb);
  1693. }
  1694. }
  1695. tcp_verify_left_out(tp);
  1696. /* Timeout in disordered state after receiving substantial DUPACKs
  1697. * suggests that the degree of reordering is over-estimated.
  1698. */
  1699. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1700. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1701. tp->reordering = min_t(unsigned int, tp->reordering,
  1702. net->ipv4.sysctl_tcp_reordering);
  1703. tcp_set_ca_state(sk, TCP_CA_Loss);
  1704. tp->high_seq = tp->snd_nxt;
  1705. tcp_ecn_queue_cwr(tp);
  1706. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1707. * loss recovery is underway except recurring timeout(s) on
  1708. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1709. *
  1710. * In theory F-RTO can be used repeatedly during loss recovery.
  1711. * In practice this interacts badly with broken middle-boxes that
  1712. * falsely raise the receive window, which results in repeated
  1713. * timeouts and stop-and-go behavior.
  1714. */
  1715. tp->frto = net->ipv4.sysctl_tcp_frto &&
  1716. (new_recovery || icsk->icsk_retransmits) &&
  1717. !inet_csk(sk)->icsk_mtup.probe_size;
  1718. }
  1719. /* If ACK arrived pointing to a remembered SACK, it means that our
  1720. * remembered SACKs do not reflect real state of receiver i.e.
  1721. * receiver _host_ is heavily congested (or buggy).
  1722. *
  1723. * To avoid big spurious retransmission bursts due to transient SACK
  1724. * scoreboard oddities that look like reneging, we give the receiver a
  1725. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1726. * restore sanity to the SACK scoreboard. If the apparent reneging
  1727. * persists until this RTO then we'll clear the SACK scoreboard.
  1728. */
  1729. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1730. {
  1731. if (flag & FLAG_SACK_RENEGING) {
  1732. struct tcp_sock *tp = tcp_sk(sk);
  1733. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1734. msecs_to_jiffies(10));
  1735. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1736. delay, TCP_RTO_MAX);
  1737. return true;
  1738. }
  1739. return false;
  1740. }
  1741. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1742. * counter when SACK is enabled (without SACK, sacked_out is used for
  1743. * that purpose).
  1744. *
  1745. * With reordering, holes may still be in flight, so RFC3517 recovery
  1746. * uses pure sacked_out (total number of SACKed segments) even though
  1747. * it violates the RFC that uses duplicate ACKs, often these are equal
  1748. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1749. * they differ. Since neither occurs due to loss, TCP should really
  1750. * ignore them.
  1751. */
  1752. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1753. {
  1754. return tp->sacked_out + 1;
  1755. }
  1756. /* Linux NewReno/SACK/ECN state machine.
  1757. * --------------------------------------
  1758. *
  1759. * "Open" Normal state, no dubious events, fast path.
  1760. * "Disorder" In all the respects it is "Open",
  1761. * but requires a bit more attention. It is entered when
  1762. * we see some SACKs or dupacks. It is split of "Open"
  1763. * mainly to move some processing from fast path to slow one.
  1764. * "CWR" CWND was reduced due to some Congestion Notification event.
  1765. * It can be ECN, ICMP source quench, local device congestion.
  1766. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1767. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1768. *
  1769. * tcp_fastretrans_alert() is entered:
  1770. * - each incoming ACK, if state is not "Open"
  1771. * - when arrived ACK is unusual, namely:
  1772. * * SACK
  1773. * * Duplicate ACK.
  1774. * * ECN ECE.
  1775. *
  1776. * Counting packets in flight is pretty simple.
  1777. *
  1778. * in_flight = packets_out - left_out + retrans_out
  1779. *
  1780. * packets_out is SND.NXT-SND.UNA counted in packets.
  1781. *
  1782. * retrans_out is number of retransmitted segments.
  1783. *
  1784. * left_out is number of segments left network, but not ACKed yet.
  1785. *
  1786. * left_out = sacked_out + lost_out
  1787. *
  1788. * sacked_out: Packets, which arrived to receiver out of order
  1789. * and hence not ACKed. With SACKs this number is simply
  1790. * amount of SACKed data. Even without SACKs
  1791. * it is easy to give pretty reliable estimate of this number,
  1792. * counting duplicate ACKs.
  1793. *
  1794. * lost_out: Packets lost by network. TCP has no explicit
  1795. * "loss notification" feedback from network (for now).
  1796. * It means that this number can be only _guessed_.
  1797. * Actually, it is the heuristics to predict lossage that
  1798. * distinguishes different algorithms.
  1799. *
  1800. * F.e. after RTO, when all the queue is considered as lost,
  1801. * lost_out = packets_out and in_flight = retrans_out.
  1802. *
  1803. * Essentially, we have now a few algorithms detecting
  1804. * lost packets.
  1805. *
  1806. * If the receiver supports SACK:
  1807. *
  1808. * RFC6675/3517: It is the conventional algorithm. A packet is
  1809. * considered lost if the number of higher sequence packets
  1810. * SACKed is greater than or equal the DUPACK thoreshold
  1811. * (reordering). This is implemented in tcp_mark_head_lost and
  1812. * tcp_update_scoreboard.
  1813. *
  1814. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1815. * (2017-) that checks timing instead of counting DUPACKs.
  1816. * Essentially a packet is considered lost if it's not S/ACKed
  1817. * after RTT + reordering_window, where both metrics are
  1818. * dynamically measured and adjusted. This is implemented in
  1819. * tcp_rack_mark_lost.
  1820. *
  1821. * If the receiver does not support SACK:
  1822. *
  1823. * NewReno (RFC6582): in Recovery we assume that one segment
  1824. * is lost (classic Reno). While we are in Recovery and
  1825. * a partial ACK arrives, we assume that one more packet
  1826. * is lost (NewReno). This heuristics are the same in NewReno
  1827. * and SACK.
  1828. *
  1829. * Really tricky (and requiring careful tuning) part of algorithm
  1830. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1831. * The first determines the moment _when_ we should reduce CWND and,
  1832. * hence, slow down forward transmission. In fact, it determines the moment
  1833. * when we decide that hole is caused by loss, rather than by a reorder.
  1834. *
  1835. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1836. * holes, caused by lost packets.
  1837. *
  1838. * And the most logically complicated part of algorithm is undo
  1839. * heuristics. We detect false retransmits due to both too early
  1840. * fast retransmit (reordering) and underestimated RTO, analyzing
  1841. * timestamps and D-SACKs. When we detect that some segments were
  1842. * retransmitted by mistake and CWND reduction was wrong, we undo
  1843. * window reduction and abort recovery phase. This logic is hidden
  1844. * inside several functions named tcp_try_undo_<something>.
  1845. */
  1846. /* This function decides, when we should leave Disordered state
  1847. * and enter Recovery phase, reducing congestion window.
  1848. *
  1849. * Main question: may we further continue forward transmission
  1850. * with the same cwnd?
  1851. */
  1852. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1853. {
  1854. struct tcp_sock *tp = tcp_sk(sk);
  1855. /* Trick#1: The loss is proven. */
  1856. if (tp->lost_out)
  1857. return true;
  1858. /* Not-A-Trick#2 : Classic rule... */
  1859. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1860. return true;
  1861. return false;
  1862. }
  1863. /* Detect loss in event "A" above by marking head of queue up as lost.
  1864. * For non-SACK(Reno) senders, the first "packets" number of segments
  1865. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1866. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1867. * the maximum SACKed segments to pass before reaching this limit.
  1868. */
  1869. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1870. {
  1871. struct tcp_sock *tp = tcp_sk(sk);
  1872. struct sk_buff *skb;
  1873. int cnt, oldcnt, lost;
  1874. unsigned int mss;
  1875. /* Use SACK to deduce losses of new sequences sent during recovery */
  1876. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1877. WARN_ON(packets > tp->packets_out);
  1878. skb = tp->lost_skb_hint;
  1879. if (skb) {
  1880. /* Head already handled? */
  1881. if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
  1882. return;
  1883. cnt = tp->lost_cnt_hint;
  1884. } else {
  1885. skb = tcp_rtx_queue_head(sk);
  1886. cnt = 0;
  1887. }
  1888. skb_rbtree_walk_from(skb) {
  1889. /* TODO: do this better */
  1890. /* this is not the most efficient way to do this... */
  1891. tp->lost_skb_hint = skb;
  1892. tp->lost_cnt_hint = cnt;
  1893. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1894. break;
  1895. oldcnt = cnt;
  1896. if (tcp_is_reno(tp) ||
  1897. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1898. cnt += tcp_skb_pcount(skb);
  1899. if (cnt > packets) {
  1900. if (tcp_is_sack(tp) ||
  1901. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1902. (oldcnt >= packets))
  1903. break;
  1904. mss = tcp_skb_mss(skb);
  1905. /* If needed, chop off the prefix to mark as lost. */
  1906. lost = (packets - oldcnt) * mss;
  1907. if (lost < skb->len &&
  1908. tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1909. lost, mss, GFP_ATOMIC) < 0)
  1910. break;
  1911. cnt = packets;
  1912. }
  1913. tcp_skb_mark_lost(tp, skb);
  1914. if (mark_head)
  1915. break;
  1916. }
  1917. tcp_verify_left_out(tp);
  1918. }
  1919. /* Account newly detected lost packet(s) */
  1920. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1921. {
  1922. struct tcp_sock *tp = tcp_sk(sk);
  1923. if (tcp_is_reno(tp)) {
  1924. tcp_mark_head_lost(sk, 1, 1);
  1925. } else {
  1926. int sacked_upto = tp->sacked_out - tp->reordering;
  1927. if (sacked_upto >= 0)
  1928. tcp_mark_head_lost(sk, sacked_upto, 0);
  1929. else if (fast_rexmit)
  1930. tcp_mark_head_lost(sk, 1, 1);
  1931. }
  1932. }
  1933. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1934. {
  1935. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1936. before(tp->rx_opt.rcv_tsecr, when);
  1937. }
  1938. /* skb is spurious retransmitted if the returned timestamp echo
  1939. * reply is prior to the skb transmission time
  1940. */
  1941. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1942. const struct sk_buff *skb)
  1943. {
  1944. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1945. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1946. }
  1947. /* Nothing was retransmitted or returned timestamp is less
  1948. * than timestamp of the first retransmission.
  1949. */
  1950. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1951. {
  1952. return !tp->retrans_stamp ||
  1953. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  1954. }
  1955. /* Undo procedures. */
  1956. /* We can clear retrans_stamp when there are no retransmissions in the
  1957. * window. It would seem that it is trivially available for us in
  1958. * tp->retrans_out, however, that kind of assumptions doesn't consider
  1959. * what will happen if errors occur when sending retransmission for the
  1960. * second time. ...It could the that such segment has only
  1961. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  1962. * the head skb is enough except for some reneging corner cases that
  1963. * are not worth the effort.
  1964. *
  1965. * Main reason for all this complexity is the fact that connection dying
  1966. * time now depends on the validity of the retrans_stamp, in particular,
  1967. * that successive retransmissions of a segment must not advance
  1968. * retrans_stamp under any conditions.
  1969. */
  1970. static bool tcp_any_retrans_done(const struct sock *sk)
  1971. {
  1972. const struct tcp_sock *tp = tcp_sk(sk);
  1973. struct sk_buff *skb;
  1974. if (tp->retrans_out)
  1975. return true;
  1976. skb = tcp_rtx_queue_head(sk);
  1977. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  1978. return true;
  1979. return false;
  1980. }
  1981. static void DBGUNDO(struct sock *sk, const char *msg)
  1982. {
  1983. #if FASTRETRANS_DEBUG > 1
  1984. struct tcp_sock *tp = tcp_sk(sk);
  1985. struct inet_sock *inet = inet_sk(sk);
  1986. if (sk->sk_family == AF_INET) {
  1987. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  1988. msg,
  1989. &inet->inet_daddr, ntohs(inet->inet_dport),
  1990. tp->snd_cwnd, tcp_left_out(tp),
  1991. tp->snd_ssthresh, tp->prior_ssthresh,
  1992. tp->packets_out);
  1993. }
  1994. #if IS_ENABLED(CONFIG_IPV6)
  1995. else if (sk->sk_family == AF_INET6) {
  1996. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  1997. msg,
  1998. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  1999. tp->snd_cwnd, tcp_left_out(tp),
  2000. tp->snd_ssthresh, tp->prior_ssthresh,
  2001. tp->packets_out);
  2002. }
  2003. #endif
  2004. #endif
  2005. }
  2006. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2007. {
  2008. struct tcp_sock *tp = tcp_sk(sk);
  2009. if (unmark_loss) {
  2010. struct sk_buff *skb;
  2011. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2012. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2013. }
  2014. tp->lost_out = 0;
  2015. tcp_clear_all_retrans_hints(tp);
  2016. }
  2017. if (tp->prior_ssthresh) {
  2018. const struct inet_connection_sock *icsk = inet_csk(sk);
  2019. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2020. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2021. tp->snd_ssthresh = tp->prior_ssthresh;
  2022. tcp_ecn_withdraw_cwr(tp);
  2023. }
  2024. }
  2025. tp->snd_cwnd_stamp = tcp_jiffies32;
  2026. tp->undo_marker = 0;
  2027. }
  2028. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2029. {
  2030. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2031. }
  2032. /* People celebrate: "We love our President!" */
  2033. static bool tcp_try_undo_recovery(struct sock *sk)
  2034. {
  2035. struct tcp_sock *tp = tcp_sk(sk);
  2036. if (tcp_may_undo(tp)) {
  2037. int mib_idx;
  2038. /* Happy end! We did not retransmit anything
  2039. * or our original transmission succeeded.
  2040. */
  2041. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2042. tcp_undo_cwnd_reduction(sk, false);
  2043. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2044. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2045. else
  2046. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2047. NET_INC_STATS(sock_net(sk), mib_idx);
  2048. } else if (tp->rack.reo_wnd_persist) {
  2049. tp->rack.reo_wnd_persist--;
  2050. }
  2051. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2052. /* Hold old state until something *above* high_seq
  2053. * is ACKed. For Reno it is MUST to prevent false
  2054. * fast retransmits (RFC2582). SACK TCP is safe. */
  2055. if (!tcp_any_retrans_done(sk))
  2056. tp->retrans_stamp = 0;
  2057. return true;
  2058. }
  2059. tcp_set_ca_state(sk, TCP_CA_Open);
  2060. return false;
  2061. }
  2062. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2063. static bool tcp_try_undo_dsack(struct sock *sk)
  2064. {
  2065. struct tcp_sock *tp = tcp_sk(sk);
  2066. if (tp->undo_marker && !tp->undo_retrans) {
  2067. tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
  2068. tp->rack.reo_wnd_persist + 1);
  2069. DBGUNDO(sk, "D-SACK");
  2070. tcp_undo_cwnd_reduction(sk, false);
  2071. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2072. return true;
  2073. }
  2074. return false;
  2075. }
  2076. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2077. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2078. {
  2079. struct tcp_sock *tp = tcp_sk(sk);
  2080. if (frto_undo || tcp_may_undo(tp)) {
  2081. tcp_undo_cwnd_reduction(sk, true);
  2082. DBGUNDO(sk, "partial loss");
  2083. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2084. if (frto_undo)
  2085. NET_INC_STATS(sock_net(sk),
  2086. LINUX_MIB_TCPSPURIOUSRTOS);
  2087. inet_csk(sk)->icsk_retransmits = 0;
  2088. if (frto_undo || tcp_is_sack(tp))
  2089. tcp_set_ca_state(sk, TCP_CA_Open);
  2090. return true;
  2091. }
  2092. return false;
  2093. }
  2094. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2095. * It computes the number of packets to send (sndcnt) based on packets newly
  2096. * delivered:
  2097. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2098. * cwnd reductions across a full RTT.
  2099. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2100. * But when the retransmits are acked without further losses, PRR
  2101. * slow starts cwnd up to ssthresh to speed up the recovery.
  2102. */
  2103. static void tcp_init_cwnd_reduction(struct sock *sk)
  2104. {
  2105. struct tcp_sock *tp = tcp_sk(sk);
  2106. tp->high_seq = tp->snd_nxt;
  2107. tp->tlp_high_seq = 0;
  2108. tp->snd_cwnd_cnt = 0;
  2109. tp->prior_cwnd = tp->snd_cwnd;
  2110. tp->prr_delivered = 0;
  2111. tp->prr_out = 0;
  2112. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2113. tcp_ecn_queue_cwr(tp);
  2114. }
  2115. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2116. {
  2117. struct tcp_sock *tp = tcp_sk(sk);
  2118. int sndcnt = 0;
  2119. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2120. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2121. return;
  2122. tp->prr_delivered += newly_acked_sacked;
  2123. if (delta < 0) {
  2124. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2125. tp->prior_cwnd - 1;
  2126. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2127. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2128. !(flag & FLAG_LOST_RETRANS)) {
  2129. sndcnt = min_t(int, delta,
  2130. max_t(int, tp->prr_delivered - tp->prr_out,
  2131. newly_acked_sacked) + 1);
  2132. } else {
  2133. sndcnt = min(delta, newly_acked_sacked);
  2134. }
  2135. /* Force a fast retransmit upon entering fast recovery */
  2136. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2137. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2138. }
  2139. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2140. {
  2141. struct tcp_sock *tp = tcp_sk(sk);
  2142. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2143. return;
  2144. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2145. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2146. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2147. tp->snd_cwnd = tp->snd_ssthresh;
  2148. tp->snd_cwnd_stamp = tcp_jiffies32;
  2149. }
  2150. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2151. }
  2152. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2153. void tcp_enter_cwr(struct sock *sk)
  2154. {
  2155. struct tcp_sock *tp = tcp_sk(sk);
  2156. tp->prior_ssthresh = 0;
  2157. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2158. tp->undo_marker = 0;
  2159. tcp_init_cwnd_reduction(sk);
  2160. tcp_set_ca_state(sk, TCP_CA_CWR);
  2161. }
  2162. }
  2163. EXPORT_SYMBOL(tcp_enter_cwr);
  2164. static void tcp_try_keep_open(struct sock *sk)
  2165. {
  2166. struct tcp_sock *tp = tcp_sk(sk);
  2167. int state = TCP_CA_Open;
  2168. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2169. state = TCP_CA_Disorder;
  2170. if (inet_csk(sk)->icsk_ca_state != state) {
  2171. tcp_set_ca_state(sk, state);
  2172. tp->high_seq = tp->snd_nxt;
  2173. }
  2174. }
  2175. static void tcp_try_to_open(struct sock *sk, int flag)
  2176. {
  2177. struct tcp_sock *tp = tcp_sk(sk);
  2178. tcp_verify_left_out(tp);
  2179. if (!tcp_any_retrans_done(sk))
  2180. tp->retrans_stamp = 0;
  2181. if (flag & FLAG_ECE)
  2182. tcp_enter_cwr(sk);
  2183. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2184. tcp_try_keep_open(sk);
  2185. }
  2186. }
  2187. static void tcp_mtup_probe_failed(struct sock *sk)
  2188. {
  2189. struct inet_connection_sock *icsk = inet_csk(sk);
  2190. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2191. icsk->icsk_mtup.probe_size = 0;
  2192. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2193. }
  2194. static void tcp_mtup_probe_success(struct sock *sk)
  2195. {
  2196. struct tcp_sock *tp = tcp_sk(sk);
  2197. struct inet_connection_sock *icsk = inet_csk(sk);
  2198. /* FIXME: breaks with very large cwnd */
  2199. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2200. tp->snd_cwnd = tp->snd_cwnd *
  2201. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2202. icsk->icsk_mtup.probe_size;
  2203. tp->snd_cwnd_cnt = 0;
  2204. tp->snd_cwnd_stamp = tcp_jiffies32;
  2205. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2206. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2207. icsk->icsk_mtup.probe_size = 0;
  2208. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2209. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2210. }
  2211. /* Do a simple retransmit without using the backoff mechanisms in
  2212. * tcp_timer. This is used for path mtu discovery.
  2213. * The socket is already locked here.
  2214. */
  2215. void tcp_simple_retransmit(struct sock *sk)
  2216. {
  2217. const struct inet_connection_sock *icsk = inet_csk(sk);
  2218. struct tcp_sock *tp = tcp_sk(sk);
  2219. struct sk_buff *skb;
  2220. unsigned int mss = tcp_current_mss(sk);
  2221. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2222. if (tcp_skb_seglen(skb) > mss &&
  2223. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2224. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2225. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2226. tp->retrans_out -= tcp_skb_pcount(skb);
  2227. }
  2228. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2229. }
  2230. }
  2231. tcp_clear_retrans_hints_partial(tp);
  2232. if (!tp->lost_out)
  2233. return;
  2234. if (tcp_is_reno(tp))
  2235. tcp_limit_reno_sacked(tp);
  2236. tcp_verify_left_out(tp);
  2237. /* Don't muck with the congestion window here.
  2238. * Reason is that we do not increase amount of _data_
  2239. * in network, but units changed and effective
  2240. * cwnd/ssthresh really reduced now.
  2241. */
  2242. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2243. tp->high_seq = tp->snd_nxt;
  2244. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2245. tp->prior_ssthresh = 0;
  2246. tp->undo_marker = 0;
  2247. tcp_set_ca_state(sk, TCP_CA_Loss);
  2248. }
  2249. tcp_xmit_retransmit_queue(sk);
  2250. }
  2251. EXPORT_SYMBOL(tcp_simple_retransmit);
  2252. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2253. {
  2254. struct tcp_sock *tp = tcp_sk(sk);
  2255. int mib_idx;
  2256. if (tcp_is_reno(tp))
  2257. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2258. else
  2259. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2260. NET_INC_STATS(sock_net(sk), mib_idx);
  2261. tp->prior_ssthresh = 0;
  2262. tcp_init_undo(tp);
  2263. if (!tcp_in_cwnd_reduction(sk)) {
  2264. if (!ece_ack)
  2265. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2266. tcp_init_cwnd_reduction(sk);
  2267. }
  2268. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2269. }
  2270. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2271. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2272. */
  2273. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2274. int *rexmit)
  2275. {
  2276. struct tcp_sock *tp = tcp_sk(sk);
  2277. bool recovered = !before(tp->snd_una, tp->high_seq);
  2278. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2279. tcp_try_undo_loss(sk, false))
  2280. return;
  2281. /* The ACK (s)acks some never-retransmitted data meaning not all
  2282. * the data packets before the timeout were lost. Therefore we
  2283. * undo the congestion window and state. This is essentially
  2284. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2285. * a retransmitted skb is permantly marked, we can apply such an
  2286. * operation even if F-RTO was not used.
  2287. */
  2288. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2289. tcp_try_undo_loss(sk, tp->undo_marker))
  2290. return;
  2291. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2292. if (after(tp->snd_nxt, tp->high_seq)) {
  2293. if (flag & FLAG_DATA_SACKED || is_dupack)
  2294. tp->frto = 0; /* Step 3.a. loss was real */
  2295. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2296. tp->high_seq = tp->snd_nxt;
  2297. /* Step 2.b. Try send new data (but deferred until cwnd
  2298. * is updated in tcp_ack()). Otherwise fall back to
  2299. * the conventional recovery.
  2300. */
  2301. if (!tcp_write_queue_empty(sk) &&
  2302. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2303. *rexmit = REXMIT_NEW;
  2304. return;
  2305. }
  2306. tp->frto = 0;
  2307. }
  2308. }
  2309. if (recovered) {
  2310. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2311. tcp_try_undo_recovery(sk);
  2312. return;
  2313. }
  2314. if (tcp_is_reno(tp)) {
  2315. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2316. * delivered. Lower inflight to clock out (re)tranmissions.
  2317. */
  2318. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2319. tcp_add_reno_sack(sk);
  2320. else if (flag & FLAG_SND_UNA_ADVANCED)
  2321. tcp_reset_reno_sack(tp);
  2322. }
  2323. *rexmit = REXMIT_LOST;
  2324. }
  2325. /* Undo during fast recovery after partial ACK. */
  2326. static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
  2327. {
  2328. struct tcp_sock *tp = tcp_sk(sk);
  2329. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2330. /* Plain luck! Hole if filled with delayed
  2331. * packet, rather than with a retransmit. Check reordering.
  2332. */
  2333. tcp_check_sack_reordering(sk, prior_snd_una, 1);
  2334. /* We are getting evidence that the reordering degree is higher
  2335. * than we realized. If there are no retransmits out then we
  2336. * can undo. Otherwise we clock out new packets but do not
  2337. * mark more packets lost or retransmit more.
  2338. */
  2339. if (tp->retrans_out)
  2340. return true;
  2341. if (!tcp_any_retrans_done(sk))
  2342. tp->retrans_stamp = 0;
  2343. DBGUNDO(sk, "partial recovery");
  2344. tcp_undo_cwnd_reduction(sk, true);
  2345. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2346. tcp_try_keep_open(sk);
  2347. return true;
  2348. }
  2349. return false;
  2350. }
  2351. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2352. {
  2353. struct tcp_sock *tp = tcp_sk(sk);
  2354. /* Use RACK to detect loss */
  2355. if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2356. u32 prior_retrans = tp->retrans_out;
  2357. tcp_rack_mark_lost(sk);
  2358. if (prior_retrans > tp->retrans_out)
  2359. *ack_flag |= FLAG_LOST_RETRANS;
  2360. }
  2361. }
  2362. static bool tcp_force_fast_retransmit(struct sock *sk)
  2363. {
  2364. struct tcp_sock *tp = tcp_sk(sk);
  2365. return after(tcp_highest_sack_seq(tp),
  2366. tp->snd_una + tp->reordering * tp->mss_cache);
  2367. }
  2368. /* Process an event, which can update packets-in-flight not trivially.
  2369. * Main goal of this function is to calculate new estimate for left_out,
  2370. * taking into account both packets sitting in receiver's buffer and
  2371. * packets lost by network.
  2372. *
  2373. * Besides that it updates the congestion state when packet loss or ECN
  2374. * is detected. But it does not reduce the cwnd, it is done by the
  2375. * congestion control later.
  2376. *
  2377. * It does _not_ decide what to send, it is made in function
  2378. * tcp_xmit_retransmit_queue().
  2379. */
  2380. static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
  2381. bool is_dupack, int *ack_flag, int *rexmit)
  2382. {
  2383. struct inet_connection_sock *icsk = inet_csk(sk);
  2384. struct tcp_sock *tp = tcp_sk(sk);
  2385. int fast_rexmit = 0, flag = *ack_flag;
  2386. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2387. tcp_force_fast_retransmit(sk));
  2388. if (!tp->packets_out && tp->sacked_out)
  2389. tp->sacked_out = 0;
  2390. /* Now state machine starts.
  2391. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2392. if (flag & FLAG_ECE)
  2393. tp->prior_ssthresh = 0;
  2394. /* B. In all the states check for reneging SACKs. */
  2395. if (tcp_check_sack_reneging(sk, flag))
  2396. return;
  2397. /* C. Check consistency of the current state. */
  2398. tcp_verify_left_out(tp);
  2399. /* D. Check state exit conditions. State can be terminated
  2400. * when high_seq is ACKed. */
  2401. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2402. WARN_ON(tp->retrans_out != 0);
  2403. tp->retrans_stamp = 0;
  2404. } else if (!before(tp->snd_una, tp->high_seq)) {
  2405. switch (icsk->icsk_ca_state) {
  2406. case TCP_CA_CWR:
  2407. /* CWR is to be held something *above* high_seq
  2408. * is ACKed for CWR bit to reach receiver. */
  2409. if (tp->snd_una != tp->high_seq) {
  2410. tcp_end_cwnd_reduction(sk);
  2411. tcp_set_ca_state(sk, TCP_CA_Open);
  2412. }
  2413. break;
  2414. case TCP_CA_Recovery:
  2415. if (tcp_is_reno(tp))
  2416. tcp_reset_reno_sack(tp);
  2417. if (tcp_try_undo_recovery(sk))
  2418. return;
  2419. tcp_end_cwnd_reduction(sk);
  2420. break;
  2421. }
  2422. }
  2423. /* E. Process state. */
  2424. switch (icsk->icsk_ca_state) {
  2425. case TCP_CA_Recovery:
  2426. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2427. if (tcp_is_reno(tp) && is_dupack)
  2428. tcp_add_reno_sack(sk);
  2429. } else {
  2430. if (tcp_try_undo_partial(sk, prior_snd_una))
  2431. return;
  2432. /* Partial ACK arrived. Force fast retransmit. */
  2433. do_lost = tcp_is_reno(tp) ||
  2434. tcp_force_fast_retransmit(sk);
  2435. }
  2436. if (tcp_try_undo_dsack(sk)) {
  2437. tcp_try_keep_open(sk);
  2438. return;
  2439. }
  2440. tcp_rack_identify_loss(sk, ack_flag);
  2441. break;
  2442. case TCP_CA_Loss:
  2443. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2444. tcp_rack_identify_loss(sk, ack_flag);
  2445. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2446. (*ack_flag & FLAG_LOST_RETRANS)))
  2447. return;
  2448. /* Change state if cwnd is undone or retransmits are lost */
  2449. /* fall through */
  2450. default:
  2451. if (tcp_is_reno(tp)) {
  2452. if (flag & FLAG_SND_UNA_ADVANCED)
  2453. tcp_reset_reno_sack(tp);
  2454. if (is_dupack)
  2455. tcp_add_reno_sack(sk);
  2456. }
  2457. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2458. tcp_try_undo_dsack(sk);
  2459. tcp_rack_identify_loss(sk, ack_flag);
  2460. if (!tcp_time_to_recover(sk, flag)) {
  2461. tcp_try_to_open(sk, flag);
  2462. return;
  2463. }
  2464. /* MTU probe failure: don't reduce cwnd */
  2465. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2466. icsk->icsk_mtup.probe_size &&
  2467. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2468. tcp_mtup_probe_failed(sk);
  2469. /* Restores the reduction we did in tcp_mtup_probe() */
  2470. tp->snd_cwnd++;
  2471. tcp_simple_retransmit(sk);
  2472. return;
  2473. }
  2474. /* Otherwise enter Recovery state */
  2475. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2476. fast_rexmit = 1;
  2477. }
  2478. if (do_lost)
  2479. tcp_update_scoreboard(sk, fast_rexmit);
  2480. *rexmit = REXMIT_LOST;
  2481. }
  2482. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2483. {
  2484. u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
  2485. struct tcp_sock *tp = tcp_sk(sk);
  2486. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2487. rtt_us ? : jiffies_to_usecs(1));
  2488. }
  2489. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2490. long seq_rtt_us, long sack_rtt_us,
  2491. long ca_rtt_us, struct rate_sample *rs)
  2492. {
  2493. const struct tcp_sock *tp = tcp_sk(sk);
  2494. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2495. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2496. * Karn's algorithm forbids taking RTT if some retransmitted data
  2497. * is acked (RFC6298).
  2498. */
  2499. if (seq_rtt_us < 0)
  2500. seq_rtt_us = sack_rtt_us;
  2501. /* RTTM Rule: A TSecr value received in a segment is used to
  2502. * update the averaged RTT measurement only if the segment
  2503. * acknowledges some new data, i.e., only if it advances the
  2504. * left edge of the send window.
  2505. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2506. */
  2507. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2508. flag & FLAG_ACKED) {
  2509. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2510. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2511. seq_rtt_us = ca_rtt_us = delta_us;
  2512. }
  2513. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2514. if (seq_rtt_us < 0)
  2515. return false;
  2516. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2517. * always taken together with ACK, SACK, or TS-opts. Any negative
  2518. * values will be skipped with the seq_rtt_us < 0 check above.
  2519. */
  2520. tcp_update_rtt_min(sk, ca_rtt_us);
  2521. tcp_rtt_estimator(sk, seq_rtt_us);
  2522. tcp_set_rto(sk);
  2523. /* RFC6298: only reset backoff on valid RTT measurement. */
  2524. inet_csk(sk)->icsk_backoff = 0;
  2525. return true;
  2526. }
  2527. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2528. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2529. {
  2530. struct rate_sample rs;
  2531. long rtt_us = -1L;
  2532. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2533. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2534. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2535. }
  2536. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2537. {
  2538. const struct inet_connection_sock *icsk = inet_csk(sk);
  2539. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2540. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2541. }
  2542. /* Restart timer after forward progress on connection.
  2543. * RFC2988 recommends to restart timer to now+rto.
  2544. */
  2545. void tcp_rearm_rto(struct sock *sk)
  2546. {
  2547. const struct inet_connection_sock *icsk = inet_csk(sk);
  2548. struct tcp_sock *tp = tcp_sk(sk);
  2549. /* If the retrans timer is currently being used by Fast Open
  2550. * for SYN-ACK retrans purpose, stay put.
  2551. */
  2552. if (tp->fastopen_rsk)
  2553. return;
  2554. if (!tp->packets_out) {
  2555. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2556. } else {
  2557. u32 rto = inet_csk(sk)->icsk_rto;
  2558. /* Offset the time elapsed after installing regular RTO */
  2559. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2560. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2561. s64 delta_us = tcp_rto_delta_us(sk);
  2562. /* delta_us may not be positive if the socket is locked
  2563. * when the retrans timer fires and is rescheduled.
  2564. */
  2565. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2566. }
  2567. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2568. TCP_RTO_MAX);
  2569. }
  2570. }
  2571. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2572. static void tcp_set_xmit_timer(struct sock *sk)
  2573. {
  2574. if (!tcp_schedule_loss_probe(sk, true))
  2575. tcp_rearm_rto(sk);
  2576. }
  2577. /* If we get here, the whole TSO packet has not been acked. */
  2578. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2579. {
  2580. struct tcp_sock *tp = tcp_sk(sk);
  2581. u32 packets_acked;
  2582. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2583. packets_acked = tcp_skb_pcount(skb);
  2584. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2585. return 0;
  2586. packets_acked -= tcp_skb_pcount(skb);
  2587. if (packets_acked) {
  2588. BUG_ON(tcp_skb_pcount(skb) == 0);
  2589. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2590. }
  2591. return packets_acked;
  2592. }
  2593. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2594. u32 prior_snd_una)
  2595. {
  2596. const struct skb_shared_info *shinfo;
  2597. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2598. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2599. return;
  2600. shinfo = skb_shinfo(skb);
  2601. if (!before(shinfo->tskey, prior_snd_una) &&
  2602. before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
  2603. tcp_skb_tsorted_save(skb) {
  2604. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2605. } tcp_skb_tsorted_restore(skb);
  2606. }
  2607. }
  2608. /* Remove acknowledged frames from the retransmission queue. If our packet
  2609. * is before the ack sequence we can discard it as it's confirmed to have
  2610. * arrived at the other end.
  2611. */
  2612. static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
  2613. u32 prior_snd_una,
  2614. struct tcp_sacktag_state *sack)
  2615. {
  2616. const struct inet_connection_sock *icsk = inet_csk(sk);
  2617. u64 first_ackt, last_ackt;
  2618. struct tcp_sock *tp = tcp_sk(sk);
  2619. u32 prior_sacked = tp->sacked_out;
  2620. u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
  2621. struct sk_buff *skb, *next;
  2622. bool fully_acked = true;
  2623. long sack_rtt_us = -1L;
  2624. long seq_rtt_us = -1L;
  2625. long ca_rtt_us = -1L;
  2626. u32 pkts_acked = 0;
  2627. u32 last_in_flight = 0;
  2628. bool rtt_update;
  2629. int flag = 0;
  2630. first_ackt = 0;
  2631. for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
  2632. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2633. const u32 start_seq = scb->seq;
  2634. u8 sacked = scb->sacked;
  2635. u32 acked_pcount;
  2636. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2637. /* Determine how many packets and what bytes were acked, tso and else */
  2638. if (after(scb->end_seq, tp->snd_una)) {
  2639. if (tcp_skb_pcount(skb) == 1 ||
  2640. !after(tp->snd_una, scb->seq))
  2641. break;
  2642. acked_pcount = tcp_tso_acked(sk, skb);
  2643. if (!acked_pcount)
  2644. break;
  2645. fully_acked = false;
  2646. } else {
  2647. acked_pcount = tcp_skb_pcount(skb);
  2648. }
  2649. if (unlikely(sacked & TCPCB_RETRANS)) {
  2650. if (sacked & TCPCB_SACKED_RETRANS)
  2651. tp->retrans_out -= acked_pcount;
  2652. flag |= FLAG_RETRANS_DATA_ACKED;
  2653. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2654. last_ackt = skb->skb_mstamp;
  2655. WARN_ON_ONCE(last_ackt == 0);
  2656. if (!first_ackt)
  2657. first_ackt = last_ackt;
  2658. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2659. if (before(start_seq, reord))
  2660. reord = start_seq;
  2661. if (!after(scb->end_seq, tp->high_seq))
  2662. flag |= FLAG_ORIG_SACK_ACKED;
  2663. }
  2664. if (sacked & TCPCB_SACKED_ACKED) {
  2665. tp->sacked_out -= acked_pcount;
  2666. } else if (tcp_is_sack(tp)) {
  2667. tp->delivered += acked_pcount;
  2668. if (!tcp_skb_spurious_retrans(tp, skb))
  2669. tcp_rack_advance(tp, sacked, scb->end_seq,
  2670. skb->skb_mstamp);
  2671. }
  2672. if (sacked & TCPCB_LOST)
  2673. tp->lost_out -= acked_pcount;
  2674. tp->packets_out -= acked_pcount;
  2675. pkts_acked += acked_pcount;
  2676. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2677. /* Initial outgoing SYN's get put onto the write_queue
  2678. * just like anything else we transmit. It is not
  2679. * true data, and if we misinform our callers that
  2680. * this ACK acks real data, we will erroneously exit
  2681. * connection startup slow start one packet too
  2682. * quickly. This is severely frowned upon behavior.
  2683. */
  2684. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2685. flag |= FLAG_DATA_ACKED;
  2686. } else {
  2687. flag |= FLAG_SYN_ACKED;
  2688. tp->retrans_stamp = 0;
  2689. }
  2690. if (!fully_acked)
  2691. break;
  2692. next = skb_rb_next(skb);
  2693. if (unlikely(skb == tp->retransmit_skb_hint))
  2694. tp->retransmit_skb_hint = NULL;
  2695. if (unlikely(skb == tp->lost_skb_hint))
  2696. tp->lost_skb_hint = NULL;
  2697. tcp_rtx_queue_unlink_and_free(skb, sk);
  2698. }
  2699. if (!skb)
  2700. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2701. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2702. tp->snd_up = tp->snd_una;
  2703. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2704. flag |= FLAG_SACK_RENEGING;
  2705. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2706. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2707. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2708. }
  2709. if (sack->first_sackt) {
  2710. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2711. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2712. }
  2713. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2714. ca_rtt_us, sack->rate);
  2715. if (flag & FLAG_ACKED) {
  2716. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2717. if (unlikely(icsk->icsk_mtup.probe_size &&
  2718. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2719. tcp_mtup_probe_success(sk);
  2720. }
  2721. if (tcp_is_reno(tp)) {
  2722. tcp_remove_reno_sacks(sk, pkts_acked);
  2723. } else {
  2724. int delta;
  2725. /* Non-retransmitted hole got filled? That's reordering */
  2726. if (before(reord, prior_fack))
  2727. tcp_check_sack_reordering(sk, reord, 0);
  2728. delta = prior_sacked - tp->sacked_out;
  2729. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2730. }
  2731. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2732. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2733. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2734. * after when the head was last (re)transmitted. Otherwise the
  2735. * timeout may continue to extend in loss recovery.
  2736. */
  2737. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2738. }
  2739. if (icsk->icsk_ca_ops->pkts_acked) {
  2740. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2741. .rtt_us = sack->rate->rtt_us,
  2742. .in_flight = last_in_flight };
  2743. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2744. }
  2745. #if FASTRETRANS_DEBUG > 0
  2746. WARN_ON((int)tp->sacked_out < 0);
  2747. WARN_ON((int)tp->lost_out < 0);
  2748. WARN_ON((int)tp->retrans_out < 0);
  2749. if (!tp->packets_out && tcp_is_sack(tp)) {
  2750. icsk = inet_csk(sk);
  2751. if (tp->lost_out) {
  2752. pr_debug("Leak l=%u %d\n",
  2753. tp->lost_out, icsk->icsk_ca_state);
  2754. tp->lost_out = 0;
  2755. }
  2756. if (tp->sacked_out) {
  2757. pr_debug("Leak s=%u %d\n",
  2758. tp->sacked_out, icsk->icsk_ca_state);
  2759. tp->sacked_out = 0;
  2760. }
  2761. if (tp->retrans_out) {
  2762. pr_debug("Leak r=%u %d\n",
  2763. tp->retrans_out, icsk->icsk_ca_state);
  2764. tp->retrans_out = 0;
  2765. }
  2766. }
  2767. #endif
  2768. return flag;
  2769. }
  2770. static void tcp_ack_probe(struct sock *sk)
  2771. {
  2772. struct inet_connection_sock *icsk = inet_csk(sk);
  2773. struct sk_buff *head = tcp_send_head(sk);
  2774. const struct tcp_sock *tp = tcp_sk(sk);
  2775. /* Was it a usable window open? */
  2776. if (!head)
  2777. return;
  2778. if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
  2779. icsk->icsk_backoff = 0;
  2780. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2781. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2782. * This function is not for random using!
  2783. */
  2784. } else {
  2785. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2786. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2787. when, TCP_RTO_MAX);
  2788. }
  2789. }
  2790. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2791. {
  2792. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2793. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2794. }
  2795. /* Decide wheather to run the increase function of congestion control. */
  2796. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2797. {
  2798. /* If reordering is high then always grow cwnd whenever data is
  2799. * delivered regardless of its ordering. Otherwise stay conservative
  2800. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2801. * new SACK or ECE mark may first advance cwnd here and later reduce
  2802. * cwnd in tcp_fastretrans_alert() based on more states.
  2803. */
  2804. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2805. return flag & FLAG_FORWARD_PROGRESS;
  2806. return flag & FLAG_DATA_ACKED;
  2807. }
  2808. /* The "ultimate" congestion control function that aims to replace the rigid
  2809. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2810. * It's called toward the end of processing an ACK with precise rate
  2811. * information. All transmission or retransmission are delayed afterwards.
  2812. */
  2813. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2814. int flag, const struct rate_sample *rs)
  2815. {
  2816. const struct inet_connection_sock *icsk = inet_csk(sk);
  2817. if (icsk->icsk_ca_ops->cong_control) {
  2818. icsk->icsk_ca_ops->cong_control(sk, rs);
  2819. return;
  2820. }
  2821. if (tcp_in_cwnd_reduction(sk)) {
  2822. /* Reduce cwnd if state mandates */
  2823. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2824. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2825. /* Advance cwnd if state allows */
  2826. tcp_cong_avoid(sk, ack, acked_sacked);
  2827. }
  2828. tcp_update_pacing_rate(sk);
  2829. }
  2830. /* Check that window update is acceptable.
  2831. * The function assumes that snd_una<=ack<=snd_next.
  2832. */
  2833. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2834. const u32 ack, const u32 ack_seq,
  2835. const u32 nwin)
  2836. {
  2837. return after(ack, tp->snd_una) ||
  2838. after(ack_seq, tp->snd_wl1) ||
  2839. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2840. }
  2841. /* If we update tp->snd_una, also update tp->bytes_acked */
  2842. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2843. {
  2844. u32 delta = ack - tp->snd_una;
  2845. sock_owned_by_me((struct sock *)tp);
  2846. tp->bytes_acked += delta;
  2847. tp->snd_una = ack;
  2848. }
  2849. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2850. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2851. {
  2852. u32 delta = seq - tp->rcv_nxt;
  2853. sock_owned_by_me((struct sock *)tp);
  2854. tp->bytes_received += delta;
  2855. tp->rcv_nxt = seq;
  2856. }
  2857. /* Update our send window.
  2858. *
  2859. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2860. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2861. */
  2862. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2863. u32 ack_seq)
  2864. {
  2865. struct tcp_sock *tp = tcp_sk(sk);
  2866. int flag = 0;
  2867. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2868. if (likely(!tcp_hdr(skb)->syn))
  2869. nwin <<= tp->rx_opt.snd_wscale;
  2870. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2871. flag |= FLAG_WIN_UPDATE;
  2872. tcp_update_wl(tp, ack_seq);
  2873. if (tp->snd_wnd != nwin) {
  2874. tp->snd_wnd = nwin;
  2875. /* Note, it is the only place, where
  2876. * fast path is recovered for sending TCP.
  2877. */
  2878. tp->pred_flags = 0;
  2879. tcp_fast_path_check(sk);
  2880. if (!tcp_write_queue_empty(sk))
  2881. tcp_slow_start_after_idle_check(sk);
  2882. if (nwin > tp->max_window) {
  2883. tp->max_window = nwin;
  2884. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2885. }
  2886. }
  2887. }
  2888. tcp_snd_una_update(tp, ack);
  2889. return flag;
  2890. }
  2891. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2892. u32 *last_oow_ack_time)
  2893. {
  2894. if (*last_oow_ack_time) {
  2895. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2896. if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
  2897. NET_INC_STATS(net, mib_idx);
  2898. return true; /* rate-limited: don't send yet! */
  2899. }
  2900. }
  2901. *last_oow_ack_time = tcp_jiffies32;
  2902. return false; /* not rate-limited: go ahead, send dupack now! */
  2903. }
  2904. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2905. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2906. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2907. * attacks that send repeated SYNs or ACKs for the same connection. To
  2908. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2909. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2910. */
  2911. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2912. int mib_idx, u32 *last_oow_ack_time)
  2913. {
  2914. /* Data packets without SYNs are not likely part of an ACK loop. */
  2915. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2916. !tcp_hdr(skb)->syn)
  2917. return false;
  2918. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2919. }
  2920. /* RFC 5961 7 [ACK Throttling] */
  2921. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2922. {
  2923. /* unprotected vars, we dont care of overwrites */
  2924. static u32 challenge_timestamp;
  2925. static unsigned int challenge_count;
  2926. struct tcp_sock *tp = tcp_sk(sk);
  2927. struct net *net = sock_net(sk);
  2928. u32 count, now;
  2929. /* First check our per-socket dupack rate limit. */
  2930. if (__tcp_oow_rate_limited(net,
  2931. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2932. &tp->last_oow_ack_time))
  2933. return;
  2934. /* Then check host-wide RFC 5961 rate limit. */
  2935. now = jiffies / HZ;
  2936. if (now != challenge_timestamp) {
  2937. u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
  2938. u32 half = (ack_limit + 1) >> 1;
  2939. challenge_timestamp = now;
  2940. WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
  2941. }
  2942. count = READ_ONCE(challenge_count);
  2943. if (count > 0) {
  2944. WRITE_ONCE(challenge_count, count - 1);
  2945. NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
  2946. tcp_send_ack(sk);
  2947. }
  2948. }
  2949. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2950. {
  2951. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2952. tp->rx_opt.ts_recent_stamp = get_seconds();
  2953. }
  2954. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2955. {
  2956. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2957. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2958. * extra check below makes sure this can only happen
  2959. * for pure ACK frames. -DaveM
  2960. *
  2961. * Not only, also it occurs for expired timestamps.
  2962. */
  2963. if (tcp_paws_check(&tp->rx_opt, 0))
  2964. tcp_store_ts_recent(tp);
  2965. }
  2966. }
  2967. /* This routine deals with acks during a TLP episode.
  2968. * We mark the end of a TLP episode on receiving TLP dupack or when
  2969. * ack is after tlp_high_seq.
  2970. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2971. */
  2972. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2973. {
  2974. struct tcp_sock *tp = tcp_sk(sk);
  2975. if (before(ack, tp->tlp_high_seq))
  2976. return;
  2977. if (flag & FLAG_DSACKING_ACK) {
  2978. /* This DSACK means original and TLP probe arrived; no loss */
  2979. tp->tlp_high_seq = 0;
  2980. } else if (after(ack, tp->tlp_high_seq)) {
  2981. /* ACK advances: there was a loss, so reduce cwnd. Reset
  2982. * tlp_high_seq in tcp_init_cwnd_reduction()
  2983. */
  2984. tcp_init_cwnd_reduction(sk);
  2985. tcp_set_ca_state(sk, TCP_CA_CWR);
  2986. tcp_end_cwnd_reduction(sk);
  2987. tcp_try_keep_open(sk);
  2988. NET_INC_STATS(sock_net(sk),
  2989. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2990. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  2991. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  2992. /* Pure dupack: original and TLP probe arrived; no loss */
  2993. tp->tlp_high_seq = 0;
  2994. }
  2995. }
  2996. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  2997. {
  2998. const struct inet_connection_sock *icsk = inet_csk(sk);
  2999. if (icsk->icsk_ca_ops->in_ack_event)
  3000. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3001. }
  3002. /* Congestion control has updated the cwnd already. So if we're in
  3003. * loss recovery then now we do any new sends (for FRTO) or
  3004. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3005. */
  3006. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3007. {
  3008. struct tcp_sock *tp = tcp_sk(sk);
  3009. if (rexmit == REXMIT_NONE)
  3010. return;
  3011. if (unlikely(rexmit == 2)) {
  3012. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3013. TCP_NAGLE_OFF);
  3014. if (after(tp->snd_nxt, tp->high_seq))
  3015. return;
  3016. tp->frto = 0;
  3017. }
  3018. tcp_xmit_retransmit_queue(sk);
  3019. }
  3020. /* This routine deals with incoming acks, but not outgoing ones. */
  3021. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3022. {
  3023. struct inet_connection_sock *icsk = inet_csk(sk);
  3024. struct tcp_sock *tp = tcp_sk(sk);
  3025. struct tcp_sacktag_state sack_state;
  3026. struct rate_sample rs = { .prior_delivered = 0 };
  3027. u32 prior_snd_una = tp->snd_una;
  3028. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3029. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3030. bool is_dupack = false;
  3031. int prior_packets = tp->packets_out;
  3032. u32 delivered = tp->delivered;
  3033. u32 lost = tp->lost;
  3034. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3035. u32 prior_fack;
  3036. sack_state.first_sackt = 0;
  3037. sack_state.rate = &rs;
  3038. /* We very likely will need to access rtx queue. */
  3039. prefetch(sk->tcp_rtx_queue.rb_node);
  3040. /* If the ack is older than previous acks
  3041. * then we can probably ignore it.
  3042. */
  3043. if (before(ack, prior_snd_una)) {
  3044. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3045. if (before(ack, prior_snd_una - tp->max_window)) {
  3046. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3047. tcp_send_challenge_ack(sk, skb);
  3048. return -1;
  3049. }
  3050. goto old_ack;
  3051. }
  3052. /* If the ack includes data we haven't sent yet, discard
  3053. * this segment (RFC793 Section 3.9).
  3054. */
  3055. if (after(ack, tp->snd_nxt))
  3056. goto invalid_ack;
  3057. if (after(ack, prior_snd_una)) {
  3058. flag |= FLAG_SND_UNA_ADVANCED;
  3059. icsk->icsk_retransmits = 0;
  3060. }
  3061. prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
  3062. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3063. /* ts_recent update must be made after we are sure that the packet
  3064. * is in window.
  3065. */
  3066. if (flag & FLAG_UPDATE_TS_RECENT)
  3067. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3068. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3069. /* Window is constant, pure forward advance.
  3070. * No more checks are required.
  3071. * Note, we use the fact that SND.UNA>=SND.WL2.
  3072. */
  3073. tcp_update_wl(tp, ack_seq);
  3074. tcp_snd_una_update(tp, ack);
  3075. flag |= FLAG_WIN_UPDATE;
  3076. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3077. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3078. } else {
  3079. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3080. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3081. flag |= FLAG_DATA;
  3082. else
  3083. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3084. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3085. if (TCP_SKB_CB(skb)->sacked)
  3086. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3087. &sack_state);
  3088. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3089. flag |= FLAG_ECE;
  3090. ack_ev_flags |= CA_ACK_ECE;
  3091. }
  3092. if (flag & FLAG_WIN_UPDATE)
  3093. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3094. tcp_in_ack_event(sk, ack_ev_flags);
  3095. }
  3096. /* We passed data and got it acked, remove any soft error
  3097. * log. Something worked...
  3098. */
  3099. sk->sk_err_soft = 0;
  3100. icsk->icsk_probes_out = 0;
  3101. tp->rcv_tstamp = tcp_jiffies32;
  3102. if (!prior_packets)
  3103. goto no_queue;
  3104. /* See if we can take anything off of the retransmit queue. */
  3105. flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
  3106. tcp_rack_update_reo_wnd(sk, &rs);
  3107. if (tp->tlp_high_seq)
  3108. tcp_process_tlp_ack(sk, ack, flag);
  3109. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3110. if (flag & FLAG_SET_XMIT_TIMER)
  3111. tcp_set_xmit_timer(sk);
  3112. if (tcp_ack_is_dubious(sk, flag)) {
  3113. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3114. tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
  3115. &rexmit);
  3116. }
  3117. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3118. sk_dst_confirm(sk);
  3119. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3120. lost = tp->lost - lost; /* freshly marked lost */
  3121. tcp_rate_gen(sk, delivered, lost, sack_state.rate);
  3122. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3123. tcp_xmit_recovery(sk, rexmit);
  3124. return 1;
  3125. no_queue:
  3126. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3127. if (flag & FLAG_DSACKING_ACK)
  3128. tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
  3129. &rexmit);
  3130. /* If this ack opens up a zero window, clear backoff. It was
  3131. * being used to time the probes, and is probably far higher than
  3132. * it needs to be for normal retransmission.
  3133. */
  3134. tcp_ack_probe(sk);
  3135. if (tp->tlp_high_seq)
  3136. tcp_process_tlp_ack(sk, ack, flag);
  3137. return 1;
  3138. invalid_ack:
  3139. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3140. return -1;
  3141. old_ack:
  3142. /* If data was SACKed, tag it and see if we should send more data.
  3143. * If data was DSACKed, see if we can undo a cwnd reduction.
  3144. */
  3145. if (TCP_SKB_CB(skb)->sacked) {
  3146. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3147. &sack_state);
  3148. tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
  3149. &rexmit);
  3150. tcp_xmit_recovery(sk, rexmit);
  3151. }
  3152. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3153. return 0;
  3154. }
  3155. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3156. bool syn, struct tcp_fastopen_cookie *foc,
  3157. bool exp_opt)
  3158. {
  3159. /* Valid only in SYN or SYN-ACK with an even length. */
  3160. if (!foc || !syn || len < 0 || (len & 1))
  3161. return;
  3162. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3163. len <= TCP_FASTOPEN_COOKIE_MAX)
  3164. memcpy(foc->val, cookie, len);
  3165. else if (len != 0)
  3166. len = -1;
  3167. foc->len = len;
  3168. foc->exp = exp_opt;
  3169. }
  3170. static void smc_parse_options(const struct tcphdr *th,
  3171. struct tcp_options_received *opt_rx,
  3172. const unsigned char *ptr,
  3173. int opsize)
  3174. {
  3175. #if IS_ENABLED(CONFIG_SMC)
  3176. if (static_branch_unlikely(&tcp_have_smc)) {
  3177. if (th->syn && !(opsize & 1) &&
  3178. opsize >= TCPOLEN_EXP_SMC_BASE &&
  3179. get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
  3180. opt_rx->smc_ok = 1;
  3181. }
  3182. #endif
  3183. }
  3184. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3185. * But, this can also be called on packets in the established flow when
  3186. * the fast version below fails.
  3187. */
  3188. void tcp_parse_options(const struct net *net,
  3189. const struct sk_buff *skb,
  3190. struct tcp_options_received *opt_rx, int estab,
  3191. struct tcp_fastopen_cookie *foc)
  3192. {
  3193. const unsigned char *ptr;
  3194. const struct tcphdr *th = tcp_hdr(skb);
  3195. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3196. ptr = (const unsigned char *)(th + 1);
  3197. opt_rx->saw_tstamp = 0;
  3198. while (length > 0) {
  3199. int opcode = *ptr++;
  3200. int opsize;
  3201. switch (opcode) {
  3202. case TCPOPT_EOL:
  3203. return;
  3204. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3205. length--;
  3206. continue;
  3207. default:
  3208. opsize = *ptr++;
  3209. if (opsize < 2) /* "silly options" */
  3210. return;
  3211. if (opsize > length)
  3212. return; /* don't parse partial options */
  3213. switch (opcode) {
  3214. case TCPOPT_MSS:
  3215. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3216. u16 in_mss = get_unaligned_be16(ptr);
  3217. if (in_mss) {
  3218. if (opt_rx->user_mss &&
  3219. opt_rx->user_mss < in_mss)
  3220. in_mss = opt_rx->user_mss;
  3221. opt_rx->mss_clamp = in_mss;
  3222. }
  3223. }
  3224. break;
  3225. case TCPOPT_WINDOW:
  3226. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3227. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3228. __u8 snd_wscale = *(__u8 *)ptr;
  3229. opt_rx->wscale_ok = 1;
  3230. if (snd_wscale > TCP_MAX_WSCALE) {
  3231. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3232. __func__,
  3233. snd_wscale,
  3234. TCP_MAX_WSCALE);
  3235. snd_wscale = TCP_MAX_WSCALE;
  3236. }
  3237. opt_rx->snd_wscale = snd_wscale;
  3238. }
  3239. break;
  3240. case TCPOPT_TIMESTAMP:
  3241. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3242. ((estab && opt_rx->tstamp_ok) ||
  3243. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3244. opt_rx->saw_tstamp = 1;
  3245. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3246. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3247. }
  3248. break;
  3249. case TCPOPT_SACK_PERM:
  3250. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3251. !estab && net->ipv4.sysctl_tcp_sack) {
  3252. opt_rx->sack_ok = TCP_SACK_SEEN;
  3253. tcp_sack_reset(opt_rx);
  3254. }
  3255. break;
  3256. case TCPOPT_SACK:
  3257. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3258. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3259. opt_rx->sack_ok) {
  3260. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3261. }
  3262. break;
  3263. #ifdef CONFIG_TCP_MD5SIG
  3264. case TCPOPT_MD5SIG:
  3265. /*
  3266. * The MD5 Hash has already been
  3267. * checked (see tcp_v{4,6}_do_rcv()).
  3268. */
  3269. break;
  3270. #endif
  3271. case TCPOPT_FASTOPEN:
  3272. tcp_parse_fastopen_option(
  3273. opsize - TCPOLEN_FASTOPEN_BASE,
  3274. ptr, th->syn, foc, false);
  3275. break;
  3276. case TCPOPT_EXP:
  3277. /* Fast Open option shares code 254 using a
  3278. * 16 bits magic number.
  3279. */
  3280. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3281. get_unaligned_be16(ptr) ==
  3282. TCPOPT_FASTOPEN_MAGIC)
  3283. tcp_parse_fastopen_option(opsize -
  3284. TCPOLEN_EXP_FASTOPEN_BASE,
  3285. ptr + 2, th->syn, foc, true);
  3286. else
  3287. smc_parse_options(th, opt_rx, ptr,
  3288. opsize);
  3289. break;
  3290. }
  3291. ptr += opsize-2;
  3292. length -= opsize;
  3293. }
  3294. }
  3295. }
  3296. EXPORT_SYMBOL(tcp_parse_options);
  3297. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3298. {
  3299. const __be32 *ptr = (const __be32 *)(th + 1);
  3300. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3301. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3302. tp->rx_opt.saw_tstamp = 1;
  3303. ++ptr;
  3304. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3305. ++ptr;
  3306. if (*ptr)
  3307. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3308. else
  3309. tp->rx_opt.rcv_tsecr = 0;
  3310. return true;
  3311. }
  3312. return false;
  3313. }
  3314. /* Fast parse options. This hopes to only see timestamps.
  3315. * If it is wrong it falls back on tcp_parse_options().
  3316. */
  3317. static bool tcp_fast_parse_options(const struct net *net,
  3318. const struct sk_buff *skb,
  3319. const struct tcphdr *th, struct tcp_sock *tp)
  3320. {
  3321. /* In the spirit of fast parsing, compare doff directly to constant
  3322. * values. Because equality is used, short doff can be ignored here.
  3323. */
  3324. if (th->doff == (sizeof(*th) / 4)) {
  3325. tp->rx_opt.saw_tstamp = 0;
  3326. return false;
  3327. } else if (tp->rx_opt.tstamp_ok &&
  3328. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3329. if (tcp_parse_aligned_timestamp(tp, th))
  3330. return true;
  3331. }
  3332. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3333. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3334. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3335. return true;
  3336. }
  3337. #ifdef CONFIG_TCP_MD5SIG
  3338. /*
  3339. * Parse MD5 Signature option
  3340. */
  3341. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3342. {
  3343. int length = (th->doff << 2) - sizeof(*th);
  3344. const u8 *ptr = (const u8 *)(th + 1);
  3345. /* If the TCP option is too short, we can short cut */
  3346. if (length < TCPOLEN_MD5SIG)
  3347. return NULL;
  3348. while (length > 0) {
  3349. int opcode = *ptr++;
  3350. int opsize;
  3351. switch (opcode) {
  3352. case TCPOPT_EOL:
  3353. return NULL;
  3354. case TCPOPT_NOP:
  3355. length--;
  3356. continue;
  3357. default:
  3358. opsize = *ptr++;
  3359. if (opsize < 2 || opsize > length)
  3360. return NULL;
  3361. if (opcode == TCPOPT_MD5SIG)
  3362. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3363. }
  3364. ptr += opsize - 2;
  3365. length -= opsize;
  3366. }
  3367. return NULL;
  3368. }
  3369. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3370. #endif
  3371. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3372. *
  3373. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3374. * it can pass through stack. So, the following predicate verifies that
  3375. * this segment is not used for anything but congestion avoidance or
  3376. * fast retransmit. Moreover, we even are able to eliminate most of such
  3377. * second order effects, if we apply some small "replay" window (~RTO)
  3378. * to timestamp space.
  3379. *
  3380. * All these measures still do not guarantee that we reject wrapped ACKs
  3381. * on networks with high bandwidth, when sequence space is recycled fastly,
  3382. * but it guarantees that such events will be very rare and do not affect
  3383. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3384. * buggy extension.
  3385. *
  3386. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3387. * states that events when retransmit arrives after original data are rare.
  3388. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3389. * the biggest problem on large power networks even with minor reordering.
  3390. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3391. * up to bandwidth of 18Gigabit/sec. 8) ]
  3392. */
  3393. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3394. {
  3395. const struct tcp_sock *tp = tcp_sk(sk);
  3396. const struct tcphdr *th = tcp_hdr(skb);
  3397. u32 seq = TCP_SKB_CB(skb)->seq;
  3398. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3399. return (/* 1. Pure ACK with correct sequence number. */
  3400. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3401. /* 2. ... and duplicate ACK. */
  3402. ack == tp->snd_una &&
  3403. /* 3. ... and does not update window. */
  3404. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3405. /* 4. ... and sits in replay window. */
  3406. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3407. }
  3408. static inline bool tcp_paws_discard(const struct sock *sk,
  3409. const struct sk_buff *skb)
  3410. {
  3411. const struct tcp_sock *tp = tcp_sk(sk);
  3412. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3413. !tcp_disordered_ack(sk, skb);
  3414. }
  3415. /* Check segment sequence number for validity.
  3416. *
  3417. * Segment controls are considered valid, if the segment
  3418. * fits to the window after truncation to the window. Acceptability
  3419. * of data (and SYN, FIN, of course) is checked separately.
  3420. * See tcp_data_queue(), for example.
  3421. *
  3422. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3423. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3424. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3425. * (borrowed from freebsd)
  3426. */
  3427. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3428. {
  3429. return !before(end_seq, tp->rcv_wup) &&
  3430. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3431. }
  3432. /* When we get a reset we do this. */
  3433. void tcp_reset(struct sock *sk)
  3434. {
  3435. trace_tcp_receive_reset(sk);
  3436. /* We want the right error as BSD sees it (and indeed as we do). */
  3437. switch (sk->sk_state) {
  3438. case TCP_SYN_SENT:
  3439. sk->sk_err = ECONNREFUSED;
  3440. break;
  3441. case TCP_CLOSE_WAIT:
  3442. sk->sk_err = EPIPE;
  3443. break;
  3444. case TCP_CLOSE:
  3445. return;
  3446. default:
  3447. sk->sk_err = ECONNRESET;
  3448. }
  3449. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3450. smp_wmb();
  3451. tcp_done(sk);
  3452. if (!sock_flag(sk, SOCK_DEAD))
  3453. sk->sk_error_report(sk);
  3454. }
  3455. /*
  3456. * Process the FIN bit. This now behaves as it is supposed to work
  3457. * and the FIN takes effect when it is validly part of sequence
  3458. * space. Not before when we get holes.
  3459. *
  3460. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3461. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3462. * TIME-WAIT)
  3463. *
  3464. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3465. * close and we go into CLOSING (and later onto TIME-WAIT)
  3466. *
  3467. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3468. */
  3469. void tcp_fin(struct sock *sk)
  3470. {
  3471. struct tcp_sock *tp = tcp_sk(sk);
  3472. inet_csk_schedule_ack(sk);
  3473. sk->sk_shutdown |= RCV_SHUTDOWN;
  3474. sock_set_flag(sk, SOCK_DONE);
  3475. switch (sk->sk_state) {
  3476. case TCP_SYN_RECV:
  3477. case TCP_ESTABLISHED:
  3478. /* Move to CLOSE_WAIT */
  3479. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3480. inet_csk(sk)->icsk_ack.pingpong = 1;
  3481. break;
  3482. case TCP_CLOSE_WAIT:
  3483. case TCP_CLOSING:
  3484. /* Received a retransmission of the FIN, do
  3485. * nothing.
  3486. */
  3487. break;
  3488. case TCP_LAST_ACK:
  3489. /* RFC793: Remain in the LAST-ACK state. */
  3490. break;
  3491. case TCP_FIN_WAIT1:
  3492. /* This case occurs when a simultaneous close
  3493. * happens, we must ack the received FIN and
  3494. * enter the CLOSING state.
  3495. */
  3496. tcp_send_ack(sk);
  3497. tcp_set_state(sk, TCP_CLOSING);
  3498. break;
  3499. case TCP_FIN_WAIT2:
  3500. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3501. tcp_send_ack(sk);
  3502. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3503. break;
  3504. default:
  3505. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3506. * cases we should never reach this piece of code.
  3507. */
  3508. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3509. __func__, sk->sk_state);
  3510. break;
  3511. }
  3512. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3513. * Probably, we should reset in this case. For now drop them.
  3514. */
  3515. skb_rbtree_purge(&tp->out_of_order_queue);
  3516. if (tcp_is_sack(tp))
  3517. tcp_sack_reset(&tp->rx_opt);
  3518. sk_mem_reclaim(sk);
  3519. if (!sock_flag(sk, SOCK_DEAD)) {
  3520. sk->sk_state_change(sk);
  3521. /* Do not send POLL_HUP for half duplex close. */
  3522. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3523. sk->sk_state == TCP_CLOSE)
  3524. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3525. else
  3526. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3527. }
  3528. }
  3529. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3530. u32 end_seq)
  3531. {
  3532. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3533. if (before(seq, sp->start_seq))
  3534. sp->start_seq = seq;
  3535. if (after(end_seq, sp->end_seq))
  3536. sp->end_seq = end_seq;
  3537. return true;
  3538. }
  3539. return false;
  3540. }
  3541. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3542. {
  3543. struct tcp_sock *tp = tcp_sk(sk);
  3544. if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
  3545. int mib_idx;
  3546. if (before(seq, tp->rcv_nxt))
  3547. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3548. else
  3549. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3550. NET_INC_STATS(sock_net(sk), mib_idx);
  3551. tp->rx_opt.dsack = 1;
  3552. tp->duplicate_sack[0].start_seq = seq;
  3553. tp->duplicate_sack[0].end_seq = end_seq;
  3554. }
  3555. }
  3556. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3557. {
  3558. struct tcp_sock *tp = tcp_sk(sk);
  3559. if (!tp->rx_opt.dsack)
  3560. tcp_dsack_set(sk, seq, end_seq);
  3561. else
  3562. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3563. }
  3564. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3565. {
  3566. struct tcp_sock *tp = tcp_sk(sk);
  3567. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3568. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3569. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3570. tcp_enter_quickack_mode(sk);
  3571. if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
  3572. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3573. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3574. end_seq = tp->rcv_nxt;
  3575. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3576. }
  3577. }
  3578. tcp_send_ack(sk);
  3579. }
  3580. /* These routines update the SACK block as out-of-order packets arrive or
  3581. * in-order packets close up the sequence space.
  3582. */
  3583. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3584. {
  3585. int this_sack;
  3586. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3587. struct tcp_sack_block *swalk = sp + 1;
  3588. /* See if the recent change to the first SACK eats into
  3589. * or hits the sequence space of other SACK blocks, if so coalesce.
  3590. */
  3591. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3592. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3593. int i;
  3594. /* Zap SWALK, by moving every further SACK up by one slot.
  3595. * Decrease num_sacks.
  3596. */
  3597. tp->rx_opt.num_sacks--;
  3598. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3599. sp[i] = sp[i + 1];
  3600. continue;
  3601. }
  3602. this_sack++, swalk++;
  3603. }
  3604. }
  3605. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3606. {
  3607. struct tcp_sock *tp = tcp_sk(sk);
  3608. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3609. int cur_sacks = tp->rx_opt.num_sacks;
  3610. int this_sack;
  3611. if (!cur_sacks)
  3612. goto new_sack;
  3613. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3614. if (tcp_sack_extend(sp, seq, end_seq)) {
  3615. /* Rotate this_sack to the first one. */
  3616. for (; this_sack > 0; this_sack--, sp--)
  3617. swap(*sp, *(sp - 1));
  3618. if (cur_sacks > 1)
  3619. tcp_sack_maybe_coalesce(tp);
  3620. return;
  3621. }
  3622. }
  3623. /* Could not find an adjacent existing SACK, build a new one,
  3624. * put it at the front, and shift everyone else down. We
  3625. * always know there is at least one SACK present already here.
  3626. *
  3627. * If the sack array is full, forget about the last one.
  3628. */
  3629. if (this_sack >= TCP_NUM_SACKS) {
  3630. this_sack--;
  3631. tp->rx_opt.num_sacks--;
  3632. sp--;
  3633. }
  3634. for (; this_sack > 0; this_sack--, sp--)
  3635. *sp = *(sp - 1);
  3636. new_sack:
  3637. /* Build the new head SACK, and we're done. */
  3638. sp->start_seq = seq;
  3639. sp->end_seq = end_seq;
  3640. tp->rx_opt.num_sacks++;
  3641. }
  3642. /* RCV.NXT advances, some SACKs should be eaten. */
  3643. static void tcp_sack_remove(struct tcp_sock *tp)
  3644. {
  3645. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3646. int num_sacks = tp->rx_opt.num_sacks;
  3647. int this_sack;
  3648. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3649. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3650. tp->rx_opt.num_sacks = 0;
  3651. return;
  3652. }
  3653. for (this_sack = 0; this_sack < num_sacks;) {
  3654. /* Check if the start of the sack is covered by RCV.NXT. */
  3655. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3656. int i;
  3657. /* RCV.NXT must cover all the block! */
  3658. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3659. /* Zap this SACK, by moving forward any other SACKS. */
  3660. for (i = this_sack+1; i < num_sacks; i++)
  3661. tp->selective_acks[i-1] = tp->selective_acks[i];
  3662. num_sacks--;
  3663. continue;
  3664. }
  3665. this_sack++;
  3666. sp++;
  3667. }
  3668. tp->rx_opt.num_sacks = num_sacks;
  3669. }
  3670. /**
  3671. * tcp_try_coalesce - try to merge skb to prior one
  3672. * @sk: socket
  3673. * @dest: destination queue
  3674. * @to: prior buffer
  3675. * @from: buffer to add in queue
  3676. * @fragstolen: pointer to boolean
  3677. *
  3678. * Before queueing skb @from after @to, try to merge them
  3679. * to reduce overall memory use and queue lengths, if cost is small.
  3680. * Packets in ofo or receive queues can stay a long time.
  3681. * Better try to coalesce them right now to avoid future collapses.
  3682. * Returns true if caller should free @from instead of queueing it
  3683. */
  3684. static bool tcp_try_coalesce(struct sock *sk,
  3685. struct sk_buff *to,
  3686. struct sk_buff *from,
  3687. bool *fragstolen)
  3688. {
  3689. int delta;
  3690. *fragstolen = false;
  3691. /* Its possible this segment overlaps with prior segment in queue */
  3692. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3693. return false;
  3694. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3695. return false;
  3696. atomic_add(delta, &sk->sk_rmem_alloc);
  3697. sk_mem_charge(sk, delta);
  3698. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3699. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3700. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3701. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3702. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3703. TCP_SKB_CB(to)->has_rxtstamp = true;
  3704. to->tstamp = from->tstamp;
  3705. }
  3706. return true;
  3707. }
  3708. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3709. {
  3710. sk_drops_add(sk, skb);
  3711. __kfree_skb(skb);
  3712. }
  3713. /* This one checks to see if we can put data from the
  3714. * out_of_order queue into the receive_queue.
  3715. */
  3716. static void tcp_ofo_queue(struct sock *sk)
  3717. {
  3718. struct tcp_sock *tp = tcp_sk(sk);
  3719. __u32 dsack_high = tp->rcv_nxt;
  3720. bool fin, fragstolen, eaten;
  3721. struct sk_buff *skb, *tail;
  3722. struct rb_node *p;
  3723. p = rb_first(&tp->out_of_order_queue);
  3724. while (p) {
  3725. skb = rb_to_skb(p);
  3726. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3727. break;
  3728. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3729. __u32 dsack = dsack_high;
  3730. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3731. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3732. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3733. }
  3734. p = rb_next(p);
  3735. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3736. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3737. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3738. tcp_drop(sk, skb);
  3739. continue;
  3740. }
  3741. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3742. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3743. TCP_SKB_CB(skb)->end_seq);
  3744. tail = skb_peek_tail(&sk->sk_receive_queue);
  3745. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3746. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3747. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3748. if (!eaten)
  3749. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3750. else
  3751. kfree_skb_partial(skb, fragstolen);
  3752. if (unlikely(fin)) {
  3753. tcp_fin(sk);
  3754. /* tcp_fin() purges tp->out_of_order_queue,
  3755. * so we must end this loop right now.
  3756. */
  3757. break;
  3758. }
  3759. }
  3760. }
  3761. static bool tcp_prune_ofo_queue(struct sock *sk);
  3762. static int tcp_prune_queue(struct sock *sk);
  3763. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3764. unsigned int size)
  3765. {
  3766. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3767. !sk_rmem_schedule(sk, skb, size)) {
  3768. if (tcp_prune_queue(sk) < 0)
  3769. return -1;
  3770. while (!sk_rmem_schedule(sk, skb, size)) {
  3771. if (!tcp_prune_ofo_queue(sk))
  3772. return -1;
  3773. }
  3774. }
  3775. return 0;
  3776. }
  3777. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3778. {
  3779. struct tcp_sock *tp = tcp_sk(sk);
  3780. struct rb_node **p, *parent;
  3781. struct sk_buff *skb1;
  3782. u32 seq, end_seq;
  3783. bool fragstolen;
  3784. tcp_ecn_check_ce(tp, skb);
  3785. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3786. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3787. tcp_drop(sk, skb);
  3788. return;
  3789. }
  3790. /* Disable header prediction. */
  3791. tp->pred_flags = 0;
  3792. inet_csk_schedule_ack(sk);
  3793. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3794. seq = TCP_SKB_CB(skb)->seq;
  3795. end_seq = TCP_SKB_CB(skb)->end_seq;
  3796. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3797. tp->rcv_nxt, seq, end_seq);
  3798. p = &tp->out_of_order_queue.rb_node;
  3799. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3800. /* Initial out of order segment, build 1 SACK. */
  3801. if (tcp_is_sack(tp)) {
  3802. tp->rx_opt.num_sacks = 1;
  3803. tp->selective_acks[0].start_seq = seq;
  3804. tp->selective_acks[0].end_seq = end_seq;
  3805. }
  3806. rb_link_node(&skb->rbnode, NULL, p);
  3807. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3808. tp->ooo_last_skb = skb;
  3809. goto end;
  3810. }
  3811. /* In the typical case, we are adding an skb to the end of the list.
  3812. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3813. */
  3814. if (tcp_try_coalesce(sk, tp->ooo_last_skb,
  3815. skb, &fragstolen)) {
  3816. coalesce_done:
  3817. tcp_grow_window(sk, skb);
  3818. kfree_skb_partial(skb, fragstolen);
  3819. skb = NULL;
  3820. goto add_sack;
  3821. }
  3822. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3823. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3824. parent = &tp->ooo_last_skb->rbnode;
  3825. p = &parent->rb_right;
  3826. goto insert;
  3827. }
  3828. /* Find place to insert this segment. Handle overlaps on the way. */
  3829. parent = NULL;
  3830. while (*p) {
  3831. parent = *p;
  3832. skb1 = rb_to_skb(parent);
  3833. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3834. p = &parent->rb_left;
  3835. continue;
  3836. }
  3837. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3838. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3839. /* All the bits are present. Drop. */
  3840. NET_INC_STATS(sock_net(sk),
  3841. LINUX_MIB_TCPOFOMERGE);
  3842. __kfree_skb(skb);
  3843. skb = NULL;
  3844. tcp_dsack_set(sk, seq, end_seq);
  3845. goto add_sack;
  3846. }
  3847. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3848. /* Partial overlap. */
  3849. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3850. } else {
  3851. /* skb's seq == skb1's seq and skb covers skb1.
  3852. * Replace skb1 with skb.
  3853. */
  3854. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3855. &tp->out_of_order_queue);
  3856. tcp_dsack_extend(sk,
  3857. TCP_SKB_CB(skb1)->seq,
  3858. TCP_SKB_CB(skb1)->end_seq);
  3859. NET_INC_STATS(sock_net(sk),
  3860. LINUX_MIB_TCPOFOMERGE);
  3861. __kfree_skb(skb1);
  3862. goto merge_right;
  3863. }
  3864. } else if (tcp_try_coalesce(sk, skb1,
  3865. skb, &fragstolen)) {
  3866. goto coalesce_done;
  3867. }
  3868. p = &parent->rb_right;
  3869. }
  3870. insert:
  3871. /* Insert segment into RB tree. */
  3872. rb_link_node(&skb->rbnode, parent, p);
  3873. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3874. merge_right:
  3875. /* Remove other segments covered by skb. */
  3876. while ((skb1 = skb_rb_next(skb)) != NULL) {
  3877. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3878. break;
  3879. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3880. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3881. end_seq);
  3882. break;
  3883. }
  3884. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3885. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3886. TCP_SKB_CB(skb1)->end_seq);
  3887. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3888. tcp_drop(sk, skb1);
  3889. }
  3890. /* If there is no skb after us, we are the last_skb ! */
  3891. if (!skb1)
  3892. tp->ooo_last_skb = skb;
  3893. add_sack:
  3894. if (tcp_is_sack(tp))
  3895. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3896. end:
  3897. if (skb) {
  3898. tcp_grow_window(sk, skb);
  3899. skb_condense(skb);
  3900. skb_set_owner_r(skb, sk);
  3901. }
  3902. }
  3903. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3904. bool *fragstolen)
  3905. {
  3906. int eaten;
  3907. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3908. __skb_pull(skb, hdrlen);
  3909. eaten = (tail &&
  3910. tcp_try_coalesce(sk, tail,
  3911. skb, fragstolen)) ? 1 : 0;
  3912. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3913. if (!eaten) {
  3914. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3915. skb_set_owner_r(skb, sk);
  3916. }
  3917. return eaten;
  3918. }
  3919. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3920. {
  3921. struct sk_buff *skb;
  3922. int err = -ENOMEM;
  3923. int data_len = 0;
  3924. bool fragstolen;
  3925. if (size == 0)
  3926. return 0;
  3927. if (size > PAGE_SIZE) {
  3928. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3929. data_len = npages << PAGE_SHIFT;
  3930. size = data_len + (size & ~PAGE_MASK);
  3931. }
  3932. skb = alloc_skb_with_frags(size - data_len, data_len,
  3933. PAGE_ALLOC_COSTLY_ORDER,
  3934. &err, sk->sk_allocation);
  3935. if (!skb)
  3936. goto err;
  3937. skb_put(skb, size - data_len);
  3938. skb->data_len = data_len;
  3939. skb->len = size;
  3940. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3941. goto err_free;
  3942. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3943. if (err)
  3944. goto err_free;
  3945. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3946. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3947. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3948. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3949. WARN_ON_ONCE(fragstolen); /* should not happen */
  3950. __kfree_skb(skb);
  3951. }
  3952. return size;
  3953. err_free:
  3954. kfree_skb(skb);
  3955. err:
  3956. return err;
  3957. }
  3958. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3959. {
  3960. struct tcp_sock *tp = tcp_sk(sk);
  3961. bool fragstolen;
  3962. int eaten;
  3963. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3964. __kfree_skb(skb);
  3965. return;
  3966. }
  3967. skb_dst_drop(skb);
  3968. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3969. tcp_ecn_accept_cwr(tp, skb);
  3970. tp->rx_opt.dsack = 0;
  3971. /* Queue data for delivery to the user.
  3972. * Packets in sequence go to the receive queue.
  3973. * Out of sequence packets to the out_of_order_queue.
  3974. */
  3975. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3976. if (tcp_receive_window(tp) == 0)
  3977. goto out_of_window;
  3978. /* Ok. In sequence. In window. */
  3979. queue_and_out:
  3980. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  3981. sk_forced_mem_schedule(sk, skb->truesize);
  3982. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3983. goto drop;
  3984. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3985. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3986. if (skb->len)
  3987. tcp_event_data_recv(sk, skb);
  3988. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3989. tcp_fin(sk);
  3990. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3991. tcp_ofo_queue(sk);
  3992. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3993. * gap in queue is filled.
  3994. */
  3995. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  3996. inet_csk(sk)->icsk_ack.pingpong = 0;
  3997. }
  3998. if (tp->rx_opt.num_sacks)
  3999. tcp_sack_remove(tp);
  4000. tcp_fast_path_check(sk);
  4001. if (eaten > 0)
  4002. kfree_skb_partial(skb, fragstolen);
  4003. if (!sock_flag(sk, SOCK_DEAD))
  4004. sk->sk_data_ready(sk);
  4005. return;
  4006. }
  4007. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4008. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4009. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4010. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4011. out_of_window:
  4012. tcp_enter_quickack_mode(sk);
  4013. inet_csk_schedule_ack(sk);
  4014. drop:
  4015. tcp_drop(sk, skb);
  4016. return;
  4017. }
  4018. /* Out of window. F.e. zero window probe. */
  4019. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4020. goto out_of_window;
  4021. tcp_enter_quickack_mode(sk);
  4022. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4023. /* Partial packet, seq < rcv_next < end_seq */
  4024. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4025. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4026. TCP_SKB_CB(skb)->end_seq);
  4027. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4028. /* If window is closed, drop tail of packet. But after
  4029. * remembering D-SACK for its head made in previous line.
  4030. */
  4031. if (!tcp_receive_window(tp))
  4032. goto out_of_window;
  4033. goto queue_and_out;
  4034. }
  4035. tcp_data_queue_ofo(sk, skb);
  4036. }
  4037. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4038. {
  4039. if (list)
  4040. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4041. return skb_rb_next(skb);
  4042. }
  4043. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4044. struct sk_buff_head *list,
  4045. struct rb_root *root)
  4046. {
  4047. struct sk_buff *next = tcp_skb_next(skb, list);
  4048. if (list)
  4049. __skb_unlink(skb, list);
  4050. else
  4051. rb_erase(&skb->rbnode, root);
  4052. __kfree_skb(skb);
  4053. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4054. return next;
  4055. }
  4056. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4057. void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4058. {
  4059. struct rb_node **p = &root->rb_node;
  4060. struct rb_node *parent = NULL;
  4061. struct sk_buff *skb1;
  4062. while (*p) {
  4063. parent = *p;
  4064. skb1 = rb_to_skb(parent);
  4065. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4066. p = &parent->rb_left;
  4067. else
  4068. p = &parent->rb_right;
  4069. }
  4070. rb_link_node(&skb->rbnode, parent, p);
  4071. rb_insert_color(&skb->rbnode, root);
  4072. }
  4073. /* Collapse contiguous sequence of skbs head..tail with
  4074. * sequence numbers start..end.
  4075. *
  4076. * If tail is NULL, this means until the end of the queue.
  4077. *
  4078. * Segments with FIN/SYN are not collapsed (only because this
  4079. * simplifies code)
  4080. */
  4081. static void
  4082. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4083. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4084. {
  4085. struct sk_buff *skb = head, *n;
  4086. struct sk_buff_head tmp;
  4087. bool end_of_skbs;
  4088. /* First, check that queue is collapsible and find
  4089. * the point where collapsing can be useful.
  4090. */
  4091. restart:
  4092. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4093. n = tcp_skb_next(skb, list);
  4094. /* No new bits? It is possible on ofo queue. */
  4095. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4096. skb = tcp_collapse_one(sk, skb, list, root);
  4097. if (!skb)
  4098. break;
  4099. goto restart;
  4100. }
  4101. /* The first skb to collapse is:
  4102. * - not SYN/FIN and
  4103. * - bloated or contains data before "start" or
  4104. * overlaps to the next one.
  4105. */
  4106. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4107. (tcp_win_from_space(sk, skb->truesize) > skb->len ||
  4108. before(TCP_SKB_CB(skb)->seq, start))) {
  4109. end_of_skbs = false;
  4110. break;
  4111. }
  4112. if (n && n != tail &&
  4113. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4114. end_of_skbs = false;
  4115. break;
  4116. }
  4117. /* Decided to skip this, advance start seq. */
  4118. start = TCP_SKB_CB(skb)->end_seq;
  4119. }
  4120. if (end_of_skbs ||
  4121. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4122. return;
  4123. __skb_queue_head_init(&tmp);
  4124. while (before(start, end)) {
  4125. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4126. struct sk_buff *nskb;
  4127. nskb = alloc_skb(copy, GFP_ATOMIC);
  4128. if (!nskb)
  4129. break;
  4130. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4131. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4132. if (list)
  4133. __skb_queue_before(list, skb, nskb);
  4134. else
  4135. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4136. skb_set_owner_r(nskb, sk);
  4137. /* Copy data, releasing collapsed skbs. */
  4138. while (copy > 0) {
  4139. int offset = start - TCP_SKB_CB(skb)->seq;
  4140. int size = TCP_SKB_CB(skb)->end_seq - start;
  4141. BUG_ON(offset < 0);
  4142. if (size > 0) {
  4143. size = min(copy, size);
  4144. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4145. BUG();
  4146. TCP_SKB_CB(nskb)->end_seq += size;
  4147. copy -= size;
  4148. start += size;
  4149. }
  4150. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4151. skb = tcp_collapse_one(sk, skb, list, root);
  4152. if (!skb ||
  4153. skb == tail ||
  4154. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4155. goto end;
  4156. }
  4157. }
  4158. }
  4159. end:
  4160. skb_queue_walk_safe(&tmp, skb, n)
  4161. tcp_rbtree_insert(root, skb);
  4162. }
  4163. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4164. * and tcp_collapse() them until all the queue is collapsed.
  4165. */
  4166. static void tcp_collapse_ofo_queue(struct sock *sk)
  4167. {
  4168. struct tcp_sock *tp = tcp_sk(sk);
  4169. struct sk_buff *skb, *head;
  4170. u32 start, end;
  4171. skb = skb_rb_first(&tp->out_of_order_queue);
  4172. new_range:
  4173. if (!skb) {
  4174. tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
  4175. return;
  4176. }
  4177. start = TCP_SKB_CB(skb)->seq;
  4178. end = TCP_SKB_CB(skb)->end_seq;
  4179. for (head = skb;;) {
  4180. skb = skb_rb_next(skb);
  4181. /* Range is terminated when we see a gap or when
  4182. * we are at the queue end.
  4183. */
  4184. if (!skb ||
  4185. after(TCP_SKB_CB(skb)->seq, end) ||
  4186. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4187. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4188. head, skb, start, end);
  4189. goto new_range;
  4190. }
  4191. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4192. start = TCP_SKB_CB(skb)->seq;
  4193. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4194. end = TCP_SKB_CB(skb)->end_seq;
  4195. }
  4196. }
  4197. /*
  4198. * Clean the out-of-order queue to make room.
  4199. * We drop high sequences packets to :
  4200. * 1) Let a chance for holes to be filled.
  4201. * 2) not add too big latencies if thousands of packets sit there.
  4202. * (But if application shrinks SO_RCVBUF, we could still end up
  4203. * freeing whole queue here)
  4204. *
  4205. * Return true if queue has shrunk.
  4206. */
  4207. static bool tcp_prune_ofo_queue(struct sock *sk)
  4208. {
  4209. struct tcp_sock *tp = tcp_sk(sk);
  4210. struct rb_node *node, *prev;
  4211. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4212. return false;
  4213. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4214. node = &tp->ooo_last_skb->rbnode;
  4215. do {
  4216. prev = rb_prev(node);
  4217. rb_erase(node, &tp->out_of_order_queue);
  4218. tcp_drop(sk, rb_to_skb(node));
  4219. sk_mem_reclaim(sk);
  4220. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4221. !tcp_under_memory_pressure(sk))
  4222. break;
  4223. node = prev;
  4224. } while (node);
  4225. tp->ooo_last_skb = rb_to_skb(prev);
  4226. /* Reset SACK state. A conforming SACK implementation will
  4227. * do the same at a timeout based retransmit. When a connection
  4228. * is in a sad state like this, we care only about integrity
  4229. * of the connection not performance.
  4230. */
  4231. if (tp->rx_opt.sack_ok)
  4232. tcp_sack_reset(&tp->rx_opt);
  4233. return true;
  4234. }
  4235. /* Reduce allocated memory if we can, trying to get
  4236. * the socket within its memory limits again.
  4237. *
  4238. * Return less than zero if we should start dropping frames
  4239. * until the socket owning process reads some of the data
  4240. * to stabilize the situation.
  4241. */
  4242. static int tcp_prune_queue(struct sock *sk)
  4243. {
  4244. struct tcp_sock *tp = tcp_sk(sk);
  4245. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4246. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4247. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4248. tcp_clamp_window(sk);
  4249. else if (tcp_under_memory_pressure(sk))
  4250. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4251. tcp_collapse_ofo_queue(sk);
  4252. if (!skb_queue_empty(&sk->sk_receive_queue))
  4253. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4254. skb_peek(&sk->sk_receive_queue),
  4255. NULL,
  4256. tp->copied_seq, tp->rcv_nxt);
  4257. sk_mem_reclaim(sk);
  4258. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4259. return 0;
  4260. /* Collapsing did not help, destructive actions follow.
  4261. * This must not ever occur. */
  4262. tcp_prune_ofo_queue(sk);
  4263. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4264. return 0;
  4265. /* If we are really being abused, tell the caller to silently
  4266. * drop receive data on the floor. It will get retransmitted
  4267. * and hopefully then we'll have sufficient space.
  4268. */
  4269. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4270. /* Massive buffer overcommit. */
  4271. tp->pred_flags = 0;
  4272. return -1;
  4273. }
  4274. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4275. {
  4276. const struct tcp_sock *tp = tcp_sk(sk);
  4277. /* If the user specified a specific send buffer setting, do
  4278. * not modify it.
  4279. */
  4280. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4281. return false;
  4282. /* If we are under global TCP memory pressure, do not expand. */
  4283. if (tcp_under_memory_pressure(sk))
  4284. return false;
  4285. /* If we are under soft global TCP memory pressure, do not expand. */
  4286. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4287. return false;
  4288. /* If we filled the congestion window, do not expand. */
  4289. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4290. return false;
  4291. return true;
  4292. }
  4293. /* When incoming ACK allowed to free some skb from write_queue,
  4294. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4295. * on the exit from tcp input handler.
  4296. *
  4297. * PROBLEM: sndbuf expansion does not work well with largesend.
  4298. */
  4299. static void tcp_new_space(struct sock *sk)
  4300. {
  4301. struct tcp_sock *tp = tcp_sk(sk);
  4302. if (tcp_should_expand_sndbuf(sk)) {
  4303. tcp_sndbuf_expand(sk);
  4304. tp->snd_cwnd_stamp = tcp_jiffies32;
  4305. }
  4306. sk->sk_write_space(sk);
  4307. }
  4308. static void tcp_check_space(struct sock *sk)
  4309. {
  4310. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4311. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4312. /* pairs with tcp_poll() */
  4313. smp_mb();
  4314. if (sk->sk_socket &&
  4315. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4316. tcp_new_space(sk);
  4317. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4318. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4319. }
  4320. }
  4321. }
  4322. static inline void tcp_data_snd_check(struct sock *sk)
  4323. {
  4324. tcp_push_pending_frames(sk);
  4325. tcp_check_space(sk);
  4326. }
  4327. /*
  4328. * Check if sending an ack is needed.
  4329. */
  4330. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4331. {
  4332. struct tcp_sock *tp = tcp_sk(sk);
  4333. /* More than one full frame received... */
  4334. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4335. /* ... and right edge of window advances far enough.
  4336. * (tcp_recvmsg() will send ACK otherwise). Or...
  4337. */
  4338. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4339. /* We ACK each frame or... */
  4340. tcp_in_quickack_mode(sk) ||
  4341. /* We have out of order data. */
  4342. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4343. /* Then ack it now */
  4344. tcp_send_ack(sk);
  4345. } else {
  4346. /* Else, send delayed ack. */
  4347. tcp_send_delayed_ack(sk);
  4348. }
  4349. }
  4350. static inline void tcp_ack_snd_check(struct sock *sk)
  4351. {
  4352. if (!inet_csk_ack_scheduled(sk)) {
  4353. /* We sent a data segment already. */
  4354. return;
  4355. }
  4356. __tcp_ack_snd_check(sk, 1);
  4357. }
  4358. /*
  4359. * This routine is only called when we have urgent data
  4360. * signaled. Its the 'slow' part of tcp_urg. It could be
  4361. * moved inline now as tcp_urg is only called from one
  4362. * place. We handle URGent data wrong. We have to - as
  4363. * BSD still doesn't use the correction from RFC961.
  4364. * For 1003.1g we should support a new option TCP_STDURG to permit
  4365. * either form (or just set the sysctl tcp_stdurg).
  4366. */
  4367. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4368. {
  4369. struct tcp_sock *tp = tcp_sk(sk);
  4370. u32 ptr = ntohs(th->urg_ptr);
  4371. if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
  4372. ptr--;
  4373. ptr += ntohl(th->seq);
  4374. /* Ignore urgent data that we've already seen and read. */
  4375. if (after(tp->copied_seq, ptr))
  4376. return;
  4377. /* Do not replay urg ptr.
  4378. *
  4379. * NOTE: interesting situation not covered by specs.
  4380. * Misbehaving sender may send urg ptr, pointing to segment,
  4381. * which we already have in ofo queue. We are not able to fetch
  4382. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4383. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4384. * situations. But it is worth to think about possibility of some
  4385. * DoSes using some hypothetical application level deadlock.
  4386. */
  4387. if (before(ptr, tp->rcv_nxt))
  4388. return;
  4389. /* Do we already have a newer (or duplicate) urgent pointer? */
  4390. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4391. return;
  4392. /* Tell the world about our new urgent pointer. */
  4393. sk_send_sigurg(sk);
  4394. /* We may be adding urgent data when the last byte read was
  4395. * urgent. To do this requires some care. We cannot just ignore
  4396. * tp->copied_seq since we would read the last urgent byte again
  4397. * as data, nor can we alter copied_seq until this data arrives
  4398. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4399. *
  4400. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4401. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4402. * and expect that both A and B disappear from stream. This is _wrong_.
  4403. * Though this happens in BSD with high probability, this is occasional.
  4404. * Any application relying on this is buggy. Note also, that fix "works"
  4405. * only in this artificial test. Insert some normal data between A and B and we will
  4406. * decline of BSD again. Verdict: it is better to remove to trap
  4407. * buggy users.
  4408. */
  4409. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4410. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4411. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4412. tp->copied_seq++;
  4413. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4414. __skb_unlink(skb, &sk->sk_receive_queue);
  4415. __kfree_skb(skb);
  4416. }
  4417. }
  4418. tp->urg_data = TCP_URG_NOTYET;
  4419. tp->urg_seq = ptr;
  4420. /* Disable header prediction. */
  4421. tp->pred_flags = 0;
  4422. }
  4423. /* This is the 'fast' part of urgent handling. */
  4424. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4425. {
  4426. struct tcp_sock *tp = tcp_sk(sk);
  4427. /* Check if we get a new urgent pointer - normally not. */
  4428. if (th->urg)
  4429. tcp_check_urg(sk, th);
  4430. /* Do we wait for any urgent data? - normally not... */
  4431. if (tp->urg_data == TCP_URG_NOTYET) {
  4432. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4433. th->syn;
  4434. /* Is the urgent pointer pointing into this packet? */
  4435. if (ptr < skb->len) {
  4436. u8 tmp;
  4437. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4438. BUG();
  4439. tp->urg_data = TCP_URG_VALID | tmp;
  4440. if (!sock_flag(sk, SOCK_DEAD))
  4441. sk->sk_data_ready(sk);
  4442. }
  4443. }
  4444. }
  4445. /* Accept RST for rcv_nxt - 1 after a FIN.
  4446. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4447. * FIN is sent followed by a RST packet. The RST is sent with the same
  4448. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4449. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4450. * ACKs on the closed socket. In addition middleboxes can drop either the
  4451. * challenge ACK or a subsequent RST.
  4452. */
  4453. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4454. {
  4455. struct tcp_sock *tp = tcp_sk(sk);
  4456. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4457. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4458. TCPF_CLOSING));
  4459. }
  4460. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4461. * play significant role here.
  4462. */
  4463. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4464. const struct tcphdr *th, int syn_inerr)
  4465. {
  4466. struct tcp_sock *tp = tcp_sk(sk);
  4467. bool rst_seq_match = false;
  4468. /* RFC1323: H1. Apply PAWS check first. */
  4469. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4470. tp->rx_opt.saw_tstamp &&
  4471. tcp_paws_discard(sk, skb)) {
  4472. if (!th->rst) {
  4473. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4474. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4475. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4476. &tp->last_oow_ack_time))
  4477. tcp_send_dupack(sk, skb);
  4478. goto discard;
  4479. }
  4480. /* Reset is accepted even if it did not pass PAWS. */
  4481. }
  4482. /* Step 1: check sequence number */
  4483. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4484. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4485. * (RST) segments are validated by checking their SEQ-fields."
  4486. * And page 69: "If an incoming segment is not acceptable,
  4487. * an acknowledgment should be sent in reply (unless the RST
  4488. * bit is set, if so drop the segment and return)".
  4489. */
  4490. if (!th->rst) {
  4491. if (th->syn)
  4492. goto syn_challenge;
  4493. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4494. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4495. &tp->last_oow_ack_time))
  4496. tcp_send_dupack(sk, skb);
  4497. } else if (tcp_reset_check(sk, skb)) {
  4498. tcp_reset(sk);
  4499. }
  4500. goto discard;
  4501. }
  4502. /* Step 2: check RST bit */
  4503. if (th->rst) {
  4504. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4505. * FIN and SACK too if available):
  4506. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4507. * the right-most SACK block,
  4508. * then
  4509. * RESET the connection
  4510. * else
  4511. * Send a challenge ACK
  4512. */
  4513. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4514. tcp_reset_check(sk, skb)) {
  4515. rst_seq_match = true;
  4516. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4517. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4518. int max_sack = sp[0].end_seq;
  4519. int this_sack;
  4520. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4521. ++this_sack) {
  4522. max_sack = after(sp[this_sack].end_seq,
  4523. max_sack) ?
  4524. sp[this_sack].end_seq : max_sack;
  4525. }
  4526. if (TCP_SKB_CB(skb)->seq == max_sack)
  4527. rst_seq_match = true;
  4528. }
  4529. if (rst_seq_match)
  4530. tcp_reset(sk);
  4531. else {
  4532. /* Disable TFO if RST is out-of-order
  4533. * and no data has been received
  4534. * for current active TFO socket
  4535. */
  4536. if (tp->syn_fastopen && !tp->data_segs_in &&
  4537. sk->sk_state == TCP_ESTABLISHED)
  4538. tcp_fastopen_active_disable(sk);
  4539. tcp_send_challenge_ack(sk, skb);
  4540. }
  4541. goto discard;
  4542. }
  4543. /* step 3: check security and precedence [ignored] */
  4544. /* step 4: Check for a SYN
  4545. * RFC 5961 4.2 : Send a challenge ack
  4546. */
  4547. if (th->syn) {
  4548. syn_challenge:
  4549. if (syn_inerr)
  4550. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4551. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4552. tcp_send_challenge_ack(sk, skb);
  4553. goto discard;
  4554. }
  4555. return true;
  4556. discard:
  4557. tcp_drop(sk, skb);
  4558. return false;
  4559. }
  4560. /*
  4561. * TCP receive function for the ESTABLISHED state.
  4562. *
  4563. * It is split into a fast path and a slow path. The fast path is
  4564. * disabled when:
  4565. * - A zero window was announced from us - zero window probing
  4566. * is only handled properly in the slow path.
  4567. * - Out of order segments arrived.
  4568. * - Urgent data is expected.
  4569. * - There is no buffer space left
  4570. * - Unexpected TCP flags/window values/header lengths are received
  4571. * (detected by checking the TCP header against pred_flags)
  4572. * - Data is sent in both directions. Fast path only supports pure senders
  4573. * or pure receivers (this means either the sequence number or the ack
  4574. * value must stay constant)
  4575. * - Unexpected TCP option.
  4576. *
  4577. * When these conditions are not satisfied it drops into a standard
  4578. * receive procedure patterned after RFC793 to handle all cases.
  4579. * The first three cases are guaranteed by proper pred_flags setting,
  4580. * the rest is checked inline. Fast processing is turned on in
  4581. * tcp_data_queue when everything is OK.
  4582. */
  4583. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4584. const struct tcphdr *th)
  4585. {
  4586. unsigned int len = skb->len;
  4587. struct tcp_sock *tp = tcp_sk(sk);
  4588. tcp_mstamp_refresh(tp);
  4589. if (unlikely(!sk->sk_rx_dst))
  4590. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4591. /*
  4592. * Header prediction.
  4593. * The code loosely follows the one in the famous
  4594. * "30 instruction TCP receive" Van Jacobson mail.
  4595. *
  4596. * Van's trick is to deposit buffers into socket queue
  4597. * on a device interrupt, to call tcp_recv function
  4598. * on the receive process context and checksum and copy
  4599. * the buffer to user space. smart...
  4600. *
  4601. * Our current scheme is not silly either but we take the
  4602. * extra cost of the net_bh soft interrupt processing...
  4603. * We do checksum and copy also but from device to kernel.
  4604. */
  4605. tp->rx_opt.saw_tstamp = 0;
  4606. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4607. * if header_prediction is to be made
  4608. * 'S' will always be tp->tcp_header_len >> 2
  4609. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4610. * turn it off (when there are holes in the receive
  4611. * space for instance)
  4612. * PSH flag is ignored.
  4613. */
  4614. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4615. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4616. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4617. int tcp_header_len = tp->tcp_header_len;
  4618. /* Timestamp header prediction: tcp_header_len
  4619. * is automatically equal to th->doff*4 due to pred_flags
  4620. * match.
  4621. */
  4622. /* Check timestamp */
  4623. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4624. /* No? Slow path! */
  4625. if (!tcp_parse_aligned_timestamp(tp, th))
  4626. goto slow_path;
  4627. /* If PAWS failed, check it more carefully in slow path */
  4628. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4629. goto slow_path;
  4630. /* DO NOT update ts_recent here, if checksum fails
  4631. * and timestamp was corrupted part, it will result
  4632. * in a hung connection since we will drop all
  4633. * future packets due to the PAWS test.
  4634. */
  4635. }
  4636. if (len <= tcp_header_len) {
  4637. /* Bulk data transfer: sender */
  4638. if (len == tcp_header_len) {
  4639. /* Predicted packet is in window by definition.
  4640. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4641. * Hence, check seq<=rcv_wup reduces to:
  4642. */
  4643. if (tcp_header_len ==
  4644. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4645. tp->rcv_nxt == tp->rcv_wup)
  4646. tcp_store_ts_recent(tp);
  4647. /* We know that such packets are checksummed
  4648. * on entry.
  4649. */
  4650. tcp_ack(sk, skb, 0);
  4651. __kfree_skb(skb);
  4652. tcp_data_snd_check(sk);
  4653. return;
  4654. } else { /* Header too small */
  4655. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4656. goto discard;
  4657. }
  4658. } else {
  4659. int eaten = 0;
  4660. bool fragstolen = false;
  4661. if (tcp_checksum_complete(skb))
  4662. goto csum_error;
  4663. if ((int)skb->truesize > sk->sk_forward_alloc)
  4664. goto step5;
  4665. /* Predicted packet is in window by definition.
  4666. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4667. * Hence, check seq<=rcv_wup reduces to:
  4668. */
  4669. if (tcp_header_len ==
  4670. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4671. tp->rcv_nxt == tp->rcv_wup)
  4672. tcp_store_ts_recent(tp);
  4673. tcp_rcv_rtt_measure_ts(sk, skb);
  4674. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4675. /* Bulk data transfer: receiver */
  4676. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4677. &fragstolen);
  4678. tcp_event_data_recv(sk, skb);
  4679. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4680. /* Well, only one small jumplet in fast path... */
  4681. tcp_ack(sk, skb, FLAG_DATA);
  4682. tcp_data_snd_check(sk);
  4683. if (!inet_csk_ack_scheduled(sk))
  4684. goto no_ack;
  4685. }
  4686. __tcp_ack_snd_check(sk, 0);
  4687. no_ack:
  4688. if (eaten)
  4689. kfree_skb_partial(skb, fragstolen);
  4690. sk->sk_data_ready(sk);
  4691. return;
  4692. }
  4693. }
  4694. slow_path:
  4695. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4696. goto csum_error;
  4697. if (!th->ack && !th->rst && !th->syn)
  4698. goto discard;
  4699. /*
  4700. * Standard slow path.
  4701. */
  4702. if (!tcp_validate_incoming(sk, skb, th, 1))
  4703. return;
  4704. step5:
  4705. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4706. goto discard;
  4707. tcp_rcv_rtt_measure_ts(sk, skb);
  4708. /* Process urgent data. */
  4709. tcp_urg(sk, skb, th);
  4710. /* step 7: process the segment text */
  4711. tcp_data_queue(sk, skb);
  4712. tcp_data_snd_check(sk);
  4713. tcp_ack_snd_check(sk);
  4714. return;
  4715. csum_error:
  4716. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4717. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4718. discard:
  4719. tcp_drop(sk, skb);
  4720. }
  4721. EXPORT_SYMBOL(tcp_rcv_established);
  4722. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4723. {
  4724. struct tcp_sock *tp = tcp_sk(sk);
  4725. struct inet_connection_sock *icsk = inet_csk(sk);
  4726. tcp_set_state(sk, TCP_ESTABLISHED);
  4727. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4728. if (skb) {
  4729. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4730. security_inet_conn_established(sk, skb);
  4731. }
  4732. tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4733. /* Prevent spurious tcp_cwnd_restart() on first data
  4734. * packet.
  4735. */
  4736. tp->lsndtime = tcp_jiffies32;
  4737. if (sock_flag(sk, SOCK_KEEPOPEN))
  4738. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4739. if (!tp->rx_opt.snd_wscale)
  4740. __tcp_fast_path_on(tp, tp->snd_wnd);
  4741. else
  4742. tp->pred_flags = 0;
  4743. }
  4744. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4745. struct tcp_fastopen_cookie *cookie)
  4746. {
  4747. struct tcp_sock *tp = tcp_sk(sk);
  4748. struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
  4749. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4750. bool syn_drop = false;
  4751. if (mss == tp->rx_opt.user_mss) {
  4752. struct tcp_options_received opt;
  4753. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4754. tcp_clear_options(&opt);
  4755. opt.user_mss = opt.mss_clamp = 0;
  4756. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4757. mss = opt.mss_clamp;
  4758. }
  4759. if (!tp->syn_fastopen) {
  4760. /* Ignore an unsolicited cookie */
  4761. cookie->len = -1;
  4762. } else if (tp->total_retrans) {
  4763. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4764. * acknowledges data. Presumably the remote received only
  4765. * the retransmitted (regular) SYNs: either the original
  4766. * SYN-data or the corresponding SYN-ACK was dropped.
  4767. */
  4768. syn_drop = (cookie->len < 0 && data);
  4769. } else if (cookie->len < 0 && !tp->syn_data) {
  4770. /* We requested a cookie but didn't get it. If we did not use
  4771. * the (old) exp opt format then try so next time (try_exp=1).
  4772. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4773. */
  4774. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4775. }
  4776. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4777. if (data) { /* Retransmit unacked data in SYN */
  4778. skb_rbtree_walk_from(data) {
  4779. if (__tcp_retransmit_skb(sk, data, 1))
  4780. break;
  4781. }
  4782. tcp_rearm_rto(sk);
  4783. NET_INC_STATS(sock_net(sk),
  4784. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4785. return true;
  4786. }
  4787. tp->syn_data_acked = tp->syn_data;
  4788. if (tp->syn_data_acked)
  4789. NET_INC_STATS(sock_net(sk),
  4790. LINUX_MIB_TCPFASTOPENACTIVE);
  4791. tcp_fastopen_add_skb(sk, synack);
  4792. return false;
  4793. }
  4794. static void smc_check_reset_syn(struct tcp_sock *tp)
  4795. {
  4796. #if IS_ENABLED(CONFIG_SMC)
  4797. if (static_branch_unlikely(&tcp_have_smc)) {
  4798. if (tp->syn_smc && !tp->rx_opt.smc_ok)
  4799. tp->syn_smc = 0;
  4800. }
  4801. #endif
  4802. }
  4803. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4804. const struct tcphdr *th)
  4805. {
  4806. struct inet_connection_sock *icsk = inet_csk(sk);
  4807. struct tcp_sock *tp = tcp_sk(sk);
  4808. struct tcp_fastopen_cookie foc = { .len = -1 };
  4809. int saved_clamp = tp->rx_opt.mss_clamp;
  4810. bool fastopen_fail;
  4811. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4812. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4813. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4814. if (th->ack) {
  4815. /* rfc793:
  4816. * "If the state is SYN-SENT then
  4817. * first check the ACK bit
  4818. * If the ACK bit is set
  4819. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4820. * a reset (unless the RST bit is set, if so drop
  4821. * the segment and return)"
  4822. */
  4823. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4824. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4825. goto reset_and_undo;
  4826. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4827. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4828. tcp_time_stamp(tp))) {
  4829. NET_INC_STATS(sock_net(sk),
  4830. LINUX_MIB_PAWSACTIVEREJECTED);
  4831. goto reset_and_undo;
  4832. }
  4833. /* Now ACK is acceptable.
  4834. *
  4835. * "If the RST bit is set
  4836. * If the ACK was acceptable then signal the user "error:
  4837. * connection reset", drop the segment, enter CLOSED state,
  4838. * delete TCB, and return."
  4839. */
  4840. if (th->rst) {
  4841. tcp_reset(sk);
  4842. goto discard;
  4843. }
  4844. /* rfc793:
  4845. * "fifth, if neither of the SYN or RST bits is set then
  4846. * drop the segment and return."
  4847. *
  4848. * See note below!
  4849. * --ANK(990513)
  4850. */
  4851. if (!th->syn)
  4852. goto discard_and_undo;
  4853. /* rfc793:
  4854. * "If the SYN bit is on ...
  4855. * are acceptable then ...
  4856. * (our SYN has been ACKed), change the connection
  4857. * state to ESTABLISHED..."
  4858. */
  4859. tcp_ecn_rcv_synack(tp, th);
  4860. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4861. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4862. /* Ok.. it's good. Set up sequence numbers and
  4863. * move to established.
  4864. */
  4865. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4866. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4867. /* RFC1323: The window in SYN & SYN/ACK segments is
  4868. * never scaled.
  4869. */
  4870. tp->snd_wnd = ntohs(th->window);
  4871. if (!tp->rx_opt.wscale_ok) {
  4872. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4873. tp->window_clamp = min(tp->window_clamp, 65535U);
  4874. }
  4875. if (tp->rx_opt.saw_tstamp) {
  4876. tp->rx_opt.tstamp_ok = 1;
  4877. tp->tcp_header_len =
  4878. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4879. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4880. tcp_store_ts_recent(tp);
  4881. } else {
  4882. tp->tcp_header_len = sizeof(struct tcphdr);
  4883. }
  4884. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4885. tcp_initialize_rcv_mss(sk);
  4886. /* Remember, tcp_poll() does not lock socket!
  4887. * Change state from SYN-SENT only after copied_seq
  4888. * is initialized. */
  4889. tp->copied_seq = tp->rcv_nxt;
  4890. smc_check_reset_syn(tp);
  4891. smp_mb();
  4892. tcp_finish_connect(sk, skb);
  4893. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4894. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4895. if (!sock_flag(sk, SOCK_DEAD)) {
  4896. sk->sk_state_change(sk);
  4897. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4898. }
  4899. if (fastopen_fail)
  4900. return -1;
  4901. if (sk->sk_write_pending ||
  4902. icsk->icsk_accept_queue.rskq_defer_accept ||
  4903. icsk->icsk_ack.pingpong) {
  4904. /* Save one ACK. Data will be ready after
  4905. * several ticks, if write_pending is set.
  4906. *
  4907. * It may be deleted, but with this feature tcpdumps
  4908. * look so _wonderfully_ clever, that I was not able
  4909. * to stand against the temptation 8) --ANK
  4910. */
  4911. inet_csk_schedule_ack(sk);
  4912. tcp_enter_quickack_mode(sk);
  4913. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4914. TCP_DELACK_MAX, TCP_RTO_MAX);
  4915. discard:
  4916. tcp_drop(sk, skb);
  4917. return 0;
  4918. } else {
  4919. tcp_send_ack(sk);
  4920. }
  4921. return -1;
  4922. }
  4923. /* No ACK in the segment */
  4924. if (th->rst) {
  4925. /* rfc793:
  4926. * "If the RST bit is set
  4927. *
  4928. * Otherwise (no ACK) drop the segment and return."
  4929. */
  4930. goto discard_and_undo;
  4931. }
  4932. /* PAWS check. */
  4933. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4934. tcp_paws_reject(&tp->rx_opt, 0))
  4935. goto discard_and_undo;
  4936. if (th->syn) {
  4937. /* We see SYN without ACK. It is attempt of
  4938. * simultaneous connect with crossed SYNs.
  4939. * Particularly, it can be connect to self.
  4940. */
  4941. tcp_set_state(sk, TCP_SYN_RECV);
  4942. if (tp->rx_opt.saw_tstamp) {
  4943. tp->rx_opt.tstamp_ok = 1;
  4944. tcp_store_ts_recent(tp);
  4945. tp->tcp_header_len =
  4946. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4947. } else {
  4948. tp->tcp_header_len = sizeof(struct tcphdr);
  4949. }
  4950. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4951. tp->copied_seq = tp->rcv_nxt;
  4952. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4953. /* RFC1323: The window in SYN & SYN/ACK segments is
  4954. * never scaled.
  4955. */
  4956. tp->snd_wnd = ntohs(th->window);
  4957. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4958. tp->max_window = tp->snd_wnd;
  4959. tcp_ecn_rcv_syn(tp, th);
  4960. tcp_mtup_init(sk);
  4961. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4962. tcp_initialize_rcv_mss(sk);
  4963. tcp_send_synack(sk);
  4964. #if 0
  4965. /* Note, we could accept data and URG from this segment.
  4966. * There are no obstacles to make this (except that we must
  4967. * either change tcp_recvmsg() to prevent it from returning data
  4968. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4969. *
  4970. * However, if we ignore data in ACKless segments sometimes,
  4971. * we have no reasons to accept it sometimes.
  4972. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4973. * is not flawless. So, discard packet for sanity.
  4974. * Uncomment this return to process the data.
  4975. */
  4976. return -1;
  4977. #else
  4978. goto discard;
  4979. #endif
  4980. }
  4981. /* "fifth, if neither of the SYN or RST bits is set then
  4982. * drop the segment and return."
  4983. */
  4984. discard_and_undo:
  4985. tcp_clear_options(&tp->rx_opt);
  4986. tp->rx_opt.mss_clamp = saved_clamp;
  4987. goto discard;
  4988. reset_and_undo:
  4989. tcp_clear_options(&tp->rx_opt);
  4990. tp->rx_opt.mss_clamp = saved_clamp;
  4991. return 1;
  4992. }
  4993. /*
  4994. * This function implements the receiving procedure of RFC 793 for
  4995. * all states except ESTABLISHED and TIME_WAIT.
  4996. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4997. * address independent.
  4998. */
  4999. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5000. {
  5001. struct tcp_sock *tp = tcp_sk(sk);
  5002. struct inet_connection_sock *icsk = inet_csk(sk);
  5003. const struct tcphdr *th = tcp_hdr(skb);
  5004. struct request_sock *req;
  5005. int queued = 0;
  5006. bool acceptable;
  5007. switch (sk->sk_state) {
  5008. case TCP_CLOSE:
  5009. goto discard;
  5010. case TCP_LISTEN:
  5011. if (th->ack)
  5012. return 1;
  5013. if (th->rst)
  5014. goto discard;
  5015. if (th->syn) {
  5016. if (th->fin)
  5017. goto discard;
  5018. /* It is possible that we process SYN packets from backlog,
  5019. * so we need to make sure to disable BH right there.
  5020. */
  5021. local_bh_disable();
  5022. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5023. local_bh_enable();
  5024. if (!acceptable)
  5025. return 1;
  5026. consume_skb(skb);
  5027. return 0;
  5028. }
  5029. goto discard;
  5030. case TCP_SYN_SENT:
  5031. tp->rx_opt.saw_tstamp = 0;
  5032. tcp_mstamp_refresh(tp);
  5033. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5034. if (queued >= 0)
  5035. return queued;
  5036. /* Do step6 onward by hand. */
  5037. tcp_urg(sk, skb, th);
  5038. __kfree_skb(skb);
  5039. tcp_data_snd_check(sk);
  5040. return 0;
  5041. }
  5042. tcp_mstamp_refresh(tp);
  5043. tp->rx_opt.saw_tstamp = 0;
  5044. req = tp->fastopen_rsk;
  5045. if (req) {
  5046. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5047. sk->sk_state != TCP_FIN_WAIT1);
  5048. if (!tcp_check_req(sk, skb, req, true))
  5049. goto discard;
  5050. }
  5051. if (!th->ack && !th->rst && !th->syn)
  5052. goto discard;
  5053. if (!tcp_validate_incoming(sk, skb, th, 0))
  5054. return 0;
  5055. /* step 5: check the ACK field */
  5056. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5057. FLAG_UPDATE_TS_RECENT |
  5058. FLAG_NO_CHALLENGE_ACK) > 0;
  5059. if (!acceptable) {
  5060. if (sk->sk_state == TCP_SYN_RECV)
  5061. return 1; /* send one RST */
  5062. tcp_send_challenge_ack(sk, skb);
  5063. goto discard;
  5064. }
  5065. switch (sk->sk_state) {
  5066. case TCP_SYN_RECV:
  5067. if (!tp->srtt_us)
  5068. tcp_synack_rtt_meas(sk, req);
  5069. /* Once we leave TCP_SYN_RECV, we no longer need req
  5070. * so release it.
  5071. */
  5072. if (req) {
  5073. inet_csk(sk)->icsk_retransmits = 0;
  5074. reqsk_fastopen_remove(sk, req, false);
  5075. /* Re-arm the timer because data may have been sent out.
  5076. * This is similar to the regular data transmission case
  5077. * when new data has just been ack'ed.
  5078. *
  5079. * (TFO) - we could try to be more aggressive and
  5080. * retransmitting any data sooner based on when they
  5081. * are sent out.
  5082. */
  5083. tcp_rearm_rto(sk);
  5084. } else {
  5085. tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  5086. tp->copied_seq = tp->rcv_nxt;
  5087. }
  5088. smp_mb();
  5089. tcp_set_state(sk, TCP_ESTABLISHED);
  5090. sk->sk_state_change(sk);
  5091. /* Note, that this wakeup is only for marginal crossed SYN case.
  5092. * Passively open sockets are not waked up, because
  5093. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5094. */
  5095. if (sk->sk_socket)
  5096. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5097. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5098. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5099. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5100. if (tp->rx_opt.tstamp_ok)
  5101. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5102. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5103. tcp_update_pacing_rate(sk);
  5104. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5105. tp->lsndtime = tcp_jiffies32;
  5106. tcp_initialize_rcv_mss(sk);
  5107. tcp_fast_path_on(tp);
  5108. break;
  5109. case TCP_FIN_WAIT1: {
  5110. int tmo;
  5111. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5112. * Fast Open socket and this is the first acceptable
  5113. * ACK we have received, this would have acknowledged
  5114. * our SYNACK so stop the SYNACK timer.
  5115. */
  5116. if (req) {
  5117. /* We no longer need the request sock. */
  5118. reqsk_fastopen_remove(sk, req, false);
  5119. tcp_rearm_rto(sk);
  5120. }
  5121. if (tp->snd_una != tp->write_seq)
  5122. break;
  5123. tcp_set_state(sk, TCP_FIN_WAIT2);
  5124. sk->sk_shutdown |= SEND_SHUTDOWN;
  5125. sk_dst_confirm(sk);
  5126. if (!sock_flag(sk, SOCK_DEAD)) {
  5127. /* Wake up lingering close() */
  5128. sk->sk_state_change(sk);
  5129. break;
  5130. }
  5131. if (tp->linger2 < 0) {
  5132. tcp_done(sk);
  5133. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5134. return 1;
  5135. }
  5136. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5137. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5138. /* Receive out of order FIN after close() */
  5139. if (tp->syn_fastopen && th->fin)
  5140. tcp_fastopen_active_disable(sk);
  5141. tcp_done(sk);
  5142. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5143. return 1;
  5144. }
  5145. tmo = tcp_fin_time(sk);
  5146. if (tmo > TCP_TIMEWAIT_LEN) {
  5147. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5148. } else if (th->fin || sock_owned_by_user(sk)) {
  5149. /* Bad case. We could lose such FIN otherwise.
  5150. * It is not a big problem, but it looks confusing
  5151. * and not so rare event. We still can lose it now,
  5152. * if it spins in bh_lock_sock(), but it is really
  5153. * marginal case.
  5154. */
  5155. inet_csk_reset_keepalive_timer(sk, tmo);
  5156. } else {
  5157. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5158. goto discard;
  5159. }
  5160. break;
  5161. }
  5162. case TCP_CLOSING:
  5163. if (tp->snd_una == tp->write_seq) {
  5164. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5165. goto discard;
  5166. }
  5167. break;
  5168. case TCP_LAST_ACK:
  5169. if (tp->snd_una == tp->write_seq) {
  5170. tcp_update_metrics(sk);
  5171. tcp_done(sk);
  5172. goto discard;
  5173. }
  5174. break;
  5175. }
  5176. /* step 6: check the URG bit */
  5177. tcp_urg(sk, skb, th);
  5178. /* step 7: process the segment text */
  5179. switch (sk->sk_state) {
  5180. case TCP_CLOSE_WAIT:
  5181. case TCP_CLOSING:
  5182. case TCP_LAST_ACK:
  5183. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5184. break;
  5185. /* fall through */
  5186. case TCP_FIN_WAIT1:
  5187. case TCP_FIN_WAIT2:
  5188. /* RFC 793 says to queue data in these states,
  5189. * RFC 1122 says we MUST send a reset.
  5190. * BSD 4.4 also does reset.
  5191. */
  5192. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5193. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5194. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5195. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5196. tcp_reset(sk);
  5197. return 1;
  5198. }
  5199. }
  5200. /* Fall through */
  5201. case TCP_ESTABLISHED:
  5202. tcp_data_queue(sk, skb);
  5203. queued = 1;
  5204. break;
  5205. }
  5206. /* tcp_data could move socket to TIME-WAIT */
  5207. if (sk->sk_state != TCP_CLOSE) {
  5208. tcp_data_snd_check(sk);
  5209. tcp_ack_snd_check(sk);
  5210. }
  5211. if (!queued) {
  5212. discard:
  5213. tcp_drop(sk, skb);
  5214. }
  5215. return 0;
  5216. }
  5217. EXPORT_SYMBOL(tcp_rcv_state_process);
  5218. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5219. {
  5220. struct inet_request_sock *ireq = inet_rsk(req);
  5221. if (family == AF_INET)
  5222. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5223. &ireq->ir_rmt_addr, port);
  5224. #if IS_ENABLED(CONFIG_IPV6)
  5225. else if (family == AF_INET6)
  5226. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5227. &ireq->ir_v6_rmt_addr, port);
  5228. #endif
  5229. }
  5230. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5231. *
  5232. * If we receive a SYN packet with these bits set, it means a
  5233. * network is playing bad games with TOS bits. In order to
  5234. * avoid possible false congestion notifications, we disable
  5235. * TCP ECN negotiation.
  5236. *
  5237. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5238. * congestion control: Linux DCTCP asserts ECT on all packets,
  5239. * including SYN, which is most optimal solution; however,
  5240. * others, such as FreeBSD do not.
  5241. */
  5242. static void tcp_ecn_create_request(struct request_sock *req,
  5243. const struct sk_buff *skb,
  5244. const struct sock *listen_sk,
  5245. const struct dst_entry *dst)
  5246. {
  5247. const struct tcphdr *th = tcp_hdr(skb);
  5248. const struct net *net = sock_net(listen_sk);
  5249. bool th_ecn = th->ece && th->cwr;
  5250. bool ect, ecn_ok;
  5251. u32 ecn_ok_dst;
  5252. if (!th_ecn)
  5253. return;
  5254. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5255. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5256. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5257. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5258. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5259. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5260. inet_rsk(req)->ecn_ok = 1;
  5261. }
  5262. static void tcp_openreq_init(struct request_sock *req,
  5263. const struct tcp_options_received *rx_opt,
  5264. struct sk_buff *skb, const struct sock *sk)
  5265. {
  5266. struct inet_request_sock *ireq = inet_rsk(req);
  5267. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5268. req->cookie_ts = 0;
  5269. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5270. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5271. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5272. tcp_rsk(req)->last_oow_ack_time = 0;
  5273. req->mss = rx_opt->mss_clamp;
  5274. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5275. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5276. ireq->sack_ok = rx_opt->sack_ok;
  5277. ireq->snd_wscale = rx_opt->snd_wscale;
  5278. ireq->wscale_ok = rx_opt->wscale_ok;
  5279. ireq->acked = 0;
  5280. ireq->ecn_ok = 0;
  5281. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5282. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5283. ireq->ir_mark = inet_request_mark(sk, skb);
  5284. #if IS_ENABLED(CONFIG_SMC)
  5285. ireq->smc_ok = rx_opt->smc_ok;
  5286. #endif
  5287. }
  5288. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5289. struct sock *sk_listener,
  5290. bool attach_listener)
  5291. {
  5292. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5293. attach_listener);
  5294. if (req) {
  5295. struct inet_request_sock *ireq = inet_rsk(req);
  5296. ireq->ireq_opt = NULL;
  5297. #if IS_ENABLED(CONFIG_IPV6)
  5298. ireq->pktopts = NULL;
  5299. #endif
  5300. atomic64_set(&ireq->ir_cookie, 0);
  5301. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5302. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5303. ireq->ireq_family = sk_listener->sk_family;
  5304. }
  5305. return req;
  5306. }
  5307. EXPORT_SYMBOL(inet_reqsk_alloc);
  5308. /*
  5309. * Return true if a syncookie should be sent
  5310. */
  5311. static bool tcp_syn_flood_action(const struct sock *sk,
  5312. const struct sk_buff *skb,
  5313. const char *proto)
  5314. {
  5315. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5316. const char *msg = "Dropping request";
  5317. bool want_cookie = false;
  5318. struct net *net = sock_net(sk);
  5319. #ifdef CONFIG_SYN_COOKIES
  5320. if (net->ipv4.sysctl_tcp_syncookies) {
  5321. msg = "Sending cookies";
  5322. want_cookie = true;
  5323. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5324. } else
  5325. #endif
  5326. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5327. if (!queue->synflood_warned &&
  5328. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5329. xchg(&queue->synflood_warned, 1) == 0)
  5330. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5331. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5332. return want_cookie;
  5333. }
  5334. static void tcp_reqsk_record_syn(const struct sock *sk,
  5335. struct request_sock *req,
  5336. const struct sk_buff *skb)
  5337. {
  5338. if (tcp_sk(sk)->save_syn) {
  5339. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5340. u32 *copy;
  5341. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5342. if (copy) {
  5343. copy[0] = len;
  5344. memcpy(&copy[1], skb_network_header(skb), len);
  5345. req->saved_syn = copy;
  5346. }
  5347. }
  5348. }
  5349. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5350. const struct tcp_request_sock_ops *af_ops,
  5351. struct sock *sk, struct sk_buff *skb)
  5352. {
  5353. struct tcp_fastopen_cookie foc = { .len = -1 };
  5354. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5355. struct tcp_options_received tmp_opt;
  5356. struct tcp_sock *tp = tcp_sk(sk);
  5357. struct net *net = sock_net(sk);
  5358. struct sock *fastopen_sk = NULL;
  5359. struct request_sock *req;
  5360. bool want_cookie = false;
  5361. struct dst_entry *dst;
  5362. struct flowi fl;
  5363. /* TW buckets are converted to open requests without
  5364. * limitations, they conserve resources and peer is
  5365. * evidently real one.
  5366. */
  5367. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5368. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5369. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5370. if (!want_cookie)
  5371. goto drop;
  5372. }
  5373. if (sk_acceptq_is_full(sk)) {
  5374. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5375. goto drop;
  5376. }
  5377. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5378. if (!req)
  5379. goto drop;
  5380. tcp_rsk(req)->af_specific = af_ops;
  5381. tcp_rsk(req)->ts_off = 0;
  5382. tcp_clear_options(&tmp_opt);
  5383. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5384. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5385. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5386. want_cookie ? NULL : &foc);
  5387. if (want_cookie && !tmp_opt.saw_tstamp)
  5388. tcp_clear_options(&tmp_opt);
  5389. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5390. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5391. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5392. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5393. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5394. af_ops->init_req(req, sk, skb);
  5395. if (security_inet_conn_request(sk, skb, req))
  5396. goto drop_and_free;
  5397. if (tmp_opt.tstamp_ok)
  5398. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5399. dst = af_ops->route_req(sk, &fl, req);
  5400. if (!dst)
  5401. goto drop_and_free;
  5402. if (!want_cookie && !isn) {
  5403. /* Kill the following clause, if you dislike this way. */
  5404. if (!net->ipv4.sysctl_tcp_syncookies &&
  5405. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5406. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5407. !tcp_peer_is_proven(req, dst)) {
  5408. /* Without syncookies last quarter of
  5409. * backlog is filled with destinations,
  5410. * proven to be alive.
  5411. * It means that we continue to communicate
  5412. * to destinations, already remembered
  5413. * to the moment of synflood.
  5414. */
  5415. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5416. rsk_ops->family);
  5417. goto drop_and_release;
  5418. }
  5419. isn = af_ops->init_seq(skb);
  5420. }
  5421. tcp_ecn_create_request(req, skb, sk, dst);
  5422. if (want_cookie) {
  5423. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5424. req->cookie_ts = tmp_opt.tstamp_ok;
  5425. if (!tmp_opt.tstamp_ok)
  5426. inet_rsk(req)->ecn_ok = 0;
  5427. }
  5428. tcp_rsk(req)->snt_isn = isn;
  5429. tcp_rsk(req)->txhash = net_tx_rndhash();
  5430. tcp_openreq_init_rwin(req, sk, dst);
  5431. if (!want_cookie) {
  5432. tcp_reqsk_record_syn(sk, req, skb);
  5433. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5434. }
  5435. if (fastopen_sk) {
  5436. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5437. &foc, TCP_SYNACK_FASTOPEN);
  5438. /* Add the child socket directly into the accept queue */
  5439. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5440. sk->sk_data_ready(sk);
  5441. bh_unlock_sock(fastopen_sk);
  5442. sock_put(fastopen_sk);
  5443. } else {
  5444. tcp_rsk(req)->tfo_listener = false;
  5445. if (!want_cookie)
  5446. inet_csk_reqsk_queue_hash_add(sk, req,
  5447. tcp_timeout_init((struct sock *)req));
  5448. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5449. !want_cookie ? TCP_SYNACK_NORMAL :
  5450. TCP_SYNACK_COOKIE);
  5451. if (want_cookie) {
  5452. reqsk_free(req);
  5453. return 0;
  5454. }
  5455. }
  5456. reqsk_put(req);
  5457. return 0;
  5458. drop_and_release:
  5459. dst_release(dst);
  5460. drop_and_free:
  5461. reqsk_free(req);
  5462. drop:
  5463. tcp_listendrop(sk);
  5464. return 0;
  5465. }
  5466. EXPORT_SYMBOL(tcp_conn_request);