intel_ringbuffer.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  279. {
  280. int ret;
  281. if (!ring->fbc_dirty)
  282. return 0;
  283. ret = intel_ring_begin(ring, 6);
  284. if (ret)
  285. return ret;
  286. /* WaFbcNukeOn3DBlt:ivb/hsw */
  287. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  288. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  289. intel_ring_emit(ring, value);
  290. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  291. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  292. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  293. intel_ring_advance(ring);
  294. ring->fbc_dirty = false;
  295. return 0;
  296. }
  297. static int
  298. gen7_render_ring_flush(struct intel_engine_cs *ring,
  299. u32 invalidate_domains, u32 flush_domains)
  300. {
  301. u32 flags = 0;
  302. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  303. int ret;
  304. /*
  305. * Ensure that any following seqno writes only happen when the render
  306. * cache is indeed flushed.
  307. *
  308. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  309. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  310. * don't try to be clever and just set it unconditionally.
  311. */
  312. flags |= PIPE_CONTROL_CS_STALL;
  313. /* Just flush everything. Experiments have shown that reducing the
  314. * number of bits based on the write domains has little performance
  315. * impact.
  316. */
  317. if (flush_domains) {
  318. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  319. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  320. }
  321. if (invalidate_domains) {
  322. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  323. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  324. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  325. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  326. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  327. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  328. /*
  329. * TLB invalidate requires a post-sync write.
  330. */
  331. flags |= PIPE_CONTROL_QW_WRITE;
  332. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  333. /* Workaround: we must issue a pipe_control with CS-stall bit
  334. * set before a pipe_control command that has the state cache
  335. * invalidate bit set. */
  336. gen7_render_ring_cs_stall_wa(ring);
  337. }
  338. ret = intel_ring_begin(ring, 4);
  339. if (ret)
  340. return ret;
  341. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  342. intel_ring_emit(ring, flags);
  343. intel_ring_emit(ring, scratch_addr);
  344. intel_ring_emit(ring, 0);
  345. intel_ring_advance(ring);
  346. if (!invalidate_domains && flush_domains)
  347. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  348. return 0;
  349. }
  350. static int
  351. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  352. u32 flags, u32 scratch_addr)
  353. {
  354. int ret;
  355. ret = intel_ring_begin(ring, 6);
  356. if (ret)
  357. return ret;
  358. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  359. intel_ring_emit(ring, flags);
  360. intel_ring_emit(ring, scratch_addr);
  361. intel_ring_emit(ring, 0);
  362. intel_ring_emit(ring, 0);
  363. intel_ring_emit(ring, 0);
  364. intel_ring_advance(ring);
  365. return 0;
  366. }
  367. static int
  368. gen8_render_ring_flush(struct intel_engine_cs *ring,
  369. u32 invalidate_domains, u32 flush_domains)
  370. {
  371. u32 flags = 0;
  372. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  373. int ret;
  374. flags |= PIPE_CONTROL_CS_STALL;
  375. if (flush_domains) {
  376. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  377. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  378. }
  379. if (invalidate_domains) {
  380. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  381. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  382. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  383. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  384. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  385. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  386. flags |= PIPE_CONTROL_QW_WRITE;
  387. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  388. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  389. ret = gen8_emit_pipe_control(ring,
  390. PIPE_CONTROL_CS_STALL |
  391. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  392. 0);
  393. if (ret)
  394. return ret;
  395. }
  396. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  397. if (ret)
  398. return ret;
  399. if (!invalidate_domains && flush_domains)
  400. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  401. return 0;
  402. }
  403. static void ring_write_tail(struct intel_engine_cs *ring,
  404. u32 value)
  405. {
  406. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  407. I915_WRITE_TAIL(ring, value);
  408. }
  409. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  410. {
  411. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  412. u64 acthd;
  413. if (INTEL_INFO(ring->dev)->gen >= 8)
  414. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  415. RING_ACTHD_UDW(ring->mmio_base));
  416. else if (INTEL_INFO(ring->dev)->gen >= 4)
  417. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  418. else
  419. acthd = I915_READ(ACTHD);
  420. return acthd;
  421. }
  422. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  423. {
  424. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  425. u32 addr;
  426. addr = dev_priv->status_page_dmah->busaddr;
  427. if (INTEL_INFO(ring->dev)->gen >= 4)
  428. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  429. I915_WRITE(HWS_PGA, addr);
  430. }
  431. static bool stop_ring(struct intel_engine_cs *ring)
  432. {
  433. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  434. if (!IS_GEN2(ring->dev)) {
  435. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  436. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  437. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  438. /* Sometimes we observe that the idle flag is not
  439. * set even though the ring is empty. So double
  440. * check before giving up.
  441. */
  442. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  443. return false;
  444. }
  445. }
  446. I915_WRITE_CTL(ring, 0);
  447. I915_WRITE_HEAD(ring, 0);
  448. ring->write_tail(ring, 0);
  449. if (!IS_GEN2(ring->dev)) {
  450. (void)I915_READ_CTL(ring);
  451. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  452. }
  453. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  454. }
  455. static int init_ring_common(struct intel_engine_cs *ring)
  456. {
  457. struct drm_device *dev = ring->dev;
  458. struct drm_i915_private *dev_priv = dev->dev_private;
  459. struct intel_ringbuffer *ringbuf = ring->buffer;
  460. struct drm_i915_gem_object *obj = ringbuf->obj;
  461. int ret = 0;
  462. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  463. if (!stop_ring(ring)) {
  464. /* G45 ring initialization often fails to reset head to zero */
  465. DRM_DEBUG_KMS("%s head not reset to zero "
  466. "ctl %08x head %08x tail %08x start %08x\n",
  467. ring->name,
  468. I915_READ_CTL(ring),
  469. I915_READ_HEAD(ring),
  470. I915_READ_TAIL(ring),
  471. I915_READ_START(ring));
  472. if (!stop_ring(ring)) {
  473. DRM_ERROR("failed to set %s head to zero "
  474. "ctl %08x head %08x tail %08x start %08x\n",
  475. ring->name,
  476. I915_READ_CTL(ring),
  477. I915_READ_HEAD(ring),
  478. I915_READ_TAIL(ring),
  479. I915_READ_START(ring));
  480. ret = -EIO;
  481. goto out;
  482. }
  483. }
  484. if (I915_NEED_GFX_HWS(dev))
  485. intel_ring_setup_status_page(ring);
  486. else
  487. ring_setup_phys_status_page(ring);
  488. /* Enforce ordering by reading HEAD register back */
  489. I915_READ_HEAD(ring);
  490. /* Initialize the ring. This must happen _after_ we've cleared the ring
  491. * registers with the above sequence (the readback of the HEAD registers
  492. * also enforces ordering), otherwise the hw might lose the new ring
  493. * register values. */
  494. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  495. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  496. if (I915_READ_HEAD(ring))
  497. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  498. ring->name, I915_READ_HEAD(ring));
  499. I915_WRITE_HEAD(ring, 0);
  500. (void)I915_READ_HEAD(ring);
  501. I915_WRITE_CTL(ring,
  502. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  503. | RING_VALID);
  504. /* If the head is still not zero, the ring is dead */
  505. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  506. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  507. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  508. DRM_ERROR("%s initialization failed "
  509. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  510. ring->name,
  511. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  512. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  513. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  514. ret = -EIO;
  515. goto out;
  516. }
  517. ringbuf->last_retired_head = -1;
  518. ringbuf->head = I915_READ_HEAD(ring);
  519. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  520. intel_ring_update_space(ringbuf);
  521. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  522. out:
  523. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  524. return ret;
  525. }
  526. void
  527. intel_fini_pipe_control(struct intel_engine_cs *ring)
  528. {
  529. struct drm_device *dev = ring->dev;
  530. if (ring->scratch.obj == NULL)
  531. return;
  532. if (INTEL_INFO(dev)->gen >= 5) {
  533. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  534. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  535. }
  536. drm_gem_object_unreference(&ring->scratch.obj->base);
  537. ring->scratch.obj = NULL;
  538. }
  539. int
  540. intel_init_pipe_control(struct intel_engine_cs *ring)
  541. {
  542. int ret;
  543. if (ring->scratch.obj)
  544. return 0;
  545. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  546. if (ring->scratch.obj == NULL) {
  547. DRM_ERROR("Failed to allocate seqno page\n");
  548. ret = -ENOMEM;
  549. goto err;
  550. }
  551. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  552. if (ret)
  553. goto err_unref;
  554. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  555. if (ret)
  556. goto err_unref;
  557. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  558. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  559. if (ring->scratch.cpu_page == NULL) {
  560. ret = -ENOMEM;
  561. goto err_unpin;
  562. }
  563. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  564. ring->name, ring->scratch.gtt_offset);
  565. return 0;
  566. err_unpin:
  567. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  568. err_unref:
  569. drm_gem_object_unreference(&ring->scratch.obj->base);
  570. err:
  571. return ret;
  572. }
  573. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  574. struct intel_context *ctx)
  575. {
  576. int ret, i;
  577. struct drm_device *dev = ring->dev;
  578. struct drm_i915_private *dev_priv = dev->dev_private;
  579. struct i915_workarounds *w = &dev_priv->workarounds;
  580. if (WARN_ON(w->count == 0))
  581. return 0;
  582. ring->gpu_caches_dirty = true;
  583. ret = intel_ring_flush_all_caches(ring);
  584. if (ret)
  585. return ret;
  586. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  587. if (ret)
  588. return ret;
  589. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  590. for (i = 0; i < w->count; i++) {
  591. intel_ring_emit(ring, w->reg[i].addr);
  592. intel_ring_emit(ring, w->reg[i].value);
  593. }
  594. intel_ring_emit(ring, MI_NOOP);
  595. intel_ring_advance(ring);
  596. ring->gpu_caches_dirty = true;
  597. ret = intel_ring_flush_all_caches(ring);
  598. if (ret)
  599. return ret;
  600. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  601. return 0;
  602. }
  603. static int wa_add(struct drm_i915_private *dev_priv,
  604. const u32 addr, const u32 val, const u32 mask)
  605. {
  606. const u32 idx = dev_priv->workarounds.count;
  607. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  608. return -ENOSPC;
  609. dev_priv->workarounds.reg[idx].addr = addr;
  610. dev_priv->workarounds.reg[idx].value = val;
  611. dev_priv->workarounds.reg[idx].mask = mask;
  612. dev_priv->workarounds.count++;
  613. return 0;
  614. }
  615. #define WA_REG(addr, val, mask) { \
  616. const int r = wa_add(dev_priv, (addr), (val), (mask)); \
  617. if (r) \
  618. return r; \
  619. }
  620. #define WA_SET_BIT_MASKED(addr, mask) \
  621. WA_REG(addr, _MASKED_BIT_ENABLE(mask), (mask) & 0xffff)
  622. #define WA_CLR_BIT_MASKED(addr, mask) \
  623. WA_REG(addr, _MASKED_BIT_DISABLE(mask), (mask) & 0xffff)
  624. #define WA_SET_BIT(addr, mask) WA_REG(addr, I915_READ(addr) | (mask), mask)
  625. #define WA_CLR_BIT(addr, mask) WA_REG(addr, I915_READ(addr) & ~(mask), mask)
  626. #define WA_WRITE(addr, val) WA_REG(addr, val, 0xffffffff)
  627. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  628. {
  629. struct drm_device *dev = ring->dev;
  630. struct drm_i915_private *dev_priv = dev->dev_private;
  631. /* WaDisablePartialInstShootdown:bdw */
  632. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  633. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  634. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  635. STALL_DOP_GATING_DISABLE);
  636. /* WaDisableDopClockGating:bdw */
  637. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  638. DOP_CLOCK_GATING_DISABLE);
  639. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  640. GEN8_SAMPLER_POWER_BYPASS_DIS);
  641. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  642. * workaround for for a possible hang in the unlikely event a TLB
  643. * invalidation occurs during a PSD flush.
  644. */
  645. /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
  646. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  647. HDC_FORCE_NON_COHERENT |
  648. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  649. /* Wa4x4STCOptimizationDisable:bdw */
  650. WA_SET_BIT_MASKED(CACHE_MODE_1,
  651. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  652. /*
  653. * BSpec recommends 8x4 when MSAA is used,
  654. * however in practice 16x4 seems fastest.
  655. *
  656. * Note that PS/WM thread counts depend on the WIZ hashing
  657. * disable bit, which we don't touch here, but it's good
  658. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  659. */
  660. WA_SET_BIT_MASKED(GEN7_GT_MODE,
  661. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  662. return 0;
  663. }
  664. static int chv_init_workarounds(struct intel_engine_cs *ring)
  665. {
  666. struct drm_device *dev = ring->dev;
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. /* WaDisablePartialInstShootdown:chv */
  669. /* WaDisableThreadStallDopClockGating:chv */
  670. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  671. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  672. STALL_DOP_GATING_DISABLE);
  673. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  674. * workaround for a possible hang in the unlikely event a TLB
  675. * invalidation occurs during a PSD flush.
  676. */
  677. /* WaForceEnableNonCoherent:chv */
  678. /* WaHdcDisableFetchWhenMasked:chv */
  679. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  680. HDC_FORCE_NON_COHERENT |
  681. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  682. return 0;
  683. }
  684. int init_workarounds_ring(struct intel_engine_cs *ring)
  685. {
  686. struct drm_device *dev = ring->dev;
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. WARN_ON(ring->id != RCS);
  689. dev_priv->workarounds.count = 0;
  690. if (IS_BROADWELL(dev))
  691. return bdw_init_workarounds(ring);
  692. if (IS_CHERRYVIEW(dev))
  693. return chv_init_workarounds(ring);
  694. return 0;
  695. }
  696. static int init_render_ring(struct intel_engine_cs *ring)
  697. {
  698. struct drm_device *dev = ring->dev;
  699. struct drm_i915_private *dev_priv = dev->dev_private;
  700. int ret = init_ring_common(ring);
  701. if (ret)
  702. return ret;
  703. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  704. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  705. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  706. /* We need to disable the AsyncFlip performance optimisations in order
  707. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  708. * programmed to '1' on all products.
  709. *
  710. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  711. */
  712. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  713. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  714. /* Required for the hardware to program scanline values for waiting */
  715. /* WaEnableFlushTlbInvalidationMode:snb */
  716. if (INTEL_INFO(dev)->gen == 6)
  717. I915_WRITE(GFX_MODE,
  718. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  719. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  720. if (IS_GEN7(dev))
  721. I915_WRITE(GFX_MODE_GEN7,
  722. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  723. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  724. if (INTEL_INFO(dev)->gen >= 5) {
  725. ret = intel_init_pipe_control(ring);
  726. if (ret)
  727. return ret;
  728. }
  729. if (IS_GEN6(dev)) {
  730. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  731. * "If this bit is set, STCunit will have LRA as replacement
  732. * policy. [...] This bit must be reset. LRA replacement
  733. * policy is not supported."
  734. */
  735. I915_WRITE(CACHE_MODE_0,
  736. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  737. }
  738. if (INTEL_INFO(dev)->gen >= 6)
  739. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  740. if (HAS_L3_DPF(dev))
  741. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  742. return init_workarounds_ring(ring);
  743. }
  744. static void render_ring_cleanup(struct intel_engine_cs *ring)
  745. {
  746. struct drm_device *dev = ring->dev;
  747. struct drm_i915_private *dev_priv = dev->dev_private;
  748. if (dev_priv->semaphore_obj) {
  749. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  750. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  751. dev_priv->semaphore_obj = NULL;
  752. }
  753. intel_fini_pipe_control(ring);
  754. }
  755. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  756. unsigned int num_dwords)
  757. {
  758. #define MBOX_UPDATE_DWORDS 8
  759. struct drm_device *dev = signaller->dev;
  760. struct drm_i915_private *dev_priv = dev->dev_private;
  761. struct intel_engine_cs *waiter;
  762. int i, ret, num_rings;
  763. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  764. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  765. #undef MBOX_UPDATE_DWORDS
  766. ret = intel_ring_begin(signaller, num_dwords);
  767. if (ret)
  768. return ret;
  769. for_each_ring(waiter, dev_priv, i) {
  770. u32 seqno;
  771. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  772. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  773. continue;
  774. seqno = i915_gem_request_get_seqno(
  775. signaller->outstanding_lazy_request);
  776. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  777. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  778. PIPE_CONTROL_QW_WRITE |
  779. PIPE_CONTROL_FLUSH_ENABLE);
  780. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  781. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  782. intel_ring_emit(signaller, seqno);
  783. intel_ring_emit(signaller, 0);
  784. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  785. MI_SEMAPHORE_TARGET(waiter->id));
  786. intel_ring_emit(signaller, 0);
  787. }
  788. return 0;
  789. }
  790. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  791. unsigned int num_dwords)
  792. {
  793. #define MBOX_UPDATE_DWORDS 6
  794. struct drm_device *dev = signaller->dev;
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. struct intel_engine_cs *waiter;
  797. int i, ret, num_rings;
  798. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  799. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  800. #undef MBOX_UPDATE_DWORDS
  801. ret = intel_ring_begin(signaller, num_dwords);
  802. if (ret)
  803. return ret;
  804. for_each_ring(waiter, dev_priv, i) {
  805. u32 seqno;
  806. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  807. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  808. continue;
  809. seqno = i915_gem_request_get_seqno(
  810. signaller->outstanding_lazy_request);
  811. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  812. MI_FLUSH_DW_OP_STOREDW);
  813. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  814. MI_FLUSH_DW_USE_GTT);
  815. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  816. intel_ring_emit(signaller, seqno);
  817. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  818. MI_SEMAPHORE_TARGET(waiter->id));
  819. intel_ring_emit(signaller, 0);
  820. }
  821. return 0;
  822. }
  823. static int gen6_signal(struct intel_engine_cs *signaller,
  824. unsigned int num_dwords)
  825. {
  826. struct drm_device *dev = signaller->dev;
  827. struct drm_i915_private *dev_priv = dev->dev_private;
  828. struct intel_engine_cs *useless;
  829. int i, ret, num_rings;
  830. #define MBOX_UPDATE_DWORDS 3
  831. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  832. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  833. #undef MBOX_UPDATE_DWORDS
  834. ret = intel_ring_begin(signaller, num_dwords);
  835. if (ret)
  836. return ret;
  837. for_each_ring(useless, dev_priv, i) {
  838. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  839. if (mbox_reg != GEN6_NOSYNC) {
  840. u32 seqno = i915_gem_request_get_seqno(
  841. signaller->outstanding_lazy_request);
  842. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  843. intel_ring_emit(signaller, mbox_reg);
  844. intel_ring_emit(signaller, seqno);
  845. }
  846. }
  847. /* If num_dwords was rounded, make sure the tail pointer is correct */
  848. if (num_rings % 2 == 0)
  849. intel_ring_emit(signaller, MI_NOOP);
  850. return 0;
  851. }
  852. /**
  853. * gen6_add_request - Update the semaphore mailbox registers
  854. *
  855. * @ring - ring that is adding a request
  856. * @seqno - return seqno stuck into the ring
  857. *
  858. * Update the mailbox registers in the *other* rings with the current seqno.
  859. * This acts like a signal in the canonical semaphore.
  860. */
  861. static int
  862. gen6_add_request(struct intel_engine_cs *ring)
  863. {
  864. int ret;
  865. if (ring->semaphore.signal)
  866. ret = ring->semaphore.signal(ring, 4);
  867. else
  868. ret = intel_ring_begin(ring, 4);
  869. if (ret)
  870. return ret;
  871. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  872. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  873. intel_ring_emit(ring,
  874. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  875. intel_ring_emit(ring, MI_USER_INTERRUPT);
  876. __intel_ring_advance(ring);
  877. return 0;
  878. }
  879. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  880. u32 seqno)
  881. {
  882. struct drm_i915_private *dev_priv = dev->dev_private;
  883. return dev_priv->last_seqno < seqno;
  884. }
  885. /**
  886. * intel_ring_sync - sync the waiter to the signaller on seqno
  887. *
  888. * @waiter - ring that is waiting
  889. * @signaller - ring which has, or will signal
  890. * @seqno - seqno which the waiter will block on
  891. */
  892. static int
  893. gen8_ring_sync(struct intel_engine_cs *waiter,
  894. struct intel_engine_cs *signaller,
  895. u32 seqno)
  896. {
  897. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  898. int ret;
  899. ret = intel_ring_begin(waiter, 4);
  900. if (ret)
  901. return ret;
  902. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  903. MI_SEMAPHORE_GLOBAL_GTT |
  904. MI_SEMAPHORE_POLL |
  905. MI_SEMAPHORE_SAD_GTE_SDD);
  906. intel_ring_emit(waiter, seqno);
  907. intel_ring_emit(waiter,
  908. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  909. intel_ring_emit(waiter,
  910. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  911. intel_ring_advance(waiter);
  912. return 0;
  913. }
  914. static int
  915. gen6_ring_sync(struct intel_engine_cs *waiter,
  916. struct intel_engine_cs *signaller,
  917. u32 seqno)
  918. {
  919. u32 dw1 = MI_SEMAPHORE_MBOX |
  920. MI_SEMAPHORE_COMPARE |
  921. MI_SEMAPHORE_REGISTER;
  922. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  923. int ret;
  924. /* Throughout all of the GEM code, seqno passed implies our current
  925. * seqno is >= the last seqno executed. However for hardware the
  926. * comparison is strictly greater than.
  927. */
  928. seqno -= 1;
  929. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  930. ret = intel_ring_begin(waiter, 4);
  931. if (ret)
  932. return ret;
  933. /* If seqno wrap happened, omit the wait with no-ops */
  934. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  935. intel_ring_emit(waiter, dw1 | wait_mbox);
  936. intel_ring_emit(waiter, seqno);
  937. intel_ring_emit(waiter, 0);
  938. intel_ring_emit(waiter, MI_NOOP);
  939. } else {
  940. intel_ring_emit(waiter, MI_NOOP);
  941. intel_ring_emit(waiter, MI_NOOP);
  942. intel_ring_emit(waiter, MI_NOOP);
  943. intel_ring_emit(waiter, MI_NOOP);
  944. }
  945. intel_ring_advance(waiter);
  946. return 0;
  947. }
  948. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  949. do { \
  950. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  951. PIPE_CONTROL_DEPTH_STALL); \
  952. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  953. intel_ring_emit(ring__, 0); \
  954. intel_ring_emit(ring__, 0); \
  955. } while (0)
  956. static int
  957. pc_render_add_request(struct intel_engine_cs *ring)
  958. {
  959. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  960. int ret;
  961. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  962. * incoherent with writes to memory, i.e. completely fubar,
  963. * so we need to use PIPE_NOTIFY instead.
  964. *
  965. * However, we also need to workaround the qword write
  966. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  967. * memory before requesting an interrupt.
  968. */
  969. ret = intel_ring_begin(ring, 32);
  970. if (ret)
  971. return ret;
  972. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  973. PIPE_CONTROL_WRITE_FLUSH |
  974. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  975. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  976. intel_ring_emit(ring,
  977. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  978. intel_ring_emit(ring, 0);
  979. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  980. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  981. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  982. scratch_addr += 2 * CACHELINE_BYTES;
  983. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  984. scratch_addr += 2 * CACHELINE_BYTES;
  985. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  986. scratch_addr += 2 * CACHELINE_BYTES;
  987. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  988. scratch_addr += 2 * CACHELINE_BYTES;
  989. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  990. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  991. PIPE_CONTROL_WRITE_FLUSH |
  992. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  993. PIPE_CONTROL_NOTIFY);
  994. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  995. intel_ring_emit(ring,
  996. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  997. intel_ring_emit(ring, 0);
  998. __intel_ring_advance(ring);
  999. return 0;
  1000. }
  1001. static u32
  1002. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1003. {
  1004. /* Workaround to force correct ordering between irq and seqno writes on
  1005. * ivb (and maybe also on snb) by reading from a CS register (like
  1006. * ACTHD) before reading the status page. */
  1007. if (!lazy_coherency) {
  1008. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1009. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1010. }
  1011. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1012. }
  1013. static u32
  1014. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1015. {
  1016. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1017. }
  1018. static void
  1019. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1020. {
  1021. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1022. }
  1023. static u32
  1024. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1025. {
  1026. return ring->scratch.cpu_page[0];
  1027. }
  1028. static void
  1029. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1030. {
  1031. ring->scratch.cpu_page[0] = seqno;
  1032. }
  1033. static bool
  1034. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1035. {
  1036. struct drm_device *dev = ring->dev;
  1037. struct drm_i915_private *dev_priv = dev->dev_private;
  1038. unsigned long flags;
  1039. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1040. return false;
  1041. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1042. if (ring->irq_refcount++ == 0)
  1043. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1044. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1045. return true;
  1046. }
  1047. static void
  1048. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1049. {
  1050. struct drm_device *dev = ring->dev;
  1051. struct drm_i915_private *dev_priv = dev->dev_private;
  1052. unsigned long flags;
  1053. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1054. if (--ring->irq_refcount == 0)
  1055. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1056. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1057. }
  1058. static bool
  1059. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1060. {
  1061. struct drm_device *dev = ring->dev;
  1062. struct drm_i915_private *dev_priv = dev->dev_private;
  1063. unsigned long flags;
  1064. if (!intel_irqs_enabled(dev_priv))
  1065. return false;
  1066. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1067. if (ring->irq_refcount++ == 0) {
  1068. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1069. I915_WRITE(IMR, dev_priv->irq_mask);
  1070. POSTING_READ(IMR);
  1071. }
  1072. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1073. return true;
  1074. }
  1075. static void
  1076. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1077. {
  1078. struct drm_device *dev = ring->dev;
  1079. struct drm_i915_private *dev_priv = dev->dev_private;
  1080. unsigned long flags;
  1081. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1082. if (--ring->irq_refcount == 0) {
  1083. dev_priv->irq_mask |= ring->irq_enable_mask;
  1084. I915_WRITE(IMR, dev_priv->irq_mask);
  1085. POSTING_READ(IMR);
  1086. }
  1087. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1088. }
  1089. static bool
  1090. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1091. {
  1092. struct drm_device *dev = ring->dev;
  1093. struct drm_i915_private *dev_priv = dev->dev_private;
  1094. unsigned long flags;
  1095. if (!intel_irqs_enabled(dev_priv))
  1096. return false;
  1097. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1098. if (ring->irq_refcount++ == 0) {
  1099. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1100. I915_WRITE16(IMR, dev_priv->irq_mask);
  1101. POSTING_READ16(IMR);
  1102. }
  1103. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1104. return true;
  1105. }
  1106. static void
  1107. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1108. {
  1109. struct drm_device *dev = ring->dev;
  1110. struct drm_i915_private *dev_priv = dev->dev_private;
  1111. unsigned long flags;
  1112. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1113. if (--ring->irq_refcount == 0) {
  1114. dev_priv->irq_mask |= ring->irq_enable_mask;
  1115. I915_WRITE16(IMR, dev_priv->irq_mask);
  1116. POSTING_READ16(IMR);
  1117. }
  1118. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1119. }
  1120. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1121. {
  1122. struct drm_device *dev = ring->dev;
  1123. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1124. u32 mmio = 0;
  1125. /* The ring status page addresses are no longer next to the rest of
  1126. * the ring registers as of gen7.
  1127. */
  1128. if (IS_GEN7(dev)) {
  1129. switch (ring->id) {
  1130. case RCS:
  1131. mmio = RENDER_HWS_PGA_GEN7;
  1132. break;
  1133. case BCS:
  1134. mmio = BLT_HWS_PGA_GEN7;
  1135. break;
  1136. /*
  1137. * VCS2 actually doesn't exist on Gen7. Only shut up
  1138. * gcc switch check warning
  1139. */
  1140. case VCS2:
  1141. case VCS:
  1142. mmio = BSD_HWS_PGA_GEN7;
  1143. break;
  1144. case VECS:
  1145. mmio = VEBOX_HWS_PGA_GEN7;
  1146. break;
  1147. }
  1148. } else if (IS_GEN6(ring->dev)) {
  1149. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1150. } else {
  1151. /* XXX: gen8 returns to sanity */
  1152. mmio = RING_HWS_PGA(ring->mmio_base);
  1153. }
  1154. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1155. POSTING_READ(mmio);
  1156. /*
  1157. * Flush the TLB for this page
  1158. *
  1159. * FIXME: These two bits have disappeared on gen8, so a question
  1160. * arises: do we still need this and if so how should we go about
  1161. * invalidating the TLB?
  1162. */
  1163. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1164. u32 reg = RING_INSTPM(ring->mmio_base);
  1165. /* ring should be idle before issuing a sync flush*/
  1166. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1167. I915_WRITE(reg,
  1168. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1169. INSTPM_SYNC_FLUSH));
  1170. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1171. 1000))
  1172. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1173. ring->name);
  1174. }
  1175. }
  1176. static int
  1177. bsd_ring_flush(struct intel_engine_cs *ring,
  1178. u32 invalidate_domains,
  1179. u32 flush_domains)
  1180. {
  1181. int ret;
  1182. ret = intel_ring_begin(ring, 2);
  1183. if (ret)
  1184. return ret;
  1185. intel_ring_emit(ring, MI_FLUSH);
  1186. intel_ring_emit(ring, MI_NOOP);
  1187. intel_ring_advance(ring);
  1188. return 0;
  1189. }
  1190. static int
  1191. i9xx_add_request(struct intel_engine_cs *ring)
  1192. {
  1193. int ret;
  1194. ret = intel_ring_begin(ring, 4);
  1195. if (ret)
  1196. return ret;
  1197. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1198. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1199. intel_ring_emit(ring,
  1200. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1201. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1202. __intel_ring_advance(ring);
  1203. return 0;
  1204. }
  1205. static bool
  1206. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1207. {
  1208. struct drm_device *dev = ring->dev;
  1209. struct drm_i915_private *dev_priv = dev->dev_private;
  1210. unsigned long flags;
  1211. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1212. return false;
  1213. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1214. if (ring->irq_refcount++ == 0) {
  1215. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1216. I915_WRITE_IMR(ring,
  1217. ~(ring->irq_enable_mask |
  1218. GT_PARITY_ERROR(dev)));
  1219. else
  1220. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1221. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1222. }
  1223. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1224. return true;
  1225. }
  1226. static void
  1227. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1228. {
  1229. struct drm_device *dev = ring->dev;
  1230. struct drm_i915_private *dev_priv = dev->dev_private;
  1231. unsigned long flags;
  1232. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1233. if (--ring->irq_refcount == 0) {
  1234. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1235. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1236. else
  1237. I915_WRITE_IMR(ring, ~0);
  1238. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1239. }
  1240. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1241. }
  1242. static bool
  1243. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1244. {
  1245. struct drm_device *dev = ring->dev;
  1246. struct drm_i915_private *dev_priv = dev->dev_private;
  1247. unsigned long flags;
  1248. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1249. return false;
  1250. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1251. if (ring->irq_refcount++ == 0) {
  1252. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1253. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1254. }
  1255. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1256. return true;
  1257. }
  1258. static void
  1259. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1260. {
  1261. struct drm_device *dev = ring->dev;
  1262. struct drm_i915_private *dev_priv = dev->dev_private;
  1263. unsigned long flags;
  1264. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1265. if (--ring->irq_refcount == 0) {
  1266. I915_WRITE_IMR(ring, ~0);
  1267. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1268. }
  1269. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1270. }
  1271. static bool
  1272. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1273. {
  1274. struct drm_device *dev = ring->dev;
  1275. struct drm_i915_private *dev_priv = dev->dev_private;
  1276. unsigned long flags;
  1277. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1278. return false;
  1279. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1280. if (ring->irq_refcount++ == 0) {
  1281. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1282. I915_WRITE_IMR(ring,
  1283. ~(ring->irq_enable_mask |
  1284. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1285. } else {
  1286. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1287. }
  1288. POSTING_READ(RING_IMR(ring->mmio_base));
  1289. }
  1290. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1291. return true;
  1292. }
  1293. static void
  1294. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1295. {
  1296. struct drm_device *dev = ring->dev;
  1297. struct drm_i915_private *dev_priv = dev->dev_private;
  1298. unsigned long flags;
  1299. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1300. if (--ring->irq_refcount == 0) {
  1301. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1302. I915_WRITE_IMR(ring,
  1303. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1304. } else {
  1305. I915_WRITE_IMR(ring, ~0);
  1306. }
  1307. POSTING_READ(RING_IMR(ring->mmio_base));
  1308. }
  1309. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1310. }
  1311. static int
  1312. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1313. u64 offset, u32 length,
  1314. unsigned flags)
  1315. {
  1316. int ret;
  1317. ret = intel_ring_begin(ring, 2);
  1318. if (ret)
  1319. return ret;
  1320. intel_ring_emit(ring,
  1321. MI_BATCH_BUFFER_START |
  1322. MI_BATCH_GTT |
  1323. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1324. intel_ring_emit(ring, offset);
  1325. intel_ring_advance(ring);
  1326. return 0;
  1327. }
  1328. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1329. #define I830_BATCH_LIMIT (256*1024)
  1330. #define I830_TLB_ENTRIES (2)
  1331. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1332. static int
  1333. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1334. u64 offset, u32 len,
  1335. unsigned flags)
  1336. {
  1337. u32 cs_offset = ring->scratch.gtt_offset;
  1338. int ret;
  1339. ret = intel_ring_begin(ring, 6);
  1340. if (ret)
  1341. return ret;
  1342. /* Evict the invalid PTE TLBs */
  1343. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1344. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1345. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1346. intel_ring_emit(ring, cs_offset);
  1347. intel_ring_emit(ring, 0xdeadbeef);
  1348. intel_ring_emit(ring, MI_NOOP);
  1349. intel_ring_advance(ring);
  1350. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1351. if (len > I830_BATCH_LIMIT)
  1352. return -ENOSPC;
  1353. ret = intel_ring_begin(ring, 6 + 2);
  1354. if (ret)
  1355. return ret;
  1356. /* Blit the batch (which has now all relocs applied) to the
  1357. * stable batch scratch bo area (so that the CS never
  1358. * stumbles over its tlb invalidation bug) ...
  1359. */
  1360. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1361. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1362. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1363. intel_ring_emit(ring, cs_offset);
  1364. intel_ring_emit(ring, 4096);
  1365. intel_ring_emit(ring, offset);
  1366. intel_ring_emit(ring, MI_FLUSH);
  1367. intel_ring_emit(ring, MI_NOOP);
  1368. intel_ring_advance(ring);
  1369. /* ... and execute it. */
  1370. offset = cs_offset;
  1371. }
  1372. ret = intel_ring_begin(ring, 4);
  1373. if (ret)
  1374. return ret;
  1375. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1376. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1377. intel_ring_emit(ring, offset + len - 8);
  1378. intel_ring_emit(ring, MI_NOOP);
  1379. intel_ring_advance(ring);
  1380. return 0;
  1381. }
  1382. static int
  1383. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1384. u64 offset, u32 len,
  1385. unsigned flags)
  1386. {
  1387. int ret;
  1388. ret = intel_ring_begin(ring, 2);
  1389. if (ret)
  1390. return ret;
  1391. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1392. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1393. intel_ring_advance(ring);
  1394. return 0;
  1395. }
  1396. static void cleanup_status_page(struct intel_engine_cs *ring)
  1397. {
  1398. struct drm_i915_gem_object *obj;
  1399. obj = ring->status_page.obj;
  1400. if (obj == NULL)
  1401. return;
  1402. kunmap(sg_page(obj->pages->sgl));
  1403. i915_gem_object_ggtt_unpin(obj);
  1404. drm_gem_object_unreference(&obj->base);
  1405. ring->status_page.obj = NULL;
  1406. }
  1407. static int init_status_page(struct intel_engine_cs *ring)
  1408. {
  1409. struct drm_i915_gem_object *obj;
  1410. if ((obj = ring->status_page.obj) == NULL) {
  1411. unsigned flags;
  1412. int ret;
  1413. obj = i915_gem_alloc_object(ring->dev, 4096);
  1414. if (obj == NULL) {
  1415. DRM_ERROR("Failed to allocate status page\n");
  1416. return -ENOMEM;
  1417. }
  1418. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1419. if (ret)
  1420. goto err_unref;
  1421. flags = 0;
  1422. if (!HAS_LLC(ring->dev))
  1423. /* On g33, we cannot place HWS above 256MiB, so
  1424. * restrict its pinning to the low mappable arena.
  1425. * Though this restriction is not documented for
  1426. * gen4, gen5, or byt, they also behave similarly
  1427. * and hang if the HWS is placed at the top of the
  1428. * GTT. To generalise, it appears that all !llc
  1429. * platforms have issues with us placing the HWS
  1430. * above the mappable region (even though we never
  1431. * actualy map it).
  1432. */
  1433. flags |= PIN_MAPPABLE;
  1434. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1435. if (ret) {
  1436. err_unref:
  1437. drm_gem_object_unreference(&obj->base);
  1438. return ret;
  1439. }
  1440. ring->status_page.obj = obj;
  1441. }
  1442. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1443. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1444. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1445. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1446. ring->name, ring->status_page.gfx_addr);
  1447. return 0;
  1448. }
  1449. static int init_phys_status_page(struct intel_engine_cs *ring)
  1450. {
  1451. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1452. if (!dev_priv->status_page_dmah) {
  1453. dev_priv->status_page_dmah =
  1454. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1455. if (!dev_priv->status_page_dmah)
  1456. return -ENOMEM;
  1457. }
  1458. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1459. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1460. return 0;
  1461. }
  1462. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1463. {
  1464. iounmap(ringbuf->virtual_start);
  1465. ringbuf->virtual_start = NULL;
  1466. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1467. }
  1468. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1469. struct intel_ringbuffer *ringbuf)
  1470. {
  1471. struct drm_i915_private *dev_priv = to_i915(dev);
  1472. struct drm_i915_gem_object *obj = ringbuf->obj;
  1473. int ret;
  1474. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1475. if (ret)
  1476. return ret;
  1477. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1478. if (ret) {
  1479. i915_gem_object_ggtt_unpin(obj);
  1480. return ret;
  1481. }
  1482. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1483. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1484. if (ringbuf->virtual_start == NULL) {
  1485. i915_gem_object_ggtt_unpin(obj);
  1486. return -EINVAL;
  1487. }
  1488. return 0;
  1489. }
  1490. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1491. {
  1492. drm_gem_object_unreference(&ringbuf->obj->base);
  1493. ringbuf->obj = NULL;
  1494. }
  1495. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1496. struct intel_ringbuffer *ringbuf)
  1497. {
  1498. struct drm_i915_gem_object *obj;
  1499. obj = NULL;
  1500. if (!HAS_LLC(dev))
  1501. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1502. if (obj == NULL)
  1503. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1504. if (obj == NULL)
  1505. return -ENOMEM;
  1506. /* mark ring buffers as read-only from GPU side by default */
  1507. obj->gt_ro = 1;
  1508. ringbuf->obj = obj;
  1509. return 0;
  1510. }
  1511. static int intel_init_ring_buffer(struct drm_device *dev,
  1512. struct intel_engine_cs *ring)
  1513. {
  1514. struct intel_ringbuffer *ringbuf = ring->buffer;
  1515. int ret;
  1516. if (ringbuf == NULL) {
  1517. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1518. if (!ringbuf)
  1519. return -ENOMEM;
  1520. ring->buffer = ringbuf;
  1521. }
  1522. ring->dev = dev;
  1523. INIT_LIST_HEAD(&ring->active_list);
  1524. INIT_LIST_HEAD(&ring->request_list);
  1525. INIT_LIST_HEAD(&ring->execlist_queue);
  1526. ringbuf->size = 32 * PAGE_SIZE;
  1527. ringbuf->ring = ring;
  1528. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1529. init_waitqueue_head(&ring->irq_queue);
  1530. if (I915_NEED_GFX_HWS(dev)) {
  1531. ret = init_status_page(ring);
  1532. if (ret)
  1533. goto error;
  1534. } else {
  1535. BUG_ON(ring->id != RCS);
  1536. ret = init_phys_status_page(ring);
  1537. if (ret)
  1538. goto error;
  1539. }
  1540. if (ringbuf->obj == NULL) {
  1541. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1542. if (ret) {
  1543. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1544. ring->name, ret);
  1545. goto error;
  1546. }
  1547. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1548. if (ret) {
  1549. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1550. ring->name, ret);
  1551. intel_destroy_ringbuffer_obj(ringbuf);
  1552. goto error;
  1553. }
  1554. }
  1555. /* Workaround an erratum on the i830 which causes a hang if
  1556. * the TAIL pointer points to within the last 2 cachelines
  1557. * of the buffer.
  1558. */
  1559. ringbuf->effective_size = ringbuf->size;
  1560. if (IS_I830(dev) || IS_845G(dev))
  1561. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1562. ret = i915_cmd_parser_init_ring(ring);
  1563. if (ret)
  1564. goto error;
  1565. ret = ring->init_hw(ring);
  1566. if (ret)
  1567. goto error;
  1568. return 0;
  1569. error:
  1570. kfree(ringbuf);
  1571. ring->buffer = NULL;
  1572. return ret;
  1573. }
  1574. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1575. {
  1576. struct drm_i915_private *dev_priv;
  1577. struct intel_ringbuffer *ringbuf;
  1578. if (!intel_ring_initialized(ring))
  1579. return;
  1580. dev_priv = to_i915(ring->dev);
  1581. ringbuf = ring->buffer;
  1582. intel_stop_ring_buffer(ring);
  1583. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1584. intel_unpin_ringbuffer_obj(ringbuf);
  1585. intel_destroy_ringbuffer_obj(ringbuf);
  1586. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1587. if (ring->cleanup)
  1588. ring->cleanup(ring);
  1589. cleanup_status_page(ring);
  1590. i915_cmd_parser_fini_ring(ring);
  1591. kfree(ringbuf);
  1592. ring->buffer = NULL;
  1593. }
  1594. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1595. {
  1596. struct intel_ringbuffer *ringbuf = ring->buffer;
  1597. struct drm_i915_gem_request *request;
  1598. int ret;
  1599. if (intel_ring_space(ringbuf) >= n)
  1600. return 0;
  1601. list_for_each_entry(request, &ring->request_list, list) {
  1602. if (__intel_ring_space(request->tail, ringbuf->tail,
  1603. ringbuf->size) >= n) {
  1604. break;
  1605. }
  1606. }
  1607. if (&request->list == &ring->request_list)
  1608. return -ENOSPC;
  1609. ret = i915_wait_request(request);
  1610. if (ret)
  1611. return ret;
  1612. i915_gem_retire_requests_ring(ring);
  1613. return 0;
  1614. }
  1615. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1616. {
  1617. struct drm_device *dev = ring->dev;
  1618. struct drm_i915_private *dev_priv = dev->dev_private;
  1619. struct intel_ringbuffer *ringbuf = ring->buffer;
  1620. unsigned long end;
  1621. int ret;
  1622. ret = intel_ring_wait_request(ring, n);
  1623. if (ret != -ENOSPC)
  1624. return ret;
  1625. /* force the tail write in case we have been skipping them */
  1626. __intel_ring_advance(ring);
  1627. /* With GEM the hangcheck timer should kick us out of the loop,
  1628. * leaving it early runs the risk of corrupting GEM state (due
  1629. * to running on almost untested codepaths). But on resume
  1630. * timers don't work yet, so prevent a complete hang in that
  1631. * case by choosing an insanely large timeout. */
  1632. end = jiffies + 60 * HZ;
  1633. ret = 0;
  1634. trace_i915_ring_wait_begin(ring);
  1635. do {
  1636. if (intel_ring_space(ringbuf) >= n)
  1637. break;
  1638. ringbuf->head = I915_READ_HEAD(ring);
  1639. if (intel_ring_space(ringbuf) >= n)
  1640. break;
  1641. msleep(1);
  1642. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1643. ret = -ERESTARTSYS;
  1644. break;
  1645. }
  1646. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1647. dev_priv->mm.interruptible);
  1648. if (ret)
  1649. break;
  1650. if (time_after(jiffies, end)) {
  1651. ret = -EBUSY;
  1652. break;
  1653. }
  1654. } while (1);
  1655. trace_i915_ring_wait_end(ring);
  1656. return ret;
  1657. }
  1658. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1659. {
  1660. uint32_t __iomem *virt;
  1661. struct intel_ringbuffer *ringbuf = ring->buffer;
  1662. int rem = ringbuf->size - ringbuf->tail;
  1663. if (ringbuf->space < rem) {
  1664. int ret = ring_wait_for_space(ring, rem);
  1665. if (ret)
  1666. return ret;
  1667. }
  1668. virt = ringbuf->virtual_start + ringbuf->tail;
  1669. rem /= 4;
  1670. while (rem--)
  1671. iowrite32(MI_NOOP, virt++);
  1672. ringbuf->tail = 0;
  1673. intel_ring_update_space(ringbuf);
  1674. return 0;
  1675. }
  1676. int intel_ring_idle(struct intel_engine_cs *ring)
  1677. {
  1678. struct drm_i915_gem_request *req;
  1679. int ret;
  1680. /* We need to add any requests required to flush the objects and ring */
  1681. if (ring->outstanding_lazy_request) {
  1682. ret = i915_add_request(ring);
  1683. if (ret)
  1684. return ret;
  1685. }
  1686. /* Wait upon the last request to be completed */
  1687. if (list_empty(&ring->request_list))
  1688. return 0;
  1689. req = list_entry(ring->request_list.prev,
  1690. struct drm_i915_gem_request,
  1691. list);
  1692. return i915_wait_request(req);
  1693. }
  1694. static int
  1695. intel_ring_alloc_request(struct intel_engine_cs *ring)
  1696. {
  1697. int ret;
  1698. struct drm_i915_gem_request *request;
  1699. if (ring->outstanding_lazy_request)
  1700. return 0;
  1701. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1702. if (request == NULL)
  1703. return -ENOMEM;
  1704. kref_init(&request->ref);
  1705. request->ring = ring;
  1706. ret = i915_gem_get_seqno(ring->dev, &request->seqno);
  1707. if (ret) {
  1708. kfree(request);
  1709. return ret;
  1710. }
  1711. ring->outstanding_lazy_request = request;
  1712. return 0;
  1713. }
  1714. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1715. int bytes)
  1716. {
  1717. struct intel_ringbuffer *ringbuf = ring->buffer;
  1718. int ret;
  1719. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1720. ret = intel_wrap_ring_buffer(ring);
  1721. if (unlikely(ret))
  1722. return ret;
  1723. }
  1724. if (unlikely(ringbuf->space < bytes)) {
  1725. ret = ring_wait_for_space(ring, bytes);
  1726. if (unlikely(ret))
  1727. return ret;
  1728. }
  1729. return 0;
  1730. }
  1731. int intel_ring_begin(struct intel_engine_cs *ring,
  1732. int num_dwords)
  1733. {
  1734. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1735. int ret;
  1736. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1737. dev_priv->mm.interruptible);
  1738. if (ret)
  1739. return ret;
  1740. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1741. if (ret)
  1742. return ret;
  1743. /* Preallocate the olr before touching the ring */
  1744. ret = intel_ring_alloc_request(ring);
  1745. if (ret)
  1746. return ret;
  1747. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1748. return 0;
  1749. }
  1750. /* Align the ring tail to a cacheline boundary */
  1751. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1752. {
  1753. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1754. int ret;
  1755. if (num_dwords == 0)
  1756. return 0;
  1757. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1758. ret = intel_ring_begin(ring, num_dwords);
  1759. if (ret)
  1760. return ret;
  1761. while (num_dwords--)
  1762. intel_ring_emit(ring, MI_NOOP);
  1763. intel_ring_advance(ring);
  1764. return 0;
  1765. }
  1766. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1767. {
  1768. struct drm_device *dev = ring->dev;
  1769. struct drm_i915_private *dev_priv = dev->dev_private;
  1770. BUG_ON(ring->outstanding_lazy_request);
  1771. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1772. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1773. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1774. if (HAS_VEBOX(dev))
  1775. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1776. }
  1777. ring->set_seqno(ring, seqno);
  1778. ring->hangcheck.seqno = seqno;
  1779. }
  1780. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1781. u32 value)
  1782. {
  1783. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1784. /* Every tail move must follow the sequence below */
  1785. /* Disable notification that the ring is IDLE. The GT
  1786. * will then assume that it is busy and bring it out of rc6.
  1787. */
  1788. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1789. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1790. /* Clear the context id. Here be magic! */
  1791. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1792. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1793. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1794. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1795. 50))
  1796. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1797. /* Now that the ring is fully powered up, update the tail */
  1798. I915_WRITE_TAIL(ring, value);
  1799. POSTING_READ(RING_TAIL(ring->mmio_base));
  1800. /* Let the ring send IDLE messages to the GT again,
  1801. * and so let it sleep to conserve power when idle.
  1802. */
  1803. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1804. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1805. }
  1806. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1807. u32 invalidate, u32 flush)
  1808. {
  1809. uint32_t cmd;
  1810. int ret;
  1811. ret = intel_ring_begin(ring, 4);
  1812. if (ret)
  1813. return ret;
  1814. cmd = MI_FLUSH_DW;
  1815. if (INTEL_INFO(ring->dev)->gen >= 8)
  1816. cmd += 1;
  1817. /*
  1818. * Bspec vol 1c.5 - video engine command streamer:
  1819. * "If ENABLED, all TLBs will be invalidated once the flush
  1820. * operation is complete. This bit is only valid when the
  1821. * Post-Sync Operation field is a value of 1h or 3h."
  1822. */
  1823. if (invalidate & I915_GEM_GPU_DOMAINS)
  1824. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1825. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1826. intel_ring_emit(ring, cmd);
  1827. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1828. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1829. intel_ring_emit(ring, 0); /* upper addr */
  1830. intel_ring_emit(ring, 0); /* value */
  1831. } else {
  1832. intel_ring_emit(ring, 0);
  1833. intel_ring_emit(ring, MI_NOOP);
  1834. }
  1835. intel_ring_advance(ring);
  1836. return 0;
  1837. }
  1838. static int
  1839. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1840. u64 offset, u32 len,
  1841. unsigned flags)
  1842. {
  1843. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1844. int ret;
  1845. ret = intel_ring_begin(ring, 4);
  1846. if (ret)
  1847. return ret;
  1848. /* FIXME(BDW): Address space and security selectors. */
  1849. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1850. intel_ring_emit(ring, lower_32_bits(offset));
  1851. intel_ring_emit(ring, upper_32_bits(offset));
  1852. intel_ring_emit(ring, MI_NOOP);
  1853. intel_ring_advance(ring);
  1854. return 0;
  1855. }
  1856. static int
  1857. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1858. u64 offset, u32 len,
  1859. unsigned flags)
  1860. {
  1861. int ret;
  1862. ret = intel_ring_begin(ring, 2);
  1863. if (ret)
  1864. return ret;
  1865. intel_ring_emit(ring,
  1866. MI_BATCH_BUFFER_START |
  1867. (flags & I915_DISPATCH_SECURE ?
  1868. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1869. /* bit0-7 is the length on GEN6+ */
  1870. intel_ring_emit(ring, offset);
  1871. intel_ring_advance(ring);
  1872. return 0;
  1873. }
  1874. static int
  1875. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1876. u64 offset, u32 len,
  1877. unsigned flags)
  1878. {
  1879. int ret;
  1880. ret = intel_ring_begin(ring, 2);
  1881. if (ret)
  1882. return ret;
  1883. intel_ring_emit(ring,
  1884. MI_BATCH_BUFFER_START |
  1885. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1886. /* bit0-7 is the length on GEN6+ */
  1887. intel_ring_emit(ring, offset);
  1888. intel_ring_advance(ring);
  1889. return 0;
  1890. }
  1891. /* Blitter support (SandyBridge+) */
  1892. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1893. u32 invalidate, u32 flush)
  1894. {
  1895. struct drm_device *dev = ring->dev;
  1896. struct drm_i915_private *dev_priv = dev->dev_private;
  1897. uint32_t cmd;
  1898. int ret;
  1899. ret = intel_ring_begin(ring, 4);
  1900. if (ret)
  1901. return ret;
  1902. cmd = MI_FLUSH_DW;
  1903. if (INTEL_INFO(ring->dev)->gen >= 8)
  1904. cmd += 1;
  1905. /*
  1906. * Bspec vol 1c.3 - blitter engine command streamer:
  1907. * "If ENABLED, all TLBs will be invalidated once the flush
  1908. * operation is complete. This bit is only valid when the
  1909. * Post-Sync Operation field is a value of 1h or 3h."
  1910. */
  1911. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1912. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1913. MI_FLUSH_DW_OP_STOREDW;
  1914. intel_ring_emit(ring, cmd);
  1915. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1916. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1917. intel_ring_emit(ring, 0); /* upper addr */
  1918. intel_ring_emit(ring, 0); /* value */
  1919. } else {
  1920. intel_ring_emit(ring, 0);
  1921. intel_ring_emit(ring, MI_NOOP);
  1922. }
  1923. intel_ring_advance(ring);
  1924. if (!invalidate && flush) {
  1925. if (IS_GEN7(dev))
  1926. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1927. else if (IS_BROADWELL(dev))
  1928. dev_priv->fbc.need_sw_cache_clean = true;
  1929. }
  1930. return 0;
  1931. }
  1932. int intel_init_render_ring_buffer(struct drm_device *dev)
  1933. {
  1934. struct drm_i915_private *dev_priv = dev->dev_private;
  1935. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1936. struct drm_i915_gem_object *obj;
  1937. int ret;
  1938. ring->name = "render ring";
  1939. ring->id = RCS;
  1940. ring->mmio_base = RENDER_RING_BASE;
  1941. if (INTEL_INFO(dev)->gen >= 8) {
  1942. if (i915_semaphore_is_enabled(dev)) {
  1943. obj = i915_gem_alloc_object(dev, 4096);
  1944. if (obj == NULL) {
  1945. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1946. i915.semaphores = 0;
  1947. } else {
  1948. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1949. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1950. if (ret != 0) {
  1951. drm_gem_object_unreference(&obj->base);
  1952. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1953. i915.semaphores = 0;
  1954. } else
  1955. dev_priv->semaphore_obj = obj;
  1956. }
  1957. }
  1958. ring->init_context = intel_ring_workarounds_emit;
  1959. ring->add_request = gen6_add_request;
  1960. ring->flush = gen8_render_ring_flush;
  1961. ring->irq_get = gen8_ring_get_irq;
  1962. ring->irq_put = gen8_ring_put_irq;
  1963. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1964. ring->get_seqno = gen6_ring_get_seqno;
  1965. ring->set_seqno = ring_set_seqno;
  1966. if (i915_semaphore_is_enabled(dev)) {
  1967. WARN_ON(!dev_priv->semaphore_obj);
  1968. ring->semaphore.sync_to = gen8_ring_sync;
  1969. ring->semaphore.signal = gen8_rcs_signal;
  1970. GEN8_RING_SEMAPHORE_INIT;
  1971. }
  1972. } else if (INTEL_INFO(dev)->gen >= 6) {
  1973. ring->add_request = gen6_add_request;
  1974. ring->flush = gen7_render_ring_flush;
  1975. if (INTEL_INFO(dev)->gen == 6)
  1976. ring->flush = gen6_render_ring_flush;
  1977. ring->irq_get = gen6_ring_get_irq;
  1978. ring->irq_put = gen6_ring_put_irq;
  1979. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1980. ring->get_seqno = gen6_ring_get_seqno;
  1981. ring->set_seqno = ring_set_seqno;
  1982. if (i915_semaphore_is_enabled(dev)) {
  1983. ring->semaphore.sync_to = gen6_ring_sync;
  1984. ring->semaphore.signal = gen6_signal;
  1985. /*
  1986. * The current semaphore is only applied on pre-gen8
  1987. * platform. And there is no VCS2 ring on the pre-gen8
  1988. * platform. So the semaphore between RCS and VCS2 is
  1989. * initialized as INVALID. Gen8 will initialize the
  1990. * sema between VCS2 and RCS later.
  1991. */
  1992. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1993. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1994. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1995. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1996. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1997. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1998. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1999. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2000. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2001. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2002. }
  2003. } else if (IS_GEN5(dev)) {
  2004. ring->add_request = pc_render_add_request;
  2005. ring->flush = gen4_render_ring_flush;
  2006. ring->get_seqno = pc_render_get_seqno;
  2007. ring->set_seqno = pc_render_set_seqno;
  2008. ring->irq_get = gen5_ring_get_irq;
  2009. ring->irq_put = gen5_ring_put_irq;
  2010. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2011. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2012. } else {
  2013. ring->add_request = i9xx_add_request;
  2014. if (INTEL_INFO(dev)->gen < 4)
  2015. ring->flush = gen2_render_ring_flush;
  2016. else
  2017. ring->flush = gen4_render_ring_flush;
  2018. ring->get_seqno = ring_get_seqno;
  2019. ring->set_seqno = ring_set_seqno;
  2020. if (IS_GEN2(dev)) {
  2021. ring->irq_get = i8xx_ring_get_irq;
  2022. ring->irq_put = i8xx_ring_put_irq;
  2023. } else {
  2024. ring->irq_get = i9xx_ring_get_irq;
  2025. ring->irq_put = i9xx_ring_put_irq;
  2026. }
  2027. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2028. }
  2029. ring->write_tail = ring_write_tail;
  2030. if (IS_HASWELL(dev))
  2031. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2032. else if (IS_GEN8(dev))
  2033. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2034. else if (INTEL_INFO(dev)->gen >= 6)
  2035. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2036. else if (INTEL_INFO(dev)->gen >= 4)
  2037. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2038. else if (IS_I830(dev) || IS_845G(dev))
  2039. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2040. else
  2041. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2042. ring->init_hw = init_render_ring;
  2043. ring->cleanup = render_ring_cleanup;
  2044. /* Workaround batchbuffer to combat CS tlb bug. */
  2045. if (HAS_BROKEN_CS_TLB(dev)) {
  2046. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2047. if (obj == NULL) {
  2048. DRM_ERROR("Failed to allocate batch bo\n");
  2049. return -ENOMEM;
  2050. }
  2051. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2052. if (ret != 0) {
  2053. drm_gem_object_unreference(&obj->base);
  2054. DRM_ERROR("Failed to ping batch bo\n");
  2055. return ret;
  2056. }
  2057. ring->scratch.obj = obj;
  2058. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2059. }
  2060. return intel_init_ring_buffer(dev, ring);
  2061. }
  2062. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2063. {
  2064. struct drm_i915_private *dev_priv = dev->dev_private;
  2065. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2066. ring->name = "bsd ring";
  2067. ring->id = VCS;
  2068. ring->write_tail = ring_write_tail;
  2069. if (INTEL_INFO(dev)->gen >= 6) {
  2070. ring->mmio_base = GEN6_BSD_RING_BASE;
  2071. /* gen6 bsd needs a special wa for tail updates */
  2072. if (IS_GEN6(dev))
  2073. ring->write_tail = gen6_bsd_ring_write_tail;
  2074. ring->flush = gen6_bsd_ring_flush;
  2075. ring->add_request = gen6_add_request;
  2076. ring->get_seqno = gen6_ring_get_seqno;
  2077. ring->set_seqno = ring_set_seqno;
  2078. if (INTEL_INFO(dev)->gen >= 8) {
  2079. ring->irq_enable_mask =
  2080. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2081. ring->irq_get = gen8_ring_get_irq;
  2082. ring->irq_put = gen8_ring_put_irq;
  2083. ring->dispatch_execbuffer =
  2084. gen8_ring_dispatch_execbuffer;
  2085. if (i915_semaphore_is_enabled(dev)) {
  2086. ring->semaphore.sync_to = gen8_ring_sync;
  2087. ring->semaphore.signal = gen8_xcs_signal;
  2088. GEN8_RING_SEMAPHORE_INIT;
  2089. }
  2090. } else {
  2091. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2092. ring->irq_get = gen6_ring_get_irq;
  2093. ring->irq_put = gen6_ring_put_irq;
  2094. ring->dispatch_execbuffer =
  2095. gen6_ring_dispatch_execbuffer;
  2096. if (i915_semaphore_is_enabled(dev)) {
  2097. ring->semaphore.sync_to = gen6_ring_sync;
  2098. ring->semaphore.signal = gen6_signal;
  2099. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2100. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2101. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2102. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2103. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2104. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2105. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2106. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2107. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2108. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2109. }
  2110. }
  2111. } else {
  2112. ring->mmio_base = BSD_RING_BASE;
  2113. ring->flush = bsd_ring_flush;
  2114. ring->add_request = i9xx_add_request;
  2115. ring->get_seqno = ring_get_seqno;
  2116. ring->set_seqno = ring_set_seqno;
  2117. if (IS_GEN5(dev)) {
  2118. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2119. ring->irq_get = gen5_ring_get_irq;
  2120. ring->irq_put = gen5_ring_put_irq;
  2121. } else {
  2122. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2123. ring->irq_get = i9xx_ring_get_irq;
  2124. ring->irq_put = i9xx_ring_put_irq;
  2125. }
  2126. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2127. }
  2128. ring->init_hw = init_ring_common;
  2129. return intel_init_ring_buffer(dev, ring);
  2130. }
  2131. /**
  2132. * Initialize the second BSD ring for Broadwell GT3.
  2133. * It is noted that this only exists on Broadwell GT3.
  2134. */
  2135. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2136. {
  2137. struct drm_i915_private *dev_priv = dev->dev_private;
  2138. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2139. if ((INTEL_INFO(dev)->gen != 8)) {
  2140. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2141. return -EINVAL;
  2142. }
  2143. ring->name = "bsd2 ring";
  2144. ring->id = VCS2;
  2145. ring->write_tail = ring_write_tail;
  2146. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2147. ring->flush = gen6_bsd_ring_flush;
  2148. ring->add_request = gen6_add_request;
  2149. ring->get_seqno = gen6_ring_get_seqno;
  2150. ring->set_seqno = ring_set_seqno;
  2151. ring->irq_enable_mask =
  2152. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2153. ring->irq_get = gen8_ring_get_irq;
  2154. ring->irq_put = gen8_ring_put_irq;
  2155. ring->dispatch_execbuffer =
  2156. gen8_ring_dispatch_execbuffer;
  2157. if (i915_semaphore_is_enabled(dev)) {
  2158. ring->semaphore.sync_to = gen8_ring_sync;
  2159. ring->semaphore.signal = gen8_xcs_signal;
  2160. GEN8_RING_SEMAPHORE_INIT;
  2161. }
  2162. ring->init_hw = init_ring_common;
  2163. return intel_init_ring_buffer(dev, ring);
  2164. }
  2165. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2166. {
  2167. struct drm_i915_private *dev_priv = dev->dev_private;
  2168. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2169. ring->name = "blitter ring";
  2170. ring->id = BCS;
  2171. ring->mmio_base = BLT_RING_BASE;
  2172. ring->write_tail = ring_write_tail;
  2173. ring->flush = gen6_ring_flush;
  2174. ring->add_request = gen6_add_request;
  2175. ring->get_seqno = gen6_ring_get_seqno;
  2176. ring->set_seqno = ring_set_seqno;
  2177. if (INTEL_INFO(dev)->gen >= 8) {
  2178. ring->irq_enable_mask =
  2179. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2180. ring->irq_get = gen8_ring_get_irq;
  2181. ring->irq_put = gen8_ring_put_irq;
  2182. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2183. if (i915_semaphore_is_enabled(dev)) {
  2184. ring->semaphore.sync_to = gen8_ring_sync;
  2185. ring->semaphore.signal = gen8_xcs_signal;
  2186. GEN8_RING_SEMAPHORE_INIT;
  2187. }
  2188. } else {
  2189. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2190. ring->irq_get = gen6_ring_get_irq;
  2191. ring->irq_put = gen6_ring_put_irq;
  2192. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2193. if (i915_semaphore_is_enabled(dev)) {
  2194. ring->semaphore.signal = gen6_signal;
  2195. ring->semaphore.sync_to = gen6_ring_sync;
  2196. /*
  2197. * The current semaphore is only applied on pre-gen8
  2198. * platform. And there is no VCS2 ring on the pre-gen8
  2199. * platform. So the semaphore between BCS and VCS2 is
  2200. * initialized as INVALID. Gen8 will initialize the
  2201. * sema between BCS and VCS2 later.
  2202. */
  2203. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2204. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2205. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2206. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2207. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2208. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2209. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2210. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2211. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2212. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2213. }
  2214. }
  2215. ring->init_hw = init_ring_common;
  2216. return intel_init_ring_buffer(dev, ring);
  2217. }
  2218. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2219. {
  2220. struct drm_i915_private *dev_priv = dev->dev_private;
  2221. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2222. ring->name = "video enhancement ring";
  2223. ring->id = VECS;
  2224. ring->mmio_base = VEBOX_RING_BASE;
  2225. ring->write_tail = ring_write_tail;
  2226. ring->flush = gen6_ring_flush;
  2227. ring->add_request = gen6_add_request;
  2228. ring->get_seqno = gen6_ring_get_seqno;
  2229. ring->set_seqno = ring_set_seqno;
  2230. if (INTEL_INFO(dev)->gen >= 8) {
  2231. ring->irq_enable_mask =
  2232. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2233. ring->irq_get = gen8_ring_get_irq;
  2234. ring->irq_put = gen8_ring_put_irq;
  2235. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2236. if (i915_semaphore_is_enabled(dev)) {
  2237. ring->semaphore.sync_to = gen8_ring_sync;
  2238. ring->semaphore.signal = gen8_xcs_signal;
  2239. GEN8_RING_SEMAPHORE_INIT;
  2240. }
  2241. } else {
  2242. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2243. ring->irq_get = hsw_vebox_get_irq;
  2244. ring->irq_put = hsw_vebox_put_irq;
  2245. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2246. if (i915_semaphore_is_enabled(dev)) {
  2247. ring->semaphore.sync_to = gen6_ring_sync;
  2248. ring->semaphore.signal = gen6_signal;
  2249. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2250. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2251. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2252. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2253. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2254. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2255. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2256. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2257. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2258. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2259. }
  2260. }
  2261. ring->init_hw = init_ring_common;
  2262. return intel_init_ring_buffer(dev, ring);
  2263. }
  2264. int
  2265. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2266. {
  2267. int ret;
  2268. if (!ring->gpu_caches_dirty)
  2269. return 0;
  2270. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2271. if (ret)
  2272. return ret;
  2273. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2274. ring->gpu_caches_dirty = false;
  2275. return 0;
  2276. }
  2277. int
  2278. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2279. {
  2280. uint32_t flush_domains;
  2281. int ret;
  2282. flush_domains = 0;
  2283. if (ring->gpu_caches_dirty)
  2284. flush_domains = I915_GEM_GPU_DOMAINS;
  2285. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2286. if (ret)
  2287. return ret;
  2288. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2289. ring->gpu_caches_dirty = false;
  2290. return 0;
  2291. }
  2292. void
  2293. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2294. {
  2295. int ret;
  2296. if (!intel_ring_initialized(ring))
  2297. return;
  2298. ret = intel_ring_idle(ring);
  2299. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2300. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2301. ring->name, ret);
  2302. stop_ring(ring);
  2303. }