workqueue.c 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There is one worker pool for each CPU and
  20. * one extra for works which are better served by workers which are
  21. * not bound to any specific CPU.
  22. *
  23. * Please read Documentation/workqueue.txt for details.
  24. */
  25. #include <linux/export.h>
  26. #include <linux/kernel.h>
  27. #include <linux/sched.h>
  28. #include <linux/init.h>
  29. #include <linux/signal.h>
  30. #include <linux/completion.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/slab.h>
  33. #include <linux/cpu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kthread.h>
  36. #include <linux/hardirq.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/freezer.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/lockdep.h>
  42. #include <linux/idr.h>
  43. #include <linux/jhash.h>
  44. #include <linux/hashtable.h>
  45. #include <linux/rculist.h>
  46. #include <linux/nodemask.h>
  47. #include "workqueue_internal.h"
  48. enum {
  49. /*
  50. * worker_pool flags
  51. *
  52. * A bound pool is either associated or disassociated with its CPU.
  53. * While associated (!DISASSOCIATED), all workers are bound to the
  54. * CPU and none has %WORKER_UNBOUND set and concurrency management
  55. * is in effect.
  56. *
  57. * While DISASSOCIATED, the cpu may be offline and all workers have
  58. * %WORKER_UNBOUND set and concurrency management disabled, and may
  59. * be executing on any CPU. The pool behaves as an unbound one.
  60. *
  61. * Note that DISASSOCIATED should be flipped only while holding
  62. * manager_mutex to avoid changing binding state while
  63. * create_worker() is in progress.
  64. */
  65. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  66. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  67. POOL_FREEZING = 1 << 3, /* freeze in progress */
  68. /* worker flags */
  69. WORKER_STARTED = 1 << 0, /* started */
  70. WORKER_DIE = 1 << 1, /* die die die */
  71. WORKER_IDLE = 1 << 2, /* is idle */
  72. WORKER_PREP = 1 << 3, /* preparing to run works */
  73. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  74. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  75. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  76. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  77. WORKER_UNBOUND | WORKER_REBOUND,
  78. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  79. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  80. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  81. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  82. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  83. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  84. /* call for help after 10ms
  85. (min two ticks) */
  86. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  87. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  88. /*
  89. * Rescue workers are used only on emergencies and shared by
  90. * all cpus. Give -20.
  91. */
  92. RESCUER_NICE_LEVEL = -20,
  93. HIGHPRI_NICE_LEVEL = -20,
  94. WQ_NAME_LEN = 24,
  95. };
  96. /*
  97. * Structure fields follow one of the following exclusion rules.
  98. *
  99. * I: Modifiable by initialization/destruction paths and read-only for
  100. * everyone else.
  101. *
  102. * P: Preemption protected. Disabling preemption is enough and should
  103. * only be modified and accessed from the local cpu.
  104. *
  105. * L: pool->lock protected. Access with pool->lock held.
  106. *
  107. * X: During normal operation, modification requires pool->lock and should
  108. * be done only from local cpu. Either disabling preemption on local
  109. * cpu or grabbing pool->lock is enough for read access. If
  110. * POOL_DISASSOCIATED is set, it's identical to L.
  111. *
  112. * MG: pool->manager_mutex and pool->lock protected. Writes require both
  113. * locks. Reads can happen under either lock.
  114. *
  115. * PL: wq_pool_mutex protected.
  116. *
  117. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  118. *
  119. * WQ: wq->mutex protected.
  120. *
  121. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  122. *
  123. * MD: wq_mayday_lock protected.
  124. */
  125. /* struct worker is defined in workqueue_internal.h */
  126. struct worker_pool {
  127. spinlock_t lock; /* the pool lock */
  128. int cpu; /* I: the associated cpu */
  129. int node; /* I: the associated node ID */
  130. int id; /* I: pool ID */
  131. unsigned int flags; /* X: flags */
  132. struct list_head worklist; /* L: list of pending works */
  133. int nr_workers; /* L: total number of workers */
  134. /* nr_idle includes the ones off idle_list for rebinding */
  135. int nr_idle; /* L: currently idle ones */
  136. struct list_head idle_list; /* X: list of idle workers */
  137. struct timer_list idle_timer; /* L: worker idle timeout */
  138. struct timer_list mayday_timer; /* L: SOS timer for workers */
  139. /* a workers is either on busy_hash or idle_list, or the manager */
  140. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  141. /* L: hash of busy workers */
  142. /* see manage_workers() for details on the two manager mutexes */
  143. struct mutex manager_arb; /* manager arbitration */
  144. struct mutex manager_mutex; /* manager exclusion */
  145. struct idr worker_idr; /* MG: worker IDs and iteration */
  146. struct workqueue_attrs *attrs; /* I: worker attributes */
  147. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  148. int refcnt; /* PL: refcnt for unbound pools */
  149. /*
  150. * The current concurrency level. As it's likely to be accessed
  151. * from other CPUs during try_to_wake_up(), put it in a separate
  152. * cacheline.
  153. */
  154. atomic_t nr_running ____cacheline_aligned_in_smp;
  155. /*
  156. * Destruction of pool is sched-RCU protected to allow dereferences
  157. * from get_work_pool().
  158. */
  159. struct rcu_head rcu;
  160. } ____cacheline_aligned_in_smp;
  161. /*
  162. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  163. * of work_struct->data are used for flags and the remaining high bits
  164. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  165. * number of flag bits.
  166. */
  167. struct pool_workqueue {
  168. struct worker_pool *pool; /* I: the associated pool */
  169. struct workqueue_struct *wq; /* I: the owning workqueue */
  170. int work_color; /* L: current color */
  171. int flush_color; /* L: flushing color */
  172. int refcnt; /* L: reference count */
  173. int nr_in_flight[WORK_NR_COLORS];
  174. /* L: nr of in_flight works */
  175. int nr_active; /* L: nr of active works */
  176. int max_active; /* L: max active works */
  177. struct list_head delayed_works; /* L: delayed works */
  178. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  179. struct list_head mayday_node; /* MD: node on wq->maydays */
  180. /*
  181. * Release of unbound pwq is punted to system_wq. See put_pwq()
  182. * and pwq_unbound_release_workfn() for details. pool_workqueue
  183. * itself is also sched-RCU protected so that the first pwq can be
  184. * determined without grabbing wq->mutex.
  185. */
  186. struct work_struct unbound_release_work;
  187. struct rcu_head rcu;
  188. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  189. /*
  190. * Structure used to wait for workqueue flush.
  191. */
  192. struct wq_flusher {
  193. struct list_head list; /* WQ: list of flushers */
  194. int flush_color; /* WQ: flush color waiting for */
  195. struct completion done; /* flush completion */
  196. };
  197. struct wq_device;
  198. /*
  199. * The externally visible workqueue. It relays the issued work items to
  200. * the appropriate worker_pool through its pool_workqueues.
  201. */
  202. struct workqueue_struct {
  203. unsigned int flags; /* WQ: WQ_* flags */
  204. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
  205. struct list_head pwqs; /* WR: all pwqs of this wq */
  206. struct list_head list; /* PL: list of all workqueues */
  207. struct mutex mutex; /* protects this wq */
  208. int work_color; /* WQ: current work color */
  209. int flush_color; /* WQ: current flush color */
  210. atomic_t nr_pwqs_to_flush; /* flush in progress */
  211. struct wq_flusher *first_flusher; /* WQ: first flusher */
  212. struct list_head flusher_queue; /* WQ: flush waiters */
  213. struct list_head flusher_overflow; /* WQ: flush overflow list */
  214. struct list_head maydays; /* MD: pwqs requesting rescue */
  215. struct worker *rescuer; /* I: rescue worker */
  216. int nr_drainers; /* WQ: drain in progress */
  217. int saved_max_active; /* WQ: saved pwq max_active */
  218. struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
  219. #ifdef CONFIG_SYSFS
  220. struct wq_device *wq_dev; /* I: for sysfs interface */
  221. #endif
  222. #ifdef CONFIG_LOCKDEP
  223. struct lockdep_map lockdep_map;
  224. #endif
  225. char name[WQ_NAME_LEN]; /* I: workqueue name */
  226. };
  227. static struct kmem_cache *pwq_cache;
  228. static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
  229. static cpumask_var_t *wq_numa_possible_cpumask;
  230. /* possible CPUs of each node */
  231. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  232. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  233. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  234. static LIST_HEAD(workqueues); /* PL: list of all workqueues */
  235. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  236. /* the per-cpu worker pools */
  237. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  238. cpu_worker_pools);
  239. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  240. /* PL: hash of all unbound pools keyed by pool->attrs */
  241. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  242. /* I: attributes used when instantiating standard unbound pools on demand */
  243. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  244. struct workqueue_struct *system_wq __read_mostly;
  245. EXPORT_SYMBOL_GPL(system_wq);
  246. struct workqueue_struct *system_highpri_wq __read_mostly;
  247. EXPORT_SYMBOL_GPL(system_highpri_wq);
  248. struct workqueue_struct *system_long_wq __read_mostly;
  249. EXPORT_SYMBOL_GPL(system_long_wq);
  250. struct workqueue_struct *system_unbound_wq __read_mostly;
  251. EXPORT_SYMBOL_GPL(system_unbound_wq);
  252. struct workqueue_struct *system_freezable_wq __read_mostly;
  253. EXPORT_SYMBOL_GPL(system_freezable_wq);
  254. static int worker_thread(void *__worker);
  255. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  256. const struct workqueue_attrs *from);
  257. #define CREATE_TRACE_POINTS
  258. #include <trace/events/workqueue.h>
  259. #define assert_rcu_or_pool_mutex() \
  260. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  261. lockdep_is_held(&wq_pool_mutex), \
  262. "sched RCU or wq_pool_mutex should be held")
  263. #define assert_rcu_or_wq_mutex(wq) \
  264. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  265. lockdep_is_held(&wq->mutex), \
  266. "sched RCU or wq->mutex should be held")
  267. #ifdef CONFIG_LOCKDEP
  268. #define assert_manager_or_pool_lock(pool) \
  269. WARN_ONCE(debug_locks && \
  270. !lockdep_is_held(&(pool)->manager_mutex) && \
  271. !lockdep_is_held(&(pool)->lock), \
  272. "pool->manager_mutex or ->lock should be held")
  273. #else
  274. #define assert_manager_or_pool_lock(pool) do { } while (0)
  275. #endif
  276. #define for_each_cpu_worker_pool(pool, cpu) \
  277. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  278. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  279. (pool)++)
  280. /**
  281. * for_each_pool - iterate through all worker_pools in the system
  282. * @pool: iteration cursor
  283. * @pi: integer used for iteration
  284. *
  285. * This must be called either with wq_pool_mutex held or sched RCU read
  286. * locked. If the pool needs to be used beyond the locking in effect, the
  287. * caller is responsible for guaranteeing that the pool stays online.
  288. *
  289. * The if/else clause exists only for the lockdep assertion and can be
  290. * ignored.
  291. */
  292. #define for_each_pool(pool, pi) \
  293. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  294. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  295. else
  296. /**
  297. * for_each_pool_worker - iterate through all workers of a worker_pool
  298. * @worker: iteration cursor
  299. * @wi: integer used for iteration
  300. * @pool: worker_pool to iterate workers of
  301. *
  302. * This must be called with either @pool->manager_mutex or ->lock held.
  303. *
  304. * The if/else clause exists only for the lockdep assertion and can be
  305. * ignored.
  306. */
  307. #define for_each_pool_worker(worker, wi, pool) \
  308. idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
  309. if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
  310. else
  311. /**
  312. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  313. * @pwq: iteration cursor
  314. * @wq: the target workqueue
  315. *
  316. * This must be called either with wq->mutex held or sched RCU read locked.
  317. * If the pwq needs to be used beyond the locking in effect, the caller is
  318. * responsible for guaranteeing that the pwq stays online.
  319. *
  320. * The if/else clause exists only for the lockdep assertion and can be
  321. * ignored.
  322. */
  323. #define for_each_pwq(pwq, wq) \
  324. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  325. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  326. else
  327. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  328. static struct debug_obj_descr work_debug_descr;
  329. static void *work_debug_hint(void *addr)
  330. {
  331. return ((struct work_struct *) addr)->func;
  332. }
  333. /*
  334. * fixup_init is called when:
  335. * - an active object is initialized
  336. */
  337. static int work_fixup_init(void *addr, enum debug_obj_state state)
  338. {
  339. struct work_struct *work = addr;
  340. switch (state) {
  341. case ODEBUG_STATE_ACTIVE:
  342. cancel_work_sync(work);
  343. debug_object_init(work, &work_debug_descr);
  344. return 1;
  345. default:
  346. return 0;
  347. }
  348. }
  349. /*
  350. * fixup_activate is called when:
  351. * - an active object is activated
  352. * - an unknown object is activated (might be a statically initialized object)
  353. */
  354. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  355. {
  356. struct work_struct *work = addr;
  357. switch (state) {
  358. case ODEBUG_STATE_NOTAVAILABLE:
  359. /*
  360. * This is not really a fixup. The work struct was
  361. * statically initialized. We just make sure that it
  362. * is tracked in the object tracker.
  363. */
  364. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  365. debug_object_init(work, &work_debug_descr);
  366. debug_object_activate(work, &work_debug_descr);
  367. return 0;
  368. }
  369. WARN_ON_ONCE(1);
  370. return 0;
  371. case ODEBUG_STATE_ACTIVE:
  372. WARN_ON(1);
  373. default:
  374. return 0;
  375. }
  376. }
  377. /*
  378. * fixup_free is called when:
  379. * - an active object is freed
  380. */
  381. static int work_fixup_free(void *addr, enum debug_obj_state state)
  382. {
  383. struct work_struct *work = addr;
  384. switch (state) {
  385. case ODEBUG_STATE_ACTIVE:
  386. cancel_work_sync(work);
  387. debug_object_free(work, &work_debug_descr);
  388. return 1;
  389. default:
  390. return 0;
  391. }
  392. }
  393. static struct debug_obj_descr work_debug_descr = {
  394. .name = "work_struct",
  395. .debug_hint = work_debug_hint,
  396. .fixup_init = work_fixup_init,
  397. .fixup_activate = work_fixup_activate,
  398. .fixup_free = work_fixup_free,
  399. };
  400. static inline void debug_work_activate(struct work_struct *work)
  401. {
  402. debug_object_activate(work, &work_debug_descr);
  403. }
  404. static inline void debug_work_deactivate(struct work_struct *work)
  405. {
  406. debug_object_deactivate(work, &work_debug_descr);
  407. }
  408. void __init_work(struct work_struct *work, int onstack)
  409. {
  410. if (onstack)
  411. debug_object_init_on_stack(work, &work_debug_descr);
  412. else
  413. debug_object_init(work, &work_debug_descr);
  414. }
  415. EXPORT_SYMBOL_GPL(__init_work);
  416. void destroy_work_on_stack(struct work_struct *work)
  417. {
  418. debug_object_free(work, &work_debug_descr);
  419. }
  420. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  421. #else
  422. static inline void debug_work_activate(struct work_struct *work) { }
  423. static inline void debug_work_deactivate(struct work_struct *work) { }
  424. #endif
  425. /* allocate ID and assign it to @pool */
  426. static int worker_pool_assign_id(struct worker_pool *pool)
  427. {
  428. int ret;
  429. lockdep_assert_held(&wq_pool_mutex);
  430. do {
  431. if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
  432. return -ENOMEM;
  433. ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
  434. } while (ret == -EAGAIN);
  435. return ret;
  436. }
  437. /**
  438. * first_pwq - return the first pool_workqueue of the specified workqueue
  439. * @wq: the target workqueue
  440. *
  441. * This must be called either with wq->mutex held or sched RCU read locked.
  442. * If the pwq needs to be used beyond the locking in effect, the caller is
  443. * responsible for guaranteeing that the pwq stays online.
  444. */
  445. static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
  446. {
  447. assert_rcu_or_wq_mutex(wq);
  448. return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
  449. pwqs_node);
  450. }
  451. static unsigned int work_color_to_flags(int color)
  452. {
  453. return color << WORK_STRUCT_COLOR_SHIFT;
  454. }
  455. static int get_work_color(struct work_struct *work)
  456. {
  457. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  458. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  459. }
  460. static int work_next_color(int color)
  461. {
  462. return (color + 1) % WORK_NR_COLORS;
  463. }
  464. /*
  465. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  466. * contain the pointer to the queued pwq. Once execution starts, the flag
  467. * is cleared and the high bits contain OFFQ flags and pool ID.
  468. *
  469. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  470. * and clear_work_data() can be used to set the pwq, pool or clear
  471. * work->data. These functions should only be called while the work is
  472. * owned - ie. while the PENDING bit is set.
  473. *
  474. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  475. * corresponding to a work. Pool is available once the work has been
  476. * queued anywhere after initialization until it is sync canceled. pwq is
  477. * available only while the work item is queued.
  478. *
  479. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  480. * canceled. While being canceled, a work item may have its PENDING set
  481. * but stay off timer and worklist for arbitrarily long and nobody should
  482. * try to steal the PENDING bit.
  483. */
  484. static inline void set_work_data(struct work_struct *work, unsigned long data,
  485. unsigned long flags)
  486. {
  487. WARN_ON_ONCE(!work_pending(work));
  488. atomic_long_set(&work->data, data | flags | work_static(work));
  489. }
  490. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  491. unsigned long extra_flags)
  492. {
  493. set_work_data(work, (unsigned long)pwq,
  494. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  495. }
  496. static void set_work_pool_and_keep_pending(struct work_struct *work,
  497. int pool_id)
  498. {
  499. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  500. WORK_STRUCT_PENDING);
  501. }
  502. static void set_work_pool_and_clear_pending(struct work_struct *work,
  503. int pool_id)
  504. {
  505. /*
  506. * The following wmb is paired with the implied mb in
  507. * test_and_set_bit(PENDING) and ensures all updates to @work made
  508. * here are visible to and precede any updates by the next PENDING
  509. * owner.
  510. */
  511. smp_wmb();
  512. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  513. }
  514. static void clear_work_data(struct work_struct *work)
  515. {
  516. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  517. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  518. }
  519. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  520. {
  521. unsigned long data = atomic_long_read(&work->data);
  522. if (data & WORK_STRUCT_PWQ)
  523. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  524. else
  525. return NULL;
  526. }
  527. /**
  528. * get_work_pool - return the worker_pool a given work was associated with
  529. * @work: the work item of interest
  530. *
  531. * Return the worker_pool @work was last associated with. %NULL if none.
  532. *
  533. * Pools are created and destroyed under wq_pool_mutex, and allows read
  534. * access under sched-RCU read lock. As such, this function should be
  535. * called under wq_pool_mutex or with preemption disabled.
  536. *
  537. * All fields of the returned pool are accessible as long as the above
  538. * mentioned locking is in effect. If the returned pool needs to be used
  539. * beyond the critical section, the caller is responsible for ensuring the
  540. * returned pool is and stays online.
  541. */
  542. static struct worker_pool *get_work_pool(struct work_struct *work)
  543. {
  544. unsigned long data = atomic_long_read(&work->data);
  545. int pool_id;
  546. assert_rcu_or_pool_mutex();
  547. if (data & WORK_STRUCT_PWQ)
  548. return ((struct pool_workqueue *)
  549. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  550. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  551. if (pool_id == WORK_OFFQ_POOL_NONE)
  552. return NULL;
  553. return idr_find(&worker_pool_idr, pool_id);
  554. }
  555. /**
  556. * get_work_pool_id - return the worker pool ID a given work is associated with
  557. * @work: the work item of interest
  558. *
  559. * Return the worker_pool ID @work was last associated with.
  560. * %WORK_OFFQ_POOL_NONE if none.
  561. */
  562. static int get_work_pool_id(struct work_struct *work)
  563. {
  564. unsigned long data = atomic_long_read(&work->data);
  565. if (data & WORK_STRUCT_PWQ)
  566. return ((struct pool_workqueue *)
  567. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  568. return data >> WORK_OFFQ_POOL_SHIFT;
  569. }
  570. static void mark_work_canceling(struct work_struct *work)
  571. {
  572. unsigned long pool_id = get_work_pool_id(work);
  573. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  574. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  575. }
  576. static bool work_is_canceling(struct work_struct *work)
  577. {
  578. unsigned long data = atomic_long_read(&work->data);
  579. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  580. }
  581. /*
  582. * Policy functions. These define the policies on how the global worker
  583. * pools are managed. Unless noted otherwise, these functions assume that
  584. * they're being called with pool->lock held.
  585. */
  586. static bool __need_more_worker(struct worker_pool *pool)
  587. {
  588. return !atomic_read(&pool->nr_running);
  589. }
  590. /*
  591. * Need to wake up a worker? Called from anything but currently
  592. * running workers.
  593. *
  594. * Note that, because unbound workers never contribute to nr_running, this
  595. * function will always return %true for unbound pools as long as the
  596. * worklist isn't empty.
  597. */
  598. static bool need_more_worker(struct worker_pool *pool)
  599. {
  600. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  601. }
  602. /* Can I start working? Called from busy but !running workers. */
  603. static bool may_start_working(struct worker_pool *pool)
  604. {
  605. return pool->nr_idle;
  606. }
  607. /* Do I need to keep working? Called from currently running workers. */
  608. static bool keep_working(struct worker_pool *pool)
  609. {
  610. return !list_empty(&pool->worklist) &&
  611. atomic_read(&pool->nr_running) <= 1;
  612. }
  613. /* Do we need a new worker? Called from manager. */
  614. static bool need_to_create_worker(struct worker_pool *pool)
  615. {
  616. return need_more_worker(pool) && !may_start_working(pool);
  617. }
  618. /* Do I need to be the manager? */
  619. static bool need_to_manage_workers(struct worker_pool *pool)
  620. {
  621. return need_to_create_worker(pool) ||
  622. (pool->flags & POOL_MANAGE_WORKERS);
  623. }
  624. /* Do we have too many workers and should some go away? */
  625. static bool too_many_workers(struct worker_pool *pool)
  626. {
  627. bool managing = mutex_is_locked(&pool->manager_arb);
  628. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  629. int nr_busy = pool->nr_workers - nr_idle;
  630. /*
  631. * nr_idle and idle_list may disagree if idle rebinding is in
  632. * progress. Never return %true if idle_list is empty.
  633. */
  634. if (list_empty(&pool->idle_list))
  635. return false;
  636. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  637. }
  638. /*
  639. * Wake up functions.
  640. */
  641. /* Return the first worker. Safe with preemption disabled */
  642. static struct worker *first_worker(struct worker_pool *pool)
  643. {
  644. if (unlikely(list_empty(&pool->idle_list)))
  645. return NULL;
  646. return list_first_entry(&pool->idle_list, struct worker, entry);
  647. }
  648. /**
  649. * wake_up_worker - wake up an idle worker
  650. * @pool: worker pool to wake worker from
  651. *
  652. * Wake up the first idle worker of @pool.
  653. *
  654. * CONTEXT:
  655. * spin_lock_irq(pool->lock).
  656. */
  657. static void wake_up_worker(struct worker_pool *pool)
  658. {
  659. struct worker *worker = first_worker(pool);
  660. if (likely(worker))
  661. wake_up_process(worker->task);
  662. }
  663. /**
  664. * wq_worker_waking_up - a worker is waking up
  665. * @task: task waking up
  666. * @cpu: CPU @task is waking up to
  667. *
  668. * This function is called during try_to_wake_up() when a worker is
  669. * being awoken.
  670. *
  671. * CONTEXT:
  672. * spin_lock_irq(rq->lock)
  673. */
  674. void wq_worker_waking_up(struct task_struct *task, int cpu)
  675. {
  676. struct worker *worker = kthread_data(task);
  677. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  678. WARN_ON_ONCE(worker->pool->cpu != cpu);
  679. atomic_inc(&worker->pool->nr_running);
  680. }
  681. }
  682. /**
  683. * wq_worker_sleeping - a worker is going to sleep
  684. * @task: task going to sleep
  685. * @cpu: CPU in question, must be the current CPU number
  686. *
  687. * This function is called during schedule() when a busy worker is
  688. * going to sleep. Worker on the same cpu can be woken up by
  689. * returning pointer to its task.
  690. *
  691. * CONTEXT:
  692. * spin_lock_irq(rq->lock)
  693. *
  694. * RETURNS:
  695. * Worker task on @cpu to wake up, %NULL if none.
  696. */
  697. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  698. {
  699. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  700. struct worker_pool *pool;
  701. /*
  702. * Rescuers, which may not have all the fields set up like normal
  703. * workers, also reach here, let's not access anything before
  704. * checking NOT_RUNNING.
  705. */
  706. if (worker->flags & WORKER_NOT_RUNNING)
  707. return NULL;
  708. pool = worker->pool;
  709. /* this can only happen on the local cpu */
  710. if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
  711. return NULL;
  712. /*
  713. * The counterpart of the following dec_and_test, implied mb,
  714. * worklist not empty test sequence is in insert_work().
  715. * Please read comment there.
  716. *
  717. * NOT_RUNNING is clear. This means that we're bound to and
  718. * running on the local cpu w/ rq lock held and preemption
  719. * disabled, which in turn means that none else could be
  720. * manipulating idle_list, so dereferencing idle_list without pool
  721. * lock is safe.
  722. */
  723. if (atomic_dec_and_test(&pool->nr_running) &&
  724. !list_empty(&pool->worklist))
  725. to_wakeup = first_worker(pool);
  726. return to_wakeup ? to_wakeup->task : NULL;
  727. }
  728. /**
  729. * worker_set_flags - set worker flags and adjust nr_running accordingly
  730. * @worker: self
  731. * @flags: flags to set
  732. * @wakeup: wakeup an idle worker if necessary
  733. *
  734. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  735. * nr_running becomes zero and @wakeup is %true, an idle worker is
  736. * woken up.
  737. *
  738. * CONTEXT:
  739. * spin_lock_irq(pool->lock)
  740. */
  741. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  742. bool wakeup)
  743. {
  744. struct worker_pool *pool = worker->pool;
  745. WARN_ON_ONCE(worker->task != current);
  746. /*
  747. * If transitioning into NOT_RUNNING, adjust nr_running and
  748. * wake up an idle worker as necessary if requested by
  749. * @wakeup.
  750. */
  751. if ((flags & WORKER_NOT_RUNNING) &&
  752. !(worker->flags & WORKER_NOT_RUNNING)) {
  753. if (wakeup) {
  754. if (atomic_dec_and_test(&pool->nr_running) &&
  755. !list_empty(&pool->worklist))
  756. wake_up_worker(pool);
  757. } else
  758. atomic_dec(&pool->nr_running);
  759. }
  760. worker->flags |= flags;
  761. }
  762. /**
  763. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  764. * @worker: self
  765. * @flags: flags to clear
  766. *
  767. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  768. *
  769. * CONTEXT:
  770. * spin_lock_irq(pool->lock)
  771. */
  772. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  773. {
  774. struct worker_pool *pool = worker->pool;
  775. unsigned int oflags = worker->flags;
  776. WARN_ON_ONCE(worker->task != current);
  777. worker->flags &= ~flags;
  778. /*
  779. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  780. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  781. * of multiple flags, not a single flag.
  782. */
  783. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  784. if (!(worker->flags & WORKER_NOT_RUNNING))
  785. atomic_inc(&pool->nr_running);
  786. }
  787. /**
  788. * find_worker_executing_work - find worker which is executing a work
  789. * @pool: pool of interest
  790. * @work: work to find worker for
  791. *
  792. * Find a worker which is executing @work on @pool by searching
  793. * @pool->busy_hash which is keyed by the address of @work. For a worker
  794. * to match, its current execution should match the address of @work and
  795. * its work function. This is to avoid unwanted dependency between
  796. * unrelated work executions through a work item being recycled while still
  797. * being executed.
  798. *
  799. * This is a bit tricky. A work item may be freed once its execution
  800. * starts and nothing prevents the freed area from being recycled for
  801. * another work item. If the same work item address ends up being reused
  802. * before the original execution finishes, workqueue will identify the
  803. * recycled work item as currently executing and make it wait until the
  804. * current execution finishes, introducing an unwanted dependency.
  805. *
  806. * This function checks the work item address and work function to avoid
  807. * false positives. Note that this isn't complete as one may construct a
  808. * work function which can introduce dependency onto itself through a
  809. * recycled work item. Well, if somebody wants to shoot oneself in the
  810. * foot that badly, there's only so much we can do, and if such deadlock
  811. * actually occurs, it should be easy to locate the culprit work function.
  812. *
  813. * CONTEXT:
  814. * spin_lock_irq(pool->lock).
  815. *
  816. * RETURNS:
  817. * Pointer to worker which is executing @work if found, NULL
  818. * otherwise.
  819. */
  820. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  821. struct work_struct *work)
  822. {
  823. struct worker *worker;
  824. hash_for_each_possible(pool->busy_hash, worker, hentry,
  825. (unsigned long)work)
  826. if (worker->current_work == work &&
  827. worker->current_func == work->func)
  828. return worker;
  829. return NULL;
  830. }
  831. /**
  832. * move_linked_works - move linked works to a list
  833. * @work: start of series of works to be scheduled
  834. * @head: target list to append @work to
  835. * @nextp: out paramter for nested worklist walking
  836. *
  837. * Schedule linked works starting from @work to @head. Work series to
  838. * be scheduled starts at @work and includes any consecutive work with
  839. * WORK_STRUCT_LINKED set in its predecessor.
  840. *
  841. * If @nextp is not NULL, it's updated to point to the next work of
  842. * the last scheduled work. This allows move_linked_works() to be
  843. * nested inside outer list_for_each_entry_safe().
  844. *
  845. * CONTEXT:
  846. * spin_lock_irq(pool->lock).
  847. */
  848. static void move_linked_works(struct work_struct *work, struct list_head *head,
  849. struct work_struct **nextp)
  850. {
  851. struct work_struct *n;
  852. /*
  853. * Linked worklist will always end before the end of the list,
  854. * use NULL for list head.
  855. */
  856. list_for_each_entry_safe_from(work, n, NULL, entry) {
  857. list_move_tail(&work->entry, head);
  858. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  859. break;
  860. }
  861. /*
  862. * If we're already inside safe list traversal and have moved
  863. * multiple works to the scheduled queue, the next position
  864. * needs to be updated.
  865. */
  866. if (nextp)
  867. *nextp = n;
  868. }
  869. /**
  870. * get_pwq - get an extra reference on the specified pool_workqueue
  871. * @pwq: pool_workqueue to get
  872. *
  873. * Obtain an extra reference on @pwq. The caller should guarantee that
  874. * @pwq has positive refcnt and be holding the matching pool->lock.
  875. */
  876. static void get_pwq(struct pool_workqueue *pwq)
  877. {
  878. lockdep_assert_held(&pwq->pool->lock);
  879. WARN_ON_ONCE(pwq->refcnt <= 0);
  880. pwq->refcnt++;
  881. }
  882. /**
  883. * put_pwq - put a pool_workqueue reference
  884. * @pwq: pool_workqueue to put
  885. *
  886. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  887. * destruction. The caller should be holding the matching pool->lock.
  888. */
  889. static void put_pwq(struct pool_workqueue *pwq)
  890. {
  891. lockdep_assert_held(&pwq->pool->lock);
  892. if (likely(--pwq->refcnt))
  893. return;
  894. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  895. return;
  896. /*
  897. * @pwq can't be released under pool->lock, bounce to
  898. * pwq_unbound_release_workfn(). This never recurses on the same
  899. * pool->lock as this path is taken only for unbound workqueues and
  900. * the release work item is scheduled on a per-cpu workqueue. To
  901. * avoid lockdep warning, unbound pool->locks are given lockdep
  902. * subclass of 1 in get_unbound_pool().
  903. */
  904. schedule_work(&pwq->unbound_release_work);
  905. }
  906. static void pwq_activate_delayed_work(struct work_struct *work)
  907. {
  908. struct pool_workqueue *pwq = get_work_pwq(work);
  909. trace_workqueue_activate_work(work);
  910. move_linked_works(work, &pwq->pool->worklist, NULL);
  911. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  912. pwq->nr_active++;
  913. }
  914. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  915. {
  916. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  917. struct work_struct, entry);
  918. pwq_activate_delayed_work(work);
  919. }
  920. /**
  921. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  922. * @pwq: pwq of interest
  923. * @color: color of work which left the queue
  924. *
  925. * A work either has completed or is removed from pending queue,
  926. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  927. *
  928. * CONTEXT:
  929. * spin_lock_irq(pool->lock).
  930. */
  931. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  932. {
  933. /* uncolored work items don't participate in flushing or nr_active */
  934. if (color == WORK_NO_COLOR)
  935. goto out_put;
  936. pwq->nr_in_flight[color]--;
  937. pwq->nr_active--;
  938. if (!list_empty(&pwq->delayed_works)) {
  939. /* one down, submit a delayed one */
  940. if (pwq->nr_active < pwq->max_active)
  941. pwq_activate_first_delayed(pwq);
  942. }
  943. /* is flush in progress and are we at the flushing tip? */
  944. if (likely(pwq->flush_color != color))
  945. goto out_put;
  946. /* are there still in-flight works? */
  947. if (pwq->nr_in_flight[color])
  948. goto out_put;
  949. /* this pwq is done, clear flush_color */
  950. pwq->flush_color = -1;
  951. /*
  952. * If this was the last pwq, wake up the first flusher. It
  953. * will handle the rest.
  954. */
  955. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  956. complete(&pwq->wq->first_flusher->done);
  957. out_put:
  958. put_pwq(pwq);
  959. }
  960. /**
  961. * try_to_grab_pending - steal work item from worklist and disable irq
  962. * @work: work item to steal
  963. * @is_dwork: @work is a delayed_work
  964. * @flags: place to store irq state
  965. *
  966. * Try to grab PENDING bit of @work. This function can handle @work in any
  967. * stable state - idle, on timer or on worklist. Return values are
  968. *
  969. * 1 if @work was pending and we successfully stole PENDING
  970. * 0 if @work was idle and we claimed PENDING
  971. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  972. * -ENOENT if someone else is canceling @work, this state may persist
  973. * for arbitrarily long
  974. *
  975. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  976. * interrupted while holding PENDING and @work off queue, irq must be
  977. * disabled on entry. This, combined with delayed_work->timer being
  978. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  979. *
  980. * On successful return, >= 0, irq is disabled and the caller is
  981. * responsible for releasing it using local_irq_restore(*@flags).
  982. *
  983. * This function is safe to call from any context including IRQ handler.
  984. */
  985. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  986. unsigned long *flags)
  987. {
  988. struct worker_pool *pool;
  989. struct pool_workqueue *pwq;
  990. local_irq_save(*flags);
  991. /* try to steal the timer if it exists */
  992. if (is_dwork) {
  993. struct delayed_work *dwork = to_delayed_work(work);
  994. /*
  995. * dwork->timer is irqsafe. If del_timer() fails, it's
  996. * guaranteed that the timer is not queued anywhere and not
  997. * running on the local CPU.
  998. */
  999. if (likely(del_timer(&dwork->timer)))
  1000. return 1;
  1001. }
  1002. /* try to claim PENDING the normal way */
  1003. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1004. return 0;
  1005. /*
  1006. * The queueing is in progress, or it is already queued. Try to
  1007. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1008. */
  1009. pool = get_work_pool(work);
  1010. if (!pool)
  1011. goto fail;
  1012. spin_lock(&pool->lock);
  1013. /*
  1014. * work->data is guaranteed to point to pwq only while the work
  1015. * item is queued on pwq->wq, and both updating work->data to point
  1016. * to pwq on queueing and to pool on dequeueing are done under
  1017. * pwq->pool->lock. This in turn guarantees that, if work->data
  1018. * points to pwq which is associated with a locked pool, the work
  1019. * item is currently queued on that pool.
  1020. */
  1021. pwq = get_work_pwq(work);
  1022. if (pwq && pwq->pool == pool) {
  1023. debug_work_deactivate(work);
  1024. /*
  1025. * A delayed work item cannot be grabbed directly because
  1026. * it might have linked NO_COLOR work items which, if left
  1027. * on the delayed_list, will confuse pwq->nr_active
  1028. * management later on and cause stall. Make sure the work
  1029. * item is activated before grabbing.
  1030. */
  1031. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1032. pwq_activate_delayed_work(work);
  1033. list_del_init(&work->entry);
  1034. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  1035. /* work->data points to pwq iff queued, point to pool */
  1036. set_work_pool_and_keep_pending(work, pool->id);
  1037. spin_unlock(&pool->lock);
  1038. return 1;
  1039. }
  1040. spin_unlock(&pool->lock);
  1041. fail:
  1042. local_irq_restore(*flags);
  1043. if (work_is_canceling(work))
  1044. return -ENOENT;
  1045. cpu_relax();
  1046. return -EAGAIN;
  1047. }
  1048. /**
  1049. * insert_work - insert a work into a pool
  1050. * @pwq: pwq @work belongs to
  1051. * @work: work to insert
  1052. * @head: insertion point
  1053. * @extra_flags: extra WORK_STRUCT_* flags to set
  1054. *
  1055. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1056. * work_struct flags.
  1057. *
  1058. * CONTEXT:
  1059. * spin_lock_irq(pool->lock).
  1060. */
  1061. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1062. struct list_head *head, unsigned int extra_flags)
  1063. {
  1064. struct worker_pool *pool = pwq->pool;
  1065. /* we own @work, set data and link */
  1066. set_work_pwq(work, pwq, extra_flags);
  1067. list_add_tail(&work->entry, head);
  1068. get_pwq(pwq);
  1069. /*
  1070. * Ensure either wq_worker_sleeping() sees the above
  1071. * list_add_tail() or we see zero nr_running to avoid workers lying
  1072. * around lazily while there are works to be processed.
  1073. */
  1074. smp_mb();
  1075. if (__need_more_worker(pool))
  1076. wake_up_worker(pool);
  1077. }
  1078. /*
  1079. * Test whether @work is being queued from another work executing on the
  1080. * same workqueue.
  1081. */
  1082. static bool is_chained_work(struct workqueue_struct *wq)
  1083. {
  1084. struct worker *worker;
  1085. worker = current_wq_worker();
  1086. /*
  1087. * Return %true iff I'm a worker execuing a work item on @wq. If
  1088. * I'm @worker, it's safe to dereference it without locking.
  1089. */
  1090. return worker && worker->current_pwq->wq == wq;
  1091. }
  1092. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1093. struct work_struct *work)
  1094. {
  1095. struct pool_workqueue *pwq;
  1096. struct worker_pool *last_pool;
  1097. struct list_head *worklist;
  1098. unsigned int work_flags;
  1099. unsigned int req_cpu = cpu;
  1100. /*
  1101. * While a work item is PENDING && off queue, a task trying to
  1102. * steal the PENDING will busy-loop waiting for it to either get
  1103. * queued or lose PENDING. Grabbing PENDING and queueing should
  1104. * happen with IRQ disabled.
  1105. */
  1106. WARN_ON_ONCE(!irqs_disabled());
  1107. debug_work_activate(work);
  1108. /* if dying, only works from the same workqueue are allowed */
  1109. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1110. WARN_ON_ONCE(!is_chained_work(wq)))
  1111. return;
  1112. retry:
  1113. /* pwq which will be used unless @work is executing elsewhere */
  1114. if (!(wq->flags & WQ_UNBOUND)) {
  1115. if (cpu == WORK_CPU_UNBOUND)
  1116. cpu = raw_smp_processor_id();
  1117. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1118. } else {
  1119. pwq = first_pwq(wq);
  1120. }
  1121. /*
  1122. * If @work was previously on a different pool, it might still be
  1123. * running there, in which case the work needs to be queued on that
  1124. * pool to guarantee non-reentrancy.
  1125. */
  1126. last_pool = get_work_pool(work);
  1127. if (last_pool && last_pool != pwq->pool) {
  1128. struct worker *worker;
  1129. spin_lock(&last_pool->lock);
  1130. worker = find_worker_executing_work(last_pool, work);
  1131. if (worker && worker->current_pwq->wq == wq) {
  1132. pwq = worker->current_pwq;
  1133. } else {
  1134. /* meh... not running there, queue here */
  1135. spin_unlock(&last_pool->lock);
  1136. spin_lock(&pwq->pool->lock);
  1137. }
  1138. } else {
  1139. spin_lock(&pwq->pool->lock);
  1140. }
  1141. /*
  1142. * pwq is determined and locked. For unbound pools, we could have
  1143. * raced with pwq release and it could already be dead. If its
  1144. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1145. * without another pwq replacing it as the first pwq or while a
  1146. * work item is executing on it, so the retying is guaranteed to
  1147. * make forward-progress.
  1148. */
  1149. if (unlikely(!pwq->refcnt)) {
  1150. if (wq->flags & WQ_UNBOUND) {
  1151. spin_unlock(&pwq->pool->lock);
  1152. cpu_relax();
  1153. goto retry;
  1154. }
  1155. /* oops */
  1156. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1157. wq->name, cpu);
  1158. }
  1159. /* pwq determined, queue */
  1160. trace_workqueue_queue_work(req_cpu, pwq, work);
  1161. if (WARN_ON(!list_empty(&work->entry))) {
  1162. spin_unlock(&pwq->pool->lock);
  1163. return;
  1164. }
  1165. pwq->nr_in_flight[pwq->work_color]++;
  1166. work_flags = work_color_to_flags(pwq->work_color);
  1167. if (likely(pwq->nr_active < pwq->max_active)) {
  1168. trace_workqueue_activate_work(work);
  1169. pwq->nr_active++;
  1170. worklist = &pwq->pool->worklist;
  1171. } else {
  1172. work_flags |= WORK_STRUCT_DELAYED;
  1173. worklist = &pwq->delayed_works;
  1174. }
  1175. insert_work(pwq, work, worklist, work_flags);
  1176. spin_unlock(&pwq->pool->lock);
  1177. }
  1178. /**
  1179. * queue_work_on - queue work on specific cpu
  1180. * @cpu: CPU number to execute work on
  1181. * @wq: workqueue to use
  1182. * @work: work to queue
  1183. *
  1184. * Returns %false if @work was already on a queue, %true otherwise.
  1185. *
  1186. * We queue the work to a specific CPU, the caller must ensure it
  1187. * can't go away.
  1188. */
  1189. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1190. struct work_struct *work)
  1191. {
  1192. bool ret = false;
  1193. unsigned long flags;
  1194. local_irq_save(flags);
  1195. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1196. __queue_work(cpu, wq, work);
  1197. ret = true;
  1198. }
  1199. local_irq_restore(flags);
  1200. return ret;
  1201. }
  1202. EXPORT_SYMBOL_GPL(queue_work_on);
  1203. void delayed_work_timer_fn(unsigned long __data)
  1204. {
  1205. struct delayed_work *dwork = (struct delayed_work *)__data;
  1206. /* should have been called from irqsafe timer with irq already off */
  1207. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1208. }
  1209. EXPORT_SYMBOL(delayed_work_timer_fn);
  1210. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1211. struct delayed_work *dwork, unsigned long delay)
  1212. {
  1213. struct timer_list *timer = &dwork->timer;
  1214. struct work_struct *work = &dwork->work;
  1215. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1216. timer->data != (unsigned long)dwork);
  1217. WARN_ON_ONCE(timer_pending(timer));
  1218. WARN_ON_ONCE(!list_empty(&work->entry));
  1219. /*
  1220. * If @delay is 0, queue @dwork->work immediately. This is for
  1221. * both optimization and correctness. The earliest @timer can
  1222. * expire is on the closest next tick and delayed_work users depend
  1223. * on that there's no such delay when @delay is 0.
  1224. */
  1225. if (!delay) {
  1226. __queue_work(cpu, wq, &dwork->work);
  1227. return;
  1228. }
  1229. timer_stats_timer_set_start_info(&dwork->timer);
  1230. dwork->wq = wq;
  1231. dwork->cpu = cpu;
  1232. timer->expires = jiffies + delay;
  1233. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1234. add_timer_on(timer, cpu);
  1235. else
  1236. add_timer(timer);
  1237. }
  1238. /**
  1239. * queue_delayed_work_on - queue work on specific CPU after delay
  1240. * @cpu: CPU number to execute work on
  1241. * @wq: workqueue to use
  1242. * @dwork: work to queue
  1243. * @delay: number of jiffies to wait before queueing
  1244. *
  1245. * Returns %false if @work was already on a queue, %true otherwise. If
  1246. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1247. * execution.
  1248. */
  1249. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1250. struct delayed_work *dwork, unsigned long delay)
  1251. {
  1252. struct work_struct *work = &dwork->work;
  1253. bool ret = false;
  1254. unsigned long flags;
  1255. /* read the comment in __queue_work() */
  1256. local_irq_save(flags);
  1257. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1258. __queue_delayed_work(cpu, wq, dwork, delay);
  1259. ret = true;
  1260. }
  1261. local_irq_restore(flags);
  1262. return ret;
  1263. }
  1264. EXPORT_SYMBOL_GPL(queue_delayed_work_on);
  1265. /**
  1266. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1267. * @cpu: CPU number to execute work on
  1268. * @wq: workqueue to use
  1269. * @dwork: work to queue
  1270. * @delay: number of jiffies to wait before queueing
  1271. *
  1272. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1273. * modify @dwork's timer so that it expires after @delay. If @delay is
  1274. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1275. * current state.
  1276. *
  1277. * Returns %false if @dwork was idle and queued, %true if @dwork was
  1278. * pending and its timer was modified.
  1279. *
  1280. * This function is safe to call from any context including IRQ handler.
  1281. * See try_to_grab_pending() for details.
  1282. */
  1283. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1284. struct delayed_work *dwork, unsigned long delay)
  1285. {
  1286. unsigned long flags;
  1287. int ret;
  1288. do {
  1289. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1290. } while (unlikely(ret == -EAGAIN));
  1291. if (likely(ret >= 0)) {
  1292. __queue_delayed_work(cpu, wq, dwork, delay);
  1293. local_irq_restore(flags);
  1294. }
  1295. /* -ENOENT from try_to_grab_pending() becomes %true */
  1296. return ret;
  1297. }
  1298. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1299. /**
  1300. * worker_enter_idle - enter idle state
  1301. * @worker: worker which is entering idle state
  1302. *
  1303. * @worker is entering idle state. Update stats and idle timer if
  1304. * necessary.
  1305. *
  1306. * LOCKING:
  1307. * spin_lock_irq(pool->lock).
  1308. */
  1309. static void worker_enter_idle(struct worker *worker)
  1310. {
  1311. struct worker_pool *pool = worker->pool;
  1312. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1313. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1314. (worker->hentry.next || worker->hentry.pprev)))
  1315. return;
  1316. /* can't use worker_set_flags(), also called from start_worker() */
  1317. worker->flags |= WORKER_IDLE;
  1318. pool->nr_idle++;
  1319. worker->last_active = jiffies;
  1320. /* idle_list is LIFO */
  1321. list_add(&worker->entry, &pool->idle_list);
  1322. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1323. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1324. /*
  1325. * Sanity check nr_running. Because wq_unbind_fn() releases
  1326. * pool->lock between setting %WORKER_UNBOUND and zapping
  1327. * nr_running, the warning may trigger spuriously. Check iff
  1328. * unbind is not in progress.
  1329. */
  1330. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1331. pool->nr_workers == pool->nr_idle &&
  1332. atomic_read(&pool->nr_running));
  1333. }
  1334. /**
  1335. * worker_leave_idle - leave idle state
  1336. * @worker: worker which is leaving idle state
  1337. *
  1338. * @worker is leaving idle state. Update stats.
  1339. *
  1340. * LOCKING:
  1341. * spin_lock_irq(pool->lock).
  1342. */
  1343. static void worker_leave_idle(struct worker *worker)
  1344. {
  1345. struct worker_pool *pool = worker->pool;
  1346. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1347. return;
  1348. worker_clr_flags(worker, WORKER_IDLE);
  1349. pool->nr_idle--;
  1350. list_del_init(&worker->entry);
  1351. }
  1352. /**
  1353. * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
  1354. * @pool: target worker_pool
  1355. *
  1356. * Bind %current to the cpu of @pool if it is associated and lock @pool.
  1357. *
  1358. * Works which are scheduled while the cpu is online must at least be
  1359. * scheduled to a worker which is bound to the cpu so that if they are
  1360. * flushed from cpu callbacks while cpu is going down, they are
  1361. * guaranteed to execute on the cpu.
  1362. *
  1363. * This function is to be used by unbound workers and rescuers to bind
  1364. * themselves to the target cpu and may race with cpu going down or
  1365. * coming online. kthread_bind() can't be used because it may put the
  1366. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1367. * verbatim as it's best effort and blocking and pool may be
  1368. * [dis]associated in the meantime.
  1369. *
  1370. * This function tries set_cpus_allowed() and locks pool and verifies the
  1371. * binding against %POOL_DISASSOCIATED which is set during
  1372. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1373. * enters idle state or fetches works without dropping lock, it can
  1374. * guarantee the scheduling requirement described in the first paragraph.
  1375. *
  1376. * CONTEXT:
  1377. * Might sleep. Called without any lock but returns with pool->lock
  1378. * held.
  1379. *
  1380. * RETURNS:
  1381. * %true if the associated pool is online (@worker is successfully
  1382. * bound), %false if offline.
  1383. */
  1384. static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
  1385. __acquires(&pool->lock)
  1386. {
  1387. while (true) {
  1388. /*
  1389. * The following call may fail, succeed or succeed
  1390. * without actually migrating the task to the cpu if
  1391. * it races with cpu hotunplug operation. Verify
  1392. * against POOL_DISASSOCIATED.
  1393. */
  1394. if (!(pool->flags & POOL_DISASSOCIATED))
  1395. set_cpus_allowed_ptr(current, pool->attrs->cpumask);
  1396. spin_lock_irq(&pool->lock);
  1397. if (pool->flags & POOL_DISASSOCIATED)
  1398. return false;
  1399. if (task_cpu(current) == pool->cpu &&
  1400. cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
  1401. return true;
  1402. spin_unlock_irq(&pool->lock);
  1403. /*
  1404. * We've raced with CPU hot[un]plug. Give it a breather
  1405. * and retry migration. cond_resched() is required here;
  1406. * otherwise, we might deadlock against cpu_stop trying to
  1407. * bring down the CPU on non-preemptive kernel.
  1408. */
  1409. cpu_relax();
  1410. cond_resched();
  1411. }
  1412. }
  1413. static struct worker *alloc_worker(void)
  1414. {
  1415. struct worker *worker;
  1416. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1417. if (worker) {
  1418. INIT_LIST_HEAD(&worker->entry);
  1419. INIT_LIST_HEAD(&worker->scheduled);
  1420. /* on creation a worker is in !idle && prep state */
  1421. worker->flags = WORKER_PREP;
  1422. }
  1423. return worker;
  1424. }
  1425. /**
  1426. * create_worker - create a new workqueue worker
  1427. * @pool: pool the new worker will belong to
  1428. *
  1429. * Create a new worker which is bound to @pool. The returned worker
  1430. * can be started by calling start_worker() or destroyed using
  1431. * destroy_worker().
  1432. *
  1433. * CONTEXT:
  1434. * Might sleep. Does GFP_KERNEL allocations.
  1435. *
  1436. * RETURNS:
  1437. * Pointer to the newly created worker.
  1438. */
  1439. static struct worker *create_worker(struct worker_pool *pool)
  1440. {
  1441. struct worker *worker = NULL;
  1442. int id = -1;
  1443. char id_buf[16];
  1444. lockdep_assert_held(&pool->manager_mutex);
  1445. /*
  1446. * ID is needed to determine kthread name. Allocate ID first
  1447. * without installing the pointer.
  1448. */
  1449. idr_preload(GFP_KERNEL);
  1450. spin_lock_irq(&pool->lock);
  1451. id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
  1452. spin_unlock_irq(&pool->lock);
  1453. idr_preload_end();
  1454. if (id < 0)
  1455. goto fail;
  1456. worker = alloc_worker();
  1457. if (!worker)
  1458. goto fail;
  1459. worker->pool = pool;
  1460. worker->id = id;
  1461. if (pool->cpu >= 0)
  1462. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1463. pool->attrs->nice < 0 ? "H" : "");
  1464. else
  1465. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1466. worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
  1467. "kworker/%s", id_buf);
  1468. if (IS_ERR(worker->task))
  1469. goto fail;
  1470. /*
  1471. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1472. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1473. */
  1474. set_user_nice(worker->task, pool->attrs->nice);
  1475. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1476. /* prevent userland from meddling with cpumask of workqueue workers */
  1477. worker->task->flags |= PF_NO_SETAFFINITY;
  1478. /*
  1479. * The caller is responsible for ensuring %POOL_DISASSOCIATED
  1480. * remains stable across this function. See the comments above the
  1481. * flag definition for details.
  1482. */
  1483. if (pool->flags & POOL_DISASSOCIATED)
  1484. worker->flags |= WORKER_UNBOUND;
  1485. /* successful, commit the pointer to idr */
  1486. spin_lock_irq(&pool->lock);
  1487. idr_replace(&pool->worker_idr, worker, worker->id);
  1488. spin_unlock_irq(&pool->lock);
  1489. return worker;
  1490. fail:
  1491. if (id >= 0) {
  1492. spin_lock_irq(&pool->lock);
  1493. idr_remove(&pool->worker_idr, id);
  1494. spin_unlock_irq(&pool->lock);
  1495. }
  1496. kfree(worker);
  1497. return NULL;
  1498. }
  1499. /**
  1500. * start_worker - start a newly created worker
  1501. * @worker: worker to start
  1502. *
  1503. * Make the pool aware of @worker and start it.
  1504. *
  1505. * CONTEXT:
  1506. * spin_lock_irq(pool->lock).
  1507. */
  1508. static void start_worker(struct worker *worker)
  1509. {
  1510. worker->flags |= WORKER_STARTED;
  1511. worker->pool->nr_workers++;
  1512. worker_enter_idle(worker);
  1513. wake_up_process(worker->task);
  1514. }
  1515. /**
  1516. * create_and_start_worker - create and start a worker for a pool
  1517. * @pool: the target pool
  1518. *
  1519. * Grab the managership of @pool and create and start a new worker for it.
  1520. */
  1521. static int create_and_start_worker(struct worker_pool *pool)
  1522. {
  1523. struct worker *worker;
  1524. mutex_lock(&pool->manager_mutex);
  1525. worker = create_worker(pool);
  1526. if (worker) {
  1527. spin_lock_irq(&pool->lock);
  1528. start_worker(worker);
  1529. spin_unlock_irq(&pool->lock);
  1530. }
  1531. mutex_unlock(&pool->manager_mutex);
  1532. return worker ? 0 : -ENOMEM;
  1533. }
  1534. /**
  1535. * destroy_worker - destroy a workqueue worker
  1536. * @worker: worker to be destroyed
  1537. *
  1538. * Destroy @worker and adjust @pool stats accordingly.
  1539. *
  1540. * CONTEXT:
  1541. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1542. */
  1543. static void destroy_worker(struct worker *worker)
  1544. {
  1545. struct worker_pool *pool = worker->pool;
  1546. lockdep_assert_held(&pool->manager_mutex);
  1547. lockdep_assert_held(&pool->lock);
  1548. /* sanity check frenzy */
  1549. if (WARN_ON(worker->current_work) ||
  1550. WARN_ON(!list_empty(&worker->scheduled)))
  1551. return;
  1552. if (worker->flags & WORKER_STARTED)
  1553. pool->nr_workers--;
  1554. if (worker->flags & WORKER_IDLE)
  1555. pool->nr_idle--;
  1556. list_del_init(&worker->entry);
  1557. worker->flags |= WORKER_DIE;
  1558. idr_remove(&pool->worker_idr, worker->id);
  1559. spin_unlock_irq(&pool->lock);
  1560. kthread_stop(worker->task);
  1561. kfree(worker);
  1562. spin_lock_irq(&pool->lock);
  1563. }
  1564. static void idle_worker_timeout(unsigned long __pool)
  1565. {
  1566. struct worker_pool *pool = (void *)__pool;
  1567. spin_lock_irq(&pool->lock);
  1568. if (too_many_workers(pool)) {
  1569. struct worker *worker;
  1570. unsigned long expires;
  1571. /* idle_list is kept in LIFO order, check the last one */
  1572. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1573. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1574. if (time_before(jiffies, expires))
  1575. mod_timer(&pool->idle_timer, expires);
  1576. else {
  1577. /* it's been idle for too long, wake up manager */
  1578. pool->flags |= POOL_MANAGE_WORKERS;
  1579. wake_up_worker(pool);
  1580. }
  1581. }
  1582. spin_unlock_irq(&pool->lock);
  1583. }
  1584. static void send_mayday(struct work_struct *work)
  1585. {
  1586. struct pool_workqueue *pwq = get_work_pwq(work);
  1587. struct workqueue_struct *wq = pwq->wq;
  1588. lockdep_assert_held(&wq_mayday_lock);
  1589. if (!wq->rescuer)
  1590. return;
  1591. /* mayday mayday mayday */
  1592. if (list_empty(&pwq->mayday_node)) {
  1593. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1594. wake_up_process(wq->rescuer->task);
  1595. }
  1596. }
  1597. static void pool_mayday_timeout(unsigned long __pool)
  1598. {
  1599. struct worker_pool *pool = (void *)__pool;
  1600. struct work_struct *work;
  1601. spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
  1602. spin_lock(&pool->lock);
  1603. if (need_to_create_worker(pool)) {
  1604. /*
  1605. * We've been trying to create a new worker but
  1606. * haven't been successful. We might be hitting an
  1607. * allocation deadlock. Send distress signals to
  1608. * rescuers.
  1609. */
  1610. list_for_each_entry(work, &pool->worklist, entry)
  1611. send_mayday(work);
  1612. }
  1613. spin_unlock(&pool->lock);
  1614. spin_unlock_irq(&wq_mayday_lock);
  1615. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1616. }
  1617. /**
  1618. * maybe_create_worker - create a new worker if necessary
  1619. * @pool: pool to create a new worker for
  1620. *
  1621. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1622. * have at least one idle worker on return from this function. If
  1623. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1624. * sent to all rescuers with works scheduled on @pool to resolve
  1625. * possible allocation deadlock.
  1626. *
  1627. * On return, need_to_create_worker() is guaranteed to be %false and
  1628. * may_start_working() %true.
  1629. *
  1630. * LOCKING:
  1631. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1632. * multiple times. Does GFP_KERNEL allocations. Called only from
  1633. * manager.
  1634. *
  1635. * RETURNS:
  1636. * %false if no action was taken and pool->lock stayed locked, %true
  1637. * otherwise.
  1638. */
  1639. static bool maybe_create_worker(struct worker_pool *pool)
  1640. __releases(&pool->lock)
  1641. __acquires(&pool->lock)
  1642. {
  1643. if (!need_to_create_worker(pool))
  1644. return false;
  1645. restart:
  1646. spin_unlock_irq(&pool->lock);
  1647. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1648. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1649. while (true) {
  1650. struct worker *worker;
  1651. worker = create_worker(pool);
  1652. if (worker) {
  1653. del_timer_sync(&pool->mayday_timer);
  1654. spin_lock_irq(&pool->lock);
  1655. start_worker(worker);
  1656. if (WARN_ON_ONCE(need_to_create_worker(pool)))
  1657. goto restart;
  1658. return true;
  1659. }
  1660. if (!need_to_create_worker(pool))
  1661. break;
  1662. __set_current_state(TASK_INTERRUPTIBLE);
  1663. schedule_timeout(CREATE_COOLDOWN);
  1664. if (!need_to_create_worker(pool))
  1665. break;
  1666. }
  1667. del_timer_sync(&pool->mayday_timer);
  1668. spin_lock_irq(&pool->lock);
  1669. if (need_to_create_worker(pool))
  1670. goto restart;
  1671. return true;
  1672. }
  1673. /**
  1674. * maybe_destroy_worker - destroy workers which have been idle for a while
  1675. * @pool: pool to destroy workers for
  1676. *
  1677. * Destroy @pool workers which have been idle for longer than
  1678. * IDLE_WORKER_TIMEOUT.
  1679. *
  1680. * LOCKING:
  1681. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1682. * multiple times. Called only from manager.
  1683. *
  1684. * RETURNS:
  1685. * %false if no action was taken and pool->lock stayed locked, %true
  1686. * otherwise.
  1687. */
  1688. static bool maybe_destroy_workers(struct worker_pool *pool)
  1689. {
  1690. bool ret = false;
  1691. while (too_many_workers(pool)) {
  1692. struct worker *worker;
  1693. unsigned long expires;
  1694. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1695. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1696. if (time_before(jiffies, expires)) {
  1697. mod_timer(&pool->idle_timer, expires);
  1698. break;
  1699. }
  1700. destroy_worker(worker);
  1701. ret = true;
  1702. }
  1703. return ret;
  1704. }
  1705. /**
  1706. * manage_workers - manage worker pool
  1707. * @worker: self
  1708. *
  1709. * Assume the manager role and manage the worker pool @worker belongs
  1710. * to. At any given time, there can be only zero or one manager per
  1711. * pool. The exclusion is handled automatically by this function.
  1712. *
  1713. * The caller can safely start processing works on false return. On
  1714. * true return, it's guaranteed that need_to_create_worker() is false
  1715. * and may_start_working() is true.
  1716. *
  1717. * CONTEXT:
  1718. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1719. * multiple times. Does GFP_KERNEL allocations.
  1720. *
  1721. * RETURNS:
  1722. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1723. * multiple times. Does GFP_KERNEL allocations.
  1724. */
  1725. static bool manage_workers(struct worker *worker)
  1726. {
  1727. struct worker_pool *pool = worker->pool;
  1728. bool ret = false;
  1729. /*
  1730. * Managership is governed by two mutexes - manager_arb and
  1731. * manager_mutex. manager_arb handles arbitration of manager role.
  1732. * Anyone who successfully grabs manager_arb wins the arbitration
  1733. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1734. * failure while holding pool->lock reliably indicates that someone
  1735. * else is managing the pool and the worker which failed trylock
  1736. * can proceed to executing work items. This means that anyone
  1737. * grabbing manager_arb is responsible for actually performing
  1738. * manager duties. If manager_arb is grabbed and released without
  1739. * actual management, the pool may stall indefinitely.
  1740. *
  1741. * manager_mutex is used for exclusion of actual management
  1742. * operations. The holder of manager_mutex can be sure that none
  1743. * of management operations, including creation and destruction of
  1744. * workers, won't take place until the mutex is released. Because
  1745. * manager_mutex doesn't interfere with manager role arbitration,
  1746. * it is guaranteed that the pool's management, while may be
  1747. * delayed, won't be disturbed by someone else grabbing
  1748. * manager_mutex.
  1749. */
  1750. if (!mutex_trylock(&pool->manager_arb))
  1751. return ret;
  1752. /*
  1753. * With manager arbitration won, manager_mutex would be free in
  1754. * most cases. trylock first without dropping @pool->lock.
  1755. */
  1756. if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
  1757. spin_unlock_irq(&pool->lock);
  1758. mutex_lock(&pool->manager_mutex);
  1759. ret = true;
  1760. }
  1761. pool->flags &= ~POOL_MANAGE_WORKERS;
  1762. /*
  1763. * Destroy and then create so that may_start_working() is true
  1764. * on return.
  1765. */
  1766. ret |= maybe_destroy_workers(pool);
  1767. ret |= maybe_create_worker(pool);
  1768. mutex_unlock(&pool->manager_mutex);
  1769. mutex_unlock(&pool->manager_arb);
  1770. return ret;
  1771. }
  1772. /**
  1773. * process_one_work - process single work
  1774. * @worker: self
  1775. * @work: work to process
  1776. *
  1777. * Process @work. This function contains all the logics necessary to
  1778. * process a single work including synchronization against and
  1779. * interaction with other workers on the same cpu, queueing and
  1780. * flushing. As long as context requirement is met, any worker can
  1781. * call this function to process a work.
  1782. *
  1783. * CONTEXT:
  1784. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1785. */
  1786. static void process_one_work(struct worker *worker, struct work_struct *work)
  1787. __releases(&pool->lock)
  1788. __acquires(&pool->lock)
  1789. {
  1790. struct pool_workqueue *pwq = get_work_pwq(work);
  1791. struct worker_pool *pool = worker->pool;
  1792. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1793. int work_color;
  1794. struct worker *collision;
  1795. #ifdef CONFIG_LOCKDEP
  1796. /*
  1797. * It is permissible to free the struct work_struct from
  1798. * inside the function that is called from it, this we need to
  1799. * take into account for lockdep too. To avoid bogus "held
  1800. * lock freed" warnings as well as problems when looking into
  1801. * work->lockdep_map, make a copy and use that here.
  1802. */
  1803. struct lockdep_map lockdep_map;
  1804. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1805. #endif
  1806. /*
  1807. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1808. * necessary to avoid spurious warnings from rescuers servicing the
  1809. * unbound or a disassociated pool.
  1810. */
  1811. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1812. !(pool->flags & POOL_DISASSOCIATED) &&
  1813. raw_smp_processor_id() != pool->cpu);
  1814. /*
  1815. * A single work shouldn't be executed concurrently by
  1816. * multiple workers on a single cpu. Check whether anyone is
  1817. * already processing the work. If so, defer the work to the
  1818. * currently executing one.
  1819. */
  1820. collision = find_worker_executing_work(pool, work);
  1821. if (unlikely(collision)) {
  1822. move_linked_works(work, &collision->scheduled, NULL);
  1823. return;
  1824. }
  1825. /* claim and dequeue */
  1826. debug_work_deactivate(work);
  1827. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1828. worker->current_work = work;
  1829. worker->current_func = work->func;
  1830. worker->current_pwq = pwq;
  1831. work_color = get_work_color(work);
  1832. list_del_init(&work->entry);
  1833. /*
  1834. * CPU intensive works don't participate in concurrency
  1835. * management. They're the scheduler's responsibility.
  1836. */
  1837. if (unlikely(cpu_intensive))
  1838. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1839. /*
  1840. * Unbound pool isn't concurrency managed and work items should be
  1841. * executed ASAP. Wake up another worker if necessary.
  1842. */
  1843. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1844. wake_up_worker(pool);
  1845. /*
  1846. * Record the last pool and clear PENDING which should be the last
  1847. * update to @work. Also, do this inside @pool->lock so that
  1848. * PENDING and queued state changes happen together while IRQ is
  1849. * disabled.
  1850. */
  1851. set_work_pool_and_clear_pending(work, pool->id);
  1852. spin_unlock_irq(&pool->lock);
  1853. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1854. lock_map_acquire(&lockdep_map);
  1855. trace_workqueue_execute_start(work);
  1856. worker->current_func(work);
  1857. /*
  1858. * While we must be careful to not use "work" after this, the trace
  1859. * point will only record its address.
  1860. */
  1861. trace_workqueue_execute_end(work);
  1862. lock_map_release(&lockdep_map);
  1863. lock_map_release(&pwq->wq->lockdep_map);
  1864. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1865. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1866. " last function: %pf\n",
  1867. current->comm, preempt_count(), task_pid_nr(current),
  1868. worker->current_func);
  1869. debug_show_held_locks(current);
  1870. dump_stack();
  1871. }
  1872. spin_lock_irq(&pool->lock);
  1873. /* clear cpu intensive status */
  1874. if (unlikely(cpu_intensive))
  1875. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1876. /* we're done with it, release */
  1877. hash_del(&worker->hentry);
  1878. worker->current_work = NULL;
  1879. worker->current_func = NULL;
  1880. worker->current_pwq = NULL;
  1881. pwq_dec_nr_in_flight(pwq, work_color);
  1882. }
  1883. /**
  1884. * process_scheduled_works - process scheduled works
  1885. * @worker: self
  1886. *
  1887. * Process all scheduled works. Please note that the scheduled list
  1888. * may change while processing a work, so this function repeatedly
  1889. * fetches a work from the top and executes it.
  1890. *
  1891. * CONTEXT:
  1892. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1893. * multiple times.
  1894. */
  1895. static void process_scheduled_works(struct worker *worker)
  1896. {
  1897. while (!list_empty(&worker->scheduled)) {
  1898. struct work_struct *work = list_first_entry(&worker->scheduled,
  1899. struct work_struct, entry);
  1900. process_one_work(worker, work);
  1901. }
  1902. }
  1903. /**
  1904. * worker_thread - the worker thread function
  1905. * @__worker: self
  1906. *
  1907. * The worker thread function. All workers belong to a worker_pool -
  1908. * either a per-cpu one or dynamic unbound one. These workers process all
  1909. * work items regardless of their specific target workqueue. The only
  1910. * exception is work items which belong to workqueues with a rescuer which
  1911. * will be explained in rescuer_thread().
  1912. */
  1913. static int worker_thread(void *__worker)
  1914. {
  1915. struct worker *worker = __worker;
  1916. struct worker_pool *pool = worker->pool;
  1917. /* tell the scheduler that this is a workqueue worker */
  1918. worker->task->flags |= PF_WQ_WORKER;
  1919. woke_up:
  1920. spin_lock_irq(&pool->lock);
  1921. /* am I supposed to die? */
  1922. if (unlikely(worker->flags & WORKER_DIE)) {
  1923. spin_unlock_irq(&pool->lock);
  1924. WARN_ON_ONCE(!list_empty(&worker->entry));
  1925. worker->task->flags &= ~PF_WQ_WORKER;
  1926. return 0;
  1927. }
  1928. worker_leave_idle(worker);
  1929. recheck:
  1930. /* no more worker necessary? */
  1931. if (!need_more_worker(pool))
  1932. goto sleep;
  1933. /* do we need to manage? */
  1934. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1935. goto recheck;
  1936. /*
  1937. * ->scheduled list can only be filled while a worker is
  1938. * preparing to process a work or actually processing it.
  1939. * Make sure nobody diddled with it while I was sleeping.
  1940. */
  1941. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  1942. /*
  1943. * Finish PREP stage. We're guaranteed to have at least one idle
  1944. * worker or that someone else has already assumed the manager
  1945. * role. This is where @worker starts participating in concurrency
  1946. * management if applicable and concurrency management is restored
  1947. * after being rebound. See rebind_workers() for details.
  1948. */
  1949. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  1950. do {
  1951. struct work_struct *work =
  1952. list_first_entry(&pool->worklist,
  1953. struct work_struct, entry);
  1954. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1955. /* optimization path, not strictly necessary */
  1956. process_one_work(worker, work);
  1957. if (unlikely(!list_empty(&worker->scheduled)))
  1958. process_scheduled_works(worker);
  1959. } else {
  1960. move_linked_works(work, &worker->scheduled, NULL);
  1961. process_scheduled_works(worker);
  1962. }
  1963. } while (keep_working(pool));
  1964. worker_set_flags(worker, WORKER_PREP, false);
  1965. sleep:
  1966. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  1967. goto recheck;
  1968. /*
  1969. * pool->lock is held and there's no work to process and no need to
  1970. * manage, sleep. Workers are woken up only while holding
  1971. * pool->lock or from local cpu, so setting the current state
  1972. * before releasing pool->lock is enough to prevent losing any
  1973. * event.
  1974. */
  1975. worker_enter_idle(worker);
  1976. __set_current_state(TASK_INTERRUPTIBLE);
  1977. spin_unlock_irq(&pool->lock);
  1978. schedule();
  1979. goto woke_up;
  1980. }
  1981. /**
  1982. * rescuer_thread - the rescuer thread function
  1983. * @__rescuer: self
  1984. *
  1985. * Workqueue rescuer thread function. There's one rescuer for each
  1986. * workqueue which has WQ_MEM_RECLAIM set.
  1987. *
  1988. * Regular work processing on a pool may block trying to create a new
  1989. * worker which uses GFP_KERNEL allocation which has slight chance of
  1990. * developing into deadlock if some works currently on the same queue
  1991. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  1992. * the problem rescuer solves.
  1993. *
  1994. * When such condition is possible, the pool summons rescuers of all
  1995. * workqueues which have works queued on the pool and let them process
  1996. * those works so that forward progress can be guaranteed.
  1997. *
  1998. * This should happen rarely.
  1999. */
  2000. static int rescuer_thread(void *__rescuer)
  2001. {
  2002. struct worker *rescuer = __rescuer;
  2003. struct workqueue_struct *wq = rescuer->rescue_wq;
  2004. struct list_head *scheduled = &rescuer->scheduled;
  2005. set_user_nice(current, RESCUER_NICE_LEVEL);
  2006. /*
  2007. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  2008. * doesn't participate in concurrency management.
  2009. */
  2010. rescuer->task->flags |= PF_WQ_WORKER;
  2011. repeat:
  2012. set_current_state(TASK_INTERRUPTIBLE);
  2013. if (kthread_should_stop()) {
  2014. __set_current_state(TASK_RUNNING);
  2015. rescuer->task->flags &= ~PF_WQ_WORKER;
  2016. return 0;
  2017. }
  2018. /* see whether any pwq is asking for help */
  2019. spin_lock_irq(&wq_mayday_lock);
  2020. while (!list_empty(&wq->maydays)) {
  2021. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  2022. struct pool_workqueue, mayday_node);
  2023. struct worker_pool *pool = pwq->pool;
  2024. struct work_struct *work, *n;
  2025. __set_current_state(TASK_RUNNING);
  2026. list_del_init(&pwq->mayday_node);
  2027. spin_unlock_irq(&wq_mayday_lock);
  2028. /* migrate to the target cpu if possible */
  2029. worker_maybe_bind_and_lock(pool);
  2030. rescuer->pool = pool;
  2031. /*
  2032. * Slurp in all works issued via this workqueue and
  2033. * process'em.
  2034. */
  2035. WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
  2036. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2037. if (get_work_pwq(work) == pwq)
  2038. move_linked_works(work, scheduled, &n);
  2039. process_scheduled_works(rescuer);
  2040. /*
  2041. * Leave this pool. If keep_working() is %true, notify a
  2042. * regular worker; otherwise, we end up with 0 concurrency
  2043. * and stalling the execution.
  2044. */
  2045. if (keep_working(pool))
  2046. wake_up_worker(pool);
  2047. rescuer->pool = NULL;
  2048. spin_unlock(&pool->lock);
  2049. spin_lock(&wq_mayday_lock);
  2050. }
  2051. spin_unlock_irq(&wq_mayday_lock);
  2052. /* rescuers should never participate in concurrency management */
  2053. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2054. schedule();
  2055. goto repeat;
  2056. }
  2057. struct wq_barrier {
  2058. struct work_struct work;
  2059. struct completion done;
  2060. };
  2061. static void wq_barrier_func(struct work_struct *work)
  2062. {
  2063. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2064. complete(&barr->done);
  2065. }
  2066. /**
  2067. * insert_wq_barrier - insert a barrier work
  2068. * @pwq: pwq to insert barrier into
  2069. * @barr: wq_barrier to insert
  2070. * @target: target work to attach @barr to
  2071. * @worker: worker currently executing @target, NULL if @target is not executing
  2072. *
  2073. * @barr is linked to @target such that @barr is completed only after
  2074. * @target finishes execution. Please note that the ordering
  2075. * guarantee is observed only with respect to @target and on the local
  2076. * cpu.
  2077. *
  2078. * Currently, a queued barrier can't be canceled. This is because
  2079. * try_to_grab_pending() can't determine whether the work to be
  2080. * grabbed is at the head of the queue and thus can't clear LINKED
  2081. * flag of the previous work while there must be a valid next work
  2082. * after a work with LINKED flag set.
  2083. *
  2084. * Note that when @worker is non-NULL, @target may be modified
  2085. * underneath us, so we can't reliably determine pwq from @target.
  2086. *
  2087. * CONTEXT:
  2088. * spin_lock_irq(pool->lock).
  2089. */
  2090. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2091. struct wq_barrier *barr,
  2092. struct work_struct *target, struct worker *worker)
  2093. {
  2094. struct list_head *head;
  2095. unsigned int linked = 0;
  2096. /*
  2097. * debugobject calls are safe here even with pool->lock locked
  2098. * as we know for sure that this will not trigger any of the
  2099. * checks and call back into the fixup functions where we
  2100. * might deadlock.
  2101. */
  2102. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2103. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2104. init_completion(&barr->done);
  2105. /*
  2106. * If @target is currently being executed, schedule the
  2107. * barrier to the worker; otherwise, put it after @target.
  2108. */
  2109. if (worker)
  2110. head = worker->scheduled.next;
  2111. else {
  2112. unsigned long *bits = work_data_bits(target);
  2113. head = target->entry.next;
  2114. /* there can already be other linked works, inherit and set */
  2115. linked = *bits & WORK_STRUCT_LINKED;
  2116. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2117. }
  2118. debug_work_activate(&barr->work);
  2119. insert_work(pwq, &barr->work, head,
  2120. work_color_to_flags(WORK_NO_COLOR) | linked);
  2121. }
  2122. /**
  2123. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2124. * @wq: workqueue being flushed
  2125. * @flush_color: new flush color, < 0 for no-op
  2126. * @work_color: new work color, < 0 for no-op
  2127. *
  2128. * Prepare pwqs for workqueue flushing.
  2129. *
  2130. * If @flush_color is non-negative, flush_color on all pwqs should be
  2131. * -1. If no pwq has in-flight commands at the specified color, all
  2132. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2133. * has in flight commands, its pwq->flush_color is set to
  2134. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2135. * wakeup logic is armed and %true is returned.
  2136. *
  2137. * The caller should have initialized @wq->first_flusher prior to
  2138. * calling this function with non-negative @flush_color. If
  2139. * @flush_color is negative, no flush color update is done and %false
  2140. * is returned.
  2141. *
  2142. * If @work_color is non-negative, all pwqs should have the same
  2143. * work_color which is previous to @work_color and all will be
  2144. * advanced to @work_color.
  2145. *
  2146. * CONTEXT:
  2147. * mutex_lock(wq->mutex).
  2148. *
  2149. * RETURNS:
  2150. * %true if @flush_color >= 0 and there's something to flush. %false
  2151. * otherwise.
  2152. */
  2153. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2154. int flush_color, int work_color)
  2155. {
  2156. bool wait = false;
  2157. struct pool_workqueue *pwq;
  2158. if (flush_color >= 0) {
  2159. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2160. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2161. }
  2162. for_each_pwq(pwq, wq) {
  2163. struct worker_pool *pool = pwq->pool;
  2164. spin_lock_irq(&pool->lock);
  2165. if (flush_color >= 0) {
  2166. WARN_ON_ONCE(pwq->flush_color != -1);
  2167. if (pwq->nr_in_flight[flush_color]) {
  2168. pwq->flush_color = flush_color;
  2169. atomic_inc(&wq->nr_pwqs_to_flush);
  2170. wait = true;
  2171. }
  2172. }
  2173. if (work_color >= 0) {
  2174. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2175. pwq->work_color = work_color;
  2176. }
  2177. spin_unlock_irq(&pool->lock);
  2178. }
  2179. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2180. complete(&wq->first_flusher->done);
  2181. return wait;
  2182. }
  2183. /**
  2184. * flush_workqueue - ensure that any scheduled work has run to completion.
  2185. * @wq: workqueue to flush
  2186. *
  2187. * This function sleeps until all work items which were queued on entry
  2188. * have finished execution, but it is not livelocked by new incoming ones.
  2189. */
  2190. void flush_workqueue(struct workqueue_struct *wq)
  2191. {
  2192. struct wq_flusher this_flusher = {
  2193. .list = LIST_HEAD_INIT(this_flusher.list),
  2194. .flush_color = -1,
  2195. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2196. };
  2197. int next_color;
  2198. lock_map_acquire(&wq->lockdep_map);
  2199. lock_map_release(&wq->lockdep_map);
  2200. mutex_lock(&wq->mutex);
  2201. /*
  2202. * Start-to-wait phase
  2203. */
  2204. next_color = work_next_color(wq->work_color);
  2205. if (next_color != wq->flush_color) {
  2206. /*
  2207. * Color space is not full. The current work_color
  2208. * becomes our flush_color and work_color is advanced
  2209. * by one.
  2210. */
  2211. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2212. this_flusher.flush_color = wq->work_color;
  2213. wq->work_color = next_color;
  2214. if (!wq->first_flusher) {
  2215. /* no flush in progress, become the first flusher */
  2216. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2217. wq->first_flusher = &this_flusher;
  2218. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2219. wq->work_color)) {
  2220. /* nothing to flush, done */
  2221. wq->flush_color = next_color;
  2222. wq->first_flusher = NULL;
  2223. goto out_unlock;
  2224. }
  2225. } else {
  2226. /* wait in queue */
  2227. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2228. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2229. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2230. }
  2231. } else {
  2232. /*
  2233. * Oops, color space is full, wait on overflow queue.
  2234. * The next flush completion will assign us
  2235. * flush_color and transfer to flusher_queue.
  2236. */
  2237. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2238. }
  2239. mutex_unlock(&wq->mutex);
  2240. wait_for_completion(&this_flusher.done);
  2241. /*
  2242. * Wake-up-and-cascade phase
  2243. *
  2244. * First flushers are responsible for cascading flushes and
  2245. * handling overflow. Non-first flushers can simply return.
  2246. */
  2247. if (wq->first_flusher != &this_flusher)
  2248. return;
  2249. mutex_lock(&wq->mutex);
  2250. /* we might have raced, check again with mutex held */
  2251. if (wq->first_flusher != &this_flusher)
  2252. goto out_unlock;
  2253. wq->first_flusher = NULL;
  2254. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2255. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2256. while (true) {
  2257. struct wq_flusher *next, *tmp;
  2258. /* complete all the flushers sharing the current flush color */
  2259. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2260. if (next->flush_color != wq->flush_color)
  2261. break;
  2262. list_del_init(&next->list);
  2263. complete(&next->done);
  2264. }
  2265. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2266. wq->flush_color != work_next_color(wq->work_color));
  2267. /* this flush_color is finished, advance by one */
  2268. wq->flush_color = work_next_color(wq->flush_color);
  2269. /* one color has been freed, handle overflow queue */
  2270. if (!list_empty(&wq->flusher_overflow)) {
  2271. /*
  2272. * Assign the same color to all overflowed
  2273. * flushers, advance work_color and append to
  2274. * flusher_queue. This is the start-to-wait
  2275. * phase for these overflowed flushers.
  2276. */
  2277. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2278. tmp->flush_color = wq->work_color;
  2279. wq->work_color = work_next_color(wq->work_color);
  2280. list_splice_tail_init(&wq->flusher_overflow,
  2281. &wq->flusher_queue);
  2282. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2283. }
  2284. if (list_empty(&wq->flusher_queue)) {
  2285. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2286. break;
  2287. }
  2288. /*
  2289. * Need to flush more colors. Make the next flusher
  2290. * the new first flusher and arm pwqs.
  2291. */
  2292. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2293. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2294. list_del_init(&next->list);
  2295. wq->first_flusher = next;
  2296. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2297. break;
  2298. /*
  2299. * Meh... this color is already done, clear first
  2300. * flusher and repeat cascading.
  2301. */
  2302. wq->first_flusher = NULL;
  2303. }
  2304. out_unlock:
  2305. mutex_unlock(&wq->mutex);
  2306. }
  2307. EXPORT_SYMBOL_GPL(flush_workqueue);
  2308. /**
  2309. * drain_workqueue - drain a workqueue
  2310. * @wq: workqueue to drain
  2311. *
  2312. * Wait until the workqueue becomes empty. While draining is in progress,
  2313. * only chain queueing is allowed. IOW, only currently pending or running
  2314. * work items on @wq can queue further work items on it. @wq is flushed
  2315. * repeatedly until it becomes empty. The number of flushing is detemined
  2316. * by the depth of chaining and should be relatively short. Whine if it
  2317. * takes too long.
  2318. */
  2319. void drain_workqueue(struct workqueue_struct *wq)
  2320. {
  2321. unsigned int flush_cnt = 0;
  2322. struct pool_workqueue *pwq;
  2323. /*
  2324. * __queue_work() needs to test whether there are drainers, is much
  2325. * hotter than drain_workqueue() and already looks at @wq->flags.
  2326. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2327. */
  2328. mutex_lock(&wq->mutex);
  2329. if (!wq->nr_drainers++)
  2330. wq->flags |= __WQ_DRAINING;
  2331. mutex_unlock(&wq->mutex);
  2332. reflush:
  2333. flush_workqueue(wq);
  2334. mutex_lock(&wq->mutex);
  2335. for_each_pwq(pwq, wq) {
  2336. bool drained;
  2337. spin_lock_irq(&pwq->pool->lock);
  2338. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2339. spin_unlock_irq(&pwq->pool->lock);
  2340. if (drained)
  2341. continue;
  2342. if (++flush_cnt == 10 ||
  2343. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2344. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2345. wq->name, flush_cnt);
  2346. mutex_unlock(&wq->mutex);
  2347. goto reflush;
  2348. }
  2349. if (!--wq->nr_drainers)
  2350. wq->flags &= ~__WQ_DRAINING;
  2351. mutex_unlock(&wq->mutex);
  2352. }
  2353. EXPORT_SYMBOL_GPL(drain_workqueue);
  2354. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2355. {
  2356. struct worker *worker = NULL;
  2357. struct worker_pool *pool;
  2358. struct pool_workqueue *pwq;
  2359. might_sleep();
  2360. local_irq_disable();
  2361. pool = get_work_pool(work);
  2362. if (!pool) {
  2363. local_irq_enable();
  2364. return false;
  2365. }
  2366. spin_lock(&pool->lock);
  2367. /* see the comment in try_to_grab_pending() with the same code */
  2368. pwq = get_work_pwq(work);
  2369. if (pwq) {
  2370. if (unlikely(pwq->pool != pool))
  2371. goto already_gone;
  2372. } else {
  2373. worker = find_worker_executing_work(pool, work);
  2374. if (!worker)
  2375. goto already_gone;
  2376. pwq = worker->current_pwq;
  2377. }
  2378. insert_wq_barrier(pwq, barr, work, worker);
  2379. spin_unlock_irq(&pool->lock);
  2380. /*
  2381. * If @max_active is 1 or rescuer is in use, flushing another work
  2382. * item on the same workqueue may lead to deadlock. Make sure the
  2383. * flusher is not running on the same workqueue by verifying write
  2384. * access.
  2385. */
  2386. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2387. lock_map_acquire(&pwq->wq->lockdep_map);
  2388. else
  2389. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2390. lock_map_release(&pwq->wq->lockdep_map);
  2391. return true;
  2392. already_gone:
  2393. spin_unlock_irq(&pool->lock);
  2394. return false;
  2395. }
  2396. /**
  2397. * flush_work - wait for a work to finish executing the last queueing instance
  2398. * @work: the work to flush
  2399. *
  2400. * Wait until @work has finished execution. @work is guaranteed to be idle
  2401. * on return if it hasn't been requeued since flush started.
  2402. *
  2403. * RETURNS:
  2404. * %true if flush_work() waited for the work to finish execution,
  2405. * %false if it was already idle.
  2406. */
  2407. bool flush_work(struct work_struct *work)
  2408. {
  2409. struct wq_barrier barr;
  2410. lock_map_acquire(&work->lockdep_map);
  2411. lock_map_release(&work->lockdep_map);
  2412. if (start_flush_work(work, &barr)) {
  2413. wait_for_completion(&barr.done);
  2414. destroy_work_on_stack(&barr.work);
  2415. return true;
  2416. } else {
  2417. return false;
  2418. }
  2419. }
  2420. EXPORT_SYMBOL_GPL(flush_work);
  2421. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2422. {
  2423. unsigned long flags;
  2424. int ret;
  2425. do {
  2426. ret = try_to_grab_pending(work, is_dwork, &flags);
  2427. /*
  2428. * If someone else is canceling, wait for the same event it
  2429. * would be waiting for before retrying.
  2430. */
  2431. if (unlikely(ret == -ENOENT))
  2432. flush_work(work);
  2433. } while (unlikely(ret < 0));
  2434. /* tell other tasks trying to grab @work to back off */
  2435. mark_work_canceling(work);
  2436. local_irq_restore(flags);
  2437. flush_work(work);
  2438. clear_work_data(work);
  2439. return ret;
  2440. }
  2441. /**
  2442. * cancel_work_sync - cancel a work and wait for it to finish
  2443. * @work: the work to cancel
  2444. *
  2445. * Cancel @work and wait for its execution to finish. This function
  2446. * can be used even if the work re-queues itself or migrates to
  2447. * another workqueue. On return from this function, @work is
  2448. * guaranteed to be not pending or executing on any CPU.
  2449. *
  2450. * cancel_work_sync(&delayed_work->work) must not be used for
  2451. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2452. *
  2453. * The caller must ensure that the workqueue on which @work was last
  2454. * queued can't be destroyed before this function returns.
  2455. *
  2456. * RETURNS:
  2457. * %true if @work was pending, %false otherwise.
  2458. */
  2459. bool cancel_work_sync(struct work_struct *work)
  2460. {
  2461. return __cancel_work_timer(work, false);
  2462. }
  2463. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2464. /**
  2465. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2466. * @dwork: the delayed work to flush
  2467. *
  2468. * Delayed timer is cancelled and the pending work is queued for
  2469. * immediate execution. Like flush_work(), this function only
  2470. * considers the last queueing instance of @dwork.
  2471. *
  2472. * RETURNS:
  2473. * %true if flush_work() waited for the work to finish execution,
  2474. * %false if it was already idle.
  2475. */
  2476. bool flush_delayed_work(struct delayed_work *dwork)
  2477. {
  2478. local_irq_disable();
  2479. if (del_timer_sync(&dwork->timer))
  2480. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2481. local_irq_enable();
  2482. return flush_work(&dwork->work);
  2483. }
  2484. EXPORT_SYMBOL(flush_delayed_work);
  2485. /**
  2486. * cancel_delayed_work - cancel a delayed work
  2487. * @dwork: delayed_work to cancel
  2488. *
  2489. * Kill off a pending delayed_work. Returns %true if @dwork was pending
  2490. * and canceled; %false if wasn't pending. Note that the work callback
  2491. * function may still be running on return, unless it returns %true and the
  2492. * work doesn't re-arm itself. Explicitly flush or use
  2493. * cancel_delayed_work_sync() to wait on it.
  2494. *
  2495. * This function is safe to call from any context including IRQ handler.
  2496. */
  2497. bool cancel_delayed_work(struct delayed_work *dwork)
  2498. {
  2499. unsigned long flags;
  2500. int ret;
  2501. do {
  2502. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2503. } while (unlikely(ret == -EAGAIN));
  2504. if (unlikely(ret < 0))
  2505. return false;
  2506. set_work_pool_and_clear_pending(&dwork->work,
  2507. get_work_pool_id(&dwork->work));
  2508. local_irq_restore(flags);
  2509. return ret;
  2510. }
  2511. EXPORT_SYMBOL(cancel_delayed_work);
  2512. /**
  2513. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2514. * @dwork: the delayed work cancel
  2515. *
  2516. * This is cancel_work_sync() for delayed works.
  2517. *
  2518. * RETURNS:
  2519. * %true if @dwork was pending, %false otherwise.
  2520. */
  2521. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2522. {
  2523. return __cancel_work_timer(&dwork->work, true);
  2524. }
  2525. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2526. /**
  2527. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2528. * @func: the function to call
  2529. *
  2530. * schedule_on_each_cpu() executes @func on each online CPU using the
  2531. * system workqueue and blocks until all CPUs have completed.
  2532. * schedule_on_each_cpu() is very slow.
  2533. *
  2534. * RETURNS:
  2535. * 0 on success, -errno on failure.
  2536. */
  2537. int schedule_on_each_cpu(work_func_t func)
  2538. {
  2539. int cpu;
  2540. struct work_struct __percpu *works;
  2541. works = alloc_percpu(struct work_struct);
  2542. if (!works)
  2543. return -ENOMEM;
  2544. get_online_cpus();
  2545. for_each_online_cpu(cpu) {
  2546. struct work_struct *work = per_cpu_ptr(works, cpu);
  2547. INIT_WORK(work, func);
  2548. schedule_work_on(cpu, work);
  2549. }
  2550. for_each_online_cpu(cpu)
  2551. flush_work(per_cpu_ptr(works, cpu));
  2552. put_online_cpus();
  2553. free_percpu(works);
  2554. return 0;
  2555. }
  2556. /**
  2557. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2558. *
  2559. * Forces execution of the kernel-global workqueue and blocks until its
  2560. * completion.
  2561. *
  2562. * Think twice before calling this function! It's very easy to get into
  2563. * trouble if you don't take great care. Either of the following situations
  2564. * will lead to deadlock:
  2565. *
  2566. * One of the work items currently on the workqueue needs to acquire
  2567. * a lock held by your code or its caller.
  2568. *
  2569. * Your code is running in the context of a work routine.
  2570. *
  2571. * They will be detected by lockdep when they occur, but the first might not
  2572. * occur very often. It depends on what work items are on the workqueue and
  2573. * what locks they need, which you have no control over.
  2574. *
  2575. * In most situations flushing the entire workqueue is overkill; you merely
  2576. * need to know that a particular work item isn't queued and isn't running.
  2577. * In such cases you should use cancel_delayed_work_sync() or
  2578. * cancel_work_sync() instead.
  2579. */
  2580. void flush_scheduled_work(void)
  2581. {
  2582. flush_workqueue(system_wq);
  2583. }
  2584. EXPORT_SYMBOL(flush_scheduled_work);
  2585. /**
  2586. * execute_in_process_context - reliably execute the routine with user context
  2587. * @fn: the function to execute
  2588. * @ew: guaranteed storage for the execute work structure (must
  2589. * be available when the work executes)
  2590. *
  2591. * Executes the function immediately if process context is available,
  2592. * otherwise schedules the function for delayed execution.
  2593. *
  2594. * Returns: 0 - function was executed
  2595. * 1 - function was scheduled for execution
  2596. */
  2597. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2598. {
  2599. if (!in_interrupt()) {
  2600. fn(&ew->work);
  2601. return 0;
  2602. }
  2603. INIT_WORK(&ew->work, fn);
  2604. schedule_work(&ew->work);
  2605. return 1;
  2606. }
  2607. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2608. #ifdef CONFIG_SYSFS
  2609. /*
  2610. * Workqueues with WQ_SYSFS flag set is visible to userland via
  2611. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  2612. * following attributes.
  2613. *
  2614. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  2615. * max_active RW int : maximum number of in-flight work items
  2616. *
  2617. * Unbound workqueues have the following extra attributes.
  2618. *
  2619. * id RO int : the associated pool ID
  2620. * nice RW int : nice value of the workers
  2621. * cpumask RW mask : bitmask of allowed CPUs for the workers
  2622. */
  2623. struct wq_device {
  2624. struct workqueue_struct *wq;
  2625. struct device dev;
  2626. };
  2627. static struct workqueue_struct *dev_to_wq(struct device *dev)
  2628. {
  2629. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2630. return wq_dev->wq;
  2631. }
  2632. static ssize_t wq_per_cpu_show(struct device *dev,
  2633. struct device_attribute *attr, char *buf)
  2634. {
  2635. struct workqueue_struct *wq = dev_to_wq(dev);
  2636. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  2637. }
  2638. static ssize_t wq_max_active_show(struct device *dev,
  2639. struct device_attribute *attr, char *buf)
  2640. {
  2641. struct workqueue_struct *wq = dev_to_wq(dev);
  2642. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  2643. }
  2644. static ssize_t wq_max_active_store(struct device *dev,
  2645. struct device_attribute *attr,
  2646. const char *buf, size_t count)
  2647. {
  2648. struct workqueue_struct *wq = dev_to_wq(dev);
  2649. int val;
  2650. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  2651. return -EINVAL;
  2652. workqueue_set_max_active(wq, val);
  2653. return count;
  2654. }
  2655. static struct device_attribute wq_sysfs_attrs[] = {
  2656. __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
  2657. __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
  2658. __ATTR_NULL,
  2659. };
  2660. static ssize_t wq_pool_id_show(struct device *dev,
  2661. struct device_attribute *attr, char *buf)
  2662. {
  2663. struct workqueue_struct *wq = dev_to_wq(dev);
  2664. struct worker_pool *pool;
  2665. int written;
  2666. rcu_read_lock_sched();
  2667. pool = first_pwq(wq)->pool;
  2668. written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
  2669. rcu_read_unlock_sched();
  2670. return written;
  2671. }
  2672. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  2673. char *buf)
  2674. {
  2675. struct workqueue_struct *wq = dev_to_wq(dev);
  2676. int written;
  2677. mutex_lock(&wq->mutex);
  2678. written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
  2679. mutex_unlock(&wq->mutex);
  2680. return written;
  2681. }
  2682. /* prepare workqueue_attrs for sysfs store operations */
  2683. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  2684. {
  2685. struct workqueue_attrs *attrs;
  2686. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2687. if (!attrs)
  2688. return NULL;
  2689. mutex_lock(&wq->mutex);
  2690. copy_workqueue_attrs(attrs, wq->unbound_attrs);
  2691. mutex_unlock(&wq->mutex);
  2692. return attrs;
  2693. }
  2694. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  2695. const char *buf, size_t count)
  2696. {
  2697. struct workqueue_struct *wq = dev_to_wq(dev);
  2698. struct workqueue_attrs *attrs;
  2699. int ret;
  2700. attrs = wq_sysfs_prep_attrs(wq);
  2701. if (!attrs)
  2702. return -ENOMEM;
  2703. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  2704. attrs->nice >= -20 && attrs->nice <= 19)
  2705. ret = apply_workqueue_attrs(wq, attrs);
  2706. else
  2707. ret = -EINVAL;
  2708. free_workqueue_attrs(attrs);
  2709. return ret ?: count;
  2710. }
  2711. static ssize_t wq_cpumask_show(struct device *dev,
  2712. struct device_attribute *attr, char *buf)
  2713. {
  2714. struct workqueue_struct *wq = dev_to_wq(dev);
  2715. int written;
  2716. mutex_lock(&wq->mutex);
  2717. written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
  2718. mutex_unlock(&wq->mutex);
  2719. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2720. return written;
  2721. }
  2722. static ssize_t wq_cpumask_store(struct device *dev,
  2723. struct device_attribute *attr,
  2724. const char *buf, size_t count)
  2725. {
  2726. struct workqueue_struct *wq = dev_to_wq(dev);
  2727. struct workqueue_attrs *attrs;
  2728. int ret;
  2729. attrs = wq_sysfs_prep_attrs(wq);
  2730. if (!attrs)
  2731. return -ENOMEM;
  2732. ret = cpumask_parse(buf, attrs->cpumask);
  2733. if (!ret)
  2734. ret = apply_workqueue_attrs(wq, attrs);
  2735. free_workqueue_attrs(attrs);
  2736. return ret ?: count;
  2737. }
  2738. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  2739. __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
  2740. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  2741. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  2742. __ATTR_NULL,
  2743. };
  2744. static struct bus_type wq_subsys = {
  2745. .name = "workqueue",
  2746. .dev_attrs = wq_sysfs_attrs,
  2747. };
  2748. static int __init wq_sysfs_init(void)
  2749. {
  2750. return subsys_virtual_register(&wq_subsys, NULL);
  2751. }
  2752. core_initcall(wq_sysfs_init);
  2753. static void wq_device_release(struct device *dev)
  2754. {
  2755. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2756. kfree(wq_dev);
  2757. }
  2758. /**
  2759. * workqueue_sysfs_register - make a workqueue visible in sysfs
  2760. * @wq: the workqueue to register
  2761. *
  2762. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  2763. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  2764. * which is the preferred method.
  2765. *
  2766. * Workqueue user should use this function directly iff it wants to apply
  2767. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  2768. * apply_workqueue_attrs() may race against userland updating the
  2769. * attributes.
  2770. *
  2771. * Returns 0 on success, -errno on failure.
  2772. */
  2773. int workqueue_sysfs_register(struct workqueue_struct *wq)
  2774. {
  2775. struct wq_device *wq_dev;
  2776. int ret;
  2777. /*
  2778. * Adjusting max_active or creating new pwqs by applyting
  2779. * attributes breaks ordering guarantee. Disallow exposing ordered
  2780. * workqueues.
  2781. */
  2782. if (WARN_ON(wq->flags & __WQ_ORDERED))
  2783. return -EINVAL;
  2784. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  2785. if (!wq_dev)
  2786. return -ENOMEM;
  2787. wq_dev->wq = wq;
  2788. wq_dev->dev.bus = &wq_subsys;
  2789. wq_dev->dev.init_name = wq->name;
  2790. wq_dev->dev.release = wq_device_release;
  2791. /*
  2792. * unbound_attrs are created separately. Suppress uevent until
  2793. * everything is ready.
  2794. */
  2795. dev_set_uevent_suppress(&wq_dev->dev, true);
  2796. ret = device_register(&wq_dev->dev);
  2797. if (ret) {
  2798. kfree(wq_dev);
  2799. wq->wq_dev = NULL;
  2800. return ret;
  2801. }
  2802. if (wq->flags & WQ_UNBOUND) {
  2803. struct device_attribute *attr;
  2804. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  2805. ret = device_create_file(&wq_dev->dev, attr);
  2806. if (ret) {
  2807. device_unregister(&wq_dev->dev);
  2808. wq->wq_dev = NULL;
  2809. return ret;
  2810. }
  2811. }
  2812. }
  2813. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  2814. return 0;
  2815. }
  2816. /**
  2817. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  2818. * @wq: the workqueue to unregister
  2819. *
  2820. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  2821. */
  2822. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  2823. {
  2824. struct wq_device *wq_dev = wq->wq_dev;
  2825. if (!wq->wq_dev)
  2826. return;
  2827. wq->wq_dev = NULL;
  2828. device_unregister(&wq_dev->dev);
  2829. }
  2830. #else /* CONFIG_SYSFS */
  2831. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  2832. #endif /* CONFIG_SYSFS */
  2833. /**
  2834. * free_workqueue_attrs - free a workqueue_attrs
  2835. * @attrs: workqueue_attrs to free
  2836. *
  2837. * Undo alloc_workqueue_attrs().
  2838. */
  2839. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2840. {
  2841. if (attrs) {
  2842. free_cpumask_var(attrs->cpumask);
  2843. kfree(attrs);
  2844. }
  2845. }
  2846. /**
  2847. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2848. * @gfp_mask: allocation mask to use
  2849. *
  2850. * Allocate a new workqueue_attrs, initialize with default settings and
  2851. * return it. Returns NULL on failure.
  2852. */
  2853. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2854. {
  2855. struct workqueue_attrs *attrs;
  2856. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2857. if (!attrs)
  2858. goto fail;
  2859. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2860. goto fail;
  2861. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  2862. return attrs;
  2863. fail:
  2864. free_workqueue_attrs(attrs);
  2865. return NULL;
  2866. }
  2867. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2868. const struct workqueue_attrs *from)
  2869. {
  2870. to->nice = from->nice;
  2871. cpumask_copy(to->cpumask, from->cpumask);
  2872. }
  2873. /* hash value of the content of @attr */
  2874. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  2875. {
  2876. u32 hash = 0;
  2877. hash = jhash_1word(attrs->nice, hash);
  2878. hash = jhash(cpumask_bits(attrs->cpumask),
  2879. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  2880. return hash;
  2881. }
  2882. /* content equality test */
  2883. static bool wqattrs_equal(const struct workqueue_attrs *a,
  2884. const struct workqueue_attrs *b)
  2885. {
  2886. if (a->nice != b->nice)
  2887. return false;
  2888. if (!cpumask_equal(a->cpumask, b->cpumask))
  2889. return false;
  2890. return true;
  2891. }
  2892. /**
  2893. * init_worker_pool - initialize a newly zalloc'd worker_pool
  2894. * @pool: worker_pool to initialize
  2895. *
  2896. * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
  2897. * Returns 0 on success, -errno on failure. Even on failure, all fields
  2898. * inside @pool proper are initialized and put_unbound_pool() can be called
  2899. * on @pool safely to release it.
  2900. */
  2901. static int init_worker_pool(struct worker_pool *pool)
  2902. {
  2903. spin_lock_init(&pool->lock);
  2904. pool->id = -1;
  2905. pool->cpu = -1;
  2906. pool->node = NUMA_NO_NODE;
  2907. pool->flags |= POOL_DISASSOCIATED;
  2908. INIT_LIST_HEAD(&pool->worklist);
  2909. INIT_LIST_HEAD(&pool->idle_list);
  2910. hash_init(pool->busy_hash);
  2911. init_timer_deferrable(&pool->idle_timer);
  2912. pool->idle_timer.function = idle_worker_timeout;
  2913. pool->idle_timer.data = (unsigned long)pool;
  2914. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  2915. (unsigned long)pool);
  2916. mutex_init(&pool->manager_arb);
  2917. mutex_init(&pool->manager_mutex);
  2918. idr_init(&pool->worker_idr);
  2919. INIT_HLIST_NODE(&pool->hash_node);
  2920. pool->refcnt = 1;
  2921. /* shouldn't fail above this point */
  2922. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2923. if (!pool->attrs)
  2924. return -ENOMEM;
  2925. return 0;
  2926. }
  2927. static void rcu_free_pool(struct rcu_head *rcu)
  2928. {
  2929. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  2930. idr_destroy(&pool->worker_idr);
  2931. free_workqueue_attrs(pool->attrs);
  2932. kfree(pool);
  2933. }
  2934. /**
  2935. * put_unbound_pool - put a worker_pool
  2936. * @pool: worker_pool to put
  2937. *
  2938. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  2939. * safe manner. get_unbound_pool() calls this function on its failure path
  2940. * and this function should be able to release pools which went through,
  2941. * successfully or not, init_worker_pool().
  2942. *
  2943. * Should be called with wq_pool_mutex held.
  2944. */
  2945. static void put_unbound_pool(struct worker_pool *pool)
  2946. {
  2947. struct worker *worker;
  2948. lockdep_assert_held(&wq_pool_mutex);
  2949. if (--pool->refcnt)
  2950. return;
  2951. /* sanity checks */
  2952. if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
  2953. WARN_ON(!list_empty(&pool->worklist)))
  2954. return;
  2955. /* release id and unhash */
  2956. if (pool->id >= 0)
  2957. idr_remove(&worker_pool_idr, pool->id);
  2958. hash_del(&pool->hash_node);
  2959. /*
  2960. * Become the manager and destroy all workers. Grabbing
  2961. * manager_arb prevents @pool's workers from blocking on
  2962. * manager_mutex.
  2963. */
  2964. mutex_lock(&pool->manager_arb);
  2965. mutex_lock(&pool->manager_mutex);
  2966. spin_lock_irq(&pool->lock);
  2967. while ((worker = first_worker(pool)))
  2968. destroy_worker(worker);
  2969. WARN_ON(pool->nr_workers || pool->nr_idle);
  2970. spin_unlock_irq(&pool->lock);
  2971. mutex_unlock(&pool->manager_mutex);
  2972. mutex_unlock(&pool->manager_arb);
  2973. /* shut down the timers */
  2974. del_timer_sync(&pool->idle_timer);
  2975. del_timer_sync(&pool->mayday_timer);
  2976. /* sched-RCU protected to allow dereferences from get_work_pool() */
  2977. call_rcu_sched(&pool->rcu, rcu_free_pool);
  2978. }
  2979. /**
  2980. * get_unbound_pool - get a worker_pool with the specified attributes
  2981. * @attrs: the attributes of the worker_pool to get
  2982. *
  2983. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  2984. * reference count and return it. If there already is a matching
  2985. * worker_pool, it will be used; otherwise, this function attempts to
  2986. * create a new one. On failure, returns NULL.
  2987. *
  2988. * Should be called with wq_pool_mutex held.
  2989. */
  2990. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  2991. {
  2992. u32 hash = wqattrs_hash(attrs);
  2993. struct worker_pool *pool;
  2994. int node;
  2995. lockdep_assert_held(&wq_pool_mutex);
  2996. /* do we already have a matching pool? */
  2997. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  2998. if (wqattrs_equal(pool->attrs, attrs)) {
  2999. pool->refcnt++;
  3000. goto out_unlock;
  3001. }
  3002. }
  3003. /* nope, create a new one */
  3004. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  3005. if (!pool || init_worker_pool(pool) < 0)
  3006. goto fail;
  3007. if (workqueue_freezing)
  3008. pool->flags |= POOL_FREEZING;
  3009. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  3010. copy_workqueue_attrs(pool->attrs, attrs);
  3011. /* if cpumask is contained inside a NUMA node, we belong to that node */
  3012. if (wq_numa_enabled) {
  3013. for_each_node(node) {
  3014. if (cpumask_subset(pool->attrs->cpumask,
  3015. wq_numa_possible_cpumask[node])) {
  3016. pool->node = node;
  3017. break;
  3018. }
  3019. }
  3020. }
  3021. if (worker_pool_assign_id(pool) < 0)
  3022. goto fail;
  3023. /* create and start the initial worker */
  3024. if (create_and_start_worker(pool) < 0)
  3025. goto fail;
  3026. /* install */
  3027. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  3028. out_unlock:
  3029. return pool;
  3030. fail:
  3031. if (pool)
  3032. put_unbound_pool(pool);
  3033. return NULL;
  3034. }
  3035. static void rcu_free_pwq(struct rcu_head *rcu)
  3036. {
  3037. kmem_cache_free(pwq_cache,
  3038. container_of(rcu, struct pool_workqueue, rcu));
  3039. }
  3040. /*
  3041. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  3042. * and needs to be destroyed.
  3043. */
  3044. static void pwq_unbound_release_workfn(struct work_struct *work)
  3045. {
  3046. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  3047. unbound_release_work);
  3048. struct workqueue_struct *wq = pwq->wq;
  3049. struct worker_pool *pool = pwq->pool;
  3050. bool is_last;
  3051. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  3052. return;
  3053. /*
  3054. * Unlink @pwq. Synchronization against wq->mutex isn't strictly
  3055. * necessary on release but do it anyway. It's easier to verify
  3056. * and consistent with the linking path.
  3057. */
  3058. mutex_lock(&wq->mutex);
  3059. list_del_rcu(&pwq->pwqs_node);
  3060. is_last = list_empty(&wq->pwqs);
  3061. mutex_unlock(&wq->mutex);
  3062. mutex_lock(&wq_pool_mutex);
  3063. put_unbound_pool(pool);
  3064. mutex_unlock(&wq_pool_mutex);
  3065. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  3066. /*
  3067. * If we're the last pwq going away, @wq is already dead and no one
  3068. * is gonna access it anymore. Free it.
  3069. */
  3070. if (is_last) {
  3071. free_workqueue_attrs(wq->unbound_attrs);
  3072. kfree(wq);
  3073. }
  3074. }
  3075. /**
  3076. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  3077. * @pwq: target pool_workqueue
  3078. *
  3079. * If @pwq isn't freezing, set @pwq->max_active to the associated
  3080. * workqueue's saved_max_active and activate delayed work items
  3081. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  3082. */
  3083. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  3084. {
  3085. struct workqueue_struct *wq = pwq->wq;
  3086. bool freezable = wq->flags & WQ_FREEZABLE;
  3087. /* for @wq->saved_max_active */
  3088. lockdep_assert_held(&wq->mutex);
  3089. /* fast exit for non-freezable wqs */
  3090. if (!freezable && pwq->max_active == wq->saved_max_active)
  3091. return;
  3092. spin_lock_irq(&pwq->pool->lock);
  3093. if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
  3094. pwq->max_active = wq->saved_max_active;
  3095. while (!list_empty(&pwq->delayed_works) &&
  3096. pwq->nr_active < pwq->max_active)
  3097. pwq_activate_first_delayed(pwq);
  3098. /*
  3099. * Need to kick a worker after thawed or an unbound wq's
  3100. * max_active is bumped. It's a slow path. Do it always.
  3101. */
  3102. wake_up_worker(pwq->pool);
  3103. } else {
  3104. pwq->max_active = 0;
  3105. }
  3106. spin_unlock_irq(&pwq->pool->lock);
  3107. }
  3108. static void init_and_link_pwq(struct pool_workqueue *pwq,
  3109. struct workqueue_struct *wq,
  3110. struct worker_pool *pool,
  3111. struct pool_workqueue **p_last_pwq)
  3112. {
  3113. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3114. pwq->pool = pool;
  3115. pwq->wq = wq;
  3116. pwq->flush_color = -1;
  3117. pwq->refcnt = 1;
  3118. INIT_LIST_HEAD(&pwq->delayed_works);
  3119. INIT_LIST_HEAD(&pwq->mayday_node);
  3120. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3121. mutex_lock(&wq->mutex);
  3122. /*
  3123. * Set the matching work_color. This is synchronized with
  3124. * wq->mutex to avoid confusing flush_workqueue().
  3125. */
  3126. if (p_last_pwq)
  3127. *p_last_pwq = first_pwq(wq);
  3128. pwq->work_color = wq->work_color;
  3129. /* sync max_active to the current setting */
  3130. pwq_adjust_max_active(pwq);
  3131. /* link in @pwq */
  3132. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3133. if (wq->flags & WQ_UNBOUND)
  3134. copy_workqueue_attrs(wq->unbound_attrs, pool->attrs);
  3135. mutex_unlock(&wq->mutex);
  3136. }
  3137. /**
  3138. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3139. * @wq: the target workqueue
  3140. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3141. *
  3142. * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
  3143. * current attributes, a new pwq is created and made the first pwq which
  3144. * will serve all new work items. Older pwqs are released as in-flight
  3145. * work items finish. Note that a work item which repeatedly requeues
  3146. * itself back-to-back will stay on its current pwq.
  3147. *
  3148. * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
  3149. * failure.
  3150. */
  3151. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3152. const struct workqueue_attrs *attrs)
  3153. {
  3154. struct workqueue_attrs *new_attrs;
  3155. struct pool_workqueue *pwq = NULL, *last_pwq;
  3156. struct worker_pool *pool;
  3157. int ret;
  3158. /* only unbound workqueues can change attributes */
  3159. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3160. return -EINVAL;
  3161. /* creating multiple pwqs breaks ordering guarantee */
  3162. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3163. return -EINVAL;
  3164. /* make a copy of @attrs and sanitize it */
  3165. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3166. if (!new_attrs)
  3167. goto enomem;
  3168. copy_workqueue_attrs(new_attrs, attrs);
  3169. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3170. mutex_lock(&wq_pool_mutex);
  3171. pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
  3172. if (!pwq) {
  3173. mutex_unlock(&wq_pool_mutex);
  3174. goto enomem;
  3175. }
  3176. pool = get_unbound_pool(new_attrs);
  3177. if (!pool) {
  3178. mutex_unlock(&wq_pool_mutex);
  3179. goto enomem;
  3180. }
  3181. mutex_unlock(&wq_pool_mutex);
  3182. init_and_link_pwq(pwq, wq, pool, &last_pwq);
  3183. if (last_pwq) {
  3184. spin_lock_irq(&last_pwq->pool->lock);
  3185. put_pwq(last_pwq);
  3186. spin_unlock_irq(&last_pwq->pool->lock);
  3187. }
  3188. ret = 0;
  3189. /* fall through */
  3190. out_free:
  3191. free_workqueue_attrs(new_attrs);
  3192. return ret;
  3193. enomem:
  3194. kmem_cache_free(pwq_cache, pwq);
  3195. ret = -ENOMEM;
  3196. goto out_free;
  3197. }
  3198. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3199. {
  3200. bool highpri = wq->flags & WQ_HIGHPRI;
  3201. int cpu;
  3202. if (!(wq->flags & WQ_UNBOUND)) {
  3203. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3204. if (!wq->cpu_pwqs)
  3205. return -ENOMEM;
  3206. for_each_possible_cpu(cpu) {
  3207. struct pool_workqueue *pwq =
  3208. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3209. struct worker_pool *cpu_pools =
  3210. per_cpu(cpu_worker_pools, cpu);
  3211. init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
  3212. }
  3213. return 0;
  3214. } else {
  3215. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3216. }
  3217. }
  3218. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3219. const char *name)
  3220. {
  3221. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3222. if (max_active < 1 || max_active > lim)
  3223. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3224. max_active, name, 1, lim);
  3225. return clamp_val(max_active, 1, lim);
  3226. }
  3227. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3228. unsigned int flags,
  3229. int max_active,
  3230. struct lock_class_key *key,
  3231. const char *lock_name, ...)
  3232. {
  3233. va_list args;
  3234. struct workqueue_struct *wq;
  3235. struct pool_workqueue *pwq;
  3236. /* allocate wq and format name */
  3237. wq = kzalloc(sizeof(*wq), GFP_KERNEL);
  3238. if (!wq)
  3239. return NULL;
  3240. if (flags & WQ_UNBOUND) {
  3241. wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3242. if (!wq->unbound_attrs)
  3243. goto err_free_wq;
  3244. }
  3245. va_start(args, lock_name);
  3246. vsnprintf(wq->name, sizeof(wq->name), fmt, args);
  3247. va_end(args);
  3248. max_active = max_active ?: WQ_DFL_ACTIVE;
  3249. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3250. /* init wq */
  3251. wq->flags = flags;
  3252. wq->saved_max_active = max_active;
  3253. mutex_init(&wq->mutex);
  3254. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3255. INIT_LIST_HEAD(&wq->pwqs);
  3256. INIT_LIST_HEAD(&wq->flusher_queue);
  3257. INIT_LIST_HEAD(&wq->flusher_overflow);
  3258. INIT_LIST_HEAD(&wq->maydays);
  3259. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3260. INIT_LIST_HEAD(&wq->list);
  3261. if (alloc_and_link_pwqs(wq) < 0)
  3262. goto err_free_wq;
  3263. /*
  3264. * Workqueues which may be used during memory reclaim should
  3265. * have a rescuer to guarantee forward progress.
  3266. */
  3267. if (flags & WQ_MEM_RECLAIM) {
  3268. struct worker *rescuer;
  3269. rescuer = alloc_worker();
  3270. if (!rescuer)
  3271. goto err_destroy;
  3272. rescuer->rescue_wq = wq;
  3273. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3274. wq->name);
  3275. if (IS_ERR(rescuer->task)) {
  3276. kfree(rescuer);
  3277. goto err_destroy;
  3278. }
  3279. wq->rescuer = rescuer;
  3280. rescuer->task->flags |= PF_NO_SETAFFINITY;
  3281. wake_up_process(rescuer->task);
  3282. }
  3283. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3284. goto err_destroy;
  3285. /*
  3286. * wq_pool_mutex protects global freeze state and workqueues list.
  3287. * Grab it, adjust max_active and add the new @wq to workqueues
  3288. * list.
  3289. */
  3290. mutex_lock(&wq_pool_mutex);
  3291. mutex_lock(&wq->mutex);
  3292. for_each_pwq(pwq, wq)
  3293. pwq_adjust_max_active(pwq);
  3294. mutex_unlock(&wq->mutex);
  3295. list_add(&wq->list, &workqueues);
  3296. mutex_unlock(&wq_pool_mutex);
  3297. return wq;
  3298. err_free_wq:
  3299. free_workqueue_attrs(wq->unbound_attrs);
  3300. kfree(wq);
  3301. return NULL;
  3302. err_destroy:
  3303. destroy_workqueue(wq);
  3304. return NULL;
  3305. }
  3306. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3307. /**
  3308. * destroy_workqueue - safely terminate a workqueue
  3309. * @wq: target workqueue
  3310. *
  3311. * Safely destroy a workqueue. All work currently pending will be done first.
  3312. */
  3313. void destroy_workqueue(struct workqueue_struct *wq)
  3314. {
  3315. struct pool_workqueue *pwq;
  3316. /* drain it before proceeding with destruction */
  3317. drain_workqueue(wq);
  3318. /* sanity checks */
  3319. mutex_lock(&wq->mutex);
  3320. for_each_pwq(pwq, wq) {
  3321. int i;
  3322. for (i = 0; i < WORK_NR_COLORS; i++) {
  3323. if (WARN_ON(pwq->nr_in_flight[i])) {
  3324. mutex_unlock(&wq->mutex);
  3325. return;
  3326. }
  3327. }
  3328. if (WARN_ON(pwq->refcnt > 1) ||
  3329. WARN_ON(pwq->nr_active) ||
  3330. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3331. mutex_unlock(&wq->mutex);
  3332. return;
  3333. }
  3334. }
  3335. mutex_unlock(&wq->mutex);
  3336. /*
  3337. * wq list is used to freeze wq, remove from list after
  3338. * flushing is complete in case freeze races us.
  3339. */
  3340. mutex_lock(&wq_pool_mutex);
  3341. list_del_init(&wq->list);
  3342. mutex_unlock(&wq_pool_mutex);
  3343. workqueue_sysfs_unregister(wq);
  3344. if (wq->rescuer) {
  3345. kthread_stop(wq->rescuer->task);
  3346. kfree(wq->rescuer);
  3347. wq->rescuer = NULL;
  3348. }
  3349. if (!(wq->flags & WQ_UNBOUND)) {
  3350. /*
  3351. * The base ref is never dropped on per-cpu pwqs. Directly
  3352. * free the pwqs and wq.
  3353. */
  3354. free_percpu(wq->cpu_pwqs);
  3355. kfree(wq);
  3356. } else {
  3357. /*
  3358. * We're the sole accessor of @wq at this point. Directly
  3359. * access the first pwq and put the base ref. As both pwqs
  3360. * and pools are sched-RCU protected, the lock operations
  3361. * are safe. @wq will be freed when the last pwq is
  3362. * released.
  3363. */
  3364. pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
  3365. pwqs_node);
  3366. spin_lock_irq(&pwq->pool->lock);
  3367. put_pwq(pwq);
  3368. spin_unlock_irq(&pwq->pool->lock);
  3369. }
  3370. }
  3371. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3372. /**
  3373. * workqueue_set_max_active - adjust max_active of a workqueue
  3374. * @wq: target workqueue
  3375. * @max_active: new max_active value.
  3376. *
  3377. * Set max_active of @wq to @max_active.
  3378. *
  3379. * CONTEXT:
  3380. * Don't call from IRQ context.
  3381. */
  3382. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3383. {
  3384. struct pool_workqueue *pwq;
  3385. /* disallow meddling with max_active for ordered workqueues */
  3386. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3387. return;
  3388. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3389. mutex_lock(&wq->mutex);
  3390. wq->saved_max_active = max_active;
  3391. for_each_pwq(pwq, wq)
  3392. pwq_adjust_max_active(pwq);
  3393. mutex_unlock(&wq->mutex);
  3394. }
  3395. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3396. /**
  3397. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3398. *
  3399. * Determine whether %current is a workqueue rescuer. Can be used from
  3400. * work functions to determine whether it's being run off the rescuer task.
  3401. */
  3402. bool current_is_workqueue_rescuer(void)
  3403. {
  3404. struct worker *worker = current_wq_worker();
  3405. return worker && worker->rescue_wq;
  3406. }
  3407. /**
  3408. * workqueue_congested - test whether a workqueue is congested
  3409. * @cpu: CPU in question
  3410. * @wq: target workqueue
  3411. *
  3412. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3413. * no synchronization around this function and the test result is
  3414. * unreliable and only useful as advisory hints or for debugging.
  3415. *
  3416. * RETURNS:
  3417. * %true if congested, %false otherwise.
  3418. */
  3419. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3420. {
  3421. struct pool_workqueue *pwq;
  3422. bool ret;
  3423. rcu_read_lock_sched();
  3424. if (!(wq->flags & WQ_UNBOUND))
  3425. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3426. else
  3427. pwq = first_pwq(wq);
  3428. ret = !list_empty(&pwq->delayed_works);
  3429. rcu_read_unlock_sched();
  3430. return ret;
  3431. }
  3432. EXPORT_SYMBOL_GPL(workqueue_congested);
  3433. /**
  3434. * work_busy - test whether a work is currently pending or running
  3435. * @work: the work to be tested
  3436. *
  3437. * Test whether @work is currently pending or running. There is no
  3438. * synchronization around this function and the test result is
  3439. * unreliable and only useful as advisory hints or for debugging.
  3440. *
  3441. * RETURNS:
  3442. * OR'd bitmask of WORK_BUSY_* bits.
  3443. */
  3444. unsigned int work_busy(struct work_struct *work)
  3445. {
  3446. struct worker_pool *pool;
  3447. unsigned long flags;
  3448. unsigned int ret = 0;
  3449. if (work_pending(work))
  3450. ret |= WORK_BUSY_PENDING;
  3451. local_irq_save(flags);
  3452. pool = get_work_pool(work);
  3453. if (pool) {
  3454. spin_lock(&pool->lock);
  3455. if (find_worker_executing_work(pool, work))
  3456. ret |= WORK_BUSY_RUNNING;
  3457. spin_unlock(&pool->lock);
  3458. }
  3459. local_irq_restore(flags);
  3460. return ret;
  3461. }
  3462. EXPORT_SYMBOL_GPL(work_busy);
  3463. /*
  3464. * CPU hotplug.
  3465. *
  3466. * There are two challenges in supporting CPU hotplug. Firstly, there
  3467. * are a lot of assumptions on strong associations among work, pwq and
  3468. * pool which make migrating pending and scheduled works very
  3469. * difficult to implement without impacting hot paths. Secondly,
  3470. * worker pools serve mix of short, long and very long running works making
  3471. * blocked draining impractical.
  3472. *
  3473. * This is solved by allowing the pools to be disassociated from the CPU
  3474. * running as an unbound one and allowing it to be reattached later if the
  3475. * cpu comes back online.
  3476. */
  3477. static void wq_unbind_fn(struct work_struct *work)
  3478. {
  3479. int cpu = smp_processor_id();
  3480. struct worker_pool *pool;
  3481. struct worker *worker;
  3482. int wi;
  3483. for_each_cpu_worker_pool(pool, cpu) {
  3484. WARN_ON_ONCE(cpu != smp_processor_id());
  3485. mutex_lock(&pool->manager_mutex);
  3486. spin_lock_irq(&pool->lock);
  3487. /*
  3488. * We've blocked all manager operations. Make all workers
  3489. * unbound and set DISASSOCIATED. Before this, all workers
  3490. * except for the ones which are still executing works from
  3491. * before the last CPU down must be on the cpu. After
  3492. * this, they may become diasporas.
  3493. */
  3494. for_each_pool_worker(worker, wi, pool)
  3495. worker->flags |= WORKER_UNBOUND;
  3496. pool->flags |= POOL_DISASSOCIATED;
  3497. spin_unlock_irq(&pool->lock);
  3498. mutex_unlock(&pool->manager_mutex);
  3499. }
  3500. /*
  3501. * Call schedule() so that we cross rq->lock and thus can guarantee
  3502. * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
  3503. * as scheduler callbacks may be invoked from other cpus.
  3504. */
  3505. schedule();
  3506. /*
  3507. * Sched callbacks are disabled now. Zap nr_running. After this,
  3508. * nr_running stays zero and need_more_worker() and keep_working()
  3509. * are always true as long as the worklist is not empty. Pools on
  3510. * @cpu now behave as unbound (in terms of concurrency management)
  3511. * pools which are served by workers tied to the CPU.
  3512. *
  3513. * On return from this function, the current worker would trigger
  3514. * unbound chain execution of pending work items if other workers
  3515. * didn't already.
  3516. */
  3517. for_each_cpu_worker_pool(pool, cpu)
  3518. atomic_set(&pool->nr_running, 0);
  3519. }
  3520. /**
  3521. * rebind_workers - rebind all workers of a pool to the associated CPU
  3522. * @pool: pool of interest
  3523. *
  3524. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3525. */
  3526. static void rebind_workers(struct worker_pool *pool)
  3527. {
  3528. struct worker *worker;
  3529. int wi;
  3530. lockdep_assert_held(&pool->manager_mutex);
  3531. /*
  3532. * Restore CPU affinity of all workers. As all idle workers should
  3533. * be on the run-queue of the associated CPU before any local
  3534. * wake-ups for concurrency management happen, restore CPU affinty
  3535. * of all workers first and then clear UNBOUND. As we're called
  3536. * from CPU_ONLINE, the following shouldn't fail.
  3537. */
  3538. for_each_pool_worker(worker, wi, pool)
  3539. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3540. pool->attrs->cpumask) < 0);
  3541. spin_lock_irq(&pool->lock);
  3542. for_each_pool_worker(worker, wi, pool) {
  3543. unsigned int worker_flags = worker->flags;
  3544. /*
  3545. * A bound idle worker should actually be on the runqueue
  3546. * of the associated CPU for local wake-ups targeting it to
  3547. * work. Kick all idle workers so that they migrate to the
  3548. * associated CPU. Doing this in the same loop as
  3549. * replacing UNBOUND with REBOUND is safe as no worker will
  3550. * be bound before @pool->lock is released.
  3551. */
  3552. if (worker_flags & WORKER_IDLE)
  3553. wake_up_process(worker->task);
  3554. /*
  3555. * We want to clear UNBOUND but can't directly call
  3556. * worker_clr_flags() or adjust nr_running. Atomically
  3557. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  3558. * @worker will clear REBOUND using worker_clr_flags() when
  3559. * it initiates the next execution cycle thus restoring
  3560. * concurrency management. Note that when or whether
  3561. * @worker clears REBOUND doesn't affect correctness.
  3562. *
  3563. * ACCESS_ONCE() is necessary because @worker->flags may be
  3564. * tested without holding any lock in
  3565. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  3566. * fail incorrectly leading to premature concurrency
  3567. * management operations.
  3568. */
  3569. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  3570. worker_flags |= WORKER_REBOUND;
  3571. worker_flags &= ~WORKER_UNBOUND;
  3572. ACCESS_ONCE(worker->flags) = worker_flags;
  3573. }
  3574. spin_unlock_irq(&pool->lock);
  3575. }
  3576. /**
  3577. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  3578. * @pool: unbound pool of interest
  3579. * @cpu: the CPU which is coming up
  3580. *
  3581. * An unbound pool may end up with a cpumask which doesn't have any online
  3582. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  3583. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  3584. * online CPU before, cpus_allowed of all its workers should be restored.
  3585. */
  3586. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  3587. {
  3588. static cpumask_t cpumask;
  3589. struct worker *worker;
  3590. int wi;
  3591. lockdep_assert_held(&pool->manager_mutex);
  3592. /* is @cpu allowed for @pool? */
  3593. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  3594. return;
  3595. /* is @cpu the only online CPU? */
  3596. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  3597. if (cpumask_weight(&cpumask) != 1)
  3598. return;
  3599. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  3600. for_each_pool_worker(worker, wi, pool)
  3601. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3602. pool->attrs->cpumask) < 0);
  3603. }
  3604. /*
  3605. * Workqueues should be brought up before normal priority CPU notifiers.
  3606. * This will be registered high priority CPU notifier.
  3607. */
  3608. static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
  3609. unsigned long action,
  3610. void *hcpu)
  3611. {
  3612. int cpu = (unsigned long)hcpu;
  3613. struct worker_pool *pool;
  3614. int pi;
  3615. switch (action & ~CPU_TASKS_FROZEN) {
  3616. case CPU_UP_PREPARE:
  3617. for_each_cpu_worker_pool(pool, cpu) {
  3618. if (pool->nr_workers)
  3619. continue;
  3620. if (create_and_start_worker(pool) < 0)
  3621. return NOTIFY_BAD;
  3622. }
  3623. break;
  3624. case CPU_DOWN_FAILED:
  3625. case CPU_ONLINE:
  3626. mutex_lock(&wq_pool_mutex);
  3627. for_each_pool(pool, pi) {
  3628. mutex_lock(&pool->manager_mutex);
  3629. if (pool->cpu == cpu) {
  3630. spin_lock_irq(&pool->lock);
  3631. pool->flags &= ~POOL_DISASSOCIATED;
  3632. spin_unlock_irq(&pool->lock);
  3633. rebind_workers(pool);
  3634. } else if (pool->cpu < 0) {
  3635. restore_unbound_workers_cpumask(pool, cpu);
  3636. }
  3637. mutex_unlock(&pool->manager_mutex);
  3638. }
  3639. mutex_unlock(&wq_pool_mutex);
  3640. break;
  3641. }
  3642. return NOTIFY_OK;
  3643. }
  3644. /*
  3645. * Workqueues should be brought down after normal priority CPU notifiers.
  3646. * This will be registered as low priority CPU notifier.
  3647. */
  3648. static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
  3649. unsigned long action,
  3650. void *hcpu)
  3651. {
  3652. int cpu = (unsigned long)hcpu;
  3653. struct work_struct unbind_work;
  3654. switch (action & ~CPU_TASKS_FROZEN) {
  3655. case CPU_DOWN_PREPARE:
  3656. /* unbinding should happen on the local CPU */
  3657. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  3658. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  3659. flush_work(&unbind_work);
  3660. break;
  3661. }
  3662. return NOTIFY_OK;
  3663. }
  3664. #ifdef CONFIG_SMP
  3665. struct work_for_cpu {
  3666. struct work_struct work;
  3667. long (*fn)(void *);
  3668. void *arg;
  3669. long ret;
  3670. };
  3671. static void work_for_cpu_fn(struct work_struct *work)
  3672. {
  3673. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  3674. wfc->ret = wfc->fn(wfc->arg);
  3675. }
  3676. /**
  3677. * work_on_cpu - run a function in user context on a particular cpu
  3678. * @cpu: the cpu to run on
  3679. * @fn: the function to run
  3680. * @arg: the function arg
  3681. *
  3682. * This will return the value @fn returns.
  3683. * It is up to the caller to ensure that the cpu doesn't go offline.
  3684. * The caller must not hold any locks which would prevent @fn from completing.
  3685. */
  3686. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  3687. {
  3688. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  3689. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  3690. schedule_work_on(cpu, &wfc.work);
  3691. flush_work(&wfc.work);
  3692. return wfc.ret;
  3693. }
  3694. EXPORT_SYMBOL_GPL(work_on_cpu);
  3695. #endif /* CONFIG_SMP */
  3696. #ifdef CONFIG_FREEZER
  3697. /**
  3698. * freeze_workqueues_begin - begin freezing workqueues
  3699. *
  3700. * Start freezing workqueues. After this function returns, all freezable
  3701. * workqueues will queue new works to their delayed_works list instead of
  3702. * pool->worklist.
  3703. *
  3704. * CONTEXT:
  3705. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  3706. */
  3707. void freeze_workqueues_begin(void)
  3708. {
  3709. struct worker_pool *pool;
  3710. struct workqueue_struct *wq;
  3711. struct pool_workqueue *pwq;
  3712. int pi;
  3713. mutex_lock(&wq_pool_mutex);
  3714. WARN_ON_ONCE(workqueue_freezing);
  3715. workqueue_freezing = true;
  3716. /* set FREEZING */
  3717. for_each_pool(pool, pi) {
  3718. spin_lock_irq(&pool->lock);
  3719. WARN_ON_ONCE(pool->flags & POOL_FREEZING);
  3720. pool->flags |= POOL_FREEZING;
  3721. spin_unlock_irq(&pool->lock);
  3722. }
  3723. list_for_each_entry(wq, &workqueues, list) {
  3724. mutex_lock(&wq->mutex);
  3725. for_each_pwq(pwq, wq)
  3726. pwq_adjust_max_active(pwq);
  3727. mutex_unlock(&wq->mutex);
  3728. }
  3729. mutex_unlock(&wq_pool_mutex);
  3730. }
  3731. /**
  3732. * freeze_workqueues_busy - are freezable workqueues still busy?
  3733. *
  3734. * Check whether freezing is complete. This function must be called
  3735. * between freeze_workqueues_begin() and thaw_workqueues().
  3736. *
  3737. * CONTEXT:
  3738. * Grabs and releases wq_pool_mutex.
  3739. *
  3740. * RETURNS:
  3741. * %true if some freezable workqueues are still busy. %false if freezing
  3742. * is complete.
  3743. */
  3744. bool freeze_workqueues_busy(void)
  3745. {
  3746. bool busy = false;
  3747. struct workqueue_struct *wq;
  3748. struct pool_workqueue *pwq;
  3749. mutex_lock(&wq_pool_mutex);
  3750. WARN_ON_ONCE(!workqueue_freezing);
  3751. list_for_each_entry(wq, &workqueues, list) {
  3752. if (!(wq->flags & WQ_FREEZABLE))
  3753. continue;
  3754. /*
  3755. * nr_active is monotonically decreasing. It's safe
  3756. * to peek without lock.
  3757. */
  3758. rcu_read_lock_sched();
  3759. for_each_pwq(pwq, wq) {
  3760. WARN_ON_ONCE(pwq->nr_active < 0);
  3761. if (pwq->nr_active) {
  3762. busy = true;
  3763. rcu_read_unlock_sched();
  3764. goto out_unlock;
  3765. }
  3766. }
  3767. rcu_read_unlock_sched();
  3768. }
  3769. out_unlock:
  3770. mutex_unlock(&wq_pool_mutex);
  3771. return busy;
  3772. }
  3773. /**
  3774. * thaw_workqueues - thaw workqueues
  3775. *
  3776. * Thaw workqueues. Normal queueing is restored and all collected
  3777. * frozen works are transferred to their respective pool worklists.
  3778. *
  3779. * CONTEXT:
  3780. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  3781. */
  3782. void thaw_workqueues(void)
  3783. {
  3784. struct workqueue_struct *wq;
  3785. struct pool_workqueue *pwq;
  3786. struct worker_pool *pool;
  3787. int pi;
  3788. mutex_lock(&wq_pool_mutex);
  3789. if (!workqueue_freezing)
  3790. goto out_unlock;
  3791. /* clear FREEZING */
  3792. for_each_pool(pool, pi) {
  3793. spin_lock_irq(&pool->lock);
  3794. WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
  3795. pool->flags &= ~POOL_FREEZING;
  3796. spin_unlock_irq(&pool->lock);
  3797. }
  3798. /* restore max_active and repopulate worklist */
  3799. list_for_each_entry(wq, &workqueues, list) {
  3800. mutex_lock(&wq->mutex);
  3801. for_each_pwq(pwq, wq)
  3802. pwq_adjust_max_active(pwq);
  3803. mutex_unlock(&wq->mutex);
  3804. }
  3805. workqueue_freezing = false;
  3806. out_unlock:
  3807. mutex_unlock(&wq_pool_mutex);
  3808. }
  3809. #endif /* CONFIG_FREEZER */
  3810. static void __init wq_numa_init(void)
  3811. {
  3812. cpumask_var_t *tbl;
  3813. int node, cpu;
  3814. /* determine NUMA pwq table len - highest node id + 1 */
  3815. for_each_node(node)
  3816. wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
  3817. if (num_possible_nodes() <= 1)
  3818. return;
  3819. /*
  3820. * We want masks of possible CPUs of each node which isn't readily
  3821. * available. Build one from cpu_to_node() which should have been
  3822. * fully initialized by now.
  3823. */
  3824. tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
  3825. BUG_ON(!tbl);
  3826. for_each_node(node)
  3827. BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
  3828. for_each_possible_cpu(cpu) {
  3829. node = cpu_to_node(cpu);
  3830. if (WARN_ON(node == NUMA_NO_NODE)) {
  3831. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  3832. /* happens iff arch is bonkers, let's just proceed */
  3833. return;
  3834. }
  3835. cpumask_set_cpu(cpu, tbl[node]);
  3836. }
  3837. wq_numa_possible_cpumask = tbl;
  3838. wq_numa_enabled = true;
  3839. }
  3840. static int __init init_workqueues(void)
  3841. {
  3842. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  3843. int i, cpu;
  3844. /* make sure we have enough bits for OFFQ pool ID */
  3845. BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
  3846. WORK_CPU_END * NR_STD_WORKER_POOLS);
  3847. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  3848. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  3849. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  3850. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  3851. wq_numa_init();
  3852. /* initialize CPU pools */
  3853. for_each_possible_cpu(cpu) {
  3854. struct worker_pool *pool;
  3855. i = 0;
  3856. for_each_cpu_worker_pool(pool, cpu) {
  3857. BUG_ON(init_worker_pool(pool));
  3858. pool->cpu = cpu;
  3859. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  3860. pool->attrs->nice = std_nice[i++];
  3861. pool->node = cpu_to_node(cpu);
  3862. /* alloc pool ID */
  3863. mutex_lock(&wq_pool_mutex);
  3864. BUG_ON(worker_pool_assign_id(pool));
  3865. mutex_unlock(&wq_pool_mutex);
  3866. }
  3867. }
  3868. /* create the initial worker */
  3869. for_each_online_cpu(cpu) {
  3870. struct worker_pool *pool;
  3871. for_each_cpu_worker_pool(pool, cpu) {
  3872. pool->flags &= ~POOL_DISASSOCIATED;
  3873. BUG_ON(create_and_start_worker(pool) < 0);
  3874. }
  3875. }
  3876. /* create default unbound wq attrs */
  3877. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  3878. struct workqueue_attrs *attrs;
  3879. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  3880. attrs->nice = std_nice[i];
  3881. unbound_std_wq_attrs[i] = attrs;
  3882. }
  3883. system_wq = alloc_workqueue("events", 0, 0);
  3884. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  3885. system_long_wq = alloc_workqueue("events_long", 0, 0);
  3886. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  3887. WQ_UNBOUND_MAX_ACTIVE);
  3888. system_freezable_wq = alloc_workqueue("events_freezable",
  3889. WQ_FREEZABLE, 0);
  3890. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  3891. !system_unbound_wq || !system_freezable_wq);
  3892. return 0;
  3893. }
  3894. early_initcall(init_workqueues);