intel_ringbuffer.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  35. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  36. * to give some inclination as to some of the magic values used in the various
  37. * workarounds!
  38. */
  39. #define CACHELINE_BYTES 64
  40. static inline int __ring_space(int head, int tail, int size)
  41. {
  42. int space = head - (tail + I915_RING_FREE_SPACE);
  43. if (space < 0)
  44. space += size;
  45. return space;
  46. }
  47. static inline int ring_space(struct intel_engine_cs *ring)
  48. {
  49. struct intel_ringbuffer *ringbuf = ring->buffer;
  50. return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
  51. }
  52. static bool intel_ring_stopped(struct intel_engine_cs *ring)
  53. {
  54. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  55. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  56. }
  57. void __intel_ring_advance(struct intel_engine_cs *ring)
  58. {
  59. struct intel_ringbuffer *ringbuf = ring->buffer;
  60. ringbuf->tail &= ringbuf->size - 1;
  61. if (intel_ring_stopped(ring))
  62. return;
  63. ring->write_tail(ring, ringbuf->tail);
  64. }
  65. static int
  66. gen2_render_ring_flush(struct intel_engine_cs *ring,
  67. u32 invalidate_domains,
  68. u32 flush_domains)
  69. {
  70. u32 cmd;
  71. int ret;
  72. cmd = MI_FLUSH;
  73. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  74. cmd |= MI_NO_WRITE_FLUSH;
  75. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  76. cmd |= MI_READ_FLUSH;
  77. ret = intel_ring_begin(ring, 2);
  78. if (ret)
  79. return ret;
  80. intel_ring_emit(ring, cmd);
  81. intel_ring_emit(ring, MI_NOOP);
  82. intel_ring_advance(ring);
  83. return 0;
  84. }
  85. static int
  86. gen4_render_ring_flush(struct intel_engine_cs *ring,
  87. u32 invalidate_domains,
  88. u32 flush_domains)
  89. {
  90. struct drm_device *dev = ring->dev;
  91. u32 cmd;
  92. int ret;
  93. /*
  94. * read/write caches:
  95. *
  96. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  97. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  98. * also flushed at 2d versus 3d pipeline switches.
  99. *
  100. * read-only caches:
  101. *
  102. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  103. * MI_READ_FLUSH is set, and is always flushed on 965.
  104. *
  105. * I915_GEM_DOMAIN_COMMAND may not exist?
  106. *
  107. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  108. * invalidated when MI_EXE_FLUSH is set.
  109. *
  110. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  111. * invalidated with every MI_FLUSH.
  112. *
  113. * TLBs:
  114. *
  115. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  116. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  117. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  118. * are flushed at any MI_FLUSH.
  119. */
  120. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  121. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  122. cmd &= ~MI_NO_WRITE_FLUSH;
  123. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  124. cmd |= MI_EXE_FLUSH;
  125. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  126. (IS_G4X(dev) || IS_GEN5(dev)))
  127. cmd |= MI_INVALIDATE_ISP;
  128. ret = intel_ring_begin(ring, 2);
  129. if (ret)
  130. return ret;
  131. intel_ring_emit(ring, cmd);
  132. intel_ring_emit(ring, MI_NOOP);
  133. intel_ring_advance(ring);
  134. return 0;
  135. }
  136. /**
  137. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  138. * implementing two workarounds on gen6. From section 1.4.7.1
  139. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  140. *
  141. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  142. * produced by non-pipelined state commands), software needs to first
  143. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  144. * 0.
  145. *
  146. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  147. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  148. *
  149. * And the workaround for these two requires this workaround first:
  150. *
  151. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  152. * BEFORE the pipe-control with a post-sync op and no write-cache
  153. * flushes.
  154. *
  155. * And this last workaround is tricky because of the requirements on
  156. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  157. * volume 2 part 1:
  158. *
  159. * "1 of the following must also be set:
  160. * - Render Target Cache Flush Enable ([12] of DW1)
  161. * - Depth Cache Flush Enable ([0] of DW1)
  162. * - Stall at Pixel Scoreboard ([1] of DW1)
  163. * - Depth Stall ([13] of DW1)
  164. * - Post-Sync Operation ([13] of DW1)
  165. * - Notify Enable ([8] of DW1)"
  166. *
  167. * The cache flushes require the workaround flush that triggered this
  168. * one, so we can't use it. Depth stall would trigger the same.
  169. * Post-sync nonzero is what triggered this second workaround, so we
  170. * can't use that one either. Notify enable is IRQs, which aren't
  171. * really our business. That leaves only stall at scoreboard.
  172. */
  173. static int
  174. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  175. {
  176. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  177. int ret;
  178. ret = intel_ring_begin(ring, 6);
  179. if (ret)
  180. return ret;
  181. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  182. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  183. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  184. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  185. intel_ring_emit(ring, 0); /* low dword */
  186. intel_ring_emit(ring, 0); /* high dword */
  187. intel_ring_emit(ring, MI_NOOP);
  188. intel_ring_advance(ring);
  189. ret = intel_ring_begin(ring, 6);
  190. if (ret)
  191. return ret;
  192. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  193. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  194. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  195. intel_ring_emit(ring, 0);
  196. intel_ring_emit(ring, 0);
  197. intel_ring_emit(ring, MI_NOOP);
  198. intel_ring_advance(ring);
  199. return 0;
  200. }
  201. static int
  202. gen6_render_ring_flush(struct intel_engine_cs *ring,
  203. u32 invalidate_domains, u32 flush_domains)
  204. {
  205. u32 flags = 0;
  206. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  207. int ret;
  208. /* Force SNB workarounds for PIPE_CONTROL flushes */
  209. ret = intel_emit_post_sync_nonzero_flush(ring);
  210. if (ret)
  211. return ret;
  212. /* Just flush everything. Experiments have shown that reducing the
  213. * number of bits based on the write domains has little performance
  214. * impact.
  215. */
  216. if (flush_domains) {
  217. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  218. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  219. /*
  220. * Ensure that any following seqno writes only happen
  221. * when the render cache is indeed flushed.
  222. */
  223. flags |= PIPE_CONTROL_CS_STALL;
  224. }
  225. if (invalidate_domains) {
  226. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  227. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  228. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  229. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  230. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  231. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  232. /*
  233. * TLB invalidate requires a post-sync write.
  234. */
  235. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  236. }
  237. ret = intel_ring_begin(ring, 4);
  238. if (ret)
  239. return ret;
  240. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  241. intel_ring_emit(ring, flags);
  242. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  243. intel_ring_emit(ring, 0);
  244. intel_ring_advance(ring);
  245. return 0;
  246. }
  247. static int
  248. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  249. {
  250. int ret;
  251. ret = intel_ring_begin(ring, 4);
  252. if (ret)
  253. return ret;
  254. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  255. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  256. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  257. intel_ring_emit(ring, 0);
  258. intel_ring_emit(ring, 0);
  259. intel_ring_advance(ring);
  260. return 0;
  261. }
  262. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  263. {
  264. int ret;
  265. if (!ring->fbc_dirty)
  266. return 0;
  267. ret = intel_ring_begin(ring, 6);
  268. if (ret)
  269. return ret;
  270. /* WaFbcNukeOn3DBlt:ivb/hsw */
  271. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  272. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  273. intel_ring_emit(ring, value);
  274. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  275. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  276. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  277. intel_ring_advance(ring);
  278. ring->fbc_dirty = false;
  279. return 0;
  280. }
  281. static int
  282. gen7_render_ring_flush(struct intel_engine_cs *ring,
  283. u32 invalidate_domains, u32 flush_domains)
  284. {
  285. u32 flags = 0;
  286. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  287. int ret;
  288. /*
  289. * Ensure that any following seqno writes only happen when the render
  290. * cache is indeed flushed.
  291. *
  292. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  293. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  294. * don't try to be clever and just set it unconditionally.
  295. */
  296. flags |= PIPE_CONTROL_CS_STALL;
  297. /* Just flush everything. Experiments have shown that reducing the
  298. * number of bits based on the write domains has little performance
  299. * impact.
  300. */
  301. if (flush_domains) {
  302. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  303. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  304. }
  305. if (invalidate_domains) {
  306. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  307. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  308. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  309. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  310. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  311. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  312. /*
  313. * TLB invalidate requires a post-sync write.
  314. */
  315. flags |= PIPE_CONTROL_QW_WRITE;
  316. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  317. /* Workaround: we must issue a pipe_control with CS-stall bit
  318. * set before a pipe_control command that has the state cache
  319. * invalidate bit set. */
  320. gen7_render_ring_cs_stall_wa(ring);
  321. }
  322. ret = intel_ring_begin(ring, 4);
  323. if (ret)
  324. return ret;
  325. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  326. intel_ring_emit(ring, flags);
  327. intel_ring_emit(ring, scratch_addr);
  328. intel_ring_emit(ring, 0);
  329. intel_ring_advance(ring);
  330. if (!invalidate_domains && flush_domains)
  331. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  332. return 0;
  333. }
  334. static int
  335. gen8_render_ring_flush(struct intel_engine_cs *ring,
  336. u32 invalidate_domains, u32 flush_domains)
  337. {
  338. u32 flags = 0;
  339. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  340. int ret;
  341. flags |= PIPE_CONTROL_CS_STALL;
  342. if (flush_domains) {
  343. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  344. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  345. }
  346. if (invalidate_domains) {
  347. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  348. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  349. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  350. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  351. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  352. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  353. flags |= PIPE_CONTROL_QW_WRITE;
  354. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  355. }
  356. ret = intel_ring_begin(ring, 6);
  357. if (ret)
  358. return ret;
  359. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  360. intel_ring_emit(ring, flags);
  361. intel_ring_emit(ring, scratch_addr);
  362. intel_ring_emit(ring, 0);
  363. intel_ring_emit(ring, 0);
  364. intel_ring_emit(ring, 0);
  365. intel_ring_advance(ring);
  366. return 0;
  367. }
  368. static void ring_write_tail(struct intel_engine_cs *ring,
  369. u32 value)
  370. {
  371. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  372. I915_WRITE_TAIL(ring, value);
  373. }
  374. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  375. {
  376. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  377. u64 acthd;
  378. if (INTEL_INFO(ring->dev)->gen >= 8)
  379. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  380. RING_ACTHD_UDW(ring->mmio_base));
  381. else if (INTEL_INFO(ring->dev)->gen >= 4)
  382. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  383. else
  384. acthd = I915_READ(ACTHD);
  385. return acthd;
  386. }
  387. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  388. {
  389. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  390. u32 addr;
  391. addr = dev_priv->status_page_dmah->busaddr;
  392. if (INTEL_INFO(ring->dev)->gen >= 4)
  393. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  394. I915_WRITE(HWS_PGA, addr);
  395. }
  396. static bool stop_ring(struct intel_engine_cs *ring)
  397. {
  398. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  399. if (!IS_GEN2(ring->dev)) {
  400. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  401. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  402. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  403. return false;
  404. }
  405. }
  406. I915_WRITE_CTL(ring, 0);
  407. I915_WRITE_HEAD(ring, 0);
  408. ring->write_tail(ring, 0);
  409. if (!IS_GEN2(ring->dev)) {
  410. (void)I915_READ_CTL(ring);
  411. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  412. }
  413. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  414. }
  415. static int init_ring_common(struct intel_engine_cs *ring)
  416. {
  417. struct drm_device *dev = ring->dev;
  418. struct drm_i915_private *dev_priv = dev->dev_private;
  419. struct intel_ringbuffer *ringbuf = ring->buffer;
  420. struct drm_i915_gem_object *obj = ringbuf->obj;
  421. int ret = 0;
  422. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  423. if (!stop_ring(ring)) {
  424. /* G45 ring initialization often fails to reset head to zero */
  425. DRM_DEBUG_KMS("%s head not reset to zero "
  426. "ctl %08x head %08x tail %08x start %08x\n",
  427. ring->name,
  428. I915_READ_CTL(ring),
  429. I915_READ_HEAD(ring),
  430. I915_READ_TAIL(ring),
  431. I915_READ_START(ring));
  432. if (!stop_ring(ring)) {
  433. DRM_ERROR("failed to set %s head to zero "
  434. "ctl %08x head %08x tail %08x start %08x\n",
  435. ring->name,
  436. I915_READ_CTL(ring),
  437. I915_READ_HEAD(ring),
  438. I915_READ_TAIL(ring),
  439. I915_READ_START(ring));
  440. ret = -EIO;
  441. goto out;
  442. }
  443. }
  444. if (I915_NEED_GFX_HWS(dev))
  445. intel_ring_setup_status_page(ring);
  446. else
  447. ring_setup_phys_status_page(ring);
  448. /* Initialize the ring. This must happen _after_ we've cleared the ring
  449. * registers with the above sequence (the readback of the HEAD registers
  450. * also enforces ordering), otherwise the hw might lose the new ring
  451. * register values. */
  452. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  453. I915_WRITE_CTL(ring,
  454. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  455. | RING_VALID);
  456. /* If the head is still not zero, the ring is dead */
  457. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  458. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  459. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  460. DRM_ERROR("%s initialization failed "
  461. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  462. ring->name,
  463. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  464. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  465. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  466. ret = -EIO;
  467. goto out;
  468. }
  469. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  470. i915_kernel_lost_context(ring->dev);
  471. else {
  472. ringbuf->head = I915_READ_HEAD(ring);
  473. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  474. ringbuf->space = ring_space(ring);
  475. ringbuf->last_retired_head = -1;
  476. }
  477. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  478. out:
  479. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  480. return ret;
  481. }
  482. static int
  483. init_pipe_control(struct intel_engine_cs *ring)
  484. {
  485. int ret;
  486. if (ring->scratch.obj)
  487. return 0;
  488. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  489. if (ring->scratch.obj == NULL) {
  490. DRM_ERROR("Failed to allocate seqno page\n");
  491. ret = -ENOMEM;
  492. goto err;
  493. }
  494. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  495. if (ret)
  496. goto err_unref;
  497. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  498. if (ret)
  499. goto err_unref;
  500. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  501. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  502. if (ring->scratch.cpu_page == NULL) {
  503. ret = -ENOMEM;
  504. goto err_unpin;
  505. }
  506. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  507. ring->name, ring->scratch.gtt_offset);
  508. return 0;
  509. err_unpin:
  510. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  511. err_unref:
  512. drm_gem_object_unreference(&ring->scratch.obj->base);
  513. err:
  514. return ret;
  515. }
  516. static int init_render_ring(struct intel_engine_cs *ring)
  517. {
  518. struct drm_device *dev = ring->dev;
  519. struct drm_i915_private *dev_priv = dev->dev_private;
  520. int ret = init_ring_common(ring);
  521. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  522. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  523. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  524. /* We need to disable the AsyncFlip performance optimisations in order
  525. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  526. * programmed to '1' on all products.
  527. *
  528. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  529. */
  530. if (INTEL_INFO(dev)->gen >= 6)
  531. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  532. /* Required for the hardware to program scanline values for waiting */
  533. /* WaEnableFlushTlbInvalidationMode:snb */
  534. if (INTEL_INFO(dev)->gen == 6)
  535. I915_WRITE(GFX_MODE,
  536. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  537. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  538. if (IS_GEN7(dev))
  539. I915_WRITE(GFX_MODE_GEN7,
  540. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  541. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  542. if (INTEL_INFO(dev)->gen >= 5) {
  543. ret = init_pipe_control(ring);
  544. if (ret)
  545. return ret;
  546. }
  547. if (IS_GEN6(dev)) {
  548. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  549. * "If this bit is set, STCunit will have LRA as replacement
  550. * policy. [...] This bit must be reset. LRA replacement
  551. * policy is not supported."
  552. */
  553. I915_WRITE(CACHE_MODE_0,
  554. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  555. }
  556. if (INTEL_INFO(dev)->gen >= 6)
  557. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  558. if (HAS_L3_DPF(dev))
  559. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  560. return ret;
  561. }
  562. static void render_ring_cleanup(struct intel_engine_cs *ring)
  563. {
  564. struct drm_device *dev = ring->dev;
  565. if (ring->scratch.obj == NULL)
  566. return;
  567. if (INTEL_INFO(dev)->gen >= 5) {
  568. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  569. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  570. }
  571. drm_gem_object_unreference(&ring->scratch.obj->base);
  572. ring->scratch.obj = NULL;
  573. }
  574. static int gen6_signal(struct intel_engine_cs *signaller,
  575. unsigned int num_dwords)
  576. {
  577. struct drm_device *dev = signaller->dev;
  578. struct drm_i915_private *dev_priv = dev->dev_private;
  579. struct intel_engine_cs *useless;
  580. int i, ret;
  581. /* NB: In order to be able to do semaphore MBOX updates for varying
  582. * number of rings, it's easiest if we round up each individual update
  583. * to a multiple of 2 (since ring updates must always be a multiple of
  584. * 2) even though the actual update only requires 3 dwords.
  585. */
  586. #define MBOX_UPDATE_DWORDS 4
  587. if (i915_semaphore_is_enabled(dev))
  588. num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
  589. else
  590. return intel_ring_begin(signaller, num_dwords);
  591. ret = intel_ring_begin(signaller, num_dwords);
  592. if (ret)
  593. return ret;
  594. #undef MBOX_UPDATE_DWORDS
  595. for_each_ring(useless, dev_priv, i) {
  596. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  597. if (mbox_reg != GEN6_NOSYNC) {
  598. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  599. intel_ring_emit(signaller, mbox_reg);
  600. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  601. intel_ring_emit(signaller, MI_NOOP);
  602. } else {
  603. intel_ring_emit(signaller, MI_NOOP);
  604. intel_ring_emit(signaller, MI_NOOP);
  605. intel_ring_emit(signaller, MI_NOOP);
  606. intel_ring_emit(signaller, MI_NOOP);
  607. }
  608. }
  609. return 0;
  610. }
  611. /**
  612. * gen6_add_request - Update the semaphore mailbox registers
  613. *
  614. * @ring - ring that is adding a request
  615. * @seqno - return seqno stuck into the ring
  616. *
  617. * Update the mailbox registers in the *other* rings with the current seqno.
  618. * This acts like a signal in the canonical semaphore.
  619. */
  620. static int
  621. gen6_add_request(struct intel_engine_cs *ring)
  622. {
  623. int ret;
  624. ret = ring->semaphore.signal(ring, 4);
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  628. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  629. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  630. intel_ring_emit(ring, MI_USER_INTERRUPT);
  631. __intel_ring_advance(ring);
  632. return 0;
  633. }
  634. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  635. u32 seqno)
  636. {
  637. struct drm_i915_private *dev_priv = dev->dev_private;
  638. return dev_priv->last_seqno < seqno;
  639. }
  640. /**
  641. * intel_ring_sync - sync the waiter to the signaller on seqno
  642. *
  643. * @waiter - ring that is waiting
  644. * @signaller - ring which has, or will signal
  645. * @seqno - seqno which the waiter will block on
  646. */
  647. static int
  648. gen6_ring_sync(struct intel_engine_cs *waiter,
  649. struct intel_engine_cs *signaller,
  650. u32 seqno)
  651. {
  652. u32 dw1 = MI_SEMAPHORE_MBOX |
  653. MI_SEMAPHORE_COMPARE |
  654. MI_SEMAPHORE_REGISTER;
  655. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  656. int ret;
  657. /* Throughout all of the GEM code, seqno passed implies our current
  658. * seqno is >= the last seqno executed. However for hardware the
  659. * comparison is strictly greater than.
  660. */
  661. seqno -= 1;
  662. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  663. ret = intel_ring_begin(waiter, 4);
  664. if (ret)
  665. return ret;
  666. /* If seqno wrap happened, omit the wait with no-ops */
  667. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  668. intel_ring_emit(waiter, dw1 | wait_mbox);
  669. intel_ring_emit(waiter, seqno);
  670. intel_ring_emit(waiter, 0);
  671. intel_ring_emit(waiter, MI_NOOP);
  672. } else {
  673. intel_ring_emit(waiter, MI_NOOP);
  674. intel_ring_emit(waiter, MI_NOOP);
  675. intel_ring_emit(waiter, MI_NOOP);
  676. intel_ring_emit(waiter, MI_NOOP);
  677. }
  678. intel_ring_advance(waiter);
  679. return 0;
  680. }
  681. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  682. do { \
  683. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  684. PIPE_CONTROL_DEPTH_STALL); \
  685. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  686. intel_ring_emit(ring__, 0); \
  687. intel_ring_emit(ring__, 0); \
  688. } while (0)
  689. static int
  690. pc_render_add_request(struct intel_engine_cs *ring)
  691. {
  692. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  693. int ret;
  694. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  695. * incoherent with writes to memory, i.e. completely fubar,
  696. * so we need to use PIPE_NOTIFY instead.
  697. *
  698. * However, we also need to workaround the qword write
  699. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  700. * memory before requesting an interrupt.
  701. */
  702. ret = intel_ring_begin(ring, 32);
  703. if (ret)
  704. return ret;
  705. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  706. PIPE_CONTROL_WRITE_FLUSH |
  707. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  708. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  709. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  710. intel_ring_emit(ring, 0);
  711. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  712. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  713. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  714. scratch_addr += 2 * CACHELINE_BYTES;
  715. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  716. scratch_addr += 2 * CACHELINE_BYTES;
  717. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  718. scratch_addr += 2 * CACHELINE_BYTES;
  719. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  720. scratch_addr += 2 * CACHELINE_BYTES;
  721. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  722. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  723. PIPE_CONTROL_WRITE_FLUSH |
  724. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  725. PIPE_CONTROL_NOTIFY);
  726. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  727. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  728. intel_ring_emit(ring, 0);
  729. __intel_ring_advance(ring);
  730. return 0;
  731. }
  732. static u32
  733. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  734. {
  735. /* Workaround to force correct ordering between irq and seqno writes on
  736. * ivb (and maybe also on snb) by reading from a CS register (like
  737. * ACTHD) before reading the status page. */
  738. if (!lazy_coherency) {
  739. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  740. POSTING_READ(RING_ACTHD(ring->mmio_base));
  741. }
  742. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  743. }
  744. static u32
  745. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  746. {
  747. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  748. }
  749. static void
  750. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  751. {
  752. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  753. }
  754. static u32
  755. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  756. {
  757. return ring->scratch.cpu_page[0];
  758. }
  759. static void
  760. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  761. {
  762. ring->scratch.cpu_page[0] = seqno;
  763. }
  764. static bool
  765. gen5_ring_get_irq(struct intel_engine_cs *ring)
  766. {
  767. struct drm_device *dev = ring->dev;
  768. struct drm_i915_private *dev_priv = dev->dev_private;
  769. unsigned long flags;
  770. if (!dev->irq_enabled)
  771. return false;
  772. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  773. if (ring->irq_refcount++ == 0)
  774. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  775. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  776. return true;
  777. }
  778. static void
  779. gen5_ring_put_irq(struct intel_engine_cs *ring)
  780. {
  781. struct drm_device *dev = ring->dev;
  782. struct drm_i915_private *dev_priv = dev->dev_private;
  783. unsigned long flags;
  784. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  785. if (--ring->irq_refcount == 0)
  786. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  787. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  788. }
  789. static bool
  790. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  791. {
  792. struct drm_device *dev = ring->dev;
  793. struct drm_i915_private *dev_priv = dev->dev_private;
  794. unsigned long flags;
  795. if (!dev->irq_enabled)
  796. return false;
  797. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  798. if (ring->irq_refcount++ == 0) {
  799. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  800. I915_WRITE(IMR, dev_priv->irq_mask);
  801. POSTING_READ(IMR);
  802. }
  803. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  804. return true;
  805. }
  806. static void
  807. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  808. {
  809. struct drm_device *dev = ring->dev;
  810. struct drm_i915_private *dev_priv = dev->dev_private;
  811. unsigned long flags;
  812. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  813. if (--ring->irq_refcount == 0) {
  814. dev_priv->irq_mask |= ring->irq_enable_mask;
  815. I915_WRITE(IMR, dev_priv->irq_mask);
  816. POSTING_READ(IMR);
  817. }
  818. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  819. }
  820. static bool
  821. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  822. {
  823. struct drm_device *dev = ring->dev;
  824. struct drm_i915_private *dev_priv = dev->dev_private;
  825. unsigned long flags;
  826. if (!dev->irq_enabled)
  827. return false;
  828. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  829. if (ring->irq_refcount++ == 0) {
  830. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  831. I915_WRITE16(IMR, dev_priv->irq_mask);
  832. POSTING_READ16(IMR);
  833. }
  834. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  835. return true;
  836. }
  837. static void
  838. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  839. {
  840. struct drm_device *dev = ring->dev;
  841. struct drm_i915_private *dev_priv = dev->dev_private;
  842. unsigned long flags;
  843. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  844. if (--ring->irq_refcount == 0) {
  845. dev_priv->irq_mask |= ring->irq_enable_mask;
  846. I915_WRITE16(IMR, dev_priv->irq_mask);
  847. POSTING_READ16(IMR);
  848. }
  849. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  850. }
  851. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  852. {
  853. struct drm_device *dev = ring->dev;
  854. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  855. u32 mmio = 0;
  856. /* The ring status page addresses are no longer next to the rest of
  857. * the ring registers as of gen7.
  858. */
  859. if (IS_GEN7(dev)) {
  860. switch (ring->id) {
  861. case RCS:
  862. mmio = RENDER_HWS_PGA_GEN7;
  863. break;
  864. case BCS:
  865. mmio = BLT_HWS_PGA_GEN7;
  866. break;
  867. /*
  868. * VCS2 actually doesn't exist on Gen7. Only shut up
  869. * gcc switch check warning
  870. */
  871. case VCS2:
  872. case VCS:
  873. mmio = BSD_HWS_PGA_GEN7;
  874. break;
  875. case VECS:
  876. mmio = VEBOX_HWS_PGA_GEN7;
  877. break;
  878. }
  879. } else if (IS_GEN6(ring->dev)) {
  880. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  881. } else {
  882. /* XXX: gen8 returns to sanity */
  883. mmio = RING_HWS_PGA(ring->mmio_base);
  884. }
  885. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  886. POSTING_READ(mmio);
  887. /*
  888. * Flush the TLB for this page
  889. *
  890. * FIXME: These two bits have disappeared on gen8, so a question
  891. * arises: do we still need this and if so how should we go about
  892. * invalidating the TLB?
  893. */
  894. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  895. u32 reg = RING_INSTPM(ring->mmio_base);
  896. /* ring should be idle before issuing a sync flush*/
  897. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  898. I915_WRITE(reg,
  899. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  900. INSTPM_SYNC_FLUSH));
  901. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  902. 1000))
  903. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  904. ring->name);
  905. }
  906. }
  907. static int
  908. bsd_ring_flush(struct intel_engine_cs *ring,
  909. u32 invalidate_domains,
  910. u32 flush_domains)
  911. {
  912. int ret;
  913. ret = intel_ring_begin(ring, 2);
  914. if (ret)
  915. return ret;
  916. intel_ring_emit(ring, MI_FLUSH);
  917. intel_ring_emit(ring, MI_NOOP);
  918. intel_ring_advance(ring);
  919. return 0;
  920. }
  921. static int
  922. i9xx_add_request(struct intel_engine_cs *ring)
  923. {
  924. int ret;
  925. ret = intel_ring_begin(ring, 4);
  926. if (ret)
  927. return ret;
  928. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  929. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  930. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  931. intel_ring_emit(ring, MI_USER_INTERRUPT);
  932. __intel_ring_advance(ring);
  933. return 0;
  934. }
  935. static bool
  936. gen6_ring_get_irq(struct intel_engine_cs *ring)
  937. {
  938. struct drm_device *dev = ring->dev;
  939. struct drm_i915_private *dev_priv = dev->dev_private;
  940. unsigned long flags;
  941. if (!dev->irq_enabled)
  942. return false;
  943. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  944. if (ring->irq_refcount++ == 0) {
  945. if (HAS_L3_DPF(dev) && ring->id == RCS)
  946. I915_WRITE_IMR(ring,
  947. ~(ring->irq_enable_mask |
  948. GT_PARITY_ERROR(dev)));
  949. else
  950. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  951. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  952. }
  953. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  954. return true;
  955. }
  956. static void
  957. gen6_ring_put_irq(struct intel_engine_cs *ring)
  958. {
  959. struct drm_device *dev = ring->dev;
  960. struct drm_i915_private *dev_priv = dev->dev_private;
  961. unsigned long flags;
  962. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  963. if (--ring->irq_refcount == 0) {
  964. if (HAS_L3_DPF(dev) && ring->id == RCS)
  965. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  966. else
  967. I915_WRITE_IMR(ring, ~0);
  968. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  969. }
  970. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  971. }
  972. static bool
  973. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  974. {
  975. struct drm_device *dev = ring->dev;
  976. struct drm_i915_private *dev_priv = dev->dev_private;
  977. unsigned long flags;
  978. if (!dev->irq_enabled)
  979. return false;
  980. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  981. if (ring->irq_refcount++ == 0) {
  982. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  983. snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  984. }
  985. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  986. return true;
  987. }
  988. static void
  989. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  990. {
  991. struct drm_device *dev = ring->dev;
  992. struct drm_i915_private *dev_priv = dev->dev_private;
  993. unsigned long flags;
  994. if (!dev->irq_enabled)
  995. return;
  996. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  997. if (--ring->irq_refcount == 0) {
  998. I915_WRITE_IMR(ring, ~0);
  999. snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1000. }
  1001. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1002. }
  1003. static bool
  1004. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1005. {
  1006. struct drm_device *dev = ring->dev;
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. unsigned long flags;
  1009. if (!dev->irq_enabled)
  1010. return false;
  1011. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1012. if (ring->irq_refcount++ == 0) {
  1013. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1014. I915_WRITE_IMR(ring,
  1015. ~(ring->irq_enable_mask |
  1016. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1017. } else {
  1018. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1019. }
  1020. POSTING_READ(RING_IMR(ring->mmio_base));
  1021. }
  1022. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1023. return true;
  1024. }
  1025. static void
  1026. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1027. {
  1028. struct drm_device *dev = ring->dev;
  1029. struct drm_i915_private *dev_priv = dev->dev_private;
  1030. unsigned long flags;
  1031. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1032. if (--ring->irq_refcount == 0) {
  1033. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1034. I915_WRITE_IMR(ring,
  1035. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1036. } else {
  1037. I915_WRITE_IMR(ring, ~0);
  1038. }
  1039. POSTING_READ(RING_IMR(ring->mmio_base));
  1040. }
  1041. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1042. }
  1043. static int
  1044. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1045. u64 offset, u32 length,
  1046. unsigned flags)
  1047. {
  1048. int ret;
  1049. ret = intel_ring_begin(ring, 2);
  1050. if (ret)
  1051. return ret;
  1052. intel_ring_emit(ring,
  1053. MI_BATCH_BUFFER_START |
  1054. MI_BATCH_GTT |
  1055. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1056. intel_ring_emit(ring, offset);
  1057. intel_ring_advance(ring);
  1058. return 0;
  1059. }
  1060. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1061. #define I830_BATCH_LIMIT (256*1024)
  1062. static int
  1063. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1064. u64 offset, u32 len,
  1065. unsigned flags)
  1066. {
  1067. int ret;
  1068. if (flags & I915_DISPATCH_PINNED) {
  1069. ret = intel_ring_begin(ring, 4);
  1070. if (ret)
  1071. return ret;
  1072. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1073. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1074. intel_ring_emit(ring, offset + len - 8);
  1075. intel_ring_emit(ring, MI_NOOP);
  1076. intel_ring_advance(ring);
  1077. } else {
  1078. u32 cs_offset = ring->scratch.gtt_offset;
  1079. if (len > I830_BATCH_LIMIT)
  1080. return -ENOSPC;
  1081. ret = intel_ring_begin(ring, 9+3);
  1082. if (ret)
  1083. return ret;
  1084. /* Blit the batch (which has now all relocs applied) to the stable batch
  1085. * scratch bo area (so that the CS never stumbles over its tlb
  1086. * invalidation bug) ... */
  1087. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1088. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1089. XY_SRC_COPY_BLT_WRITE_RGB);
  1090. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1091. intel_ring_emit(ring, 0);
  1092. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1093. intel_ring_emit(ring, cs_offset);
  1094. intel_ring_emit(ring, 0);
  1095. intel_ring_emit(ring, 4096);
  1096. intel_ring_emit(ring, offset);
  1097. intel_ring_emit(ring, MI_FLUSH);
  1098. /* ... and execute it. */
  1099. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1100. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1101. intel_ring_emit(ring, cs_offset + len - 8);
  1102. intel_ring_advance(ring);
  1103. }
  1104. return 0;
  1105. }
  1106. static int
  1107. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1108. u64 offset, u32 len,
  1109. unsigned flags)
  1110. {
  1111. int ret;
  1112. ret = intel_ring_begin(ring, 2);
  1113. if (ret)
  1114. return ret;
  1115. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1116. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1117. intel_ring_advance(ring);
  1118. return 0;
  1119. }
  1120. static void cleanup_status_page(struct intel_engine_cs *ring)
  1121. {
  1122. struct drm_i915_gem_object *obj;
  1123. obj = ring->status_page.obj;
  1124. if (obj == NULL)
  1125. return;
  1126. kunmap(sg_page(obj->pages->sgl));
  1127. i915_gem_object_ggtt_unpin(obj);
  1128. drm_gem_object_unreference(&obj->base);
  1129. ring->status_page.obj = NULL;
  1130. }
  1131. static int init_status_page(struct intel_engine_cs *ring)
  1132. {
  1133. struct drm_i915_gem_object *obj;
  1134. if ((obj = ring->status_page.obj) == NULL) {
  1135. int ret;
  1136. obj = i915_gem_alloc_object(ring->dev, 4096);
  1137. if (obj == NULL) {
  1138. DRM_ERROR("Failed to allocate status page\n");
  1139. return -ENOMEM;
  1140. }
  1141. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1142. if (ret)
  1143. goto err_unref;
  1144. ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
  1145. if (ret) {
  1146. err_unref:
  1147. drm_gem_object_unreference(&obj->base);
  1148. return ret;
  1149. }
  1150. ring->status_page.obj = obj;
  1151. }
  1152. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1153. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1154. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1155. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1156. ring->name, ring->status_page.gfx_addr);
  1157. return 0;
  1158. }
  1159. static int init_phys_status_page(struct intel_engine_cs *ring)
  1160. {
  1161. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1162. if (!dev_priv->status_page_dmah) {
  1163. dev_priv->status_page_dmah =
  1164. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1165. if (!dev_priv->status_page_dmah)
  1166. return -ENOMEM;
  1167. }
  1168. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1169. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1170. return 0;
  1171. }
  1172. static int allocate_ring_buffer(struct intel_engine_cs *ring)
  1173. {
  1174. struct drm_device *dev = ring->dev;
  1175. struct drm_i915_private *dev_priv = to_i915(dev);
  1176. struct intel_ringbuffer *ringbuf = ring->buffer;
  1177. struct drm_i915_gem_object *obj;
  1178. int ret;
  1179. if (intel_ring_initialized(ring))
  1180. return 0;
  1181. obj = NULL;
  1182. if (!HAS_LLC(dev))
  1183. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1184. if (obj == NULL)
  1185. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1186. if (obj == NULL)
  1187. return -ENOMEM;
  1188. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1189. if (ret)
  1190. goto err_unref;
  1191. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1192. if (ret)
  1193. goto err_unpin;
  1194. ringbuf->virtual_start =
  1195. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1196. ringbuf->size);
  1197. if (ringbuf->virtual_start == NULL) {
  1198. ret = -EINVAL;
  1199. goto err_unpin;
  1200. }
  1201. ringbuf->obj = obj;
  1202. return 0;
  1203. err_unpin:
  1204. i915_gem_object_ggtt_unpin(obj);
  1205. err_unref:
  1206. drm_gem_object_unreference(&obj->base);
  1207. return ret;
  1208. }
  1209. static int intel_init_ring_buffer(struct drm_device *dev,
  1210. struct intel_engine_cs *ring)
  1211. {
  1212. struct intel_ringbuffer *ringbuf = ring->buffer;
  1213. int ret;
  1214. if (ringbuf == NULL) {
  1215. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1216. if (!ringbuf)
  1217. return -ENOMEM;
  1218. ring->buffer = ringbuf;
  1219. }
  1220. ring->dev = dev;
  1221. INIT_LIST_HEAD(&ring->active_list);
  1222. INIT_LIST_HEAD(&ring->request_list);
  1223. ringbuf->size = 32 * PAGE_SIZE;
  1224. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1225. init_waitqueue_head(&ring->irq_queue);
  1226. if (I915_NEED_GFX_HWS(dev)) {
  1227. ret = init_status_page(ring);
  1228. if (ret)
  1229. goto error;
  1230. } else {
  1231. BUG_ON(ring->id != RCS);
  1232. ret = init_phys_status_page(ring);
  1233. if (ret)
  1234. goto error;
  1235. }
  1236. ret = allocate_ring_buffer(ring);
  1237. if (ret) {
  1238. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1239. goto error;
  1240. }
  1241. /* Workaround an erratum on the i830 which causes a hang if
  1242. * the TAIL pointer points to within the last 2 cachelines
  1243. * of the buffer.
  1244. */
  1245. ringbuf->effective_size = ringbuf->size;
  1246. if (IS_I830(dev) || IS_845G(dev))
  1247. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1248. ret = i915_cmd_parser_init_ring(ring);
  1249. if (ret)
  1250. goto error;
  1251. ret = ring->init(ring);
  1252. if (ret)
  1253. goto error;
  1254. return 0;
  1255. error:
  1256. kfree(ringbuf);
  1257. ring->buffer = NULL;
  1258. return ret;
  1259. }
  1260. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1261. {
  1262. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1263. struct intel_ringbuffer *ringbuf = ring->buffer;
  1264. if (!intel_ring_initialized(ring))
  1265. return;
  1266. intel_stop_ring_buffer(ring);
  1267. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1268. iounmap(ringbuf->virtual_start);
  1269. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1270. drm_gem_object_unreference(&ringbuf->obj->base);
  1271. ringbuf->obj = NULL;
  1272. ring->preallocated_lazy_request = NULL;
  1273. ring->outstanding_lazy_seqno = 0;
  1274. if (ring->cleanup)
  1275. ring->cleanup(ring);
  1276. cleanup_status_page(ring);
  1277. i915_cmd_parser_fini_ring(ring);
  1278. kfree(ringbuf);
  1279. ring->buffer = NULL;
  1280. }
  1281. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1282. {
  1283. struct intel_ringbuffer *ringbuf = ring->buffer;
  1284. struct drm_i915_gem_request *request;
  1285. u32 seqno = 0;
  1286. int ret;
  1287. if (ringbuf->last_retired_head != -1) {
  1288. ringbuf->head = ringbuf->last_retired_head;
  1289. ringbuf->last_retired_head = -1;
  1290. ringbuf->space = ring_space(ring);
  1291. if (ringbuf->space >= n)
  1292. return 0;
  1293. }
  1294. list_for_each_entry(request, &ring->request_list, list) {
  1295. if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
  1296. seqno = request->seqno;
  1297. break;
  1298. }
  1299. }
  1300. if (seqno == 0)
  1301. return -ENOSPC;
  1302. ret = i915_wait_seqno(ring, seqno);
  1303. if (ret)
  1304. return ret;
  1305. i915_gem_retire_requests_ring(ring);
  1306. ringbuf->head = ringbuf->last_retired_head;
  1307. ringbuf->last_retired_head = -1;
  1308. ringbuf->space = ring_space(ring);
  1309. return 0;
  1310. }
  1311. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1312. {
  1313. struct drm_device *dev = ring->dev;
  1314. struct drm_i915_private *dev_priv = dev->dev_private;
  1315. struct intel_ringbuffer *ringbuf = ring->buffer;
  1316. unsigned long end;
  1317. int ret;
  1318. ret = intel_ring_wait_request(ring, n);
  1319. if (ret != -ENOSPC)
  1320. return ret;
  1321. /* force the tail write in case we have been skipping them */
  1322. __intel_ring_advance(ring);
  1323. /* With GEM the hangcheck timer should kick us out of the loop,
  1324. * leaving it early runs the risk of corrupting GEM state (due
  1325. * to running on almost untested codepaths). But on resume
  1326. * timers don't work yet, so prevent a complete hang in that
  1327. * case by choosing an insanely large timeout. */
  1328. end = jiffies + 60 * HZ;
  1329. trace_i915_ring_wait_begin(ring);
  1330. do {
  1331. ringbuf->head = I915_READ_HEAD(ring);
  1332. ringbuf->space = ring_space(ring);
  1333. if (ringbuf->space >= n) {
  1334. ret = 0;
  1335. break;
  1336. }
  1337. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1338. dev->primary->master) {
  1339. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1340. if (master_priv->sarea_priv)
  1341. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1342. }
  1343. msleep(1);
  1344. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1345. ret = -ERESTARTSYS;
  1346. break;
  1347. }
  1348. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1349. dev_priv->mm.interruptible);
  1350. if (ret)
  1351. break;
  1352. if (time_after(jiffies, end)) {
  1353. ret = -EBUSY;
  1354. break;
  1355. }
  1356. } while (1);
  1357. trace_i915_ring_wait_end(ring);
  1358. return ret;
  1359. }
  1360. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1361. {
  1362. uint32_t __iomem *virt;
  1363. struct intel_ringbuffer *ringbuf = ring->buffer;
  1364. int rem = ringbuf->size - ringbuf->tail;
  1365. if (ringbuf->space < rem) {
  1366. int ret = ring_wait_for_space(ring, rem);
  1367. if (ret)
  1368. return ret;
  1369. }
  1370. virt = ringbuf->virtual_start + ringbuf->tail;
  1371. rem /= 4;
  1372. while (rem--)
  1373. iowrite32(MI_NOOP, virt++);
  1374. ringbuf->tail = 0;
  1375. ringbuf->space = ring_space(ring);
  1376. return 0;
  1377. }
  1378. int intel_ring_idle(struct intel_engine_cs *ring)
  1379. {
  1380. u32 seqno;
  1381. int ret;
  1382. /* We need to add any requests required to flush the objects and ring */
  1383. if (ring->outstanding_lazy_seqno) {
  1384. ret = i915_add_request(ring, NULL);
  1385. if (ret)
  1386. return ret;
  1387. }
  1388. /* Wait upon the last request to be completed */
  1389. if (list_empty(&ring->request_list))
  1390. return 0;
  1391. seqno = list_entry(ring->request_list.prev,
  1392. struct drm_i915_gem_request,
  1393. list)->seqno;
  1394. return i915_wait_seqno(ring, seqno);
  1395. }
  1396. static int
  1397. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1398. {
  1399. if (ring->outstanding_lazy_seqno)
  1400. return 0;
  1401. if (ring->preallocated_lazy_request == NULL) {
  1402. struct drm_i915_gem_request *request;
  1403. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1404. if (request == NULL)
  1405. return -ENOMEM;
  1406. ring->preallocated_lazy_request = request;
  1407. }
  1408. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1409. }
  1410. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1411. int bytes)
  1412. {
  1413. struct intel_ringbuffer *ringbuf = ring->buffer;
  1414. int ret;
  1415. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1416. ret = intel_wrap_ring_buffer(ring);
  1417. if (unlikely(ret))
  1418. return ret;
  1419. }
  1420. if (unlikely(ringbuf->space < bytes)) {
  1421. ret = ring_wait_for_space(ring, bytes);
  1422. if (unlikely(ret))
  1423. return ret;
  1424. }
  1425. return 0;
  1426. }
  1427. int intel_ring_begin(struct intel_engine_cs *ring,
  1428. int num_dwords)
  1429. {
  1430. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1431. int ret;
  1432. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1433. dev_priv->mm.interruptible);
  1434. if (ret)
  1435. return ret;
  1436. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1437. if (ret)
  1438. return ret;
  1439. /* Preallocate the olr before touching the ring */
  1440. ret = intel_ring_alloc_seqno(ring);
  1441. if (ret)
  1442. return ret;
  1443. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1444. return 0;
  1445. }
  1446. /* Align the ring tail to a cacheline boundary */
  1447. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1448. {
  1449. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1450. int ret;
  1451. if (num_dwords == 0)
  1452. return 0;
  1453. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1454. ret = intel_ring_begin(ring, num_dwords);
  1455. if (ret)
  1456. return ret;
  1457. while (num_dwords--)
  1458. intel_ring_emit(ring, MI_NOOP);
  1459. intel_ring_advance(ring);
  1460. return 0;
  1461. }
  1462. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1463. {
  1464. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1465. BUG_ON(ring->outstanding_lazy_seqno);
  1466. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1467. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1468. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1469. if (HAS_VEBOX(ring->dev))
  1470. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1471. }
  1472. ring->set_seqno(ring, seqno);
  1473. ring->hangcheck.seqno = seqno;
  1474. }
  1475. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1476. u32 value)
  1477. {
  1478. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1479. /* Every tail move must follow the sequence below */
  1480. /* Disable notification that the ring is IDLE. The GT
  1481. * will then assume that it is busy and bring it out of rc6.
  1482. */
  1483. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1484. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1485. /* Clear the context id. Here be magic! */
  1486. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1487. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1488. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1489. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1490. 50))
  1491. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1492. /* Now that the ring is fully powered up, update the tail */
  1493. I915_WRITE_TAIL(ring, value);
  1494. POSTING_READ(RING_TAIL(ring->mmio_base));
  1495. /* Let the ring send IDLE messages to the GT again,
  1496. * and so let it sleep to conserve power when idle.
  1497. */
  1498. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1499. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1500. }
  1501. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1502. u32 invalidate, u32 flush)
  1503. {
  1504. uint32_t cmd;
  1505. int ret;
  1506. ret = intel_ring_begin(ring, 4);
  1507. if (ret)
  1508. return ret;
  1509. cmd = MI_FLUSH_DW;
  1510. if (INTEL_INFO(ring->dev)->gen >= 8)
  1511. cmd += 1;
  1512. /*
  1513. * Bspec vol 1c.5 - video engine command streamer:
  1514. * "If ENABLED, all TLBs will be invalidated once the flush
  1515. * operation is complete. This bit is only valid when the
  1516. * Post-Sync Operation field is a value of 1h or 3h."
  1517. */
  1518. if (invalidate & I915_GEM_GPU_DOMAINS)
  1519. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1520. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1521. intel_ring_emit(ring, cmd);
  1522. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1523. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1524. intel_ring_emit(ring, 0); /* upper addr */
  1525. intel_ring_emit(ring, 0); /* value */
  1526. } else {
  1527. intel_ring_emit(ring, 0);
  1528. intel_ring_emit(ring, MI_NOOP);
  1529. }
  1530. intel_ring_advance(ring);
  1531. return 0;
  1532. }
  1533. static int
  1534. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1535. u64 offset, u32 len,
  1536. unsigned flags)
  1537. {
  1538. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1539. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1540. !(flags & I915_DISPATCH_SECURE);
  1541. int ret;
  1542. ret = intel_ring_begin(ring, 4);
  1543. if (ret)
  1544. return ret;
  1545. /* FIXME(BDW): Address space and security selectors. */
  1546. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1547. intel_ring_emit(ring, lower_32_bits(offset));
  1548. intel_ring_emit(ring, upper_32_bits(offset));
  1549. intel_ring_emit(ring, MI_NOOP);
  1550. intel_ring_advance(ring);
  1551. return 0;
  1552. }
  1553. static int
  1554. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1555. u64 offset, u32 len,
  1556. unsigned flags)
  1557. {
  1558. int ret;
  1559. ret = intel_ring_begin(ring, 2);
  1560. if (ret)
  1561. return ret;
  1562. intel_ring_emit(ring,
  1563. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1564. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1565. /* bit0-7 is the length on GEN6+ */
  1566. intel_ring_emit(ring, offset);
  1567. intel_ring_advance(ring);
  1568. return 0;
  1569. }
  1570. static int
  1571. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1572. u64 offset, u32 len,
  1573. unsigned flags)
  1574. {
  1575. int ret;
  1576. ret = intel_ring_begin(ring, 2);
  1577. if (ret)
  1578. return ret;
  1579. intel_ring_emit(ring,
  1580. MI_BATCH_BUFFER_START |
  1581. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1582. /* bit0-7 is the length on GEN6+ */
  1583. intel_ring_emit(ring, offset);
  1584. intel_ring_advance(ring);
  1585. return 0;
  1586. }
  1587. /* Blitter support (SandyBridge+) */
  1588. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1589. u32 invalidate, u32 flush)
  1590. {
  1591. struct drm_device *dev = ring->dev;
  1592. uint32_t cmd;
  1593. int ret;
  1594. ret = intel_ring_begin(ring, 4);
  1595. if (ret)
  1596. return ret;
  1597. cmd = MI_FLUSH_DW;
  1598. if (INTEL_INFO(ring->dev)->gen >= 8)
  1599. cmd += 1;
  1600. /*
  1601. * Bspec vol 1c.3 - blitter engine command streamer:
  1602. * "If ENABLED, all TLBs will be invalidated once the flush
  1603. * operation is complete. This bit is only valid when the
  1604. * Post-Sync Operation field is a value of 1h or 3h."
  1605. */
  1606. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1607. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1608. MI_FLUSH_DW_OP_STOREDW;
  1609. intel_ring_emit(ring, cmd);
  1610. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1611. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1612. intel_ring_emit(ring, 0); /* upper addr */
  1613. intel_ring_emit(ring, 0); /* value */
  1614. } else {
  1615. intel_ring_emit(ring, 0);
  1616. intel_ring_emit(ring, MI_NOOP);
  1617. }
  1618. intel_ring_advance(ring);
  1619. if (IS_GEN7(dev) && !invalidate && flush)
  1620. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1621. return 0;
  1622. }
  1623. int intel_init_render_ring_buffer(struct drm_device *dev)
  1624. {
  1625. struct drm_i915_private *dev_priv = dev->dev_private;
  1626. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1627. ring->name = "render ring";
  1628. ring->id = RCS;
  1629. ring->mmio_base = RENDER_RING_BASE;
  1630. if (INTEL_INFO(dev)->gen >= 6) {
  1631. ring->add_request = gen6_add_request;
  1632. ring->flush = gen7_render_ring_flush;
  1633. if (INTEL_INFO(dev)->gen == 6)
  1634. ring->flush = gen6_render_ring_flush;
  1635. if (INTEL_INFO(dev)->gen >= 8) {
  1636. ring->flush = gen8_render_ring_flush;
  1637. ring->irq_get = gen8_ring_get_irq;
  1638. ring->irq_put = gen8_ring_put_irq;
  1639. } else {
  1640. ring->irq_get = gen6_ring_get_irq;
  1641. ring->irq_put = gen6_ring_put_irq;
  1642. }
  1643. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1644. ring->get_seqno = gen6_ring_get_seqno;
  1645. ring->set_seqno = ring_set_seqno;
  1646. ring->semaphore.sync_to = gen6_ring_sync;
  1647. ring->semaphore.signal = gen6_signal;
  1648. /*
  1649. * The current semaphore is only applied on pre-gen8 platform.
  1650. * And there is no VCS2 ring on the pre-gen8 platform. So the
  1651. * semaphore between RCS and VCS2 is initialized as INVALID.
  1652. * Gen8 will initialize the sema between VCS2 and RCS later.
  1653. */
  1654. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1655. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1656. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1657. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1658. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1659. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1660. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1661. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1662. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1663. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1664. } else if (IS_GEN5(dev)) {
  1665. ring->add_request = pc_render_add_request;
  1666. ring->flush = gen4_render_ring_flush;
  1667. ring->get_seqno = pc_render_get_seqno;
  1668. ring->set_seqno = pc_render_set_seqno;
  1669. ring->irq_get = gen5_ring_get_irq;
  1670. ring->irq_put = gen5_ring_put_irq;
  1671. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1672. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1673. } else {
  1674. ring->add_request = i9xx_add_request;
  1675. if (INTEL_INFO(dev)->gen < 4)
  1676. ring->flush = gen2_render_ring_flush;
  1677. else
  1678. ring->flush = gen4_render_ring_flush;
  1679. ring->get_seqno = ring_get_seqno;
  1680. ring->set_seqno = ring_set_seqno;
  1681. if (IS_GEN2(dev)) {
  1682. ring->irq_get = i8xx_ring_get_irq;
  1683. ring->irq_put = i8xx_ring_put_irq;
  1684. } else {
  1685. ring->irq_get = i9xx_ring_get_irq;
  1686. ring->irq_put = i9xx_ring_put_irq;
  1687. }
  1688. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1689. }
  1690. ring->write_tail = ring_write_tail;
  1691. if (IS_HASWELL(dev))
  1692. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1693. else if (IS_GEN8(dev))
  1694. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1695. else if (INTEL_INFO(dev)->gen >= 6)
  1696. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1697. else if (INTEL_INFO(dev)->gen >= 4)
  1698. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1699. else if (IS_I830(dev) || IS_845G(dev))
  1700. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1701. else
  1702. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1703. ring->init = init_render_ring;
  1704. ring->cleanup = render_ring_cleanup;
  1705. /* Workaround batchbuffer to combat CS tlb bug. */
  1706. if (HAS_BROKEN_CS_TLB(dev)) {
  1707. struct drm_i915_gem_object *obj;
  1708. int ret;
  1709. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1710. if (obj == NULL) {
  1711. DRM_ERROR("Failed to allocate batch bo\n");
  1712. return -ENOMEM;
  1713. }
  1714. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1715. if (ret != 0) {
  1716. drm_gem_object_unreference(&obj->base);
  1717. DRM_ERROR("Failed to ping batch bo\n");
  1718. return ret;
  1719. }
  1720. ring->scratch.obj = obj;
  1721. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1722. }
  1723. return intel_init_ring_buffer(dev, ring);
  1724. }
  1725. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1726. {
  1727. struct drm_i915_private *dev_priv = dev->dev_private;
  1728. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1729. struct intel_ringbuffer *ringbuf = ring->buffer;
  1730. int ret;
  1731. if (ringbuf == NULL) {
  1732. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1733. if (!ringbuf)
  1734. return -ENOMEM;
  1735. ring->buffer = ringbuf;
  1736. }
  1737. ring->name = "render ring";
  1738. ring->id = RCS;
  1739. ring->mmio_base = RENDER_RING_BASE;
  1740. if (INTEL_INFO(dev)->gen >= 6) {
  1741. /* non-kms not supported on gen6+ */
  1742. ret = -ENODEV;
  1743. goto err_ringbuf;
  1744. }
  1745. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1746. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1747. * the special gen5 functions. */
  1748. ring->add_request = i9xx_add_request;
  1749. if (INTEL_INFO(dev)->gen < 4)
  1750. ring->flush = gen2_render_ring_flush;
  1751. else
  1752. ring->flush = gen4_render_ring_flush;
  1753. ring->get_seqno = ring_get_seqno;
  1754. ring->set_seqno = ring_set_seqno;
  1755. if (IS_GEN2(dev)) {
  1756. ring->irq_get = i8xx_ring_get_irq;
  1757. ring->irq_put = i8xx_ring_put_irq;
  1758. } else {
  1759. ring->irq_get = i9xx_ring_get_irq;
  1760. ring->irq_put = i9xx_ring_put_irq;
  1761. }
  1762. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1763. ring->write_tail = ring_write_tail;
  1764. if (INTEL_INFO(dev)->gen >= 4)
  1765. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1766. else if (IS_I830(dev) || IS_845G(dev))
  1767. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1768. else
  1769. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1770. ring->init = init_render_ring;
  1771. ring->cleanup = render_ring_cleanup;
  1772. ring->dev = dev;
  1773. INIT_LIST_HEAD(&ring->active_list);
  1774. INIT_LIST_HEAD(&ring->request_list);
  1775. ringbuf->size = size;
  1776. ringbuf->effective_size = ringbuf->size;
  1777. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1778. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1779. ringbuf->virtual_start = ioremap_wc(start, size);
  1780. if (ringbuf->virtual_start == NULL) {
  1781. DRM_ERROR("can not ioremap virtual address for"
  1782. " ring buffer\n");
  1783. ret = -ENOMEM;
  1784. goto err_ringbuf;
  1785. }
  1786. if (!I915_NEED_GFX_HWS(dev)) {
  1787. ret = init_phys_status_page(ring);
  1788. if (ret)
  1789. goto err_vstart;
  1790. }
  1791. return 0;
  1792. err_vstart:
  1793. iounmap(ringbuf->virtual_start);
  1794. err_ringbuf:
  1795. kfree(ringbuf);
  1796. ring->buffer = NULL;
  1797. return ret;
  1798. }
  1799. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1800. {
  1801. struct drm_i915_private *dev_priv = dev->dev_private;
  1802. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  1803. ring->name = "bsd ring";
  1804. ring->id = VCS;
  1805. ring->write_tail = ring_write_tail;
  1806. if (INTEL_INFO(dev)->gen >= 6) {
  1807. ring->mmio_base = GEN6_BSD_RING_BASE;
  1808. /* gen6 bsd needs a special wa for tail updates */
  1809. if (IS_GEN6(dev))
  1810. ring->write_tail = gen6_bsd_ring_write_tail;
  1811. ring->flush = gen6_bsd_ring_flush;
  1812. ring->add_request = gen6_add_request;
  1813. ring->get_seqno = gen6_ring_get_seqno;
  1814. ring->set_seqno = ring_set_seqno;
  1815. if (INTEL_INFO(dev)->gen >= 8) {
  1816. ring->irq_enable_mask =
  1817. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1818. ring->irq_get = gen8_ring_get_irq;
  1819. ring->irq_put = gen8_ring_put_irq;
  1820. ring->dispatch_execbuffer =
  1821. gen8_ring_dispatch_execbuffer;
  1822. } else {
  1823. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1824. ring->irq_get = gen6_ring_get_irq;
  1825. ring->irq_put = gen6_ring_put_irq;
  1826. ring->dispatch_execbuffer =
  1827. gen6_ring_dispatch_execbuffer;
  1828. }
  1829. ring->semaphore.sync_to = gen6_ring_sync;
  1830. ring->semaphore.signal = gen6_signal;
  1831. /*
  1832. * The current semaphore is only applied on pre-gen8 platform.
  1833. * And there is no VCS2 ring on the pre-gen8 platform. So the
  1834. * semaphore between VCS and VCS2 is initialized as INVALID.
  1835. * Gen8 will initialize the sema between VCS2 and VCS later.
  1836. */
  1837. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  1838. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1839. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  1840. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1841. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1842. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  1843. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  1844. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  1845. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  1846. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1847. } else {
  1848. ring->mmio_base = BSD_RING_BASE;
  1849. ring->flush = bsd_ring_flush;
  1850. ring->add_request = i9xx_add_request;
  1851. ring->get_seqno = ring_get_seqno;
  1852. ring->set_seqno = ring_set_seqno;
  1853. if (IS_GEN5(dev)) {
  1854. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1855. ring->irq_get = gen5_ring_get_irq;
  1856. ring->irq_put = gen5_ring_put_irq;
  1857. } else {
  1858. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1859. ring->irq_get = i9xx_ring_get_irq;
  1860. ring->irq_put = i9xx_ring_put_irq;
  1861. }
  1862. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1863. }
  1864. ring->init = init_ring_common;
  1865. return intel_init_ring_buffer(dev, ring);
  1866. }
  1867. /**
  1868. * Initialize the second BSD ring for Broadwell GT3.
  1869. * It is noted that this only exists on Broadwell GT3.
  1870. */
  1871. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  1872. {
  1873. struct drm_i915_private *dev_priv = dev->dev_private;
  1874. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  1875. if ((INTEL_INFO(dev)->gen != 8)) {
  1876. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  1877. return -EINVAL;
  1878. }
  1879. ring->name = "bds2_ring";
  1880. ring->id = VCS2;
  1881. ring->write_tail = ring_write_tail;
  1882. ring->mmio_base = GEN8_BSD2_RING_BASE;
  1883. ring->flush = gen6_bsd_ring_flush;
  1884. ring->add_request = gen6_add_request;
  1885. ring->get_seqno = gen6_ring_get_seqno;
  1886. ring->set_seqno = ring_set_seqno;
  1887. ring->irq_enable_mask =
  1888. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  1889. ring->irq_get = gen8_ring_get_irq;
  1890. ring->irq_put = gen8_ring_put_irq;
  1891. ring->dispatch_execbuffer =
  1892. gen8_ring_dispatch_execbuffer;
  1893. ring->semaphore.sync_to = gen6_ring_sync;
  1894. ring->semaphore.signal = gen6_signal;
  1895. /*
  1896. * The current semaphore is only applied on the pre-gen8. And there
  1897. * is no bsd2 ring on the pre-gen8. So now the semaphore_register
  1898. * between VCS2 and other ring is initialized as invalid.
  1899. * Gen8 will initialize the sema between VCS2 and other ring later.
  1900. */
  1901. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1902. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1903. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1904. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1905. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1906. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1907. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  1908. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  1909. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  1910. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1911. ring->init = init_ring_common;
  1912. return intel_init_ring_buffer(dev, ring);
  1913. }
  1914. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1915. {
  1916. struct drm_i915_private *dev_priv = dev->dev_private;
  1917. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  1918. ring->name = "blitter ring";
  1919. ring->id = BCS;
  1920. ring->mmio_base = BLT_RING_BASE;
  1921. ring->write_tail = ring_write_tail;
  1922. ring->flush = gen6_ring_flush;
  1923. ring->add_request = gen6_add_request;
  1924. ring->get_seqno = gen6_ring_get_seqno;
  1925. ring->set_seqno = ring_set_seqno;
  1926. if (INTEL_INFO(dev)->gen >= 8) {
  1927. ring->irq_enable_mask =
  1928. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1929. ring->irq_get = gen8_ring_get_irq;
  1930. ring->irq_put = gen8_ring_put_irq;
  1931. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1932. } else {
  1933. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1934. ring->irq_get = gen6_ring_get_irq;
  1935. ring->irq_put = gen6_ring_put_irq;
  1936. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1937. }
  1938. ring->semaphore.sync_to = gen6_ring_sync;
  1939. ring->semaphore.signal = gen6_signal;
  1940. /*
  1941. * The current semaphore is only applied on pre-gen8 platform. And
  1942. * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
  1943. * between BCS and VCS2 is initialized as INVALID.
  1944. * Gen8 will initialize the sema between BCS and VCS2 later.
  1945. */
  1946. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  1947. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  1948. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1949. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1950. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1951. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  1952. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  1953. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  1954. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  1955. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1956. ring->init = init_ring_common;
  1957. return intel_init_ring_buffer(dev, ring);
  1958. }
  1959. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1960. {
  1961. struct drm_i915_private *dev_priv = dev->dev_private;
  1962. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  1963. ring->name = "video enhancement ring";
  1964. ring->id = VECS;
  1965. ring->mmio_base = VEBOX_RING_BASE;
  1966. ring->write_tail = ring_write_tail;
  1967. ring->flush = gen6_ring_flush;
  1968. ring->add_request = gen6_add_request;
  1969. ring->get_seqno = gen6_ring_get_seqno;
  1970. ring->set_seqno = ring_set_seqno;
  1971. if (INTEL_INFO(dev)->gen >= 8) {
  1972. ring->irq_enable_mask =
  1973. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1974. ring->irq_get = gen8_ring_get_irq;
  1975. ring->irq_put = gen8_ring_put_irq;
  1976. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1977. } else {
  1978. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1979. ring->irq_get = hsw_vebox_get_irq;
  1980. ring->irq_put = hsw_vebox_put_irq;
  1981. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1982. }
  1983. ring->semaphore.sync_to = gen6_ring_sync;
  1984. ring->semaphore.signal = gen6_signal;
  1985. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  1986. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1987. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1988. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1989. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1990. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  1991. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  1992. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  1993. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  1994. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1995. ring->init = init_ring_common;
  1996. return intel_init_ring_buffer(dev, ring);
  1997. }
  1998. int
  1999. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2000. {
  2001. int ret;
  2002. if (!ring->gpu_caches_dirty)
  2003. return 0;
  2004. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2005. if (ret)
  2006. return ret;
  2007. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2008. ring->gpu_caches_dirty = false;
  2009. return 0;
  2010. }
  2011. int
  2012. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2013. {
  2014. uint32_t flush_domains;
  2015. int ret;
  2016. flush_domains = 0;
  2017. if (ring->gpu_caches_dirty)
  2018. flush_domains = I915_GEM_GPU_DOMAINS;
  2019. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2020. if (ret)
  2021. return ret;
  2022. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2023. ring->gpu_caches_dirty = false;
  2024. return 0;
  2025. }
  2026. void
  2027. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2028. {
  2029. int ret;
  2030. if (!intel_ring_initialized(ring))
  2031. return;
  2032. ret = intel_ring_idle(ring);
  2033. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2034. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2035. ring->name, ret);
  2036. stop_ring(ring);
  2037. }