intel_pm.c 184 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void i8xx_disable_fbc(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. u32 fbc_ctl;
  69. /* Disable compression */
  70. fbc_ctl = I915_READ(FBC_CONTROL);
  71. if ((fbc_ctl & FBC_CTL_EN) == 0)
  72. return;
  73. fbc_ctl &= ~FBC_CTL_EN;
  74. I915_WRITE(FBC_CONTROL, fbc_ctl);
  75. /* Wait for compressing bit to clear */
  76. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  77. DRM_DEBUG_KMS("FBC idle timed out\n");
  78. return;
  79. }
  80. DRM_DEBUG_KMS("disabled FBC\n");
  81. }
  82. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  83. {
  84. struct drm_device *dev = crtc->dev;
  85. struct drm_i915_private *dev_priv = dev->dev_private;
  86. struct drm_framebuffer *fb = crtc->primary->fb;
  87. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  88. struct drm_i915_gem_object *obj = intel_fb->obj;
  89. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  90. int cfb_pitch;
  91. int i;
  92. u32 fbc_ctl;
  93. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  94. if (fb->pitches[0] < cfb_pitch)
  95. cfb_pitch = fb->pitches[0];
  96. /* FBC_CTL wants 32B or 64B units */
  97. if (IS_GEN2(dev))
  98. cfb_pitch = (cfb_pitch / 32) - 1;
  99. else
  100. cfb_pitch = (cfb_pitch / 64) - 1;
  101. /* Clear old tags */
  102. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  103. I915_WRITE(FBC_TAG + (i * 4), 0);
  104. if (IS_GEN4(dev)) {
  105. u32 fbc_ctl2;
  106. /* Set it up... */
  107. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  108. fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
  109. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  110. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  111. }
  112. /* enable it... */
  113. fbc_ctl = I915_READ(FBC_CONTROL);
  114. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  115. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  116. if (IS_I945GM(dev))
  117. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  118. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  119. fbc_ctl |= obj->fence_reg;
  120. I915_WRITE(FBC_CONTROL, fbc_ctl);
  121. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
  122. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  123. }
  124. static bool i8xx_fbc_enabled(struct drm_device *dev)
  125. {
  126. struct drm_i915_private *dev_priv = dev->dev_private;
  127. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  128. }
  129. static void g4x_enable_fbc(struct drm_crtc *crtc)
  130. {
  131. struct drm_device *dev = crtc->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. struct drm_framebuffer *fb = crtc->primary->fb;
  134. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  135. struct drm_i915_gem_object *obj = intel_fb->obj;
  136. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  137. u32 dpfc_ctl;
  138. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
  139. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  140. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  141. else
  142. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  143. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  144. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  145. /* enable it... */
  146. I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  147. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  148. }
  149. static void g4x_disable_fbc(struct drm_device *dev)
  150. {
  151. struct drm_i915_private *dev_priv = dev->dev_private;
  152. u32 dpfc_ctl;
  153. /* Disable compression */
  154. dpfc_ctl = I915_READ(DPFC_CONTROL);
  155. if (dpfc_ctl & DPFC_CTL_EN) {
  156. dpfc_ctl &= ~DPFC_CTL_EN;
  157. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  158. DRM_DEBUG_KMS("disabled FBC\n");
  159. }
  160. }
  161. static bool g4x_fbc_enabled(struct drm_device *dev)
  162. {
  163. struct drm_i915_private *dev_priv = dev->dev_private;
  164. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  165. }
  166. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  167. {
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. u32 blt_ecoskpd;
  170. /* Make sure blitter notifies FBC of writes */
  171. /* Blitter is part of Media powerwell on VLV. No impact of
  172. * his param in other platforms for now */
  173. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  174. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  175. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  176. GEN6_BLITTER_LOCK_SHIFT;
  177. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  178. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  179. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  180. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  181. GEN6_BLITTER_LOCK_SHIFT);
  182. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  183. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  184. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  185. }
  186. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  187. {
  188. struct drm_device *dev = crtc->dev;
  189. struct drm_i915_private *dev_priv = dev->dev_private;
  190. struct drm_framebuffer *fb = crtc->primary->fb;
  191. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  192. struct drm_i915_gem_object *obj = intel_fb->obj;
  193. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  194. u32 dpfc_ctl;
  195. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
  196. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  197. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  198. else
  199. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  200. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  201. if (IS_GEN5(dev))
  202. dpfc_ctl |= obj->fence_reg;
  203. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  204. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  205. /* enable it... */
  206. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  207. if (IS_GEN6(dev)) {
  208. I915_WRITE(SNB_DPFC_CTL_SA,
  209. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  210. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  211. sandybridge_blit_fbc_update(dev);
  212. }
  213. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  214. }
  215. static void ironlake_disable_fbc(struct drm_device *dev)
  216. {
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. u32 dpfc_ctl;
  219. /* Disable compression */
  220. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  221. if (dpfc_ctl & DPFC_CTL_EN) {
  222. dpfc_ctl &= ~DPFC_CTL_EN;
  223. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  224. DRM_DEBUG_KMS("disabled FBC\n");
  225. }
  226. }
  227. static bool ironlake_fbc_enabled(struct drm_device *dev)
  228. {
  229. struct drm_i915_private *dev_priv = dev->dev_private;
  230. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  231. }
  232. static void gen7_enable_fbc(struct drm_crtc *crtc)
  233. {
  234. struct drm_device *dev = crtc->dev;
  235. struct drm_i915_private *dev_priv = dev->dev_private;
  236. struct drm_framebuffer *fb = crtc->primary->fb;
  237. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  238. struct drm_i915_gem_object *obj = intel_fb->obj;
  239. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  240. u32 dpfc_ctl;
  241. dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
  242. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  243. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  244. else
  245. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  246. dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
  247. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  248. if (IS_IVYBRIDGE(dev)) {
  249. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  250. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  251. I915_READ(ILK_DISPLAY_CHICKEN1) |
  252. ILK_FBCQ_DIS);
  253. } else {
  254. /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
  255. I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
  256. I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
  257. HSW_FBCQ_DIS);
  258. }
  259. I915_WRITE(SNB_DPFC_CTL_SA,
  260. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  261. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  262. sandybridge_blit_fbc_update(dev);
  263. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  264. }
  265. bool intel_fbc_enabled(struct drm_device *dev)
  266. {
  267. struct drm_i915_private *dev_priv = dev->dev_private;
  268. if (!dev_priv->display.fbc_enabled)
  269. return false;
  270. return dev_priv->display.fbc_enabled(dev);
  271. }
  272. static void intel_fbc_work_fn(struct work_struct *__work)
  273. {
  274. struct intel_fbc_work *work =
  275. container_of(to_delayed_work(__work),
  276. struct intel_fbc_work, work);
  277. struct drm_device *dev = work->crtc->dev;
  278. struct drm_i915_private *dev_priv = dev->dev_private;
  279. mutex_lock(&dev->struct_mutex);
  280. if (work == dev_priv->fbc.fbc_work) {
  281. /* Double check that we haven't switched fb without cancelling
  282. * the prior work.
  283. */
  284. if (work->crtc->primary->fb == work->fb) {
  285. dev_priv->display.enable_fbc(work->crtc);
  286. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  287. dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
  288. dev_priv->fbc.y = work->crtc->y;
  289. }
  290. dev_priv->fbc.fbc_work = NULL;
  291. }
  292. mutex_unlock(&dev->struct_mutex);
  293. kfree(work);
  294. }
  295. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  296. {
  297. if (dev_priv->fbc.fbc_work == NULL)
  298. return;
  299. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  300. /* Synchronisation is provided by struct_mutex and checking of
  301. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  302. * entirely asynchronously.
  303. */
  304. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  305. /* tasklet was killed before being run, clean up */
  306. kfree(dev_priv->fbc.fbc_work);
  307. /* Mark the work as no longer wanted so that if it does
  308. * wake-up (because the work was already running and waiting
  309. * for our mutex), it will discover that is no longer
  310. * necessary to run.
  311. */
  312. dev_priv->fbc.fbc_work = NULL;
  313. }
  314. static void intel_enable_fbc(struct drm_crtc *crtc)
  315. {
  316. struct intel_fbc_work *work;
  317. struct drm_device *dev = crtc->dev;
  318. struct drm_i915_private *dev_priv = dev->dev_private;
  319. if (!dev_priv->display.enable_fbc)
  320. return;
  321. intel_cancel_fbc_work(dev_priv);
  322. work = kzalloc(sizeof(*work), GFP_KERNEL);
  323. if (work == NULL) {
  324. DRM_ERROR("Failed to allocate FBC work structure\n");
  325. dev_priv->display.enable_fbc(crtc);
  326. return;
  327. }
  328. work->crtc = crtc;
  329. work->fb = crtc->primary->fb;
  330. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  331. dev_priv->fbc.fbc_work = work;
  332. /* Delay the actual enabling to let pageflipping cease and the
  333. * display to settle before starting the compression. Note that
  334. * this delay also serves a second purpose: it allows for a
  335. * vblank to pass after disabling the FBC before we attempt
  336. * to modify the control registers.
  337. *
  338. * A more complicated solution would involve tracking vblanks
  339. * following the termination of the page-flipping sequence
  340. * and indeed performing the enable as a co-routine and not
  341. * waiting synchronously upon the vblank.
  342. *
  343. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  344. */
  345. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  346. }
  347. void intel_disable_fbc(struct drm_device *dev)
  348. {
  349. struct drm_i915_private *dev_priv = dev->dev_private;
  350. intel_cancel_fbc_work(dev_priv);
  351. if (!dev_priv->display.disable_fbc)
  352. return;
  353. dev_priv->display.disable_fbc(dev);
  354. dev_priv->fbc.plane = -1;
  355. }
  356. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  357. enum no_fbc_reason reason)
  358. {
  359. if (dev_priv->fbc.no_fbc_reason == reason)
  360. return false;
  361. dev_priv->fbc.no_fbc_reason = reason;
  362. return true;
  363. }
  364. /**
  365. * intel_update_fbc - enable/disable FBC as needed
  366. * @dev: the drm_device
  367. *
  368. * Set up the framebuffer compression hardware at mode set time. We
  369. * enable it if possible:
  370. * - plane A only (on pre-965)
  371. * - no pixel mulitply/line duplication
  372. * - no alpha buffer discard
  373. * - no dual wide
  374. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  375. *
  376. * We can't assume that any compression will take place (worst case),
  377. * so the compressed buffer has to be the same size as the uncompressed
  378. * one. It also must reside (along with the line length buffer) in
  379. * stolen memory.
  380. *
  381. * We need to enable/disable FBC on a global basis.
  382. */
  383. void intel_update_fbc(struct drm_device *dev)
  384. {
  385. struct drm_i915_private *dev_priv = dev->dev_private;
  386. struct drm_crtc *crtc = NULL, *tmp_crtc;
  387. struct intel_crtc *intel_crtc;
  388. struct drm_framebuffer *fb;
  389. struct intel_framebuffer *intel_fb;
  390. struct drm_i915_gem_object *obj;
  391. const struct drm_display_mode *adjusted_mode;
  392. unsigned int max_width, max_height;
  393. if (!HAS_FBC(dev)) {
  394. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  395. return;
  396. }
  397. if (!i915.powersave) {
  398. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  399. DRM_DEBUG_KMS("fbc disabled per module param\n");
  400. return;
  401. }
  402. /*
  403. * If FBC is already on, we just have to verify that we can
  404. * keep it that way...
  405. * Need to disable if:
  406. * - more than one pipe is active
  407. * - changing FBC params (stride, fence, mode)
  408. * - new fb is too large to fit in compressed buffer
  409. * - going to an unsupported config (interlace, pixel multiply, etc.)
  410. */
  411. for_each_crtc(dev, tmp_crtc) {
  412. if (intel_crtc_active(tmp_crtc) &&
  413. to_intel_crtc(tmp_crtc)->primary_enabled) {
  414. if (crtc) {
  415. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  416. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  417. goto out_disable;
  418. }
  419. crtc = tmp_crtc;
  420. }
  421. }
  422. if (!crtc || crtc->primary->fb == NULL) {
  423. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  424. DRM_DEBUG_KMS("no output, disabling\n");
  425. goto out_disable;
  426. }
  427. intel_crtc = to_intel_crtc(crtc);
  428. fb = crtc->primary->fb;
  429. intel_fb = to_intel_framebuffer(fb);
  430. obj = intel_fb->obj;
  431. adjusted_mode = &intel_crtc->config.adjusted_mode;
  432. if (i915.enable_fbc < 0 &&
  433. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  434. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  435. DRM_DEBUG_KMS("disabled per chip default\n");
  436. goto out_disable;
  437. }
  438. if (!i915.enable_fbc) {
  439. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  440. DRM_DEBUG_KMS("fbc disabled per module param\n");
  441. goto out_disable;
  442. }
  443. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  444. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  445. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  446. DRM_DEBUG_KMS("mode incompatible with compression, "
  447. "disabling\n");
  448. goto out_disable;
  449. }
  450. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  451. max_width = 4096;
  452. max_height = 2048;
  453. } else {
  454. max_width = 2048;
  455. max_height = 1536;
  456. }
  457. if (intel_crtc->config.pipe_src_w > max_width ||
  458. intel_crtc->config.pipe_src_h > max_height) {
  459. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  460. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  461. goto out_disable;
  462. }
  463. if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
  464. intel_crtc->plane != PLANE_A) {
  465. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  466. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  467. goto out_disable;
  468. }
  469. /* The use of a CPU fence is mandatory in order to detect writes
  470. * by the CPU to the scanout and trigger updates to the FBC.
  471. */
  472. if (obj->tiling_mode != I915_TILING_X ||
  473. obj->fence_reg == I915_FENCE_REG_NONE) {
  474. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  475. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  476. goto out_disable;
  477. }
  478. /* If the kernel debugger is active, always disable compression */
  479. if (in_dbg_master())
  480. goto out_disable;
  481. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  482. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  483. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  484. goto out_disable;
  485. }
  486. /* If the scanout has not changed, don't modify the FBC settings.
  487. * Note that we make the fundamental assumption that the fb->obj
  488. * cannot be unpinned (and have its GTT offset and fence revoked)
  489. * without first being decoupled from the scanout and FBC disabled.
  490. */
  491. if (dev_priv->fbc.plane == intel_crtc->plane &&
  492. dev_priv->fbc.fb_id == fb->base.id &&
  493. dev_priv->fbc.y == crtc->y)
  494. return;
  495. if (intel_fbc_enabled(dev)) {
  496. /* We update FBC along two paths, after changing fb/crtc
  497. * configuration (modeswitching) and after page-flipping
  498. * finishes. For the latter, we know that not only did
  499. * we disable the FBC at the start of the page-flip
  500. * sequence, but also more than one vblank has passed.
  501. *
  502. * For the former case of modeswitching, it is possible
  503. * to switch between two FBC valid configurations
  504. * instantaneously so we do need to disable the FBC
  505. * before we can modify its control registers. We also
  506. * have to wait for the next vblank for that to take
  507. * effect. However, since we delay enabling FBC we can
  508. * assume that a vblank has passed since disabling and
  509. * that we can safely alter the registers in the deferred
  510. * callback.
  511. *
  512. * In the scenario that we go from a valid to invalid
  513. * and then back to valid FBC configuration we have
  514. * no strict enforcement that a vblank occurred since
  515. * disabling the FBC. However, along all current pipe
  516. * disabling paths we do need to wait for a vblank at
  517. * some point. And we wait before enabling FBC anyway.
  518. */
  519. DRM_DEBUG_KMS("disabling active FBC for update\n");
  520. intel_disable_fbc(dev);
  521. }
  522. intel_enable_fbc(crtc);
  523. dev_priv->fbc.no_fbc_reason = FBC_OK;
  524. return;
  525. out_disable:
  526. /* Multiple disables should be harmless */
  527. if (intel_fbc_enabled(dev)) {
  528. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  529. intel_disable_fbc(dev);
  530. }
  531. i915_gem_stolen_cleanup_compression(dev);
  532. }
  533. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  534. {
  535. struct drm_i915_private *dev_priv = dev->dev_private;
  536. u32 tmp;
  537. tmp = I915_READ(CLKCFG);
  538. switch (tmp & CLKCFG_FSB_MASK) {
  539. case CLKCFG_FSB_533:
  540. dev_priv->fsb_freq = 533; /* 133*4 */
  541. break;
  542. case CLKCFG_FSB_800:
  543. dev_priv->fsb_freq = 800; /* 200*4 */
  544. break;
  545. case CLKCFG_FSB_667:
  546. dev_priv->fsb_freq = 667; /* 167*4 */
  547. break;
  548. case CLKCFG_FSB_400:
  549. dev_priv->fsb_freq = 400; /* 100*4 */
  550. break;
  551. }
  552. switch (tmp & CLKCFG_MEM_MASK) {
  553. case CLKCFG_MEM_533:
  554. dev_priv->mem_freq = 533;
  555. break;
  556. case CLKCFG_MEM_667:
  557. dev_priv->mem_freq = 667;
  558. break;
  559. case CLKCFG_MEM_800:
  560. dev_priv->mem_freq = 800;
  561. break;
  562. }
  563. /* detect pineview DDR3 setting */
  564. tmp = I915_READ(CSHRDDR3CTL);
  565. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  566. }
  567. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  568. {
  569. struct drm_i915_private *dev_priv = dev->dev_private;
  570. u16 ddrpll, csipll;
  571. ddrpll = I915_READ16(DDRMPLL1);
  572. csipll = I915_READ16(CSIPLL0);
  573. switch (ddrpll & 0xff) {
  574. case 0xc:
  575. dev_priv->mem_freq = 800;
  576. break;
  577. case 0x10:
  578. dev_priv->mem_freq = 1066;
  579. break;
  580. case 0x14:
  581. dev_priv->mem_freq = 1333;
  582. break;
  583. case 0x18:
  584. dev_priv->mem_freq = 1600;
  585. break;
  586. default:
  587. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  588. ddrpll & 0xff);
  589. dev_priv->mem_freq = 0;
  590. break;
  591. }
  592. dev_priv->ips.r_t = dev_priv->mem_freq;
  593. switch (csipll & 0x3ff) {
  594. case 0x00c:
  595. dev_priv->fsb_freq = 3200;
  596. break;
  597. case 0x00e:
  598. dev_priv->fsb_freq = 3733;
  599. break;
  600. case 0x010:
  601. dev_priv->fsb_freq = 4266;
  602. break;
  603. case 0x012:
  604. dev_priv->fsb_freq = 4800;
  605. break;
  606. case 0x014:
  607. dev_priv->fsb_freq = 5333;
  608. break;
  609. case 0x016:
  610. dev_priv->fsb_freq = 5866;
  611. break;
  612. case 0x018:
  613. dev_priv->fsb_freq = 6400;
  614. break;
  615. default:
  616. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  617. csipll & 0x3ff);
  618. dev_priv->fsb_freq = 0;
  619. break;
  620. }
  621. if (dev_priv->fsb_freq == 3200) {
  622. dev_priv->ips.c_m = 0;
  623. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  624. dev_priv->ips.c_m = 1;
  625. } else {
  626. dev_priv->ips.c_m = 2;
  627. }
  628. }
  629. static const struct cxsr_latency cxsr_latency_table[] = {
  630. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  631. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  632. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  633. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  634. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  635. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  636. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  637. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  638. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  639. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  640. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  641. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  642. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  643. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  644. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  645. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  646. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  647. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  648. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  649. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  650. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  651. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  652. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  653. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  654. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  655. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  656. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  657. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  658. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  659. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  660. };
  661. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  662. int is_ddr3,
  663. int fsb,
  664. int mem)
  665. {
  666. const struct cxsr_latency *latency;
  667. int i;
  668. if (fsb == 0 || mem == 0)
  669. return NULL;
  670. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  671. latency = &cxsr_latency_table[i];
  672. if (is_desktop == latency->is_desktop &&
  673. is_ddr3 == latency->is_ddr3 &&
  674. fsb == latency->fsb_freq && mem == latency->mem_freq)
  675. return latency;
  676. }
  677. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  678. return NULL;
  679. }
  680. static void pineview_disable_cxsr(struct drm_device *dev)
  681. {
  682. struct drm_i915_private *dev_priv = dev->dev_private;
  683. /* deactivate cxsr */
  684. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  685. }
  686. /*
  687. * Latency for FIFO fetches is dependent on several factors:
  688. * - memory configuration (speed, channels)
  689. * - chipset
  690. * - current MCH state
  691. * It can be fairly high in some situations, so here we assume a fairly
  692. * pessimal value. It's a tradeoff between extra memory fetches (if we
  693. * set this value too high, the FIFO will fetch frequently to stay full)
  694. * and power consumption (set it too low to save power and we might see
  695. * FIFO underruns and display "flicker").
  696. *
  697. * A value of 5us seems to be a good balance; safe for very low end
  698. * platforms but not overly aggressive on lower latency configs.
  699. */
  700. static const int latency_ns = 5000;
  701. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  702. {
  703. struct drm_i915_private *dev_priv = dev->dev_private;
  704. uint32_t dsparb = I915_READ(DSPARB);
  705. int size;
  706. size = dsparb & 0x7f;
  707. if (plane)
  708. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  709. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  710. plane ? "B" : "A", size);
  711. return size;
  712. }
  713. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  714. {
  715. struct drm_i915_private *dev_priv = dev->dev_private;
  716. uint32_t dsparb = I915_READ(DSPARB);
  717. int size;
  718. size = dsparb & 0x1ff;
  719. if (plane)
  720. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  721. size >>= 1; /* Convert to cachelines */
  722. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  723. plane ? "B" : "A", size);
  724. return size;
  725. }
  726. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  727. {
  728. struct drm_i915_private *dev_priv = dev->dev_private;
  729. uint32_t dsparb = I915_READ(DSPARB);
  730. int size;
  731. size = dsparb & 0x7f;
  732. size >>= 2; /* Convert to cachelines */
  733. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  734. plane ? "B" : "A",
  735. size);
  736. return size;
  737. }
  738. /* Pineview has different values for various configs */
  739. static const struct intel_watermark_params pineview_display_wm = {
  740. PINEVIEW_DISPLAY_FIFO,
  741. PINEVIEW_MAX_WM,
  742. PINEVIEW_DFT_WM,
  743. PINEVIEW_GUARD_WM,
  744. PINEVIEW_FIFO_LINE_SIZE
  745. };
  746. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  747. PINEVIEW_DISPLAY_FIFO,
  748. PINEVIEW_MAX_WM,
  749. PINEVIEW_DFT_HPLLOFF_WM,
  750. PINEVIEW_GUARD_WM,
  751. PINEVIEW_FIFO_LINE_SIZE
  752. };
  753. static const struct intel_watermark_params pineview_cursor_wm = {
  754. PINEVIEW_CURSOR_FIFO,
  755. PINEVIEW_CURSOR_MAX_WM,
  756. PINEVIEW_CURSOR_DFT_WM,
  757. PINEVIEW_CURSOR_GUARD_WM,
  758. PINEVIEW_FIFO_LINE_SIZE,
  759. };
  760. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  761. PINEVIEW_CURSOR_FIFO,
  762. PINEVIEW_CURSOR_MAX_WM,
  763. PINEVIEW_CURSOR_DFT_WM,
  764. PINEVIEW_CURSOR_GUARD_WM,
  765. PINEVIEW_FIFO_LINE_SIZE
  766. };
  767. static const struct intel_watermark_params g4x_wm_info = {
  768. G4X_FIFO_SIZE,
  769. G4X_MAX_WM,
  770. G4X_MAX_WM,
  771. 2,
  772. G4X_FIFO_LINE_SIZE,
  773. };
  774. static const struct intel_watermark_params g4x_cursor_wm_info = {
  775. I965_CURSOR_FIFO,
  776. I965_CURSOR_MAX_WM,
  777. I965_CURSOR_DFT_WM,
  778. 2,
  779. G4X_FIFO_LINE_SIZE,
  780. };
  781. static const struct intel_watermark_params valleyview_wm_info = {
  782. VALLEYVIEW_FIFO_SIZE,
  783. VALLEYVIEW_MAX_WM,
  784. VALLEYVIEW_MAX_WM,
  785. 2,
  786. G4X_FIFO_LINE_SIZE,
  787. };
  788. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  789. I965_CURSOR_FIFO,
  790. VALLEYVIEW_CURSOR_MAX_WM,
  791. I965_CURSOR_DFT_WM,
  792. 2,
  793. G4X_FIFO_LINE_SIZE,
  794. };
  795. static const struct intel_watermark_params i965_cursor_wm_info = {
  796. I965_CURSOR_FIFO,
  797. I965_CURSOR_MAX_WM,
  798. I965_CURSOR_DFT_WM,
  799. 2,
  800. I915_FIFO_LINE_SIZE,
  801. };
  802. static const struct intel_watermark_params i945_wm_info = {
  803. I945_FIFO_SIZE,
  804. I915_MAX_WM,
  805. 1,
  806. 2,
  807. I915_FIFO_LINE_SIZE
  808. };
  809. static const struct intel_watermark_params i915_wm_info = {
  810. I915_FIFO_SIZE,
  811. I915_MAX_WM,
  812. 1,
  813. 2,
  814. I915_FIFO_LINE_SIZE
  815. };
  816. static const struct intel_watermark_params i830_wm_info = {
  817. I855GM_FIFO_SIZE,
  818. I915_MAX_WM,
  819. 1,
  820. 2,
  821. I830_FIFO_LINE_SIZE
  822. };
  823. static const struct intel_watermark_params i845_wm_info = {
  824. I830_FIFO_SIZE,
  825. I915_MAX_WM,
  826. 1,
  827. 2,
  828. I830_FIFO_LINE_SIZE
  829. };
  830. /**
  831. * intel_calculate_wm - calculate watermark level
  832. * @clock_in_khz: pixel clock
  833. * @wm: chip FIFO params
  834. * @pixel_size: display pixel size
  835. * @latency_ns: memory latency for the platform
  836. *
  837. * Calculate the watermark level (the level at which the display plane will
  838. * start fetching from memory again). Each chip has a different display
  839. * FIFO size and allocation, so the caller needs to figure that out and pass
  840. * in the correct intel_watermark_params structure.
  841. *
  842. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  843. * on the pixel size. When it reaches the watermark level, it'll start
  844. * fetching FIFO line sized based chunks from memory until the FIFO fills
  845. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  846. * will occur, and a display engine hang could result.
  847. */
  848. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  849. const struct intel_watermark_params *wm,
  850. int fifo_size,
  851. int pixel_size,
  852. unsigned long latency_ns)
  853. {
  854. long entries_required, wm_size;
  855. /*
  856. * Note: we need to make sure we don't overflow for various clock &
  857. * latency values.
  858. * clocks go from a few thousand to several hundred thousand.
  859. * latency is usually a few thousand
  860. */
  861. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  862. 1000;
  863. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  864. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  865. wm_size = fifo_size - (entries_required + wm->guard_size);
  866. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  867. /* Don't promote wm_size to unsigned... */
  868. if (wm_size > (long)wm->max_wm)
  869. wm_size = wm->max_wm;
  870. if (wm_size <= 0)
  871. wm_size = wm->default_wm;
  872. return wm_size;
  873. }
  874. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  875. {
  876. struct drm_crtc *crtc, *enabled = NULL;
  877. for_each_crtc(dev, crtc) {
  878. if (intel_crtc_active(crtc)) {
  879. if (enabled)
  880. return NULL;
  881. enabled = crtc;
  882. }
  883. }
  884. return enabled;
  885. }
  886. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  887. {
  888. struct drm_device *dev = unused_crtc->dev;
  889. struct drm_i915_private *dev_priv = dev->dev_private;
  890. struct drm_crtc *crtc;
  891. const struct cxsr_latency *latency;
  892. u32 reg;
  893. unsigned long wm;
  894. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  895. dev_priv->fsb_freq, dev_priv->mem_freq);
  896. if (!latency) {
  897. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  898. pineview_disable_cxsr(dev);
  899. return;
  900. }
  901. crtc = single_enabled_crtc(dev);
  902. if (crtc) {
  903. const struct drm_display_mode *adjusted_mode;
  904. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  905. int clock;
  906. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  907. clock = adjusted_mode->crtc_clock;
  908. /* Display SR */
  909. wm = intel_calculate_wm(clock, &pineview_display_wm,
  910. pineview_display_wm.fifo_size,
  911. pixel_size, latency->display_sr);
  912. reg = I915_READ(DSPFW1);
  913. reg &= ~DSPFW_SR_MASK;
  914. reg |= wm << DSPFW_SR_SHIFT;
  915. I915_WRITE(DSPFW1, reg);
  916. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  917. /* cursor SR */
  918. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  919. pineview_display_wm.fifo_size,
  920. pixel_size, latency->cursor_sr);
  921. reg = I915_READ(DSPFW3);
  922. reg &= ~DSPFW_CURSOR_SR_MASK;
  923. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  924. I915_WRITE(DSPFW3, reg);
  925. /* Display HPLL off SR */
  926. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  927. pineview_display_hplloff_wm.fifo_size,
  928. pixel_size, latency->display_hpll_disable);
  929. reg = I915_READ(DSPFW3);
  930. reg &= ~DSPFW_HPLL_SR_MASK;
  931. reg |= wm & DSPFW_HPLL_SR_MASK;
  932. I915_WRITE(DSPFW3, reg);
  933. /* cursor HPLL off SR */
  934. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  935. pineview_display_hplloff_wm.fifo_size,
  936. pixel_size, latency->cursor_hpll_disable);
  937. reg = I915_READ(DSPFW3);
  938. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  939. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  940. I915_WRITE(DSPFW3, reg);
  941. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  942. /* activate cxsr */
  943. I915_WRITE(DSPFW3,
  944. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  945. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  946. } else {
  947. pineview_disable_cxsr(dev);
  948. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  949. }
  950. }
  951. static bool g4x_compute_wm0(struct drm_device *dev,
  952. int plane,
  953. const struct intel_watermark_params *display,
  954. int display_latency_ns,
  955. const struct intel_watermark_params *cursor,
  956. int cursor_latency_ns,
  957. int *plane_wm,
  958. int *cursor_wm)
  959. {
  960. struct drm_crtc *crtc;
  961. const struct drm_display_mode *adjusted_mode;
  962. int htotal, hdisplay, clock, pixel_size;
  963. int line_time_us, line_count;
  964. int entries, tlb_miss;
  965. crtc = intel_get_crtc_for_plane(dev, plane);
  966. if (!intel_crtc_active(crtc)) {
  967. *cursor_wm = cursor->guard_size;
  968. *plane_wm = display->guard_size;
  969. return false;
  970. }
  971. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  972. clock = adjusted_mode->crtc_clock;
  973. htotal = adjusted_mode->crtc_htotal;
  974. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  975. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  976. /* Use the small buffer method to calculate plane watermark */
  977. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  978. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  979. if (tlb_miss > 0)
  980. entries += tlb_miss;
  981. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  982. *plane_wm = entries + display->guard_size;
  983. if (*plane_wm > (int)display->max_wm)
  984. *plane_wm = display->max_wm;
  985. /* Use the large buffer method to calculate cursor watermark */
  986. line_time_us = max(htotal * 1000 / clock, 1);
  987. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  988. entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
  989. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  990. if (tlb_miss > 0)
  991. entries += tlb_miss;
  992. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  993. *cursor_wm = entries + cursor->guard_size;
  994. if (*cursor_wm > (int)cursor->max_wm)
  995. *cursor_wm = (int)cursor->max_wm;
  996. return true;
  997. }
  998. /*
  999. * Check the wm result.
  1000. *
  1001. * If any calculated watermark values is larger than the maximum value that
  1002. * can be programmed into the associated watermark register, that watermark
  1003. * must be disabled.
  1004. */
  1005. static bool g4x_check_srwm(struct drm_device *dev,
  1006. int display_wm, int cursor_wm,
  1007. const struct intel_watermark_params *display,
  1008. const struct intel_watermark_params *cursor)
  1009. {
  1010. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1011. display_wm, cursor_wm);
  1012. if (display_wm > display->max_wm) {
  1013. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1014. display_wm, display->max_wm);
  1015. return false;
  1016. }
  1017. if (cursor_wm > cursor->max_wm) {
  1018. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1019. cursor_wm, cursor->max_wm);
  1020. return false;
  1021. }
  1022. if (!(display_wm || cursor_wm)) {
  1023. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1024. return false;
  1025. }
  1026. return true;
  1027. }
  1028. static bool g4x_compute_srwm(struct drm_device *dev,
  1029. int plane,
  1030. int latency_ns,
  1031. const struct intel_watermark_params *display,
  1032. const struct intel_watermark_params *cursor,
  1033. int *display_wm, int *cursor_wm)
  1034. {
  1035. struct drm_crtc *crtc;
  1036. const struct drm_display_mode *adjusted_mode;
  1037. int hdisplay, htotal, pixel_size, clock;
  1038. unsigned long line_time_us;
  1039. int line_count, line_size;
  1040. int small, large;
  1041. int entries;
  1042. if (!latency_ns) {
  1043. *display_wm = *cursor_wm = 0;
  1044. return false;
  1045. }
  1046. crtc = intel_get_crtc_for_plane(dev, plane);
  1047. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1048. clock = adjusted_mode->crtc_clock;
  1049. htotal = adjusted_mode->crtc_htotal;
  1050. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1051. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1052. line_time_us = max(htotal * 1000 / clock, 1);
  1053. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1054. line_size = hdisplay * pixel_size;
  1055. /* Use the minimum of the small and large buffer method for primary */
  1056. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1057. large = line_count * line_size;
  1058. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1059. *display_wm = entries + display->guard_size;
  1060. /* calculate the self-refresh watermark for display cursor */
  1061. entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
  1062. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1063. *cursor_wm = entries + cursor->guard_size;
  1064. return g4x_check_srwm(dev,
  1065. *display_wm, *cursor_wm,
  1066. display, cursor);
  1067. }
  1068. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1069. int plane,
  1070. int *plane_prec_mult,
  1071. int *plane_dl,
  1072. int *cursor_prec_mult,
  1073. int *cursor_dl)
  1074. {
  1075. struct drm_crtc *crtc;
  1076. int clock, pixel_size;
  1077. int entries;
  1078. crtc = intel_get_crtc_for_plane(dev, plane);
  1079. if (!intel_crtc_active(crtc))
  1080. return false;
  1081. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1082. pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
  1083. entries = (clock / 1000) * pixel_size;
  1084. *plane_prec_mult = (entries > 256) ?
  1085. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1086. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1087. pixel_size);
  1088. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1089. *cursor_prec_mult = (entries > 256) ?
  1090. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1091. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1092. return true;
  1093. }
  1094. /*
  1095. * Update drain latency registers of memory arbiter
  1096. *
  1097. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1098. * to be programmed. Each plane has a drain latency multiplier and a drain
  1099. * latency value.
  1100. */
  1101. static void vlv_update_drain_latency(struct drm_device *dev)
  1102. {
  1103. struct drm_i915_private *dev_priv = dev->dev_private;
  1104. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1105. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1106. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1107. either 16 or 32 */
  1108. /* For plane A, Cursor A */
  1109. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1110. &cursor_prec_mult, &cursora_dl)) {
  1111. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1112. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1113. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1114. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1115. I915_WRITE(VLV_DDL1, cursora_prec |
  1116. (cursora_dl << DDL_CURSORA_SHIFT) |
  1117. planea_prec | planea_dl);
  1118. }
  1119. /* For plane B, Cursor B */
  1120. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1121. &cursor_prec_mult, &cursorb_dl)) {
  1122. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1123. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1124. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1125. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1126. I915_WRITE(VLV_DDL2, cursorb_prec |
  1127. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1128. planeb_prec | planeb_dl);
  1129. }
  1130. }
  1131. #define single_plane_enabled(mask) is_power_of_2(mask)
  1132. static void valleyview_update_wm(struct drm_crtc *crtc)
  1133. {
  1134. struct drm_device *dev = crtc->dev;
  1135. static const int sr_latency_ns = 12000;
  1136. struct drm_i915_private *dev_priv = dev->dev_private;
  1137. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1138. int plane_sr, cursor_sr;
  1139. int ignore_plane_sr, ignore_cursor_sr;
  1140. unsigned int enabled = 0;
  1141. vlv_update_drain_latency(dev);
  1142. if (g4x_compute_wm0(dev, PIPE_A,
  1143. &valleyview_wm_info, latency_ns,
  1144. &valleyview_cursor_wm_info, latency_ns,
  1145. &planea_wm, &cursora_wm))
  1146. enabled |= 1 << PIPE_A;
  1147. if (g4x_compute_wm0(dev, PIPE_B,
  1148. &valleyview_wm_info, latency_ns,
  1149. &valleyview_cursor_wm_info, latency_ns,
  1150. &planeb_wm, &cursorb_wm))
  1151. enabled |= 1 << PIPE_B;
  1152. if (single_plane_enabled(enabled) &&
  1153. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1154. sr_latency_ns,
  1155. &valleyview_wm_info,
  1156. &valleyview_cursor_wm_info,
  1157. &plane_sr, &ignore_cursor_sr) &&
  1158. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1159. 2*sr_latency_ns,
  1160. &valleyview_wm_info,
  1161. &valleyview_cursor_wm_info,
  1162. &ignore_plane_sr, &cursor_sr)) {
  1163. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1164. } else {
  1165. I915_WRITE(FW_BLC_SELF_VLV,
  1166. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1167. plane_sr = cursor_sr = 0;
  1168. }
  1169. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1170. planea_wm, cursora_wm,
  1171. planeb_wm, cursorb_wm,
  1172. plane_sr, cursor_sr);
  1173. I915_WRITE(DSPFW1,
  1174. (plane_sr << DSPFW_SR_SHIFT) |
  1175. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1176. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1177. planea_wm);
  1178. I915_WRITE(DSPFW2,
  1179. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1180. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1181. I915_WRITE(DSPFW3,
  1182. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1183. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1184. }
  1185. static void g4x_update_wm(struct drm_crtc *crtc)
  1186. {
  1187. struct drm_device *dev = crtc->dev;
  1188. static const int sr_latency_ns = 12000;
  1189. struct drm_i915_private *dev_priv = dev->dev_private;
  1190. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1191. int plane_sr, cursor_sr;
  1192. unsigned int enabled = 0;
  1193. if (g4x_compute_wm0(dev, PIPE_A,
  1194. &g4x_wm_info, latency_ns,
  1195. &g4x_cursor_wm_info, latency_ns,
  1196. &planea_wm, &cursora_wm))
  1197. enabled |= 1 << PIPE_A;
  1198. if (g4x_compute_wm0(dev, PIPE_B,
  1199. &g4x_wm_info, latency_ns,
  1200. &g4x_cursor_wm_info, latency_ns,
  1201. &planeb_wm, &cursorb_wm))
  1202. enabled |= 1 << PIPE_B;
  1203. if (single_plane_enabled(enabled) &&
  1204. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1205. sr_latency_ns,
  1206. &g4x_wm_info,
  1207. &g4x_cursor_wm_info,
  1208. &plane_sr, &cursor_sr)) {
  1209. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1210. } else {
  1211. I915_WRITE(FW_BLC_SELF,
  1212. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1213. plane_sr = cursor_sr = 0;
  1214. }
  1215. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1216. planea_wm, cursora_wm,
  1217. planeb_wm, cursorb_wm,
  1218. plane_sr, cursor_sr);
  1219. I915_WRITE(DSPFW1,
  1220. (plane_sr << DSPFW_SR_SHIFT) |
  1221. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1222. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1223. planea_wm);
  1224. I915_WRITE(DSPFW2,
  1225. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1226. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1227. /* HPLL off in SR has some issues on G4x... disable it */
  1228. I915_WRITE(DSPFW3,
  1229. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1230. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1231. }
  1232. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1233. {
  1234. struct drm_device *dev = unused_crtc->dev;
  1235. struct drm_i915_private *dev_priv = dev->dev_private;
  1236. struct drm_crtc *crtc;
  1237. int srwm = 1;
  1238. int cursor_sr = 16;
  1239. /* Calc sr entries for one plane configs */
  1240. crtc = single_enabled_crtc(dev);
  1241. if (crtc) {
  1242. /* self-refresh has much higher latency */
  1243. static const int sr_latency_ns = 12000;
  1244. const struct drm_display_mode *adjusted_mode =
  1245. &to_intel_crtc(crtc)->config.adjusted_mode;
  1246. int clock = adjusted_mode->crtc_clock;
  1247. int htotal = adjusted_mode->crtc_htotal;
  1248. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1249. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1250. unsigned long line_time_us;
  1251. int entries;
  1252. line_time_us = max(htotal * 1000 / clock, 1);
  1253. /* Use ns/us then divide to preserve precision */
  1254. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1255. pixel_size * hdisplay;
  1256. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1257. srwm = I965_FIFO_SIZE - entries;
  1258. if (srwm < 0)
  1259. srwm = 1;
  1260. srwm &= 0x1ff;
  1261. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1262. entries, srwm);
  1263. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1264. pixel_size * to_intel_crtc(crtc)->cursor_width;
  1265. entries = DIV_ROUND_UP(entries,
  1266. i965_cursor_wm_info.cacheline_size);
  1267. cursor_sr = i965_cursor_wm_info.fifo_size -
  1268. (entries + i965_cursor_wm_info.guard_size);
  1269. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1270. cursor_sr = i965_cursor_wm_info.max_wm;
  1271. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1272. "cursor %d\n", srwm, cursor_sr);
  1273. if (IS_CRESTLINE(dev))
  1274. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1275. } else {
  1276. /* Turn off self refresh if both pipes are enabled */
  1277. if (IS_CRESTLINE(dev))
  1278. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1279. & ~FW_BLC_SELF_EN);
  1280. }
  1281. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1282. srwm);
  1283. /* 965 has limitations... */
  1284. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1285. (8 << 16) | (8 << 8) | (8 << 0));
  1286. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1287. /* update cursor SR watermark */
  1288. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1289. }
  1290. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1291. {
  1292. struct drm_device *dev = unused_crtc->dev;
  1293. struct drm_i915_private *dev_priv = dev->dev_private;
  1294. const struct intel_watermark_params *wm_info;
  1295. uint32_t fwater_lo;
  1296. uint32_t fwater_hi;
  1297. int cwm, srwm = 1;
  1298. int fifo_size;
  1299. int planea_wm, planeb_wm;
  1300. struct drm_crtc *crtc, *enabled = NULL;
  1301. if (IS_I945GM(dev))
  1302. wm_info = &i945_wm_info;
  1303. else if (!IS_GEN2(dev))
  1304. wm_info = &i915_wm_info;
  1305. else
  1306. wm_info = &i830_wm_info;
  1307. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1308. crtc = intel_get_crtc_for_plane(dev, 0);
  1309. if (intel_crtc_active(crtc)) {
  1310. const struct drm_display_mode *adjusted_mode;
  1311. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1312. if (IS_GEN2(dev))
  1313. cpp = 4;
  1314. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1315. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1316. wm_info, fifo_size, cpp,
  1317. latency_ns);
  1318. enabled = crtc;
  1319. } else
  1320. planea_wm = fifo_size - wm_info->guard_size;
  1321. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1322. crtc = intel_get_crtc_for_plane(dev, 1);
  1323. if (intel_crtc_active(crtc)) {
  1324. const struct drm_display_mode *adjusted_mode;
  1325. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1326. if (IS_GEN2(dev))
  1327. cpp = 4;
  1328. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1329. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1330. wm_info, fifo_size, cpp,
  1331. latency_ns);
  1332. if (enabled == NULL)
  1333. enabled = crtc;
  1334. else
  1335. enabled = NULL;
  1336. } else
  1337. planeb_wm = fifo_size - wm_info->guard_size;
  1338. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1339. if (IS_I915GM(dev) && enabled) {
  1340. struct intel_framebuffer *fb;
  1341. fb = to_intel_framebuffer(enabled->primary->fb);
  1342. /* self-refresh seems busted with untiled */
  1343. if (fb->obj->tiling_mode == I915_TILING_NONE)
  1344. enabled = NULL;
  1345. }
  1346. /*
  1347. * Overlay gets an aggressive default since video jitter is bad.
  1348. */
  1349. cwm = 2;
  1350. /* Play safe and disable self-refresh before adjusting watermarks. */
  1351. if (IS_I945G(dev) || IS_I945GM(dev))
  1352. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1353. else if (IS_I915GM(dev))
  1354. I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
  1355. /* Calc sr entries for one plane configs */
  1356. if (HAS_FW_BLC(dev) && enabled) {
  1357. /* self-refresh has much higher latency */
  1358. static const int sr_latency_ns = 6000;
  1359. const struct drm_display_mode *adjusted_mode =
  1360. &to_intel_crtc(enabled)->config.adjusted_mode;
  1361. int clock = adjusted_mode->crtc_clock;
  1362. int htotal = adjusted_mode->crtc_htotal;
  1363. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1364. int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
  1365. unsigned long line_time_us;
  1366. int entries;
  1367. line_time_us = max(htotal * 1000 / clock, 1);
  1368. /* Use ns/us then divide to preserve precision */
  1369. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1370. pixel_size * hdisplay;
  1371. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1372. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1373. srwm = wm_info->fifo_size - entries;
  1374. if (srwm < 0)
  1375. srwm = 1;
  1376. if (IS_I945G(dev) || IS_I945GM(dev))
  1377. I915_WRITE(FW_BLC_SELF,
  1378. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1379. else if (IS_I915GM(dev))
  1380. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1381. }
  1382. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1383. planea_wm, planeb_wm, cwm, srwm);
  1384. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1385. fwater_hi = (cwm & 0x1f);
  1386. /* Set request length to 8 cachelines per fetch */
  1387. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1388. fwater_hi = fwater_hi | (1 << 8);
  1389. I915_WRITE(FW_BLC, fwater_lo);
  1390. I915_WRITE(FW_BLC2, fwater_hi);
  1391. if (HAS_FW_BLC(dev)) {
  1392. if (enabled) {
  1393. if (IS_I945G(dev) || IS_I945GM(dev))
  1394. I915_WRITE(FW_BLC_SELF,
  1395. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1396. else if (IS_I915GM(dev))
  1397. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
  1398. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1399. } else
  1400. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1401. }
  1402. }
  1403. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1404. {
  1405. struct drm_device *dev = unused_crtc->dev;
  1406. struct drm_i915_private *dev_priv = dev->dev_private;
  1407. struct drm_crtc *crtc;
  1408. const struct drm_display_mode *adjusted_mode;
  1409. uint32_t fwater_lo;
  1410. int planea_wm;
  1411. crtc = single_enabled_crtc(dev);
  1412. if (crtc == NULL)
  1413. return;
  1414. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1415. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1416. &i845_wm_info,
  1417. dev_priv->display.get_fifo_size(dev, 0),
  1418. 4, latency_ns);
  1419. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1420. fwater_lo |= (3<<8) | planea_wm;
  1421. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1422. I915_WRITE(FW_BLC, fwater_lo);
  1423. }
  1424. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1425. struct drm_crtc *crtc)
  1426. {
  1427. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1428. uint32_t pixel_rate;
  1429. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1430. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1431. * adjust the pixel_rate here. */
  1432. if (intel_crtc->config.pch_pfit.enabled) {
  1433. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1434. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1435. pipe_w = intel_crtc->config.pipe_src_w;
  1436. pipe_h = intel_crtc->config.pipe_src_h;
  1437. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1438. pfit_h = pfit_size & 0xFFFF;
  1439. if (pipe_w < pfit_w)
  1440. pipe_w = pfit_w;
  1441. if (pipe_h < pfit_h)
  1442. pipe_h = pfit_h;
  1443. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1444. pfit_w * pfit_h);
  1445. }
  1446. return pixel_rate;
  1447. }
  1448. /* latency must be in 0.1us units. */
  1449. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1450. uint32_t latency)
  1451. {
  1452. uint64_t ret;
  1453. if (WARN(latency == 0, "Latency value missing\n"))
  1454. return UINT_MAX;
  1455. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1456. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1457. return ret;
  1458. }
  1459. /* latency must be in 0.1us units. */
  1460. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1461. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1462. uint32_t latency)
  1463. {
  1464. uint32_t ret;
  1465. if (WARN(latency == 0, "Latency value missing\n"))
  1466. return UINT_MAX;
  1467. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1468. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1469. ret = DIV_ROUND_UP(ret, 64) + 2;
  1470. return ret;
  1471. }
  1472. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1473. uint8_t bytes_per_pixel)
  1474. {
  1475. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1476. }
  1477. struct ilk_pipe_wm_parameters {
  1478. bool active;
  1479. uint32_t pipe_htotal;
  1480. uint32_t pixel_rate;
  1481. struct intel_plane_wm_parameters pri;
  1482. struct intel_plane_wm_parameters spr;
  1483. struct intel_plane_wm_parameters cur;
  1484. };
  1485. struct ilk_wm_maximums {
  1486. uint16_t pri;
  1487. uint16_t spr;
  1488. uint16_t cur;
  1489. uint16_t fbc;
  1490. };
  1491. /* used in computing the new watermarks state */
  1492. struct intel_wm_config {
  1493. unsigned int num_pipes_active;
  1494. bool sprites_enabled;
  1495. bool sprites_scaled;
  1496. };
  1497. /*
  1498. * For both WM_PIPE and WM_LP.
  1499. * mem_value must be in 0.1us units.
  1500. */
  1501. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1502. uint32_t mem_value,
  1503. bool is_lp)
  1504. {
  1505. uint32_t method1, method2;
  1506. if (!params->active || !params->pri.enabled)
  1507. return 0;
  1508. method1 = ilk_wm_method1(params->pixel_rate,
  1509. params->pri.bytes_per_pixel,
  1510. mem_value);
  1511. if (!is_lp)
  1512. return method1;
  1513. method2 = ilk_wm_method2(params->pixel_rate,
  1514. params->pipe_htotal,
  1515. params->pri.horiz_pixels,
  1516. params->pri.bytes_per_pixel,
  1517. mem_value);
  1518. return min(method1, method2);
  1519. }
  1520. /*
  1521. * For both WM_PIPE and WM_LP.
  1522. * mem_value must be in 0.1us units.
  1523. */
  1524. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1525. uint32_t mem_value)
  1526. {
  1527. uint32_t method1, method2;
  1528. if (!params->active || !params->spr.enabled)
  1529. return 0;
  1530. method1 = ilk_wm_method1(params->pixel_rate,
  1531. params->spr.bytes_per_pixel,
  1532. mem_value);
  1533. method2 = ilk_wm_method2(params->pixel_rate,
  1534. params->pipe_htotal,
  1535. params->spr.horiz_pixels,
  1536. params->spr.bytes_per_pixel,
  1537. mem_value);
  1538. return min(method1, method2);
  1539. }
  1540. /*
  1541. * For both WM_PIPE and WM_LP.
  1542. * mem_value must be in 0.1us units.
  1543. */
  1544. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1545. uint32_t mem_value)
  1546. {
  1547. if (!params->active || !params->cur.enabled)
  1548. return 0;
  1549. return ilk_wm_method2(params->pixel_rate,
  1550. params->pipe_htotal,
  1551. params->cur.horiz_pixels,
  1552. params->cur.bytes_per_pixel,
  1553. mem_value);
  1554. }
  1555. /* Only for WM_LP. */
  1556. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1557. uint32_t pri_val)
  1558. {
  1559. if (!params->active || !params->pri.enabled)
  1560. return 0;
  1561. return ilk_wm_fbc(pri_val,
  1562. params->pri.horiz_pixels,
  1563. params->pri.bytes_per_pixel);
  1564. }
  1565. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1566. {
  1567. if (INTEL_INFO(dev)->gen >= 8)
  1568. return 3072;
  1569. else if (INTEL_INFO(dev)->gen >= 7)
  1570. return 768;
  1571. else
  1572. return 512;
  1573. }
  1574. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1575. int level, bool is_sprite)
  1576. {
  1577. if (INTEL_INFO(dev)->gen >= 8)
  1578. /* BDW primary/sprite plane watermarks */
  1579. return level == 0 ? 255 : 2047;
  1580. else if (INTEL_INFO(dev)->gen >= 7)
  1581. /* IVB/HSW primary/sprite plane watermarks */
  1582. return level == 0 ? 127 : 1023;
  1583. else if (!is_sprite)
  1584. /* ILK/SNB primary plane watermarks */
  1585. return level == 0 ? 127 : 511;
  1586. else
  1587. /* ILK/SNB sprite plane watermarks */
  1588. return level == 0 ? 63 : 255;
  1589. }
  1590. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1591. int level)
  1592. {
  1593. if (INTEL_INFO(dev)->gen >= 7)
  1594. return level == 0 ? 63 : 255;
  1595. else
  1596. return level == 0 ? 31 : 63;
  1597. }
  1598. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1599. {
  1600. if (INTEL_INFO(dev)->gen >= 8)
  1601. return 31;
  1602. else
  1603. return 15;
  1604. }
  1605. /* Calculate the maximum primary/sprite plane watermark */
  1606. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1607. int level,
  1608. const struct intel_wm_config *config,
  1609. enum intel_ddb_partitioning ddb_partitioning,
  1610. bool is_sprite)
  1611. {
  1612. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1613. /* if sprites aren't enabled, sprites get nothing */
  1614. if (is_sprite && !config->sprites_enabled)
  1615. return 0;
  1616. /* HSW allows LP1+ watermarks even with multiple pipes */
  1617. if (level == 0 || config->num_pipes_active > 1) {
  1618. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1619. /*
  1620. * For some reason the non self refresh
  1621. * FIFO size is only half of the self
  1622. * refresh FIFO size on ILK/SNB.
  1623. */
  1624. if (INTEL_INFO(dev)->gen <= 6)
  1625. fifo_size /= 2;
  1626. }
  1627. if (config->sprites_enabled) {
  1628. /* level 0 is always calculated with 1:1 split */
  1629. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1630. if (is_sprite)
  1631. fifo_size *= 5;
  1632. fifo_size /= 6;
  1633. } else {
  1634. fifo_size /= 2;
  1635. }
  1636. }
  1637. /* clamp to max that the registers can hold */
  1638. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1639. }
  1640. /* Calculate the maximum cursor plane watermark */
  1641. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1642. int level,
  1643. const struct intel_wm_config *config)
  1644. {
  1645. /* HSW LP1+ watermarks w/ multiple pipes */
  1646. if (level > 0 && config->num_pipes_active > 1)
  1647. return 64;
  1648. /* otherwise just report max that registers can hold */
  1649. return ilk_cursor_wm_reg_max(dev, level);
  1650. }
  1651. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1652. int level,
  1653. const struct intel_wm_config *config,
  1654. enum intel_ddb_partitioning ddb_partitioning,
  1655. struct ilk_wm_maximums *max)
  1656. {
  1657. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1658. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1659. max->cur = ilk_cursor_wm_max(dev, level, config);
  1660. max->fbc = ilk_fbc_wm_reg_max(dev);
  1661. }
  1662. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1663. int level,
  1664. struct ilk_wm_maximums *max)
  1665. {
  1666. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1667. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1668. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1669. max->fbc = ilk_fbc_wm_reg_max(dev);
  1670. }
  1671. static bool ilk_validate_wm_level(int level,
  1672. const struct ilk_wm_maximums *max,
  1673. struct intel_wm_level *result)
  1674. {
  1675. bool ret;
  1676. /* already determined to be invalid? */
  1677. if (!result->enable)
  1678. return false;
  1679. result->enable = result->pri_val <= max->pri &&
  1680. result->spr_val <= max->spr &&
  1681. result->cur_val <= max->cur;
  1682. ret = result->enable;
  1683. /*
  1684. * HACK until we can pre-compute everything,
  1685. * and thus fail gracefully if LP0 watermarks
  1686. * are exceeded...
  1687. */
  1688. if (level == 0 && !result->enable) {
  1689. if (result->pri_val > max->pri)
  1690. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1691. level, result->pri_val, max->pri);
  1692. if (result->spr_val > max->spr)
  1693. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1694. level, result->spr_val, max->spr);
  1695. if (result->cur_val > max->cur)
  1696. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1697. level, result->cur_val, max->cur);
  1698. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1699. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1700. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1701. result->enable = true;
  1702. }
  1703. return ret;
  1704. }
  1705. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1706. int level,
  1707. const struct ilk_pipe_wm_parameters *p,
  1708. struct intel_wm_level *result)
  1709. {
  1710. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1711. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1712. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1713. /* WM1+ latency values stored in 0.5us units */
  1714. if (level > 0) {
  1715. pri_latency *= 5;
  1716. spr_latency *= 5;
  1717. cur_latency *= 5;
  1718. }
  1719. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1720. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1721. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1722. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1723. result->enable = true;
  1724. }
  1725. static uint32_t
  1726. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1727. {
  1728. struct drm_i915_private *dev_priv = dev->dev_private;
  1729. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1730. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  1731. u32 linetime, ips_linetime;
  1732. if (!intel_crtc_active(crtc))
  1733. return 0;
  1734. /* The WM are computed with base on how long it takes to fill a single
  1735. * row at the given clock rate, multiplied by 8.
  1736. * */
  1737. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1738. mode->crtc_clock);
  1739. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1740. intel_ddi_get_cdclk_freq(dev_priv));
  1741. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1742. PIPE_WM_LINETIME_TIME(linetime);
  1743. }
  1744. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1745. {
  1746. struct drm_i915_private *dev_priv = dev->dev_private;
  1747. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1748. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1749. wm[0] = (sskpd >> 56) & 0xFF;
  1750. if (wm[0] == 0)
  1751. wm[0] = sskpd & 0xF;
  1752. wm[1] = (sskpd >> 4) & 0xFF;
  1753. wm[2] = (sskpd >> 12) & 0xFF;
  1754. wm[3] = (sskpd >> 20) & 0x1FF;
  1755. wm[4] = (sskpd >> 32) & 0x1FF;
  1756. } else if (INTEL_INFO(dev)->gen >= 6) {
  1757. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1758. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1759. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1760. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1761. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1762. } else if (INTEL_INFO(dev)->gen >= 5) {
  1763. uint32_t mltr = I915_READ(MLTR_ILK);
  1764. /* ILK primary LP0 latency is 700 ns */
  1765. wm[0] = 7;
  1766. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1767. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1768. }
  1769. }
  1770. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1771. {
  1772. /* ILK sprite LP0 latency is 1300 ns */
  1773. if (INTEL_INFO(dev)->gen == 5)
  1774. wm[0] = 13;
  1775. }
  1776. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1777. {
  1778. /* ILK cursor LP0 latency is 1300 ns */
  1779. if (INTEL_INFO(dev)->gen == 5)
  1780. wm[0] = 13;
  1781. /* WaDoubleCursorLP3Latency:ivb */
  1782. if (IS_IVYBRIDGE(dev))
  1783. wm[3] *= 2;
  1784. }
  1785. int ilk_wm_max_level(const struct drm_device *dev)
  1786. {
  1787. /* how many WM levels are we expecting */
  1788. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1789. return 4;
  1790. else if (INTEL_INFO(dev)->gen >= 6)
  1791. return 3;
  1792. else
  1793. return 2;
  1794. }
  1795. static void intel_print_wm_latency(struct drm_device *dev,
  1796. const char *name,
  1797. const uint16_t wm[5])
  1798. {
  1799. int level, max_level = ilk_wm_max_level(dev);
  1800. for (level = 0; level <= max_level; level++) {
  1801. unsigned int latency = wm[level];
  1802. if (latency == 0) {
  1803. DRM_ERROR("%s WM%d latency not provided\n",
  1804. name, level);
  1805. continue;
  1806. }
  1807. /* WM1+ latency values in 0.5us units */
  1808. if (level > 0)
  1809. latency *= 5;
  1810. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1811. name, level, wm[level],
  1812. latency / 10, latency % 10);
  1813. }
  1814. }
  1815. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1816. uint16_t wm[5], uint16_t min)
  1817. {
  1818. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1819. if (wm[0] >= min)
  1820. return false;
  1821. wm[0] = max(wm[0], min);
  1822. for (level = 1; level <= max_level; level++)
  1823. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1824. return true;
  1825. }
  1826. static void snb_wm_latency_quirk(struct drm_device *dev)
  1827. {
  1828. struct drm_i915_private *dev_priv = dev->dev_private;
  1829. bool changed;
  1830. /*
  1831. * The BIOS provided WM memory latency values are often
  1832. * inadequate for high resolution displays. Adjust them.
  1833. */
  1834. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1835. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1836. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1837. if (!changed)
  1838. return;
  1839. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1840. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1841. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1842. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1843. }
  1844. static void ilk_setup_wm_latency(struct drm_device *dev)
  1845. {
  1846. struct drm_i915_private *dev_priv = dev->dev_private;
  1847. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1848. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1849. sizeof(dev_priv->wm.pri_latency));
  1850. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1851. sizeof(dev_priv->wm.pri_latency));
  1852. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1853. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1854. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1855. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1856. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1857. if (IS_GEN6(dev))
  1858. snb_wm_latency_quirk(dev);
  1859. }
  1860. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  1861. struct ilk_pipe_wm_parameters *p)
  1862. {
  1863. struct drm_device *dev = crtc->dev;
  1864. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1865. enum pipe pipe = intel_crtc->pipe;
  1866. struct drm_plane *plane;
  1867. if (!intel_crtc_active(crtc))
  1868. return;
  1869. p->active = true;
  1870. p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
  1871. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  1872. p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
  1873. p->cur.bytes_per_pixel = 4;
  1874. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  1875. p->cur.horiz_pixels = intel_crtc->cursor_width;
  1876. /* TODO: for now, assume primary and cursor planes are always enabled. */
  1877. p->pri.enabled = true;
  1878. p->cur.enabled = true;
  1879. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  1880. struct intel_plane *intel_plane = to_intel_plane(plane);
  1881. if (intel_plane->pipe == pipe) {
  1882. p->spr = intel_plane->wm;
  1883. break;
  1884. }
  1885. }
  1886. }
  1887. static void ilk_compute_wm_config(struct drm_device *dev,
  1888. struct intel_wm_config *config)
  1889. {
  1890. struct intel_crtc *intel_crtc;
  1891. /* Compute the currently _active_ config */
  1892. for_each_intel_crtc(dev, intel_crtc) {
  1893. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  1894. if (!wm->pipe_enabled)
  1895. continue;
  1896. config->sprites_enabled |= wm->sprites_enabled;
  1897. config->sprites_scaled |= wm->sprites_scaled;
  1898. config->num_pipes_active++;
  1899. }
  1900. }
  1901. /* Compute new watermarks for the pipe */
  1902. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  1903. const struct ilk_pipe_wm_parameters *params,
  1904. struct intel_pipe_wm *pipe_wm)
  1905. {
  1906. struct drm_device *dev = crtc->dev;
  1907. const struct drm_i915_private *dev_priv = dev->dev_private;
  1908. int level, max_level = ilk_wm_max_level(dev);
  1909. /* LP0 watermark maximums depend on this pipe alone */
  1910. struct intel_wm_config config = {
  1911. .num_pipes_active = 1,
  1912. .sprites_enabled = params->spr.enabled,
  1913. .sprites_scaled = params->spr.scaled,
  1914. };
  1915. struct ilk_wm_maximums max;
  1916. pipe_wm->pipe_enabled = params->active;
  1917. pipe_wm->sprites_enabled = params->spr.enabled;
  1918. pipe_wm->sprites_scaled = params->spr.scaled;
  1919. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1920. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  1921. max_level = 1;
  1922. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1923. if (params->spr.scaled)
  1924. max_level = 0;
  1925. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  1926. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1927. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1928. /* LP0 watermarks always use 1/2 DDB partitioning */
  1929. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1930. /* At least LP0 must be valid */
  1931. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1932. return false;
  1933. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1934. for (level = 1; level <= max_level; level++) {
  1935. struct intel_wm_level wm = {};
  1936. ilk_compute_wm_level(dev_priv, level, params, &wm);
  1937. /*
  1938. * Disable any watermark level that exceeds the
  1939. * register maximums since such watermarks are
  1940. * always invalid.
  1941. */
  1942. if (!ilk_validate_wm_level(level, &max, &wm))
  1943. break;
  1944. pipe_wm->wm[level] = wm;
  1945. }
  1946. return true;
  1947. }
  1948. /*
  1949. * Merge the watermarks from all active pipes for a specific level.
  1950. */
  1951. static void ilk_merge_wm_level(struct drm_device *dev,
  1952. int level,
  1953. struct intel_wm_level *ret_wm)
  1954. {
  1955. const struct intel_crtc *intel_crtc;
  1956. ret_wm->enable = true;
  1957. for_each_intel_crtc(dev, intel_crtc) {
  1958. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  1959. const struct intel_wm_level *wm = &active->wm[level];
  1960. if (!active->pipe_enabled)
  1961. continue;
  1962. /*
  1963. * The watermark values may have been used in the past,
  1964. * so we must maintain them in the registers for some
  1965. * time even if the level is now disabled.
  1966. */
  1967. if (!wm->enable)
  1968. ret_wm->enable = false;
  1969. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  1970. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  1971. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  1972. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  1973. }
  1974. }
  1975. /*
  1976. * Merge all low power watermarks for all active pipes.
  1977. */
  1978. static void ilk_wm_merge(struct drm_device *dev,
  1979. const struct intel_wm_config *config,
  1980. const struct ilk_wm_maximums *max,
  1981. struct intel_pipe_wm *merged)
  1982. {
  1983. int level, max_level = ilk_wm_max_level(dev);
  1984. int last_enabled_level = max_level;
  1985. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  1986. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  1987. config->num_pipes_active > 1)
  1988. return;
  1989. /* ILK: FBC WM must be disabled always */
  1990. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  1991. /* merge each WM1+ level */
  1992. for (level = 1; level <= max_level; level++) {
  1993. struct intel_wm_level *wm = &merged->wm[level];
  1994. ilk_merge_wm_level(dev, level, wm);
  1995. if (level > last_enabled_level)
  1996. wm->enable = false;
  1997. else if (!ilk_validate_wm_level(level, max, wm))
  1998. /* make sure all following levels get disabled */
  1999. last_enabled_level = level - 1;
  2000. /*
  2001. * The spec says it is preferred to disable
  2002. * FBC WMs instead of disabling a WM level.
  2003. */
  2004. if (wm->fbc_val > max->fbc) {
  2005. if (wm->enable)
  2006. merged->fbc_wm_enabled = false;
  2007. wm->fbc_val = 0;
  2008. }
  2009. }
  2010. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2011. /*
  2012. * FIXME this is racy. FBC might get enabled later.
  2013. * What we should check here is whether FBC can be
  2014. * enabled sometime later.
  2015. */
  2016. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  2017. for (level = 2; level <= max_level; level++) {
  2018. struct intel_wm_level *wm = &merged->wm[level];
  2019. wm->enable = false;
  2020. }
  2021. }
  2022. }
  2023. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2024. {
  2025. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2026. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2027. }
  2028. /* The value we need to program into the WM_LPx latency field */
  2029. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2030. {
  2031. struct drm_i915_private *dev_priv = dev->dev_private;
  2032. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2033. return 2 * level;
  2034. else
  2035. return dev_priv->wm.pri_latency[level];
  2036. }
  2037. static void ilk_compute_wm_results(struct drm_device *dev,
  2038. const struct intel_pipe_wm *merged,
  2039. enum intel_ddb_partitioning partitioning,
  2040. struct ilk_wm_values *results)
  2041. {
  2042. struct intel_crtc *intel_crtc;
  2043. int level, wm_lp;
  2044. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2045. results->partitioning = partitioning;
  2046. /* LP1+ register values */
  2047. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2048. const struct intel_wm_level *r;
  2049. level = ilk_wm_lp_to_level(wm_lp, merged);
  2050. r = &merged->wm[level];
  2051. /*
  2052. * Maintain the watermark values even if the level is
  2053. * disabled. Doing otherwise could cause underruns.
  2054. */
  2055. results->wm_lp[wm_lp - 1] =
  2056. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2057. (r->pri_val << WM1_LP_SR_SHIFT) |
  2058. r->cur_val;
  2059. if (r->enable)
  2060. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2061. if (INTEL_INFO(dev)->gen >= 8)
  2062. results->wm_lp[wm_lp - 1] |=
  2063. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2064. else
  2065. results->wm_lp[wm_lp - 1] |=
  2066. r->fbc_val << WM1_LP_FBC_SHIFT;
  2067. /*
  2068. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2069. * level is disabled. Doing otherwise could cause underruns.
  2070. */
  2071. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2072. WARN_ON(wm_lp != 1);
  2073. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2074. } else
  2075. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2076. }
  2077. /* LP0 register values */
  2078. for_each_intel_crtc(dev, intel_crtc) {
  2079. enum pipe pipe = intel_crtc->pipe;
  2080. const struct intel_wm_level *r =
  2081. &intel_crtc->wm.active.wm[0];
  2082. if (WARN_ON(!r->enable))
  2083. continue;
  2084. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2085. results->wm_pipe[pipe] =
  2086. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2087. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2088. r->cur_val;
  2089. }
  2090. }
  2091. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2092. * case both are at the same level. Prefer r1 in case they're the same. */
  2093. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2094. struct intel_pipe_wm *r1,
  2095. struct intel_pipe_wm *r2)
  2096. {
  2097. int level, max_level = ilk_wm_max_level(dev);
  2098. int level1 = 0, level2 = 0;
  2099. for (level = 1; level <= max_level; level++) {
  2100. if (r1->wm[level].enable)
  2101. level1 = level;
  2102. if (r2->wm[level].enable)
  2103. level2 = level;
  2104. }
  2105. if (level1 == level2) {
  2106. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2107. return r2;
  2108. else
  2109. return r1;
  2110. } else if (level1 > level2) {
  2111. return r1;
  2112. } else {
  2113. return r2;
  2114. }
  2115. }
  2116. /* dirty bits used to track which watermarks need changes */
  2117. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2118. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2119. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2120. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2121. #define WM_DIRTY_FBC (1 << 24)
  2122. #define WM_DIRTY_DDB (1 << 25)
  2123. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2124. const struct ilk_wm_values *old,
  2125. const struct ilk_wm_values *new)
  2126. {
  2127. unsigned int dirty = 0;
  2128. enum pipe pipe;
  2129. int wm_lp;
  2130. for_each_pipe(pipe) {
  2131. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2132. dirty |= WM_DIRTY_LINETIME(pipe);
  2133. /* Must disable LP1+ watermarks too */
  2134. dirty |= WM_DIRTY_LP_ALL;
  2135. }
  2136. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2137. dirty |= WM_DIRTY_PIPE(pipe);
  2138. /* Must disable LP1+ watermarks too */
  2139. dirty |= WM_DIRTY_LP_ALL;
  2140. }
  2141. }
  2142. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2143. dirty |= WM_DIRTY_FBC;
  2144. /* Must disable LP1+ watermarks too */
  2145. dirty |= WM_DIRTY_LP_ALL;
  2146. }
  2147. if (old->partitioning != new->partitioning) {
  2148. dirty |= WM_DIRTY_DDB;
  2149. /* Must disable LP1+ watermarks too */
  2150. dirty |= WM_DIRTY_LP_ALL;
  2151. }
  2152. /* LP1+ watermarks already deemed dirty, no need to continue */
  2153. if (dirty & WM_DIRTY_LP_ALL)
  2154. return dirty;
  2155. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2156. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2157. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2158. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2159. break;
  2160. }
  2161. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2162. for (; wm_lp <= 3; wm_lp++)
  2163. dirty |= WM_DIRTY_LP(wm_lp);
  2164. return dirty;
  2165. }
  2166. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2167. unsigned int dirty)
  2168. {
  2169. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2170. bool changed = false;
  2171. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2172. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2173. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2174. changed = true;
  2175. }
  2176. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2177. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2178. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2179. changed = true;
  2180. }
  2181. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2182. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2183. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2184. changed = true;
  2185. }
  2186. /*
  2187. * Don't touch WM1S_LP_EN here.
  2188. * Doing so could cause underruns.
  2189. */
  2190. return changed;
  2191. }
  2192. /*
  2193. * The spec says we shouldn't write when we don't need, because every write
  2194. * causes WMs to be re-evaluated, expending some power.
  2195. */
  2196. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2197. struct ilk_wm_values *results)
  2198. {
  2199. struct drm_device *dev = dev_priv->dev;
  2200. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2201. unsigned int dirty;
  2202. uint32_t val;
  2203. dirty = ilk_compute_wm_dirty(dev, previous, results);
  2204. if (!dirty)
  2205. return;
  2206. _ilk_disable_lp_wm(dev_priv, dirty);
  2207. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2208. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2209. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2210. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2211. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2212. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2213. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2214. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2215. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2216. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2217. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2218. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2219. if (dirty & WM_DIRTY_DDB) {
  2220. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2221. val = I915_READ(WM_MISC);
  2222. if (results->partitioning == INTEL_DDB_PART_1_2)
  2223. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2224. else
  2225. val |= WM_MISC_DATA_PARTITION_5_6;
  2226. I915_WRITE(WM_MISC, val);
  2227. } else {
  2228. val = I915_READ(DISP_ARB_CTL2);
  2229. if (results->partitioning == INTEL_DDB_PART_1_2)
  2230. val &= ~DISP_DATA_PARTITION_5_6;
  2231. else
  2232. val |= DISP_DATA_PARTITION_5_6;
  2233. I915_WRITE(DISP_ARB_CTL2, val);
  2234. }
  2235. }
  2236. if (dirty & WM_DIRTY_FBC) {
  2237. val = I915_READ(DISP_ARB_CTL);
  2238. if (results->enable_fbc_wm)
  2239. val &= ~DISP_FBC_WM_DIS;
  2240. else
  2241. val |= DISP_FBC_WM_DIS;
  2242. I915_WRITE(DISP_ARB_CTL, val);
  2243. }
  2244. if (dirty & WM_DIRTY_LP(1) &&
  2245. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2246. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2247. if (INTEL_INFO(dev)->gen >= 7) {
  2248. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2249. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2250. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2251. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2252. }
  2253. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2254. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2255. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2256. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2257. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2258. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2259. dev_priv->wm.hw = *results;
  2260. }
  2261. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2262. {
  2263. struct drm_i915_private *dev_priv = dev->dev_private;
  2264. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2265. }
  2266. static void ilk_update_wm(struct drm_crtc *crtc)
  2267. {
  2268. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2269. struct drm_device *dev = crtc->dev;
  2270. struct drm_i915_private *dev_priv = dev->dev_private;
  2271. struct ilk_wm_maximums max;
  2272. struct ilk_pipe_wm_parameters params = {};
  2273. struct ilk_wm_values results = {};
  2274. enum intel_ddb_partitioning partitioning;
  2275. struct intel_pipe_wm pipe_wm = {};
  2276. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2277. struct intel_wm_config config = {};
  2278. ilk_compute_wm_parameters(crtc, &params);
  2279. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2280. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2281. return;
  2282. intel_crtc->wm.active = pipe_wm;
  2283. ilk_compute_wm_config(dev, &config);
  2284. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2285. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2286. /* 5/6 split only in single pipe config on IVB+ */
  2287. if (INTEL_INFO(dev)->gen >= 7 &&
  2288. config.num_pipes_active == 1 && config.sprites_enabled) {
  2289. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2290. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2291. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2292. } else {
  2293. best_lp_wm = &lp_wm_1_2;
  2294. }
  2295. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2296. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2297. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2298. ilk_write_wm_values(dev_priv, &results);
  2299. }
  2300. static void ilk_update_sprite_wm(struct drm_plane *plane,
  2301. struct drm_crtc *crtc,
  2302. uint32_t sprite_width, int pixel_size,
  2303. bool enabled, bool scaled)
  2304. {
  2305. struct drm_device *dev = plane->dev;
  2306. struct intel_plane *intel_plane = to_intel_plane(plane);
  2307. intel_plane->wm.enabled = enabled;
  2308. intel_plane->wm.scaled = scaled;
  2309. intel_plane->wm.horiz_pixels = sprite_width;
  2310. intel_plane->wm.bytes_per_pixel = pixel_size;
  2311. /*
  2312. * IVB workaround: must disable low power watermarks for at least
  2313. * one frame before enabling scaling. LP watermarks can be re-enabled
  2314. * when scaling is disabled.
  2315. *
  2316. * WaCxSRDisabledForSpriteScaling:ivb
  2317. */
  2318. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2319. intel_wait_for_vblank(dev, intel_plane->pipe);
  2320. ilk_update_wm(crtc);
  2321. }
  2322. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2323. {
  2324. struct drm_device *dev = crtc->dev;
  2325. struct drm_i915_private *dev_priv = dev->dev_private;
  2326. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2327. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2328. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2329. enum pipe pipe = intel_crtc->pipe;
  2330. static const unsigned int wm0_pipe_reg[] = {
  2331. [PIPE_A] = WM0_PIPEA_ILK,
  2332. [PIPE_B] = WM0_PIPEB_ILK,
  2333. [PIPE_C] = WM0_PIPEC_IVB,
  2334. };
  2335. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2336. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2337. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2338. active->pipe_enabled = intel_crtc_active(crtc);
  2339. if (active->pipe_enabled) {
  2340. u32 tmp = hw->wm_pipe[pipe];
  2341. /*
  2342. * For active pipes LP0 watermark is marked as
  2343. * enabled, and LP1+ watermaks as disabled since
  2344. * we can't really reverse compute them in case
  2345. * multiple pipes are active.
  2346. */
  2347. active->wm[0].enable = true;
  2348. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2349. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2350. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2351. active->linetime = hw->wm_linetime[pipe];
  2352. } else {
  2353. int level, max_level = ilk_wm_max_level(dev);
  2354. /*
  2355. * For inactive pipes, all watermark levels
  2356. * should be marked as enabled but zeroed,
  2357. * which is what we'd compute them to.
  2358. */
  2359. for (level = 0; level <= max_level; level++)
  2360. active->wm[level].enable = true;
  2361. }
  2362. }
  2363. void ilk_wm_get_hw_state(struct drm_device *dev)
  2364. {
  2365. struct drm_i915_private *dev_priv = dev->dev_private;
  2366. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2367. struct drm_crtc *crtc;
  2368. for_each_crtc(dev, crtc)
  2369. ilk_pipe_wm_get_hw_state(crtc);
  2370. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2371. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2372. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2373. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2374. if (INTEL_INFO(dev)->gen >= 7) {
  2375. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2376. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2377. }
  2378. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2379. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2380. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2381. else if (IS_IVYBRIDGE(dev))
  2382. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2383. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2384. hw->enable_fbc_wm =
  2385. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2386. }
  2387. /**
  2388. * intel_update_watermarks - update FIFO watermark values based on current modes
  2389. *
  2390. * Calculate watermark values for the various WM regs based on current mode
  2391. * and plane configuration.
  2392. *
  2393. * There are several cases to deal with here:
  2394. * - normal (i.e. non-self-refresh)
  2395. * - self-refresh (SR) mode
  2396. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2397. * - lines are small relative to FIFO size (buffer can hold more than 2
  2398. * lines), so need to account for TLB latency
  2399. *
  2400. * The normal calculation is:
  2401. * watermark = dotclock * bytes per pixel * latency
  2402. * where latency is platform & configuration dependent (we assume pessimal
  2403. * values here).
  2404. *
  2405. * The SR calculation is:
  2406. * watermark = (trunc(latency/line time)+1) * surface width *
  2407. * bytes per pixel
  2408. * where
  2409. * line time = htotal / dotclock
  2410. * surface width = hdisplay for normal plane and 64 for cursor
  2411. * and latency is assumed to be high, as above.
  2412. *
  2413. * The final value programmed to the register should always be rounded up,
  2414. * and include an extra 2 entries to account for clock crossings.
  2415. *
  2416. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2417. * to set the non-SR watermarks to 8.
  2418. */
  2419. void intel_update_watermarks(struct drm_crtc *crtc)
  2420. {
  2421. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2422. if (dev_priv->display.update_wm)
  2423. dev_priv->display.update_wm(crtc);
  2424. }
  2425. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2426. struct drm_crtc *crtc,
  2427. uint32_t sprite_width, int pixel_size,
  2428. bool enabled, bool scaled)
  2429. {
  2430. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2431. if (dev_priv->display.update_sprite_wm)
  2432. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2433. pixel_size, enabled, scaled);
  2434. }
  2435. static struct drm_i915_gem_object *
  2436. intel_alloc_context_page(struct drm_device *dev)
  2437. {
  2438. struct drm_i915_gem_object *ctx;
  2439. int ret;
  2440. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2441. ctx = i915_gem_alloc_object(dev, 4096);
  2442. if (!ctx) {
  2443. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2444. return NULL;
  2445. }
  2446. ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
  2447. if (ret) {
  2448. DRM_ERROR("failed to pin power context: %d\n", ret);
  2449. goto err_unref;
  2450. }
  2451. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2452. if (ret) {
  2453. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2454. goto err_unpin;
  2455. }
  2456. return ctx;
  2457. err_unpin:
  2458. i915_gem_object_ggtt_unpin(ctx);
  2459. err_unref:
  2460. drm_gem_object_unreference(&ctx->base);
  2461. return NULL;
  2462. }
  2463. /**
  2464. * Lock protecting IPS related data structures
  2465. */
  2466. DEFINE_SPINLOCK(mchdev_lock);
  2467. /* Global for IPS driver to get at the current i915 device. Protected by
  2468. * mchdev_lock. */
  2469. static struct drm_i915_private *i915_mch_dev;
  2470. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2471. {
  2472. struct drm_i915_private *dev_priv = dev->dev_private;
  2473. u16 rgvswctl;
  2474. assert_spin_locked(&mchdev_lock);
  2475. rgvswctl = I915_READ16(MEMSWCTL);
  2476. if (rgvswctl & MEMCTL_CMD_STS) {
  2477. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2478. return false; /* still busy with another command */
  2479. }
  2480. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2481. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2482. I915_WRITE16(MEMSWCTL, rgvswctl);
  2483. POSTING_READ16(MEMSWCTL);
  2484. rgvswctl |= MEMCTL_CMD_STS;
  2485. I915_WRITE16(MEMSWCTL, rgvswctl);
  2486. return true;
  2487. }
  2488. static void ironlake_enable_drps(struct drm_device *dev)
  2489. {
  2490. struct drm_i915_private *dev_priv = dev->dev_private;
  2491. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2492. u8 fmax, fmin, fstart, vstart;
  2493. spin_lock_irq(&mchdev_lock);
  2494. /* Enable temp reporting */
  2495. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2496. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2497. /* 100ms RC evaluation intervals */
  2498. I915_WRITE(RCUPEI, 100000);
  2499. I915_WRITE(RCDNEI, 100000);
  2500. /* Set max/min thresholds to 90ms and 80ms respectively */
  2501. I915_WRITE(RCBMAXAVG, 90000);
  2502. I915_WRITE(RCBMINAVG, 80000);
  2503. I915_WRITE(MEMIHYST, 1);
  2504. /* Set up min, max, and cur for interrupt handling */
  2505. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2506. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2507. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2508. MEMMODE_FSTART_SHIFT;
  2509. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2510. PXVFREQ_PX_SHIFT;
  2511. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2512. dev_priv->ips.fstart = fstart;
  2513. dev_priv->ips.max_delay = fstart;
  2514. dev_priv->ips.min_delay = fmin;
  2515. dev_priv->ips.cur_delay = fstart;
  2516. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2517. fmax, fmin, fstart);
  2518. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2519. /*
  2520. * Interrupts will be enabled in ironlake_irq_postinstall
  2521. */
  2522. I915_WRITE(VIDSTART, vstart);
  2523. POSTING_READ(VIDSTART);
  2524. rgvmodectl |= MEMMODE_SWMODE_EN;
  2525. I915_WRITE(MEMMODECTL, rgvmodectl);
  2526. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2527. DRM_ERROR("stuck trying to change perf mode\n");
  2528. mdelay(1);
  2529. ironlake_set_drps(dev, fstart);
  2530. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2531. I915_READ(0x112e0);
  2532. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2533. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2534. getrawmonotonic(&dev_priv->ips.last_time2);
  2535. spin_unlock_irq(&mchdev_lock);
  2536. }
  2537. static void ironlake_disable_drps(struct drm_device *dev)
  2538. {
  2539. struct drm_i915_private *dev_priv = dev->dev_private;
  2540. u16 rgvswctl;
  2541. spin_lock_irq(&mchdev_lock);
  2542. rgvswctl = I915_READ16(MEMSWCTL);
  2543. /* Ack interrupts, disable EFC interrupt */
  2544. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2545. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2546. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2547. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2548. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2549. /* Go back to the starting frequency */
  2550. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2551. mdelay(1);
  2552. rgvswctl |= MEMCTL_CMD_STS;
  2553. I915_WRITE(MEMSWCTL, rgvswctl);
  2554. mdelay(1);
  2555. spin_unlock_irq(&mchdev_lock);
  2556. }
  2557. /* There's a funny hw issue where the hw returns all 0 when reading from
  2558. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2559. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2560. * all limits and the gpu stuck at whatever frequency it is at atm).
  2561. */
  2562. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  2563. {
  2564. u32 limits;
  2565. /* Only set the down limit when we've reached the lowest level to avoid
  2566. * getting more interrupts, otherwise leave this clear. This prevents a
  2567. * race in the hw when coming out of rc6: There's a tiny window where
  2568. * the hw runs at the minimal clock before selecting the desired
  2569. * frequency, if the down threshold expires in that window we will not
  2570. * receive a down interrupt. */
  2571. limits = dev_priv->rps.max_freq_softlimit << 24;
  2572. if (val <= dev_priv->rps.min_freq_softlimit)
  2573. limits |= dev_priv->rps.min_freq_softlimit << 16;
  2574. return limits;
  2575. }
  2576. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2577. {
  2578. int new_power;
  2579. new_power = dev_priv->rps.power;
  2580. switch (dev_priv->rps.power) {
  2581. case LOW_POWER:
  2582. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  2583. new_power = BETWEEN;
  2584. break;
  2585. case BETWEEN:
  2586. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  2587. new_power = LOW_POWER;
  2588. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  2589. new_power = HIGH_POWER;
  2590. break;
  2591. case HIGH_POWER:
  2592. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  2593. new_power = BETWEEN;
  2594. break;
  2595. }
  2596. /* Max/min bins are special */
  2597. if (val == dev_priv->rps.min_freq_softlimit)
  2598. new_power = LOW_POWER;
  2599. if (val == dev_priv->rps.max_freq_softlimit)
  2600. new_power = HIGH_POWER;
  2601. if (new_power == dev_priv->rps.power)
  2602. return;
  2603. /* Note the units here are not exactly 1us, but 1280ns. */
  2604. switch (new_power) {
  2605. case LOW_POWER:
  2606. /* Upclock if more than 95% busy over 16ms */
  2607. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2608. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2609. /* Downclock if less than 85% busy over 32ms */
  2610. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2611. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2612. I915_WRITE(GEN6_RP_CONTROL,
  2613. GEN6_RP_MEDIA_TURBO |
  2614. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2615. GEN6_RP_MEDIA_IS_GFX |
  2616. GEN6_RP_ENABLE |
  2617. GEN6_RP_UP_BUSY_AVG |
  2618. GEN6_RP_DOWN_IDLE_AVG);
  2619. break;
  2620. case BETWEEN:
  2621. /* Upclock if more than 90% busy over 13ms */
  2622. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2623. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2624. /* Downclock if less than 75% busy over 32ms */
  2625. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2626. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2627. I915_WRITE(GEN6_RP_CONTROL,
  2628. GEN6_RP_MEDIA_TURBO |
  2629. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2630. GEN6_RP_MEDIA_IS_GFX |
  2631. GEN6_RP_ENABLE |
  2632. GEN6_RP_UP_BUSY_AVG |
  2633. GEN6_RP_DOWN_IDLE_AVG);
  2634. break;
  2635. case HIGH_POWER:
  2636. /* Upclock if more than 85% busy over 10ms */
  2637. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2638. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2639. /* Downclock if less than 60% busy over 32ms */
  2640. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2641. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2642. I915_WRITE(GEN6_RP_CONTROL,
  2643. GEN6_RP_MEDIA_TURBO |
  2644. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2645. GEN6_RP_MEDIA_IS_GFX |
  2646. GEN6_RP_ENABLE |
  2647. GEN6_RP_UP_BUSY_AVG |
  2648. GEN6_RP_DOWN_IDLE_AVG);
  2649. break;
  2650. }
  2651. dev_priv->rps.power = new_power;
  2652. dev_priv->rps.last_adj = 0;
  2653. }
  2654. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  2655. {
  2656. u32 mask = 0;
  2657. if (val > dev_priv->rps.min_freq_softlimit)
  2658. mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  2659. if (val < dev_priv->rps.max_freq_softlimit)
  2660. mask |= GEN6_PM_RP_UP_THRESHOLD;
  2661. /* IVB and SNB hard hangs on looping batchbuffer
  2662. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2663. */
  2664. if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
  2665. mask |= GEN6_PM_RP_UP_EI_EXPIRED;
  2666. if (IS_GEN8(dev_priv->dev))
  2667. mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  2668. return ~mask;
  2669. }
  2670. /* gen6_set_rps is called to update the frequency request, but should also be
  2671. * called when the range (min_delay and max_delay) is modified so that we can
  2672. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  2673. void gen6_set_rps(struct drm_device *dev, u8 val)
  2674. {
  2675. struct drm_i915_private *dev_priv = dev->dev_private;
  2676. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2677. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2678. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2679. /* min/max delay may still have been modified so be sure to
  2680. * write the limits value.
  2681. */
  2682. if (val != dev_priv->rps.cur_freq) {
  2683. gen6_set_rps_thresholds(dev_priv, val);
  2684. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2685. I915_WRITE(GEN6_RPNSWREQ,
  2686. HSW_FREQUENCY(val));
  2687. else
  2688. I915_WRITE(GEN6_RPNSWREQ,
  2689. GEN6_FREQUENCY(val) |
  2690. GEN6_OFFSET(0) |
  2691. GEN6_AGGRESSIVE_TURBO);
  2692. }
  2693. /* Make sure we continue to get interrupts
  2694. * until we hit the minimum or maximum frequencies.
  2695. */
  2696. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
  2697. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2698. POSTING_READ(GEN6_RPNSWREQ);
  2699. dev_priv->rps.cur_freq = val;
  2700. trace_intel_gpu_freq_change(val * 50);
  2701. }
  2702. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  2703. *
  2704. * * If Gfx is Idle, then
  2705. * 1. Mask Turbo interrupts
  2706. * 2. Bring up Gfx clock
  2707. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  2708. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  2709. * 5. Unmask Turbo interrupts
  2710. */
  2711. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  2712. {
  2713. /*
  2714. * When we are idle. Drop to min voltage state.
  2715. */
  2716. if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
  2717. return;
  2718. /* Mask turbo interrupt so that they will not come in between */
  2719. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2720. vlv_force_gfx_clock(dev_priv, true);
  2721. dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
  2722. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
  2723. dev_priv->rps.min_freq_softlimit);
  2724. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  2725. & GENFREQSTATUS) == 0, 5))
  2726. DRM_ERROR("timed out waiting for Punit\n");
  2727. vlv_force_gfx_clock(dev_priv, false);
  2728. I915_WRITE(GEN6_PMINTRMSK,
  2729. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  2730. }
  2731. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2732. {
  2733. struct drm_device *dev = dev_priv->dev;
  2734. mutex_lock(&dev_priv->rps.hw_lock);
  2735. if (dev_priv->rps.enabled) {
  2736. if (IS_VALLEYVIEW(dev))
  2737. vlv_set_rps_idle(dev_priv);
  2738. else
  2739. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2740. dev_priv->rps.last_adj = 0;
  2741. }
  2742. mutex_unlock(&dev_priv->rps.hw_lock);
  2743. }
  2744. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2745. {
  2746. struct drm_device *dev = dev_priv->dev;
  2747. mutex_lock(&dev_priv->rps.hw_lock);
  2748. if (dev_priv->rps.enabled) {
  2749. if (IS_VALLEYVIEW(dev))
  2750. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2751. else
  2752. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2753. dev_priv->rps.last_adj = 0;
  2754. }
  2755. mutex_unlock(&dev_priv->rps.hw_lock);
  2756. }
  2757. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2758. {
  2759. struct drm_i915_private *dev_priv = dev->dev_private;
  2760. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2761. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2762. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2763. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2764. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2765. dev_priv->rps.cur_freq,
  2766. vlv_gpu_freq(dev_priv, val), val);
  2767. if (val != dev_priv->rps.cur_freq)
  2768. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2769. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2770. dev_priv->rps.cur_freq = val;
  2771. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  2772. }
  2773. static void gen8_disable_rps_interrupts(struct drm_device *dev)
  2774. {
  2775. struct drm_i915_private *dev_priv = dev->dev_private;
  2776. I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
  2777. I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
  2778. ~dev_priv->pm_rps_events);
  2779. /* Complete PM interrupt masking here doesn't race with the rps work
  2780. * item again unmasking PM interrupts because that is using a different
  2781. * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
  2782. * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
  2783. * gen8_enable_rps will clean up. */
  2784. spin_lock_irq(&dev_priv->irq_lock);
  2785. dev_priv->rps.pm_iir = 0;
  2786. spin_unlock_irq(&dev_priv->irq_lock);
  2787. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2788. }
  2789. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2790. {
  2791. struct drm_i915_private *dev_priv = dev->dev_private;
  2792. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2793. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
  2794. ~dev_priv->pm_rps_events);
  2795. /* Complete PM interrupt masking here doesn't race with the rps work
  2796. * item again unmasking PM interrupts because that is using a different
  2797. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2798. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2799. spin_lock_irq(&dev_priv->irq_lock);
  2800. dev_priv->rps.pm_iir = 0;
  2801. spin_unlock_irq(&dev_priv->irq_lock);
  2802. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2803. }
  2804. static void gen6_disable_rps(struct drm_device *dev)
  2805. {
  2806. struct drm_i915_private *dev_priv = dev->dev_private;
  2807. I915_WRITE(GEN6_RC_CONTROL, 0);
  2808. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2809. if (IS_BROADWELL(dev))
  2810. gen8_disable_rps_interrupts(dev);
  2811. else
  2812. gen6_disable_rps_interrupts(dev);
  2813. }
  2814. static void valleyview_disable_rps(struct drm_device *dev)
  2815. {
  2816. struct drm_i915_private *dev_priv = dev->dev_private;
  2817. I915_WRITE(GEN6_RC_CONTROL, 0);
  2818. gen6_disable_rps_interrupts(dev);
  2819. }
  2820. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  2821. {
  2822. if (IS_VALLEYVIEW(dev)) {
  2823. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  2824. mode = GEN6_RC_CTL_RC6_ENABLE;
  2825. else
  2826. mode = 0;
  2827. }
  2828. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2829. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2830. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2831. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2832. }
  2833. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  2834. {
  2835. /* No RC6 before Ironlake */
  2836. if (INTEL_INFO(dev)->gen < 5)
  2837. return 0;
  2838. /* RC6 is only on Ironlake mobile not on desktop */
  2839. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  2840. return 0;
  2841. /* Respect the kernel parameter if it is set */
  2842. if (enable_rc6 >= 0) {
  2843. int mask;
  2844. if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
  2845. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  2846. INTEL_RC6pp_ENABLE;
  2847. else
  2848. mask = INTEL_RC6_ENABLE;
  2849. if ((enable_rc6 & mask) != enable_rc6)
  2850. DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  2851. enable_rc6 & mask, enable_rc6, mask);
  2852. return enable_rc6 & mask;
  2853. }
  2854. /* Disable RC6 on Ironlake */
  2855. if (INTEL_INFO(dev)->gen == 5)
  2856. return 0;
  2857. if (IS_IVYBRIDGE(dev))
  2858. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2859. return INTEL_RC6_ENABLE;
  2860. }
  2861. int intel_enable_rc6(const struct drm_device *dev)
  2862. {
  2863. return i915.enable_rc6;
  2864. }
  2865. static void gen8_enable_rps_interrupts(struct drm_device *dev)
  2866. {
  2867. struct drm_i915_private *dev_priv = dev->dev_private;
  2868. spin_lock_irq(&dev_priv->irq_lock);
  2869. WARN_ON(dev_priv->rps.pm_iir);
  2870. bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  2871. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2872. spin_unlock_irq(&dev_priv->irq_lock);
  2873. }
  2874. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  2875. {
  2876. struct drm_i915_private *dev_priv = dev->dev_private;
  2877. spin_lock_irq(&dev_priv->irq_lock);
  2878. WARN_ON(dev_priv->rps.pm_iir);
  2879. snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  2880. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2881. spin_unlock_irq(&dev_priv->irq_lock);
  2882. }
  2883. static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
  2884. {
  2885. /* All of these values are in units of 50MHz */
  2886. dev_priv->rps.cur_freq = 0;
  2887. /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
  2888. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  2889. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  2890. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  2891. /* XXX: only BYT has a special efficient freq */
  2892. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  2893. /* hw_max = RP0 until we check for overclocking */
  2894. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  2895. /* Preserve min/max settings in case of re-init */
  2896. if (dev_priv->rps.max_freq_softlimit == 0)
  2897. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  2898. if (dev_priv->rps.min_freq_softlimit == 0)
  2899. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  2900. }
  2901. static void gen8_enable_rps(struct drm_device *dev)
  2902. {
  2903. struct drm_i915_private *dev_priv = dev->dev_private;
  2904. struct intel_engine_cs *ring;
  2905. uint32_t rc6_mask = 0, rp_state_cap;
  2906. int unused;
  2907. /* 1a: Software RC state - RC0 */
  2908. I915_WRITE(GEN6_RC_STATE, 0);
  2909. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  2910. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  2911. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  2912. /* 2a: Disable RC states. */
  2913. I915_WRITE(GEN6_RC_CONTROL, 0);
  2914. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2915. parse_rp_state_cap(dev_priv, rp_state_cap);
  2916. /* 2b: Program RC6 thresholds.*/
  2917. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  2918. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  2919. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  2920. for_each_ring(ring, dev_priv, unused)
  2921. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2922. I915_WRITE(GEN6_RC_SLEEP, 0);
  2923. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  2924. /* 3: Enable RC6 */
  2925. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  2926. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  2927. intel_print_rc6_info(dev, rc6_mask);
  2928. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  2929. GEN6_RC_CTL_EI_MODE(1) |
  2930. rc6_mask);
  2931. /* 4 Program defaults and thresholds for RPS*/
  2932. I915_WRITE(GEN6_RPNSWREQ,
  2933. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  2934. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2935. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  2936. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  2937. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  2938. /* Docs recommend 900MHz, and 300 MHz respectively */
  2939. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2940. dev_priv->rps.max_freq_softlimit << 24 |
  2941. dev_priv->rps.min_freq_softlimit << 16);
  2942. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  2943. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  2944. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  2945. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  2946. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2947. /* WaDisablePwrmtrEvent:chv (pre-production hw) */
  2948. I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
  2949. I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
  2950. /* 5: Enable RPS */
  2951. I915_WRITE(GEN6_RP_CONTROL,
  2952. GEN6_RP_MEDIA_TURBO |
  2953. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2954. GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
  2955. GEN6_RP_ENABLE |
  2956. GEN6_RP_UP_BUSY_AVG |
  2957. GEN6_RP_DOWN_IDLE_AVG);
  2958. /* 6: Ring frequency + overclocking (our driver does this later */
  2959. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  2960. gen8_enable_rps_interrupts(dev);
  2961. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  2962. }
  2963. static void gen6_enable_rps(struct drm_device *dev)
  2964. {
  2965. struct drm_i915_private *dev_priv = dev->dev_private;
  2966. struct intel_engine_cs *ring;
  2967. u32 rp_state_cap;
  2968. u32 gt_perf_status;
  2969. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  2970. u32 gtfifodbg;
  2971. int rc6_mode;
  2972. int i, ret;
  2973. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2974. /* Here begins a magic sequence of register writes to enable
  2975. * auto-downclocking.
  2976. *
  2977. * Perhaps there might be some value in exposing these to
  2978. * userspace...
  2979. */
  2980. I915_WRITE(GEN6_RC_STATE, 0);
  2981. /* Clear the DBG now so we don't confuse earlier errors */
  2982. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2983. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2984. I915_WRITE(GTFIFODBG, gtfifodbg);
  2985. }
  2986. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  2987. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2988. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2989. parse_rp_state_cap(dev_priv, rp_state_cap);
  2990. /* disable the counters and set deterministic thresholds */
  2991. I915_WRITE(GEN6_RC_CONTROL, 0);
  2992. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  2993. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  2994. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  2995. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2996. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2997. for_each_ring(ring, dev_priv, i)
  2998. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2999. I915_WRITE(GEN6_RC_SLEEP, 0);
  3000. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3001. if (IS_IVYBRIDGE(dev))
  3002. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3003. else
  3004. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3005. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3006. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3007. /* Check if we are enabling RC6 */
  3008. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3009. if (rc6_mode & INTEL_RC6_ENABLE)
  3010. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3011. /* We don't use those on Haswell */
  3012. if (!IS_HASWELL(dev)) {
  3013. if (rc6_mode & INTEL_RC6p_ENABLE)
  3014. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3015. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3016. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3017. }
  3018. intel_print_rc6_info(dev, rc6_mask);
  3019. I915_WRITE(GEN6_RC_CONTROL,
  3020. rc6_mask |
  3021. GEN6_RC_CTL_EI_MODE(1) |
  3022. GEN6_RC_CTL_HW_ENABLE);
  3023. /* Power down if completely idle for over 50ms */
  3024. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3025. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3026. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3027. if (ret)
  3028. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3029. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3030. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3031. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3032. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3033. (pcu_mbox & 0xff) * 50);
  3034. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3035. }
  3036. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3037. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3038. gen6_enable_rps_interrupts(dev);
  3039. rc6vids = 0;
  3040. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3041. if (IS_GEN6(dev) && ret) {
  3042. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3043. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3044. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3045. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3046. rc6vids &= 0xffff00;
  3047. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3048. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3049. if (ret)
  3050. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3051. }
  3052. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3053. }
  3054. static void __gen6_update_ring_freq(struct drm_device *dev)
  3055. {
  3056. struct drm_i915_private *dev_priv = dev->dev_private;
  3057. int min_freq = 15;
  3058. unsigned int gpu_freq;
  3059. unsigned int max_ia_freq, min_ring_freq;
  3060. int scaling_factor = 180;
  3061. struct cpufreq_policy *policy;
  3062. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3063. policy = cpufreq_cpu_get(0);
  3064. if (policy) {
  3065. max_ia_freq = policy->cpuinfo.max_freq;
  3066. cpufreq_cpu_put(policy);
  3067. } else {
  3068. /*
  3069. * Default to measured freq if none found, PCU will ensure we
  3070. * don't go over
  3071. */
  3072. max_ia_freq = tsc_khz;
  3073. }
  3074. /* Convert from kHz to MHz */
  3075. max_ia_freq /= 1000;
  3076. min_ring_freq = I915_READ(DCLK) & 0xf;
  3077. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3078. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3079. /*
  3080. * For each potential GPU frequency, load a ring frequency we'd like
  3081. * to use for memory access. We do this by specifying the IA frequency
  3082. * the PCU should use as a reference to determine the ring frequency.
  3083. */
  3084. for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
  3085. gpu_freq--) {
  3086. int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
  3087. unsigned int ia_freq = 0, ring_freq = 0;
  3088. if (INTEL_INFO(dev)->gen >= 8) {
  3089. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3090. ring_freq = max(min_ring_freq, gpu_freq);
  3091. } else if (IS_HASWELL(dev)) {
  3092. ring_freq = mult_frac(gpu_freq, 5, 4);
  3093. ring_freq = max(min_ring_freq, ring_freq);
  3094. /* leave ia_freq as the default, chosen by cpufreq */
  3095. } else {
  3096. /* On older processors, there is no separate ring
  3097. * clock domain, so in order to boost the bandwidth
  3098. * of the ring, we need to upclock the CPU (ia_freq).
  3099. *
  3100. * For GPU frequencies less than 750MHz,
  3101. * just use the lowest ring freq.
  3102. */
  3103. if (gpu_freq < min_freq)
  3104. ia_freq = 800;
  3105. else
  3106. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3107. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3108. }
  3109. sandybridge_pcode_write(dev_priv,
  3110. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3111. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3112. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3113. gpu_freq);
  3114. }
  3115. }
  3116. void gen6_update_ring_freq(struct drm_device *dev)
  3117. {
  3118. struct drm_i915_private *dev_priv = dev->dev_private;
  3119. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3120. return;
  3121. mutex_lock(&dev_priv->rps.hw_lock);
  3122. __gen6_update_ring_freq(dev);
  3123. mutex_unlock(&dev_priv->rps.hw_lock);
  3124. }
  3125. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3126. {
  3127. u32 val, rp0;
  3128. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3129. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3130. /* Clamp to max */
  3131. rp0 = min_t(u32, rp0, 0xea);
  3132. return rp0;
  3133. }
  3134. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3135. {
  3136. u32 val, rpe;
  3137. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3138. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3139. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3140. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3141. return rpe;
  3142. }
  3143. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3144. {
  3145. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3146. }
  3147. /* Check that the pctx buffer wasn't move under us. */
  3148. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3149. {
  3150. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3151. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3152. dev_priv->vlv_pctx->stolen->start);
  3153. }
  3154. static void valleyview_setup_pctx(struct drm_device *dev)
  3155. {
  3156. struct drm_i915_private *dev_priv = dev->dev_private;
  3157. struct drm_i915_gem_object *pctx;
  3158. unsigned long pctx_paddr;
  3159. u32 pcbr;
  3160. int pctx_size = 24*1024;
  3161. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3162. pcbr = I915_READ(VLV_PCBR);
  3163. if (pcbr) {
  3164. /* BIOS set it up already, grab the pre-alloc'd space */
  3165. int pcbr_offset;
  3166. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3167. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3168. pcbr_offset,
  3169. I915_GTT_OFFSET_NONE,
  3170. pctx_size);
  3171. goto out;
  3172. }
  3173. /*
  3174. * From the Gunit register HAS:
  3175. * The Gfx driver is expected to program this register and ensure
  3176. * proper allocation within Gfx stolen memory. For example, this
  3177. * register should be programmed such than the PCBR range does not
  3178. * overlap with other ranges, such as the frame buffer, protected
  3179. * memory, or any other relevant ranges.
  3180. */
  3181. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3182. if (!pctx) {
  3183. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3184. return;
  3185. }
  3186. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3187. I915_WRITE(VLV_PCBR, pctx_paddr);
  3188. out:
  3189. dev_priv->vlv_pctx = pctx;
  3190. }
  3191. static void valleyview_cleanup_pctx(struct drm_device *dev)
  3192. {
  3193. struct drm_i915_private *dev_priv = dev->dev_private;
  3194. if (WARN_ON(!dev_priv->vlv_pctx))
  3195. return;
  3196. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3197. dev_priv->vlv_pctx = NULL;
  3198. }
  3199. static void valleyview_init_gt_powersave(struct drm_device *dev)
  3200. {
  3201. struct drm_i915_private *dev_priv = dev->dev_private;
  3202. valleyview_setup_pctx(dev);
  3203. mutex_lock(&dev_priv->rps.hw_lock);
  3204. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  3205. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3206. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3207. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3208. dev_priv->rps.max_freq);
  3209. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  3210. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3211. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3212. dev_priv->rps.efficient_freq);
  3213. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  3214. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3215. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3216. dev_priv->rps.min_freq);
  3217. /* Preserve min/max settings in case of re-init */
  3218. if (dev_priv->rps.max_freq_softlimit == 0)
  3219. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3220. if (dev_priv->rps.min_freq_softlimit == 0)
  3221. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3222. mutex_unlock(&dev_priv->rps.hw_lock);
  3223. }
  3224. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  3225. {
  3226. valleyview_cleanup_pctx(dev);
  3227. }
  3228. static void valleyview_enable_rps(struct drm_device *dev)
  3229. {
  3230. struct drm_i915_private *dev_priv = dev->dev_private;
  3231. struct intel_engine_cs *ring;
  3232. u32 gtfifodbg, val, rc6_mode = 0;
  3233. int i;
  3234. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3235. valleyview_check_pctx(dev_priv);
  3236. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3237. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3238. gtfifodbg);
  3239. I915_WRITE(GTFIFODBG, gtfifodbg);
  3240. }
  3241. /* If VLV, Forcewake all wells, else re-direct to regular path */
  3242. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3243. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3244. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3245. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3246. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3247. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3248. I915_WRITE(GEN6_RP_CONTROL,
  3249. GEN6_RP_MEDIA_TURBO |
  3250. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3251. GEN6_RP_MEDIA_IS_GFX |
  3252. GEN6_RP_ENABLE |
  3253. GEN6_RP_UP_BUSY_AVG |
  3254. GEN6_RP_DOWN_IDLE_CONT);
  3255. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3256. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3257. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3258. for_each_ring(ring, dev_priv, i)
  3259. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3260. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3261. /* allows RC6 residency counter to work */
  3262. I915_WRITE(VLV_COUNTER_CONTROL,
  3263. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3264. VLV_MEDIA_RC6_COUNT_EN |
  3265. VLV_RENDER_RC6_COUNT_EN));
  3266. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3267. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3268. intel_print_rc6_info(dev, rc6_mode);
  3269. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3270. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3271. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3272. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3273. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3274. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3275. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3276. dev_priv->rps.cur_freq);
  3277. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3278. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3279. dev_priv->rps.efficient_freq);
  3280. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3281. gen6_enable_rps_interrupts(dev);
  3282. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3283. }
  3284. void ironlake_teardown_rc6(struct drm_device *dev)
  3285. {
  3286. struct drm_i915_private *dev_priv = dev->dev_private;
  3287. if (dev_priv->ips.renderctx) {
  3288. i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
  3289. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3290. dev_priv->ips.renderctx = NULL;
  3291. }
  3292. if (dev_priv->ips.pwrctx) {
  3293. i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
  3294. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3295. dev_priv->ips.pwrctx = NULL;
  3296. }
  3297. }
  3298. static void ironlake_disable_rc6(struct drm_device *dev)
  3299. {
  3300. struct drm_i915_private *dev_priv = dev->dev_private;
  3301. if (I915_READ(PWRCTXA)) {
  3302. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3303. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3304. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3305. 50);
  3306. I915_WRITE(PWRCTXA, 0);
  3307. POSTING_READ(PWRCTXA);
  3308. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3309. POSTING_READ(RSTDBYCTL);
  3310. }
  3311. }
  3312. static int ironlake_setup_rc6(struct drm_device *dev)
  3313. {
  3314. struct drm_i915_private *dev_priv = dev->dev_private;
  3315. if (dev_priv->ips.renderctx == NULL)
  3316. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3317. if (!dev_priv->ips.renderctx)
  3318. return -ENOMEM;
  3319. if (dev_priv->ips.pwrctx == NULL)
  3320. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3321. if (!dev_priv->ips.pwrctx) {
  3322. ironlake_teardown_rc6(dev);
  3323. return -ENOMEM;
  3324. }
  3325. return 0;
  3326. }
  3327. static void ironlake_enable_rc6(struct drm_device *dev)
  3328. {
  3329. struct drm_i915_private *dev_priv = dev->dev_private;
  3330. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  3331. bool was_interruptible;
  3332. int ret;
  3333. /* rc6 disabled by default due to repeated reports of hanging during
  3334. * boot and resume.
  3335. */
  3336. if (!intel_enable_rc6(dev))
  3337. return;
  3338. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3339. ret = ironlake_setup_rc6(dev);
  3340. if (ret)
  3341. return;
  3342. was_interruptible = dev_priv->mm.interruptible;
  3343. dev_priv->mm.interruptible = false;
  3344. /*
  3345. * GPU can automatically power down the render unit if given a page
  3346. * to save state.
  3347. */
  3348. ret = intel_ring_begin(ring, 6);
  3349. if (ret) {
  3350. ironlake_teardown_rc6(dev);
  3351. dev_priv->mm.interruptible = was_interruptible;
  3352. return;
  3353. }
  3354. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3355. intel_ring_emit(ring, MI_SET_CONTEXT);
  3356. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3357. MI_MM_SPACE_GTT |
  3358. MI_SAVE_EXT_STATE_EN |
  3359. MI_RESTORE_EXT_STATE_EN |
  3360. MI_RESTORE_INHIBIT);
  3361. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3362. intel_ring_emit(ring, MI_NOOP);
  3363. intel_ring_emit(ring, MI_FLUSH);
  3364. intel_ring_advance(ring);
  3365. /*
  3366. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3367. * does an implicit flush, combined with MI_FLUSH above, it should be
  3368. * safe to assume that renderctx is valid
  3369. */
  3370. ret = intel_ring_idle(ring);
  3371. dev_priv->mm.interruptible = was_interruptible;
  3372. if (ret) {
  3373. DRM_ERROR("failed to enable ironlake power savings\n");
  3374. ironlake_teardown_rc6(dev);
  3375. return;
  3376. }
  3377. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3378. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3379. intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
  3380. }
  3381. static unsigned long intel_pxfreq(u32 vidfreq)
  3382. {
  3383. unsigned long freq;
  3384. int div = (vidfreq & 0x3f0000) >> 16;
  3385. int post = (vidfreq & 0x3000) >> 12;
  3386. int pre = (vidfreq & 0x7);
  3387. if (!pre)
  3388. return 0;
  3389. freq = ((div * 133333) / ((1<<post) * pre));
  3390. return freq;
  3391. }
  3392. static const struct cparams {
  3393. u16 i;
  3394. u16 t;
  3395. u16 m;
  3396. u16 c;
  3397. } cparams[] = {
  3398. { 1, 1333, 301, 28664 },
  3399. { 1, 1066, 294, 24460 },
  3400. { 1, 800, 294, 25192 },
  3401. { 0, 1333, 276, 27605 },
  3402. { 0, 1066, 276, 27605 },
  3403. { 0, 800, 231, 23784 },
  3404. };
  3405. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3406. {
  3407. u64 total_count, diff, ret;
  3408. u32 count1, count2, count3, m = 0, c = 0;
  3409. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3410. int i;
  3411. assert_spin_locked(&mchdev_lock);
  3412. diff1 = now - dev_priv->ips.last_time1;
  3413. /* Prevent division-by-zero if we are asking too fast.
  3414. * Also, we don't get interesting results if we are polling
  3415. * faster than once in 10ms, so just return the saved value
  3416. * in such cases.
  3417. */
  3418. if (diff1 <= 10)
  3419. return dev_priv->ips.chipset_power;
  3420. count1 = I915_READ(DMIEC);
  3421. count2 = I915_READ(DDREC);
  3422. count3 = I915_READ(CSIEC);
  3423. total_count = count1 + count2 + count3;
  3424. /* FIXME: handle per-counter overflow */
  3425. if (total_count < dev_priv->ips.last_count1) {
  3426. diff = ~0UL - dev_priv->ips.last_count1;
  3427. diff += total_count;
  3428. } else {
  3429. diff = total_count - dev_priv->ips.last_count1;
  3430. }
  3431. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3432. if (cparams[i].i == dev_priv->ips.c_m &&
  3433. cparams[i].t == dev_priv->ips.r_t) {
  3434. m = cparams[i].m;
  3435. c = cparams[i].c;
  3436. break;
  3437. }
  3438. }
  3439. diff = div_u64(diff, diff1);
  3440. ret = ((m * diff) + c);
  3441. ret = div_u64(ret, 10);
  3442. dev_priv->ips.last_count1 = total_count;
  3443. dev_priv->ips.last_time1 = now;
  3444. dev_priv->ips.chipset_power = ret;
  3445. return ret;
  3446. }
  3447. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3448. {
  3449. struct drm_device *dev = dev_priv->dev;
  3450. unsigned long val;
  3451. if (INTEL_INFO(dev)->gen != 5)
  3452. return 0;
  3453. spin_lock_irq(&mchdev_lock);
  3454. val = __i915_chipset_val(dev_priv);
  3455. spin_unlock_irq(&mchdev_lock);
  3456. return val;
  3457. }
  3458. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3459. {
  3460. unsigned long m, x, b;
  3461. u32 tsfs;
  3462. tsfs = I915_READ(TSFS);
  3463. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3464. x = I915_READ8(TR1);
  3465. b = tsfs & TSFS_INTR_MASK;
  3466. return ((m * x) / 127) - b;
  3467. }
  3468. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3469. {
  3470. struct drm_device *dev = dev_priv->dev;
  3471. static const struct v_table {
  3472. u16 vd; /* in .1 mil */
  3473. u16 vm; /* in .1 mil */
  3474. } v_table[] = {
  3475. { 0, 0, },
  3476. { 375, 0, },
  3477. { 500, 0, },
  3478. { 625, 0, },
  3479. { 750, 0, },
  3480. { 875, 0, },
  3481. { 1000, 0, },
  3482. { 1125, 0, },
  3483. { 4125, 3000, },
  3484. { 4125, 3000, },
  3485. { 4125, 3000, },
  3486. { 4125, 3000, },
  3487. { 4125, 3000, },
  3488. { 4125, 3000, },
  3489. { 4125, 3000, },
  3490. { 4125, 3000, },
  3491. { 4125, 3000, },
  3492. { 4125, 3000, },
  3493. { 4125, 3000, },
  3494. { 4125, 3000, },
  3495. { 4125, 3000, },
  3496. { 4125, 3000, },
  3497. { 4125, 3000, },
  3498. { 4125, 3000, },
  3499. { 4125, 3000, },
  3500. { 4125, 3000, },
  3501. { 4125, 3000, },
  3502. { 4125, 3000, },
  3503. { 4125, 3000, },
  3504. { 4125, 3000, },
  3505. { 4125, 3000, },
  3506. { 4125, 3000, },
  3507. { 4250, 3125, },
  3508. { 4375, 3250, },
  3509. { 4500, 3375, },
  3510. { 4625, 3500, },
  3511. { 4750, 3625, },
  3512. { 4875, 3750, },
  3513. { 5000, 3875, },
  3514. { 5125, 4000, },
  3515. { 5250, 4125, },
  3516. { 5375, 4250, },
  3517. { 5500, 4375, },
  3518. { 5625, 4500, },
  3519. { 5750, 4625, },
  3520. { 5875, 4750, },
  3521. { 6000, 4875, },
  3522. { 6125, 5000, },
  3523. { 6250, 5125, },
  3524. { 6375, 5250, },
  3525. { 6500, 5375, },
  3526. { 6625, 5500, },
  3527. { 6750, 5625, },
  3528. { 6875, 5750, },
  3529. { 7000, 5875, },
  3530. { 7125, 6000, },
  3531. { 7250, 6125, },
  3532. { 7375, 6250, },
  3533. { 7500, 6375, },
  3534. { 7625, 6500, },
  3535. { 7750, 6625, },
  3536. { 7875, 6750, },
  3537. { 8000, 6875, },
  3538. { 8125, 7000, },
  3539. { 8250, 7125, },
  3540. { 8375, 7250, },
  3541. { 8500, 7375, },
  3542. { 8625, 7500, },
  3543. { 8750, 7625, },
  3544. { 8875, 7750, },
  3545. { 9000, 7875, },
  3546. { 9125, 8000, },
  3547. { 9250, 8125, },
  3548. { 9375, 8250, },
  3549. { 9500, 8375, },
  3550. { 9625, 8500, },
  3551. { 9750, 8625, },
  3552. { 9875, 8750, },
  3553. { 10000, 8875, },
  3554. { 10125, 9000, },
  3555. { 10250, 9125, },
  3556. { 10375, 9250, },
  3557. { 10500, 9375, },
  3558. { 10625, 9500, },
  3559. { 10750, 9625, },
  3560. { 10875, 9750, },
  3561. { 11000, 9875, },
  3562. { 11125, 10000, },
  3563. { 11250, 10125, },
  3564. { 11375, 10250, },
  3565. { 11500, 10375, },
  3566. { 11625, 10500, },
  3567. { 11750, 10625, },
  3568. { 11875, 10750, },
  3569. { 12000, 10875, },
  3570. { 12125, 11000, },
  3571. { 12250, 11125, },
  3572. { 12375, 11250, },
  3573. { 12500, 11375, },
  3574. { 12625, 11500, },
  3575. { 12750, 11625, },
  3576. { 12875, 11750, },
  3577. { 13000, 11875, },
  3578. { 13125, 12000, },
  3579. { 13250, 12125, },
  3580. { 13375, 12250, },
  3581. { 13500, 12375, },
  3582. { 13625, 12500, },
  3583. { 13750, 12625, },
  3584. { 13875, 12750, },
  3585. { 14000, 12875, },
  3586. { 14125, 13000, },
  3587. { 14250, 13125, },
  3588. { 14375, 13250, },
  3589. { 14500, 13375, },
  3590. { 14625, 13500, },
  3591. { 14750, 13625, },
  3592. { 14875, 13750, },
  3593. { 15000, 13875, },
  3594. { 15125, 14000, },
  3595. { 15250, 14125, },
  3596. { 15375, 14250, },
  3597. { 15500, 14375, },
  3598. { 15625, 14500, },
  3599. { 15750, 14625, },
  3600. { 15875, 14750, },
  3601. { 16000, 14875, },
  3602. { 16125, 15000, },
  3603. };
  3604. if (INTEL_INFO(dev)->is_mobile)
  3605. return v_table[pxvid].vm;
  3606. else
  3607. return v_table[pxvid].vd;
  3608. }
  3609. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3610. {
  3611. struct timespec now, diff1;
  3612. u64 diff;
  3613. unsigned long diffms;
  3614. u32 count;
  3615. assert_spin_locked(&mchdev_lock);
  3616. getrawmonotonic(&now);
  3617. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3618. /* Don't divide by 0 */
  3619. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3620. if (!diffms)
  3621. return;
  3622. count = I915_READ(GFXEC);
  3623. if (count < dev_priv->ips.last_count2) {
  3624. diff = ~0UL - dev_priv->ips.last_count2;
  3625. diff += count;
  3626. } else {
  3627. diff = count - dev_priv->ips.last_count2;
  3628. }
  3629. dev_priv->ips.last_count2 = count;
  3630. dev_priv->ips.last_time2 = now;
  3631. /* More magic constants... */
  3632. diff = diff * 1181;
  3633. diff = div_u64(diff, diffms * 10);
  3634. dev_priv->ips.gfx_power = diff;
  3635. }
  3636. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3637. {
  3638. struct drm_device *dev = dev_priv->dev;
  3639. if (INTEL_INFO(dev)->gen != 5)
  3640. return;
  3641. spin_lock_irq(&mchdev_lock);
  3642. __i915_update_gfx_val(dev_priv);
  3643. spin_unlock_irq(&mchdev_lock);
  3644. }
  3645. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3646. {
  3647. unsigned long t, corr, state1, corr2, state2;
  3648. u32 pxvid, ext_v;
  3649. assert_spin_locked(&mchdev_lock);
  3650. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  3651. pxvid = (pxvid >> 24) & 0x7f;
  3652. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3653. state1 = ext_v;
  3654. t = i915_mch_val(dev_priv);
  3655. /* Revel in the empirically derived constants */
  3656. /* Correction factor in 1/100000 units */
  3657. if (t > 80)
  3658. corr = ((t * 2349) + 135940);
  3659. else if (t >= 50)
  3660. corr = ((t * 964) + 29317);
  3661. else /* < 50 */
  3662. corr = ((t * 301) + 1004);
  3663. corr = corr * ((150142 * state1) / 10000 - 78642);
  3664. corr /= 100000;
  3665. corr2 = (corr * dev_priv->ips.corr);
  3666. state2 = (corr2 * state1) / 10000;
  3667. state2 /= 100; /* convert to mW */
  3668. __i915_update_gfx_val(dev_priv);
  3669. return dev_priv->ips.gfx_power + state2;
  3670. }
  3671. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3672. {
  3673. struct drm_device *dev = dev_priv->dev;
  3674. unsigned long val;
  3675. if (INTEL_INFO(dev)->gen != 5)
  3676. return 0;
  3677. spin_lock_irq(&mchdev_lock);
  3678. val = __i915_gfx_val(dev_priv);
  3679. spin_unlock_irq(&mchdev_lock);
  3680. return val;
  3681. }
  3682. /**
  3683. * i915_read_mch_val - return value for IPS use
  3684. *
  3685. * Calculate and return a value for the IPS driver to use when deciding whether
  3686. * we have thermal and power headroom to increase CPU or GPU power budget.
  3687. */
  3688. unsigned long i915_read_mch_val(void)
  3689. {
  3690. struct drm_i915_private *dev_priv;
  3691. unsigned long chipset_val, graphics_val, ret = 0;
  3692. spin_lock_irq(&mchdev_lock);
  3693. if (!i915_mch_dev)
  3694. goto out_unlock;
  3695. dev_priv = i915_mch_dev;
  3696. chipset_val = __i915_chipset_val(dev_priv);
  3697. graphics_val = __i915_gfx_val(dev_priv);
  3698. ret = chipset_val + graphics_val;
  3699. out_unlock:
  3700. spin_unlock_irq(&mchdev_lock);
  3701. return ret;
  3702. }
  3703. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3704. /**
  3705. * i915_gpu_raise - raise GPU frequency limit
  3706. *
  3707. * Raise the limit; IPS indicates we have thermal headroom.
  3708. */
  3709. bool i915_gpu_raise(void)
  3710. {
  3711. struct drm_i915_private *dev_priv;
  3712. bool ret = true;
  3713. spin_lock_irq(&mchdev_lock);
  3714. if (!i915_mch_dev) {
  3715. ret = false;
  3716. goto out_unlock;
  3717. }
  3718. dev_priv = i915_mch_dev;
  3719. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3720. dev_priv->ips.max_delay--;
  3721. out_unlock:
  3722. spin_unlock_irq(&mchdev_lock);
  3723. return ret;
  3724. }
  3725. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3726. /**
  3727. * i915_gpu_lower - lower GPU frequency limit
  3728. *
  3729. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3730. * frequency maximum.
  3731. */
  3732. bool i915_gpu_lower(void)
  3733. {
  3734. struct drm_i915_private *dev_priv;
  3735. bool ret = true;
  3736. spin_lock_irq(&mchdev_lock);
  3737. if (!i915_mch_dev) {
  3738. ret = false;
  3739. goto out_unlock;
  3740. }
  3741. dev_priv = i915_mch_dev;
  3742. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3743. dev_priv->ips.max_delay++;
  3744. out_unlock:
  3745. spin_unlock_irq(&mchdev_lock);
  3746. return ret;
  3747. }
  3748. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3749. /**
  3750. * i915_gpu_busy - indicate GPU business to IPS
  3751. *
  3752. * Tell the IPS driver whether or not the GPU is busy.
  3753. */
  3754. bool i915_gpu_busy(void)
  3755. {
  3756. struct drm_i915_private *dev_priv;
  3757. struct intel_engine_cs *ring;
  3758. bool ret = false;
  3759. int i;
  3760. spin_lock_irq(&mchdev_lock);
  3761. if (!i915_mch_dev)
  3762. goto out_unlock;
  3763. dev_priv = i915_mch_dev;
  3764. for_each_ring(ring, dev_priv, i)
  3765. ret |= !list_empty(&ring->request_list);
  3766. out_unlock:
  3767. spin_unlock_irq(&mchdev_lock);
  3768. return ret;
  3769. }
  3770. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3771. /**
  3772. * i915_gpu_turbo_disable - disable graphics turbo
  3773. *
  3774. * Disable graphics turbo by resetting the max frequency and setting the
  3775. * current frequency to the default.
  3776. */
  3777. bool i915_gpu_turbo_disable(void)
  3778. {
  3779. struct drm_i915_private *dev_priv;
  3780. bool ret = true;
  3781. spin_lock_irq(&mchdev_lock);
  3782. if (!i915_mch_dev) {
  3783. ret = false;
  3784. goto out_unlock;
  3785. }
  3786. dev_priv = i915_mch_dev;
  3787. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3788. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3789. ret = false;
  3790. out_unlock:
  3791. spin_unlock_irq(&mchdev_lock);
  3792. return ret;
  3793. }
  3794. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3795. /**
  3796. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3797. * IPS got loaded first.
  3798. *
  3799. * This awkward dance is so that neither module has to depend on the
  3800. * other in order for IPS to do the appropriate communication of
  3801. * GPU turbo limits to i915.
  3802. */
  3803. static void
  3804. ips_ping_for_i915_load(void)
  3805. {
  3806. void (*link)(void);
  3807. link = symbol_get(ips_link_to_i915_driver);
  3808. if (link) {
  3809. link();
  3810. symbol_put(ips_link_to_i915_driver);
  3811. }
  3812. }
  3813. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3814. {
  3815. /* We only register the i915 ips part with intel-ips once everything is
  3816. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3817. spin_lock_irq(&mchdev_lock);
  3818. i915_mch_dev = dev_priv;
  3819. spin_unlock_irq(&mchdev_lock);
  3820. ips_ping_for_i915_load();
  3821. }
  3822. void intel_gpu_ips_teardown(void)
  3823. {
  3824. spin_lock_irq(&mchdev_lock);
  3825. i915_mch_dev = NULL;
  3826. spin_unlock_irq(&mchdev_lock);
  3827. }
  3828. static void intel_init_emon(struct drm_device *dev)
  3829. {
  3830. struct drm_i915_private *dev_priv = dev->dev_private;
  3831. u32 lcfuse;
  3832. u8 pxw[16];
  3833. int i;
  3834. /* Disable to program */
  3835. I915_WRITE(ECR, 0);
  3836. POSTING_READ(ECR);
  3837. /* Program energy weights for various events */
  3838. I915_WRITE(SDEW, 0x15040d00);
  3839. I915_WRITE(CSIEW0, 0x007f0000);
  3840. I915_WRITE(CSIEW1, 0x1e220004);
  3841. I915_WRITE(CSIEW2, 0x04000004);
  3842. for (i = 0; i < 5; i++)
  3843. I915_WRITE(PEW + (i * 4), 0);
  3844. for (i = 0; i < 3; i++)
  3845. I915_WRITE(DEW + (i * 4), 0);
  3846. /* Program P-state weights to account for frequency power adjustment */
  3847. for (i = 0; i < 16; i++) {
  3848. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3849. unsigned long freq = intel_pxfreq(pxvidfreq);
  3850. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3851. PXVFREQ_PX_SHIFT;
  3852. unsigned long val;
  3853. val = vid * vid;
  3854. val *= (freq / 1000);
  3855. val *= 255;
  3856. val /= (127*127*900);
  3857. if (val > 0xff)
  3858. DRM_ERROR("bad pxval: %ld\n", val);
  3859. pxw[i] = val;
  3860. }
  3861. /* Render standby states get 0 weight */
  3862. pxw[14] = 0;
  3863. pxw[15] = 0;
  3864. for (i = 0; i < 4; i++) {
  3865. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  3866. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  3867. I915_WRITE(PXW + (i * 4), val);
  3868. }
  3869. /* Adjust magic regs to magic values (more experimental results) */
  3870. I915_WRITE(OGW0, 0);
  3871. I915_WRITE(OGW1, 0);
  3872. I915_WRITE(EG0, 0x00007f00);
  3873. I915_WRITE(EG1, 0x0000000e);
  3874. I915_WRITE(EG2, 0x000e0000);
  3875. I915_WRITE(EG3, 0x68000300);
  3876. I915_WRITE(EG4, 0x42000000);
  3877. I915_WRITE(EG5, 0x00140031);
  3878. I915_WRITE(EG6, 0);
  3879. I915_WRITE(EG7, 0);
  3880. for (i = 0; i < 8; i++)
  3881. I915_WRITE(PXWL + (i * 4), 0);
  3882. /* Enable PMON + select events */
  3883. I915_WRITE(ECR, 0x80000019);
  3884. lcfuse = I915_READ(LCFUSE02);
  3885. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  3886. }
  3887. void intel_init_gt_powersave(struct drm_device *dev)
  3888. {
  3889. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  3890. if (IS_VALLEYVIEW(dev))
  3891. valleyview_init_gt_powersave(dev);
  3892. }
  3893. void intel_cleanup_gt_powersave(struct drm_device *dev)
  3894. {
  3895. if (IS_VALLEYVIEW(dev))
  3896. valleyview_cleanup_gt_powersave(dev);
  3897. }
  3898. void intel_disable_gt_powersave(struct drm_device *dev)
  3899. {
  3900. struct drm_i915_private *dev_priv = dev->dev_private;
  3901. /* Interrupts should be disabled already to avoid re-arming. */
  3902. WARN_ON(dev->irq_enabled);
  3903. if (IS_IRONLAKE_M(dev)) {
  3904. ironlake_disable_drps(dev);
  3905. ironlake_disable_rc6(dev);
  3906. } else if (IS_GEN6(dev) || IS_GEN7(dev) || IS_BROADWELL(dev)) {
  3907. if (cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work))
  3908. intel_runtime_pm_put(dev_priv);
  3909. cancel_work_sync(&dev_priv->rps.work);
  3910. mutex_lock(&dev_priv->rps.hw_lock);
  3911. if (IS_VALLEYVIEW(dev))
  3912. valleyview_disable_rps(dev);
  3913. else
  3914. gen6_disable_rps(dev);
  3915. dev_priv->rps.enabled = false;
  3916. mutex_unlock(&dev_priv->rps.hw_lock);
  3917. }
  3918. }
  3919. static void intel_gen6_powersave_work(struct work_struct *work)
  3920. {
  3921. struct drm_i915_private *dev_priv =
  3922. container_of(work, struct drm_i915_private,
  3923. rps.delayed_resume_work.work);
  3924. struct drm_device *dev = dev_priv->dev;
  3925. mutex_lock(&dev_priv->rps.hw_lock);
  3926. if (IS_VALLEYVIEW(dev)) {
  3927. valleyview_enable_rps(dev);
  3928. } else if (IS_BROADWELL(dev)) {
  3929. gen8_enable_rps(dev);
  3930. __gen6_update_ring_freq(dev);
  3931. } else {
  3932. gen6_enable_rps(dev);
  3933. __gen6_update_ring_freq(dev);
  3934. }
  3935. dev_priv->rps.enabled = true;
  3936. mutex_unlock(&dev_priv->rps.hw_lock);
  3937. intel_runtime_pm_put(dev_priv);
  3938. }
  3939. void intel_enable_gt_powersave(struct drm_device *dev)
  3940. {
  3941. struct drm_i915_private *dev_priv = dev->dev_private;
  3942. if (IS_IRONLAKE_M(dev)) {
  3943. mutex_lock(&dev->struct_mutex);
  3944. ironlake_enable_drps(dev);
  3945. ironlake_enable_rc6(dev);
  3946. intel_init_emon(dev);
  3947. mutex_unlock(&dev->struct_mutex);
  3948. } else if (IS_GEN6(dev) || IS_GEN7(dev) || IS_BROADWELL(dev)) {
  3949. /*
  3950. * PCU communication is slow and this doesn't need to be
  3951. * done at any specific time, so do this out of our fast path
  3952. * to make resume and init faster.
  3953. *
  3954. * We depend on the HW RC6 power context save/restore
  3955. * mechanism when entering D3 through runtime PM suspend. So
  3956. * disable RPM until RPS/RC6 is properly setup. We can only
  3957. * get here via the driver load/system resume/runtime resume
  3958. * paths, so the _noresume version is enough (and in case of
  3959. * runtime resume it's necessary).
  3960. */
  3961. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  3962. round_jiffies_up_relative(HZ)))
  3963. intel_runtime_pm_get_noresume(dev_priv);
  3964. }
  3965. }
  3966. void intel_reset_gt_powersave(struct drm_device *dev)
  3967. {
  3968. struct drm_i915_private *dev_priv = dev->dev_private;
  3969. dev_priv->rps.enabled = false;
  3970. intel_enable_gt_powersave(dev);
  3971. }
  3972. static void ibx_init_clock_gating(struct drm_device *dev)
  3973. {
  3974. struct drm_i915_private *dev_priv = dev->dev_private;
  3975. /*
  3976. * On Ibex Peak and Cougar Point, we need to disable clock
  3977. * gating for the panel power sequencer or it will fail to
  3978. * start up when no ports are active.
  3979. */
  3980. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3981. }
  3982. static void g4x_disable_trickle_feed(struct drm_device *dev)
  3983. {
  3984. struct drm_i915_private *dev_priv = dev->dev_private;
  3985. int pipe;
  3986. for_each_pipe(pipe) {
  3987. I915_WRITE(DSPCNTR(pipe),
  3988. I915_READ(DSPCNTR(pipe)) |
  3989. DISPPLANE_TRICKLE_FEED_DISABLE);
  3990. intel_flush_primary_plane(dev_priv, pipe);
  3991. }
  3992. }
  3993. static void ilk_init_lp_watermarks(struct drm_device *dev)
  3994. {
  3995. struct drm_i915_private *dev_priv = dev->dev_private;
  3996. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  3997. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  3998. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  3999. /*
  4000. * Don't touch WM1S_LP_EN here.
  4001. * Doing so could cause underruns.
  4002. */
  4003. }
  4004. static void ironlake_init_clock_gating(struct drm_device *dev)
  4005. {
  4006. struct drm_i915_private *dev_priv = dev->dev_private;
  4007. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4008. /*
  4009. * Required for FBC
  4010. * WaFbcDisableDpfcClockGating:ilk
  4011. */
  4012. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4013. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4014. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4015. I915_WRITE(PCH_3DCGDIS0,
  4016. MARIUNIT_CLOCK_GATE_DISABLE |
  4017. SVSMUNIT_CLOCK_GATE_DISABLE);
  4018. I915_WRITE(PCH_3DCGDIS1,
  4019. VFMUNIT_CLOCK_GATE_DISABLE);
  4020. /*
  4021. * According to the spec the following bits should be set in
  4022. * order to enable memory self-refresh
  4023. * The bit 22/21 of 0x42004
  4024. * The bit 5 of 0x42020
  4025. * The bit 15 of 0x45000
  4026. */
  4027. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4028. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4029. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4030. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4031. I915_WRITE(DISP_ARB_CTL,
  4032. (I915_READ(DISP_ARB_CTL) |
  4033. DISP_FBC_WM_DIS));
  4034. ilk_init_lp_watermarks(dev);
  4035. /*
  4036. * Based on the document from hardware guys the following bits
  4037. * should be set unconditionally in order to enable FBC.
  4038. * The bit 22 of 0x42000
  4039. * The bit 22 of 0x42004
  4040. * The bit 7,8,9 of 0x42020.
  4041. */
  4042. if (IS_IRONLAKE_M(dev)) {
  4043. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4044. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4045. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4046. ILK_FBCQ_DIS);
  4047. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4048. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4049. ILK_DPARB_GATE);
  4050. }
  4051. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4052. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4053. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4054. ILK_ELPIN_409_SELECT);
  4055. I915_WRITE(_3D_CHICKEN2,
  4056. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4057. _3D_CHICKEN2_WM_READ_PIPELINED);
  4058. /* WaDisableRenderCachePipelinedFlush:ilk */
  4059. I915_WRITE(CACHE_MODE_0,
  4060. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4061. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4062. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4063. g4x_disable_trickle_feed(dev);
  4064. ibx_init_clock_gating(dev);
  4065. }
  4066. static void cpt_init_clock_gating(struct drm_device *dev)
  4067. {
  4068. struct drm_i915_private *dev_priv = dev->dev_private;
  4069. int pipe;
  4070. uint32_t val;
  4071. /*
  4072. * On Ibex Peak and Cougar Point, we need to disable clock
  4073. * gating for the panel power sequencer or it will fail to
  4074. * start up when no ports are active.
  4075. */
  4076. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4077. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4078. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4079. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4080. DPLS_EDP_PPS_FIX_DIS);
  4081. /* The below fixes the weird display corruption, a few pixels shifted
  4082. * downward, on (only) LVDS of some HP laptops with IVY.
  4083. */
  4084. for_each_pipe(pipe) {
  4085. val = I915_READ(TRANS_CHICKEN2(pipe));
  4086. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4087. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4088. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4089. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4090. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4091. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4092. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4093. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4094. }
  4095. /* WADP0ClockGatingDisable */
  4096. for_each_pipe(pipe) {
  4097. I915_WRITE(TRANS_CHICKEN1(pipe),
  4098. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4099. }
  4100. }
  4101. static void gen6_check_mch_setup(struct drm_device *dev)
  4102. {
  4103. struct drm_i915_private *dev_priv = dev->dev_private;
  4104. uint32_t tmp;
  4105. tmp = I915_READ(MCH_SSKPD);
  4106. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4107. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4108. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4109. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4110. }
  4111. }
  4112. static void gen6_init_clock_gating(struct drm_device *dev)
  4113. {
  4114. struct drm_i915_private *dev_priv = dev->dev_private;
  4115. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4116. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4117. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4118. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4119. ILK_ELPIN_409_SELECT);
  4120. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4121. I915_WRITE(_3D_CHICKEN,
  4122. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4123. /* WaSetupGtModeTdRowDispatch:snb */
  4124. if (IS_SNB_GT1(dev))
  4125. I915_WRITE(GEN6_GT_MODE,
  4126. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4127. /* WaDisable_RenderCache_OperationalFlush:snb */
  4128. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4129. /*
  4130. * BSpec recoomends 8x4 when MSAA is used,
  4131. * however in practice 16x4 seems fastest.
  4132. *
  4133. * Note that PS/WM thread counts depend on the WIZ hashing
  4134. * disable bit, which we don't touch here, but it's good
  4135. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4136. */
  4137. I915_WRITE(GEN6_GT_MODE,
  4138. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4139. ilk_init_lp_watermarks(dev);
  4140. I915_WRITE(CACHE_MODE_0,
  4141. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4142. I915_WRITE(GEN6_UCGCTL1,
  4143. I915_READ(GEN6_UCGCTL1) |
  4144. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4145. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4146. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4147. * gating disable must be set. Failure to set it results in
  4148. * flickering pixels due to Z write ordering failures after
  4149. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4150. * Sanctuary and Tropics, and apparently anything else with
  4151. * alpha test or pixel discard.
  4152. *
  4153. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4154. * but we didn't debug actual testcases to find it out.
  4155. *
  4156. * WaDisableRCCUnitClockGating:snb
  4157. * WaDisableRCPBUnitClockGating:snb
  4158. */
  4159. I915_WRITE(GEN6_UCGCTL2,
  4160. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4161. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4162. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4163. I915_WRITE(_3D_CHICKEN3,
  4164. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4165. /*
  4166. * Bspec says:
  4167. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4168. * 3DSTATE_SF number of SF output attributes is more than 16."
  4169. */
  4170. I915_WRITE(_3D_CHICKEN3,
  4171. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4172. /*
  4173. * According to the spec the following bits should be
  4174. * set in order to enable memory self-refresh and fbc:
  4175. * The bit21 and bit22 of 0x42000
  4176. * The bit21 and bit22 of 0x42004
  4177. * The bit5 and bit7 of 0x42020
  4178. * The bit14 of 0x70180
  4179. * The bit14 of 0x71180
  4180. *
  4181. * WaFbcAsynchFlipDisableFbcQueue:snb
  4182. */
  4183. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4184. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4185. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4186. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4187. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4188. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4189. I915_WRITE(ILK_DSPCLK_GATE_D,
  4190. I915_READ(ILK_DSPCLK_GATE_D) |
  4191. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4192. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4193. g4x_disable_trickle_feed(dev);
  4194. cpt_init_clock_gating(dev);
  4195. gen6_check_mch_setup(dev);
  4196. }
  4197. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4198. {
  4199. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4200. /*
  4201. * WaVSThreadDispatchOverride:ivb,vlv
  4202. *
  4203. * This actually overrides the dispatch
  4204. * mode for all thread types.
  4205. */
  4206. reg &= ~GEN7_FF_SCHED_MASK;
  4207. reg |= GEN7_FF_TS_SCHED_HW;
  4208. reg |= GEN7_FF_VS_SCHED_HW;
  4209. reg |= GEN7_FF_DS_SCHED_HW;
  4210. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4211. }
  4212. static void lpt_init_clock_gating(struct drm_device *dev)
  4213. {
  4214. struct drm_i915_private *dev_priv = dev->dev_private;
  4215. /*
  4216. * TODO: this bit should only be enabled when really needed, then
  4217. * disabled when not needed anymore in order to save power.
  4218. */
  4219. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4220. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4221. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4222. PCH_LP_PARTITION_LEVEL_DISABLE);
  4223. /* WADPOClockGatingDisable:hsw */
  4224. I915_WRITE(_TRANSA_CHICKEN1,
  4225. I915_READ(_TRANSA_CHICKEN1) |
  4226. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4227. }
  4228. static void lpt_suspend_hw(struct drm_device *dev)
  4229. {
  4230. struct drm_i915_private *dev_priv = dev->dev_private;
  4231. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4232. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4233. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4234. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4235. }
  4236. }
  4237. static void gen8_init_clock_gating(struct drm_device *dev)
  4238. {
  4239. struct drm_i915_private *dev_priv = dev->dev_private;
  4240. enum pipe pipe;
  4241. I915_WRITE(WM3_LP_ILK, 0);
  4242. I915_WRITE(WM2_LP_ILK, 0);
  4243. I915_WRITE(WM1_LP_ILK, 0);
  4244. /* FIXME(BDW): Check all the w/a, some might only apply to
  4245. * pre-production hw. */
  4246. /* WaDisablePartialInstShootdown:bdw */
  4247. I915_WRITE(GEN8_ROW_CHICKEN,
  4248. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  4249. /* WaDisableThreadStallDopClockGating:bdw */
  4250. /* FIXME: Unclear whether we really need this on production bdw. */
  4251. I915_WRITE(GEN8_ROW_CHICKEN,
  4252. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  4253. /*
  4254. * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
  4255. * pre-production hardware
  4256. */
  4257. I915_WRITE(HALF_SLICE_CHICKEN3,
  4258. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
  4259. I915_WRITE(HALF_SLICE_CHICKEN3,
  4260. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4261. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4262. I915_WRITE(_3D_CHICKEN3,
  4263. _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
  4264. I915_WRITE(COMMON_SLICE_CHICKEN2,
  4265. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  4266. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4267. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  4268. /* WaDisableDopClockGating:bdw May not be needed for production */
  4269. I915_WRITE(GEN7_ROW_CHICKEN2,
  4270. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4271. /* WaSwitchSolVfFArbitrationPriority:bdw */
  4272. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4273. /* WaPsrDPAMaskVBlankInSRD:bdw */
  4274. I915_WRITE(CHICKEN_PAR1_1,
  4275. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4276. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  4277. for_each_pipe(pipe) {
  4278. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  4279. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  4280. BDW_DPRS_MASK_VBLANK_SRD);
  4281. }
  4282. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  4283. * workaround for for a possible hang in the unlikely event a TLB
  4284. * invalidation occurs during a PSD flush.
  4285. */
  4286. I915_WRITE(HDC_CHICKEN0,
  4287. I915_READ(HDC_CHICKEN0) |
  4288. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
  4289. /* WaVSRefCountFullforceMissDisable:bdw */
  4290. /* WaDSRefCountFullforceMissDisable:bdw */
  4291. I915_WRITE(GEN7_FF_THREAD_MODE,
  4292. I915_READ(GEN7_FF_THREAD_MODE) &
  4293. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4294. /*
  4295. * BSpec recommends 8x4 when MSAA is used,
  4296. * however in practice 16x4 seems fastest.
  4297. *
  4298. * Note that PS/WM thread counts depend on the WIZ hashing
  4299. * disable bit, which we don't touch here, but it's good
  4300. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4301. */
  4302. I915_WRITE(GEN7_GT_MODE,
  4303. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4304. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4305. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4306. /* WaDisableSDEUnitClockGating:bdw */
  4307. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4308. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4309. /* Wa4x4STCOptimizationDisable:bdw */
  4310. I915_WRITE(CACHE_MODE_1,
  4311. _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
  4312. }
  4313. static void haswell_init_clock_gating(struct drm_device *dev)
  4314. {
  4315. struct drm_i915_private *dev_priv = dev->dev_private;
  4316. ilk_init_lp_watermarks(dev);
  4317. /* L3 caching of data atomics doesn't work -- disable it. */
  4318. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4319. I915_WRITE(HSW_ROW_CHICKEN3,
  4320. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4321. /* This is required by WaCatErrorRejectionIssue:hsw */
  4322. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4323. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4324. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4325. /* WaVSRefCountFullforceMissDisable:hsw */
  4326. I915_WRITE(GEN7_FF_THREAD_MODE,
  4327. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  4328. /* WaDisable_RenderCache_OperationalFlush:hsw */
  4329. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4330. /* enable HiZ Raw Stall Optimization */
  4331. I915_WRITE(CACHE_MODE_0_GEN7,
  4332. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4333. /* WaDisable4x2SubspanOptimization:hsw */
  4334. I915_WRITE(CACHE_MODE_1,
  4335. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4336. /*
  4337. * BSpec recommends 8x4 when MSAA is used,
  4338. * however in practice 16x4 seems fastest.
  4339. *
  4340. * Note that PS/WM thread counts depend on the WIZ hashing
  4341. * disable bit, which we don't touch here, but it's good
  4342. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4343. */
  4344. I915_WRITE(GEN7_GT_MODE,
  4345. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4346. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4347. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4348. /* WaRsPkgCStateDisplayPMReq:hsw */
  4349. I915_WRITE(CHICKEN_PAR1_1,
  4350. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4351. lpt_init_clock_gating(dev);
  4352. }
  4353. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4354. {
  4355. struct drm_i915_private *dev_priv = dev->dev_private;
  4356. uint32_t snpcr;
  4357. ilk_init_lp_watermarks(dev);
  4358. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4359. /* WaDisableEarlyCull:ivb */
  4360. I915_WRITE(_3D_CHICKEN3,
  4361. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4362. /* WaDisableBackToBackFlipFix:ivb */
  4363. I915_WRITE(IVB_CHICKEN3,
  4364. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4365. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4366. /* WaDisablePSDDualDispatchEnable:ivb */
  4367. if (IS_IVB_GT1(dev))
  4368. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4369. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4370. /* WaDisable_RenderCache_OperationalFlush:ivb */
  4371. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4372. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4373. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4374. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4375. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4376. I915_WRITE(GEN7_L3CNTLREG1,
  4377. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4378. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4379. GEN7_WA_L3_CHICKEN_MODE);
  4380. if (IS_IVB_GT1(dev))
  4381. I915_WRITE(GEN7_ROW_CHICKEN2,
  4382. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4383. else {
  4384. /* must write both registers */
  4385. I915_WRITE(GEN7_ROW_CHICKEN2,
  4386. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4387. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4388. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4389. }
  4390. /* WaForceL3Serialization:ivb */
  4391. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4392. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4393. /*
  4394. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4395. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4396. */
  4397. I915_WRITE(GEN6_UCGCTL2,
  4398. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4399. /* This is required by WaCatErrorRejectionIssue:ivb */
  4400. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4401. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4402. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4403. g4x_disable_trickle_feed(dev);
  4404. gen7_setup_fixed_func_scheduler(dev_priv);
  4405. if (0) { /* causes HiZ corruption on ivb:gt1 */
  4406. /* enable HiZ Raw Stall Optimization */
  4407. I915_WRITE(CACHE_MODE_0_GEN7,
  4408. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4409. }
  4410. /* WaDisable4x2SubspanOptimization:ivb */
  4411. I915_WRITE(CACHE_MODE_1,
  4412. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4413. /*
  4414. * BSpec recommends 8x4 when MSAA is used,
  4415. * however in practice 16x4 seems fastest.
  4416. *
  4417. * Note that PS/WM thread counts depend on the WIZ hashing
  4418. * disable bit, which we don't touch here, but it's good
  4419. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4420. */
  4421. I915_WRITE(GEN7_GT_MODE,
  4422. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4423. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4424. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4425. snpcr |= GEN6_MBC_SNPCR_MED;
  4426. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4427. if (!HAS_PCH_NOP(dev))
  4428. cpt_init_clock_gating(dev);
  4429. gen6_check_mch_setup(dev);
  4430. }
  4431. static void valleyview_init_clock_gating(struct drm_device *dev)
  4432. {
  4433. struct drm_i915_private *dev_priv = dev->dev_private;
  4434. u32 val;
  4435. mutex_lock(&dev_priv->rps.hw_lock);
  4436. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4437. mutex_unlock(&dev_priv->rps.hw_lock);
  4438. switch ((val >> 6) & 3) {
  4439. case 0:
  4440. case 1:
  4441. dev_priv->mem_freq = 800;
  4442. break;
  4443. case 2:
  4444. dev_priv->mem_freq = 1066;
  4445. break;
  4446. case 3:
  4447. dev_priv->mem_freq = 1333;
  4448. break;
  4449. }
  4450. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  4451. dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
  4452. DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
  4453. dev_priv->vlv_cdclk_freq);
  4454. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4455. /* WaDisableEarlyCull:vlv */
  4456. I915_WRITE(_3D_CHICKEN3,
  4457. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4458. /* WaDisableBackToBackFlipFix:vlv */
  4459. I915_WRITE(IVB_CHICKEN3,
  4460. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4461. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4462. /* WaPsdDispatchEnable:vlv */
  4463. /* WaDisablePSDDualDispatchEnable:vlv */
  4464. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4465. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4466. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4467. /* WaDisable_RenderCache_OperationalFlush:vlv */
  4468. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4469. /* WaForceL3Serialization:vlv */
  4470. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4471. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4472. /* WaDisableDopClockGating:vlv */
  4473. I915_WRITE(GEN7_ROW_CHICKEN2,
  4474. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4475. /* This is required by WaCatErrorRejectionIssue:vlv */
  4476. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4477. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4478. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4479. gen7_setup_fixed_func_scheduler(dev_priv);
  4480. /*
  4481. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4482. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4483. */
  4484. I915_WRITE(GEN6_UCGCTL2,
  4485. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4486. /* WaDisableL3Bank2xClockGate:vlv
  4487. * Disabling L3 clock gating- MMIO 940c[25] = 1
  4488. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  4489. I915_WRITE(GEN7_UCGCTL4,
  4490. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4491. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4492. /*
  4493. * BSpec says this must be set, even though
  4494. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  4495. */
  4496. I915_WRITE(CACHE_MODE_1,
  4497. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4498. /*
  4499. * WaIncreaseL3CreditsForVLVB0:vlv
  4500. * This is the hardware default actually.
  4501. */
  4502. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  4503. /*
  4504. * WaDisableVLVClockGating_VBIIssue:vlv
  4505. * Disable clock gating on th GCFG unit to prevent a delay
  4506. * in the reporting of vblank events.
  4507. */
  4508. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  4509. }
  4510. static void cherryview_init_clock_gating(struct drm_device *dev)
  4511. {
  4512. struct drm_i915_private *dev_priv = dev->dev_private;
  4513. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4514. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4515. /* WaDisablePartialInstShootdown:chv */
  4516. I915_WRITE(GEN8_ROW_CHICKEN,
  4517. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  4518. /* WaDisableThreadStallDopClockGating:chv */
  4519. I915_WRITE(GEN8_ROW_CHICKEN,
  4520. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  4521. /* WaVSRefCountFullforceMissDisable:chv */
  4522. /* WaDSRefCountFullforceMissDisable:chv */
  4523. I915_WRITE(GEN7_FF_THREAD_MODE,
  4524. I915_READ(GEN7_FF_THREAD_MODE) &
  4525. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4526. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  4527. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4528. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4529. /* WaDisableCSUnitClockGating:chv */
  4530. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  4531. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4532. /* WaDisableSDEUnitClockGating:chv */
  4533. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4534. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4535. /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
  4536. I915_WRITE(HALF_SLICE_CHICKEN3,
  4537. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4538. /* WaDisableGunitClockGating:chv (pre-production hw) */
  4539. I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
  4540. GINT_DIS);
  4541. /* WaDisableFfDopClockGating:chv (pre-production hw) */
  4542. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4543. _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
  4544. /* WaDisableDopClockGating:chv (pre-production hw) */
  4545. I915_WRITE(GEN7_ROW_CHICKEN2,
  4546. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4547. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  4548. GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  4549. }
  4550. static void g4x_init_clock_gating(struct drm_device *dev)
  4551. {
  4552. struct drm_i915_private *dev_priv = dev->dev_private;
  4553. uint32_t dspclk_gate;
  4554. I915_WRITE(RENCLK_GATE_D1, 0);
  4555. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4556. GS_UNIT_CLOCK_GATE_DISABLE |
  4557. CL_UNIT_CLOCK_GATE_DISABLE);
  4558. I915_WRITE(RAMCLK_GATE_D, 0);
  4559. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4560. OVRUNIT_CLOCK_GATE_DISABLE |
  4561. OVCUNIT_CLOCK_GATE_DISABLE;
  4562. if (IS_GM45(dev))
  4563. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4564. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4565. /* WaDisableRenderCachePipelinedFlush */
  4566. I915_WRITE(CACHE_MODE_0,
  4567. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4568. /* WaDisable_RenderCache_OperationalFlush:g4x */
  4569. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4570. g4x_disable_trickle_feed(dev);
  4571. }
  4572. static void crestline_init_clock_gating(struct drm_device *dev)
  4573. {
  4574. struct drm_i915_private *dev_priv = dev->dev_private;
  4575. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4576. I915_WRITE(RENCLK_GATE_D2, 0);
  4577. I915_WRITE(DSPCLK_GATE_D, 0);
  4578. I915_WRITE(RAMCLK_GATE_D, 0);
  4579. I915_WRITE16(DEUC, 0);
  4580. I915_WRITE(MI_ARB_STATE,
  4581. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4582. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  4583. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4584. }
  4585. static void broadwater_init_clock_gating(struct drm_device *dev)
  4586. {
  4587. struct drm_i915_private *dev_priv = dev->dev_private;
  4588. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4589. I965_RCC_CLOCK_GATE_DISABLE |
  4590. I965_RCPB_CLOCK_GATE_DISABLE |
  4591. I965_ISC_CLOCK_GATE_DISABLE |
  4592. I965_FBC_CLOCK_GATE_DISABLE);
  4593. I915_WRITE(RENCLK_GATE_D2, 0);
  4594. I915_WRITE(MI_ARB_STATE,
  4595. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4596. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  4597. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4598. }
  4599. static void gen3_init_clock_gating(struct drm_device *dev)
  4600. {
  4601. struct drm_i915_private *dev_priv = dev->dev_private;
  4602. u32 dstate = I915_READ(D_STATE);
  4603. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4604. DSTATE_DOT_CLOCK_GATING;
  4605. I915_WRITE(D_STATE, dstate);
  4606. if (IS_PINEVIEW(dev))
  4607. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4608. /* IIR "flip pending" means done if this bit is set */
  4609. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4610. /* interrupts should cause a wake up from C3 */
  4611. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  4612. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4613. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  4614. }
  4615. static void i85x_init_clock_gating(struct drm_device *dev)
  4616. {
  4617. struct drm_i915_private *dev_priv = dev->dev_private;
  4618. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4619. /* interrupts should cause a wake up from C3 */
  4620. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  4621. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  4622. }
  4623. static void i830_init_clock_gating(struct drm_device *dev)
  4624. {
  4625. struct drm_i915_private *dev_priv = dev->dev_private;
  4626. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4627. }
  4628. void intel_init_clock_gating(struct drm_device *dev)
  4629. {
  4630. struct drm_i915_private *dev_priv = dev->dev_private;
  4631. dev_priv->display.init_clock_gating(dev);
  4632. }
  4633. void intel_suspend_hw(struct drm_device *dev)
  4634. {
  4635. if (HAS_PCH_LPT(dev))
  4636. lpt_suspend_hw(dev);
  4637. }
  4638. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  4639. for (i = 0; \
  4640. i < (power_domains)->power_well_count && \
  4641. ((power_well) = &(power_domains)->power_wells[i]); \
  4642. i++) \
  4643. if ((power_well)->domains & (domain_mask))
  4644. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  4645. for (i = (power_domains)->power_well_count - 1; \
  4646. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  4647. i--) \
  4648. if ((power_well)->domains & (domain_mask))
  4649. /**
  4650. * We should only use the power well if we explicitly asked the hardware to
  4651. * enable it, so check if it's enabled and also check if we've requested it to
  4652. * be enabled.
  4653. */
  4654. static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
  4655. struct i915_power_well *power_well)
  4656. {
  4657. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4658. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4659. }
  4660. bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
  4661. enum intel_display_power_domain domain)
  4662. {
  4663. struct i915_power_domains *power_domains;
  4664. struct i915_power_well *power_well;
  4665. bool is_enabled;
  4666. int i;
  4667. if (dev_priv->pm.suspended)
  4668. return false;
  4669. power_domains = &dev_priv->power_domains;
  4670. is_enabled = true;
  4671. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4672. if (power_well->always_on)
  4673. continue;
  4674. if (!power_well->count) {
  4675. is_enabled = false;
  4676. break;
  4677. }
  4678. }
  4679. return is_enabled;
  4680. }
  4681. bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
  4682. enum intel_display_power_domain domain)
  4683. {
  4684. struct i915_power_domains *power_domains;
  4685. struct i915_power_well *power_well;
  4686. bool is_enabled;
  4687. int i;
  4688. if (dev_priv->pm.suspended)
  4689. return false;
  4690. power_domains = &dev_priv->power_domains;
  4691. is_enabled = true;
  4692. mutex_lock(&power_domains->lock);
  4693. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4694. if (power_well->always_on)
  4695. continue;
  4696. if (!power_well->ops->is_enabled(dev_priv, power_well)) {
  4697. is_enabled = false;
  4698. break;
  4699. }
  4700. }
  4701. mutex_unlock(&power_domains->lock);
  4702. return is_enabled;
  4703. }
  4704. /*
  4705. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4706. * when not needed anymore. We have 4 registers that can request the power well
  4707. * to be enabled, and it will only be disabled if none of the registers is
  4708. * requesting it to be enabled.
  4709. */
  4710. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  4711. {
  4712. struct drm_device *dev = dev_priv->dev;
  4713. unsigned long irqflags;
  4714. /*
  4715. * After we re-enable the power well, if we touch VGA register 0x3d5
  4716. * we'll get unclaimed register interrupts. This stops after we write
  4717. * anything to the VGA MSR register. The vgacon module uses this
  4718. * register all the time, so if we unbind our driver and, as a
  4719. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  4720. * console_unlock(). So make here we touch the VGA MSR register, making
  4721. * sure vgacon can keep working normally without triggering interrupts
  4722. * and error messages.
  4723. */
  4724. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  4725. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  4726. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  4727. if (IS_BROADWELL(dev)) {
  4728. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  4729. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
  4730. dev_priv->de_irq_mask[PIPE_B]);
  4731. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
  4732. ~dev_priv->de_irq_mask[PIPE_B] |
  4733. GEN8_PIPE_VBLANK);
  4734. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
  4735. dev_priv->de_irq_mask[PIPE_C]);
  4736. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
  4737. ~dev_priv->de_irq_mask[PIPE_C] |
  4738. GEN8_PIPE_VBLANK);
  4739. POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
  4740. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  4741. }
  4742. }
  4743. static void hsw_set_power_well(struct drm_i915_private *dev_priv,
  4744. struct i915_power_well *power_well, bool enable)
  4745. {
  4746. bool is_enabled, enable_requested;
  4747. uint32_t tmp;
  4748. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4749. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4750. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4751. if (enable) {
  4752. if (!enable_requested)
  4753. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4754. HSW_PWR_WELL_ENABLE_REQUEST);
  4755. if (!is_enabled) {
  4756. DRM_DEBUG_KMS("Enabling power well\n");
  4757. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4758. HSW_PWR_WELL_STATE_ENABLED), 20))
  4759. DRM_ERROR("Timeout enabling power well\n");
  4760. }
  4761. hsw_power_well_post_enable(dev_priv);
  4762. } else {
  4763. if (enable_requested) {
  4764. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4765. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4766. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4767. }
  4768. }
  4769. }
  4770. static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
  4771. struct i915_power_well *power_well)
  4772. {
  4773. hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
  4774. /*
  4775. * We're taking over the BIOS, so clear any requests made by it since
  4776. * the driver is in charge now.
  4777. */
  4778. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4779. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4780. }
  4781. static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
  4782. struct i915_power_well *power_well)
  4783. {
  4784. hsw_set_power_well(dev_priv, power_well, true);
  4785. }
  4786. static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
  4787. struct i915_power_well *power_well)
  4788. {
  4789. hsw_set_power_well(dev_priv, power_well, false);
  4790. }
  4791. static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
  4792. struct i915_power_well *power_well)
  4793. {
  4794. }
  4795. static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
  4796. struct i915_power_well *power_well)
  4797. {
  4798. return true;
  4799. }
  4800. void __vlv_set_power_well(struct drm_i915_private *dev_priv,
  4801. enum punit_power_well power_well_id, bool enable)
  4802. {
  4803. struct drm_device *dev = dev_priv->dev;
  4804. u32 mask;
  4805. u32 state;
  4806. u32 ctrl;
  4807. enum pipe pipe;
  4808. if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
  4809. if (enable) {
  4810. /*
  4811. * Enable the CRI clock source so we can get at the
  4812. * display and the reference clock for VGA
  4813. * hotplug / manual detection.
  4814. */
  4815. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  4816. DPLL_REFA_CLK_ENABLE_VLV |
  4817. DPLL_INTEGRATED_CRI_CLK_VLV);
  4818. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  4819. } else {
  4820. for_each_pipe(pipe)
  4821. assert_pll_disabled(dev_priv, pipe);
  4822. /* Assert common reset */
  4823. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) &
  4824. ~DPIO_CMNRST);
  4825. }
  4826. }
  4827. mask = PUNIT_PWRGT_MASK(power_well_id);
  4828. state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
  4829. PUNIT_PWRGT_PWR_GATE(power_well_id);
  4830. mutex_lock(&dev_priv->rps.hw_lock);
  4831. #define COND \
  4832. ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
  4833. if (COND)
  4834. goto out;
  4835. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
  4836. ctrl &= ~mask;
  4837. ctrl |= state;
  4838. vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
  4839. if (wait_for(COND, 100))
  4840. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  4841. state,
  4842. vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
  4843. #undef COND
  4844. out:
  4845. mutex_unlock(&dev_priv->rps.hw_lock);
  4846. /*
  4847. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  4848. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  4849. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  4850. * b. The other bits such as sfr settings / modesel may all
  4851. * be set to 0.
  4852. *
  4853. * This should only be done on init and resume from S3 with
  4854. * both PLLs disabled, or we risk losing DPIO and PLL
  4855. * synchronization.
  4856. */
  4857. if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC && enable)
  4858. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  4859. }
  4860. static void vlv_set_power_well(struct drm_i915_private *dev_priv,
  4861. struct i915_power_well *power_well, bool enable)
  4862. {
  4863. enum punit_power_well power_well_id = power_well->data;
  4864. __vlv_set_power_well(dev_priv, power_well_id, enable);
  4865. }
  4866. static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
  4867. struct i915_power_well *power_well)
  4868. {
  4869. vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
  4870. }
  4871. static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
  4872. struct i915_power_well *power_well)
  4873. {
  4874. vlv_set_power_well(dev_priv, power_well, true);
  4875. }
  4876. static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
  4877. struct i915_power_well *power_well)
  4878. {
  4879. vlv_set_power_well(dev_priv, power_well, false);
  4880. }
  4881. static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
  4882. struct i915_power_well *power_well)
  4883. {
  4884. int power_well_id = power_well->data;
  4885. bool enabled = false;
  4886. u32 mask;
  4887. u32 state;
  4888. u32 ctrl;
  4889. mask = PUNIT_PWRGT_MASK(power_well_id);
  4890. ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
  4891. mutex_lock(&dev_priv->rps.hw_lock);
  4892. state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
  4893. /*
  4894. * We only ever set the power-on and power-gate states, anything
  4895. * else is unexpected.
  4896. */
  4897. WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
  4898. state != PUNIT_PWRGT_PWR_GATE(power_well_id));
  4899. if (state == ctrl)
  4900. enabled = true;
  4901. /*
  4902. * A transient state at this point would mean some unexpected party
  4903. * is poking at the power controls too.
  4904. */
  4905. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
  4906. WARN_ON(ctrl != state);
  4907. mutex_unlock(&dev_priv->rps.hw_lock);
  4908. return enabled;
  4909. }
  4910. static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
  4911. struct i915_power_well *power_well)
  4912. {
  4913. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  4914. vlv_set_power_well(dev_priv, power_well, true);
  4915. spin_lock_irq(&dev_priv->irq_lock);
  4916. valleyview_enable_display_irqs(dev_priv);
  4917. spin_unlock_irq(&dev_priv->irq_lock);
  4918. /*
  4919. * During driver initialization/resume we can avoid restoring the
  4920. * part of the HW/SW state that will be inited anyway explicitly.
  4921. */
  4922. if (dev_priv->power_domains.initializing)
  4923. return;
  4924. intel_hpd_init(dev_priv->dev);
  4925. i915_redisable_vga_power_on(dev_priv->dev);
  4926. }
  4927. static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
  4928. struct i915_power_well *power_well)
  4929. {
  4930. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  4931. spin_lock_irq(&dev_priv->irq_lock);
  4932. valleyview_disable_display_irqs(dev_priv);
  4933. spin_unlock_irq(&dev_priv->irq_lock);
  4934. vlv_set_power_well(dev_priv, power_well, false);
  4935. }
  4936. static void check_power_well_state(struct drm_i915_private *dev_priv,
  4937. struct i915_power_well *power_well)
  4938. {
  4939. bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
  4940. if (power_well->always_on || !i915.disable_power_well) {
  4941. if (!enabled)
  4942. goto mismatch;
  4943. return;
  4944. }
  4945. if (enabled != (power_well->count > 0))
  4946. goto mismatch;
  4947. return;
  4948. mismatch:
  4949. WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
  4950. power_well->name, power_well->always_on, enabled,
  4951. power_well->count, i915.disable_power_well);
  4952. }
  4953. void intel_display_power_get(struct drm_i915_private *dev_priv,
  4954. enum intel_display_power_domain domain)
  4955. {
  4956. struct i915_power_domains *power_domains;
  4957. struct i915_power_well *power_well;
  4958. int i;
  4959. intel_runtime_pm_get(dev_priv);
  4960. power_domains = &dev_priv->power_domains;
  4961. mutex_lock(&power_domains->lock);
  4962. for_each_power_well(i, power_well, BIT(domain), power_domains) {
  4963. if (!power_well->count++) {
  4964. DRM_DEBUG_KMS("enabling %s\n", power_well->name);
  4965. power_well->ops->enable(dev_priv, power_well);
  4966. }
  4967. check_power_well_state(dev_priv, power_well);
  4968. }
  4969. power_domains->domain_use_count[domain]++;
  4970. mutex_unlock(&power_domains->lock);
  4971. }
  4972. void intel_display_power_put(struct drm_i915_private *dev_priv,
  4973. enum intel_display_power_domain domain)
  4974. {
  4975. struct i915_power_domains *power_domains;
  4976. struct i915_power_well *power_well;
  4977. int i;
  4978. power_domains = &dev_priv->power_domains;
  4979. mutex_lock(&power_domains->lock);
  4980. WARN_ON(!power_domains->domain_use_count[domain]);
  4981. power_domains->domain_use_count[domain]--;
  4982. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4983. WARN_ON(!power_well->count);
  4984. if (!--power_well->count && i915.disable_power_well) {
  4985. DRM_DEBUG_KMS("disabling %s\n", power_well->name);
  4986. power_well->ops->disable(dev_priv, power_well);
  4987. }
  4988. check_power_well_state(dev_priv, power_well);
  4989. }
  4990. mutex_unlock(&power_domains->lock);
  4991. intel_runtime_pm_put(dev_priv);
  4992. }
  4993. static struct i915_power_domains *hsw_pwr;
  4994. /* Display audio driver power well request */
  4995. void i915_request_power_well(void)
  4996. {
  4997. struct drm_i915_private *dev_priv;
  4998. if (WARN_ON(!hsw_pwr))
  4999. return;
  5000. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5001. power_domains);
  5002. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  5003. }
  5004. EXPORT_SYMBOL_GPL(i915_request_power_well);
  5005. /* Display audio driver power well release */
  5006. void i915_release_power_well(void)
  5007. {
  5008. struct drm_i915_private *dev_priv;
  5009. if (WARN_ON(!hsw_pwr))
  5010. return;
  5011. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5012. power_domains);
  5013. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  5014. }
  5015. EXPORT_SYMBOL_GPL(i915_release_power_well);
  5016. #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
  5017. #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
  5018. BIT(POWER_DOMAIN_PIPE_A) | \
  5019. BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
  5020. BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
  5021. BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
  5022. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5023. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5024. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5025. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5026. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5027. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5028. BIT(POWER_DOMAIN_PORT_CRT) | \
  5029. BIT(POWER_DOMAIN_INIT))
  5030. #define HSW_DISPLAY_POWER_DOMAINS ( \
  5031. (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
  5032. BIT(POWER_DOMAIN_INIT))
  5033. #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
  5034. HSW_ALWAYS_ON_POWER_DOMAINS | \
  5035. BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
  5036. #define BDW_DISPLAY_POWER_DOMAINS ( \
  5037. (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
  5038. BIT(POWER_DOMAIN_INIT))
  5039. #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
  5040. #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
  5041. #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5042. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5043. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5044. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5045. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5046. BIT(POWER_DOMAIN_PORT_CRT) | \
  5047. BIT(POWER_DOMAIN_INIT))
  5048. #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
  5049. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5050. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5051. BIT(POWER_DOMAIN_INIT))
  5052. #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
  5053. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5054. BIT(POWER_DOMAIN_INIT))
  5055. #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
  5056. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5057. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5058. BIT(POWER_DOMAIN_INIT))
  5059. #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
  5060. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5061. BIT(POWER_DOMAIN_INIT))
  5062. static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
  5063. .sync_hw = i9xx_always_on_power_well_noop,
  5064. .enable = i9xx_always_on_power_well_noop,
  5065. .disable = i9xx_always_on_power_well_noop,
  5066. .is_enabled = i9xx_always_on_power_well_enabled,
  5067. };
  5068. static struct i915_power_well i9xx_always_on_power_well[] = {
  5069. {
  5070. .name = "always-on",
  5071. .always_on = 1,
  5072. .domains = POWER_DOMAIN_MASK,
  5073. .ops = &i9xx_always_on_power_well_ops,
  5074. },
  5075. };
  5076. static const struct i915_power_well_ops hsw_power_well_ops = {
  5077. .sync_hw = hsw_power_well_sync_hw,
  5078. .enable = hsw_power_well_enable,
  5079. .disable = hsw_power_well_disable,
  5080. .is_enabled = hsw_power_well_enabled,
  5081. };
  5082. static struct i915_power_well hsw_power_wells[] = {
  5083. {
  5084. .name = "always-on",
  5085. .always_on = 1,
  5086. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  5087. .ops = &i9xx_always_on_power_well_ops,
  5088. },
  5089. {
  5090. .name = "display",
  5091. .domains = HSW_DISPLAY_POWER_DOMAINS,
  5092. .ops = &hsw_power_well_ops,
  5093. },
  5094. };
  5095. static struct i915_power_well bdw_power_wells[] = {
  5096. {
  5097. .name = "always-on",
  5098. .always_on = 1,
  5099. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  5100. .ops = &i9xx_always_on_power_well_ops,
  5101. },
  5102. {
  5103. .name = "display",
  5104. .domains = BDW_DISPLAY_POWER_DOMAINS,
  5105. .ops = &hsw_power_well_ops,
  5106. },
  5107. };
  5108. static const struct i915_power_well_ops vlv_display_power_well_ops = {
  5109. .sync_hw = vlv_power_well_sync_hw,
  5110. .enable = vlv_display_power_well_enable,
  5111. .disable = vlv_display_power_well_disable,
  5112. .is_enabled = vlv_power_well_enabled,
  5113. };
  5114. static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
  5115. .sync_hw = vlv_power_well_sync_hw,
  5116. .enable = vlv_power_well_enable,
  5117. .disable = vlv_power_well_disable,
  5118. .is_enabled = vlv_power_well_enabled,
  5119. };
  5120. static struct i915_power_well vlv_power_wells[] = {
  5121. {
  5122. .name = "always-on",
  5123. .always_on = 1,
  5124. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5125. .ops = &i9xx_always_on_power_well_ops,
  5126. },
  5127. {
  5128. .name = "display",
  5129. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5130. .data = PUNIT_POWER_WELL_DISP2D,
  5131. .ops = &vlv_display_power_well_ops,
  5132. },
  5133. {
  5134. .name = "dpio-tx-b-01",
  5135. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5136. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5137. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5138. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5139. .ops = &vlv_dpio_power_well_ops,
  5140. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5141. },
  5142. {
  5143. .name = "dpio-tx-b-23",
  5144. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5145. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5146. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5147. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5148. .ops = &vlv_dpio_power_well_ops,
  5149. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5150. },
  5151. {
  5152. .name = "dpio-tx-c-01",
  5153. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5154. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5155. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5156. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5157. .ops = &vlv_dpio_power_well_ops,
  5158. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5159. },
  5160. {
  5161. .name = "dpio-tx-c-23",
  5162. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5163. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5164. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5165. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5166. .ops = &vlv_dpio_power_well_ops,
  5167. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5168. },
  5169. {
  5170. .name = "dpio-common",
  5171. .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
  5172. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5173. .ops = &vlv_dpio_power_well_ops,
  5174. },
  5175. };
  5176. #define set_power_wells(power_domains, __power_wells) ({ \
  5177. (power_domains)->power_wells = (__power_wells); \
  5178. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  5179. })
  5180. int intel_power_domains_init(struct drm_i915_private *dev_priv)
  5181. {
  5182. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5183. mutex_init(&power_domains->lock);
  5184. /*
  5185. * The enabling order will be from lower to higher indexed wells,
  5186. * the disabling order is reversed.
  5187. */
  5188. if (IS_HASWELL(dev_priv->dev)) {
  5189. set_power_wells(power_domains, hsw_power_wells);
  5190. hsw_pwr = power_domains;
  5191. } else if (IS_BROADWELL(dev_priv->dev)) {
  5192. set_power_wells(power_domains, bdw_power_wells);
  5193. hsw_pwr = power_domains;
  5194. } else if (IS_VALLEYVIEW(dev_priv->dev)) {
  5195. set_power_wells(power_domains, vlv_power_wells);
  5196. } else {
  5197. set_power_wells(power_domains, i9xx_always_on_power_well);
  5198. }
  5199. return 0;
  5200. }
  5201. void intel_power_domains_remove(struct drm_i915_private *dev_priv)
  5202. {
  5203. hsw_pwr = NULL;
  5204. }
  5205. static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
  5206. {
  5207. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5208. struct i915_power_well *power_well;
  5209. int i;
  5210. mutex_lock(&power_domains->lock);
  5211. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
  5212. power_well->ops->sync_hw(dev_priv, power_well);
  5213. mutex_unlock(&power_domains->lock);
  5214. }
  5215. void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
  5216. {
  5217. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5218. power_domains->initializing = true;
  5219. /* For now, we need the power well to be always enabled. */
  5220. intel_display_set_init_power(dev_priv, true);
  5221. intel_power_domains_resume(dev_priv);
  5222. power_domains->initializing = false;
  5223. }
  5224. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  5225. {
  5226. intel_runtime_pm_get(dev_priv);
  5227. }
  5228. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  5229. {
  5230. intel_runtime_pm_put(dev_priv);
  5231. }
  5232. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  5233. {
  5234. struct drm_device *dev = dev_priv->dev;
  5235. struct device *device = &dev->pdev->dev;
  5236. if (!HAS_RUNTIME_PM(dev))
  5237. return;
  5238. pm_runtime_get_sync(device);
  5239. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  5240. }
  5241. void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
  5242. {
  5243. struct drm_device *dev = dev_priv->dev;
  5244. struct device *device = &dev->pdev->dev;
  5245. if (!HAS_RUNTIME_PM(dev))
  5246. return;
  5247. WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
  5248. pm_runtime_get_noresume(device);
  5249. }
  5250. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  5251. {
  5252. struct drm_device *dev = dev_priv->dev;
  5253. struct device *device = &dev->pdev->dev;
  5254. if (!HAS_RUNTIME_PM(dev))
  5255. return;
  5256. pm_runtime_mark_last_busy(device);
  5257. pm_runtime_put_autosuspend(device);
  5258. }
  5259. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  5260. {
  5261. struct drm_device *dev = dev_priv->dev;
  5262. struct device *device = &dev->pdev->dev;
  5263. if (!HAS_RUNTIME_PM(dev))
  5264. return;
  5265. pm_runtime_set_active(device);
  5266. /*
  5267. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  5268. * requirement.
  5269. */
  5270. if (!intel_enable_rc6(dev)) {
  5271. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  5272. return;
  5273. }
  5274. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  5275. pm_runtime_mark_last_busy(device);
  5276. pm_runtime_use_autosuspend(device);
  5277. pm_runtime_put_autosuspend(device);
  5278. }
  5279. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  5280. {
  5281. struct drm_device *dev = dev_priv->dev;
  5282. struct device *device = &dev->pdev->dev;
  5283. if (!HAS_RUNTIME_PM(dev))
  5284. return;
  5285. if (!intel_enable_rc6(dev))
  5286. return;
  5287. /* Make sure we're not suspended first. */
  5288. pm_runtime_get_sync(device);
  5289. pm_runtime_disable(device);
  5290. }
  5291. /* Set up chip specific power management-related functions */
  5292. void intel_init_pm(struct drm_device *dev)
  5293. {
  5294. struct drm_i915_private *dev_priv = dev->dev_private;
  5295. if (HAS_FBC(dev)) {
  5296. if (INTEL_INFO(dev)->gen >= 7) {
  5297. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5298. dev_priv->display.enable_fbc = gen7_enable_fbc;
  5299. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5300. } else if (INTEL_INFO(dev)->gen >= 5) {
  5301. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5302. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  5303. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5304. } else if (IS_GM45(dev)) {
  5305. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  5306. dev_priv->display.enable_fbc = g4x_enable_fbc;
  5307. dev_priv->display.disable_fbc = g4x_disable_fbc;
  5308. } else {
  5309. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  5310. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  5311. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  5312. /* This value was pulled out of someone's hat */
  5313. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  5314. }
  5315. }
  5316. /* For cxsr */
  5317. if (IS_PINEVIEW(dev))
  5318. i915_pineview_get_mem_freq(dev);
  5319. else if (IS_GEN5(dev))
  5320. i915_ironlake_get_mem_freq(dev);
  5321. /* For FIFO watermark updates */
  5322. if (HAS_PCH_SPLIT(dev)) {
  5323. ilk_setup_wm_latency(dev);
  5324. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5325. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5326. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5327. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5328. dev_priv->display.update_wm = ilk_update_wm;
  5329. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  5330. } else {
  5331. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5332. "Disable CxSR\n");
  5333. }
  5334. if (IS_GEN5(dev))
  5335. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5336. else if (IS_GEN6(dev))
  5337. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5338. else if (IS_IVYBRIDGE(dev))
  5339. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5340. else if (IS_HASWELL(dev))
  5341. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5342. else if (INTEL_INFO(dev)->gen == 8)
  5343. dev_priv->display.init_clock_gating = gen8_init_clock_gating;
  5344. } else if (IS_CHERRYVIEW(dev)) {
  5345. dev_priv->display.update_wm = valleyview_update_wm;
  5346. dev_priv->display.init_clock_gating =
  5347. cherryview_init_clock_gating;
  5348. } else if (IS_VALLEYVIEW(dev)) {
  5349. dev_priv->display.update_wm = valleyview_update_wm;
  5350. dev_priv->display.init_clock_gating =
  5351. valleyview_init_clock_gating;
  5352. } else if (IS_PINEVIEW(dev)) {
  5353. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5354. dev_priv->is_ddr3,
  5355. dev_priv->fsb_freq,
  5356. dev_priv->mem_freq)) {
  5357. DRM_INFO("failed to find known CxSR latency "
  5358. "(found ddr%s fsb freq %d, mem freq %d), "
  5359. "disabling CxSR\n",
  5360. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5361. dev_priv->fsb_freq, dev_priv->mem_freq);
  5362. /* Disable CxSR and never update its watermark again */
  5363. pineview_disable_cxsr(dev);
  5364. dev_priv->display.update_wm = NULL;
  5365. } else
  5366. dev_priv->display.update_wm = pineview_update_wm;
  5367. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5368. } else if (IS_G4X(dev)) {
  5369. dev_priv->display.update_wm = g4x_update_wm;
  5370. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5371. } else if (IS_GEN4(dev)) {
  5372. dev_priv->display.update_wm = i965_update_wm;
  5373. if (IS_CRESTLINE(dev))
  5374. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5375. else if (IS_BROADWATER(dev))
  5376. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5377. } else if (IS_GEN3(dev)) {
  5378. dev_priv->display.update_wm = i9xx_update_wm;
  5379. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5380. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5381. } else if (IS_GEN2(dev)) {
  5382. if (INTEL_INFO(dev)->num_pipes == 1) {
  5383. dev_priv->display.update_wm = i845_update_wm;
  5384. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5385. } else {
  5386. dev_priv->display.update_wm = i9xx_update_wm;
  5387. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5388. }
  5389. if (IS_I85X(dev) || IS_I865G(dev))
  5390. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5391. else
  5392. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5393. } else {
  5394. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5395. }
  5396. }
  5397. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  5398. {
  5399. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5400. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5401. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5402. return -EAGAIN;
  5403. }
  5404. I915_WRITE(GEN6_PCODE_DATA, *val);
  5405. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5406. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5407. 500)) {
  5408. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5409. return -ETIMEDOUT;
  5410. }
  5411. *val = I915_READ(GEN6_PCODE_DATA);
  5412. I915_WRITE(GEN6_PCODE_DATA, 0);
  5413. return 0;
  5414. }
  5415. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  5416. {
  5417. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5418. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5419. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5420. return -EAGAIN;
  5421. }
  5422. I915_WRITE(GEN6_PCODE_DATA, val);
  5423. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5424. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5425. 500)) {
  5426. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5427. return -ETIMEDOUT;
  5428. }
  5429. I915_WRITE(GEN6_PCODE_DATA, 0);
  5430. return 0;
  5431. }
  5432. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5433. {
  5434. int div;
  5435. /* 4 x czclk */
  5436. switch (dev_priv->mem_freq) {
  5437. case 800:
  5438. div = 10;
  5439. break;
  5440. case 1066:
  5441. div = 12;
  5442. break;
  5443. case 1333:
  5444. div = 16;
  5445. break;
  5446. default:
  5447. return -1;
  5448. }
  5449. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  5450. }
  5451. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5452. {
  5453. int mul;
  5454. /* 4 x czclk */
  5455. switch (dev_priv->mem_freq) {
  5456. case 800:
  5457. mul = 10;
  5458. break;
  5459. case 1066:
  5460. mul = 12;
  5461. break;
  5462. case 1333:
  5463. mul = 16;
  5464. break;
  5465. default:
  5466. return -1;
  5467. }
  5468. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  5469. }
  5470. void intel_pm_setup(struct drm_device *dev)
  5471. {
  5472. struct drm_i915_private *dev_priv = dev->dev_private;
  5473. mutex_init(&dev_priv->rps.hw_lock);
  5474. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5475. intel_gen6_powersave_work);
  5476. dev_priv->pm.suspended = false;
  5477. dev_priv->pm.irqs_disabled = false;
  5478. }