core.c 166 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Core kernel scheduler code and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. */
  8. #include <linux/sched.h>
  9. #include <linux/sched/clock.h>
  10. #include <uapi/linux/sched/types.h>
  11. #include <linux/sched/loadavg.h>
  12. #include <linux/sched/hotplug.h>
  13. #include <linux/wait_bit.h>
  14. #include <linux/cpuset.h>
  15. #include <linux/delayacct.h>
  16. #include <linux/init_task.h>
  17. #include <linux/context_tracking.h>
  18. #include <linux/rcupdate_wait.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/kprobes.h>
  21. #include <linux/mmu_context.h>
  22. #include <linux/module.h>
  23. #include <linux/nmi.h>
  24. #include <linux/prefetch.h>
  25. #include <linux/profile.h>
  26. #include <linux/security.h>
  27. #include <linux/syscalls.h>
  28. #include <asm/switch_to.h>
  29. #include <asm/tlb.h>
  30. #ifdef CONFIG_PARAVIRT
  31. #include <asm/paravirt.h>
  32. #endif
  33. #include "sched.h"
  34. #include "../workqueue_internal.h"
  35. #include "../smpboot.h"
  36. #define CREATE_TRACE_POINTS
  37. #include <trace/events/sched.h>
  38. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  39. /*
  40. * Debugging: various feature bits
  41. */
  42. #define SCHED_FEAT(name, enabled) \
  43. (1UL << __SCHED_FEAT_##name) * enabled |
  44. const_debug unsigned int sysctl_sched_features =
  45. #include "features.h"
  46. 0;
  47. #undef SCHED_FEAT
  48. /*
  49. * Number of tasks to iterate in a single balance run.
  50. * Limited because this is done with IRQs disabled.
  51. */
  52. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  53. /*
  54. * period over which we average the RT time consumption, measured
  55. * in ms.
  56. *
  57. * default: 1s
  58. */
  59. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  60. /*
  61. * period over which we measure -rt task CPU usage in us.
  62. * default: 1s
  63. */
  64. unsigned int sysctl_sched_rt_period = 1000000;
  65. __read_mostly int scheduler_running;
  66. /*
  67. * part of the period that we allow rt tasks to run in us.
  68. * default: 0.95s
  69. */
  70. int sysctl_sched_rt_runtime = 950000;
  71. /* CPUs with isolated domains */
  72. cpumask_var_t cpu_isolated_map;
  73. /*
  74. * __task_rq_lock - lock the rq @p resides on.
  75. */
  76. struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  77. __acquires(rq->lock)
  78. {
  79. struct rq *rq;
  80. lockdep_assert_held(&p->pi_lock);
  81. for (;;) {
  82. rq = task_rq(p);
  83. raw_spin_lock(&rq->lock);
  84. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  85. rq_pin_lock(rq, rf);
  86. return rq;
  87. }
  88. raw_spin_unlock(&rq->lock);
  89. while (unlikely(task_on_rq_migrating(p)))
  90. cpu_relax();
  91. }
  92. }
  93. /*
  94. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  95. */
  96. struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  97. __acquires(p->pi_lock)
  98. __acquires(rq->lock)
  99. {
  100. struct rq *rq;
  101. for (;;) {
  102. raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  103. rq = task_rq(p);
  104. raw_spin_lock(&rq->lock);
  105. /*
  106. * move_queued_task() task_rq_lock()
  107. *
  108. * ACQUIRE (rq->lock)
  109. * [S] ->on_rq = MIGRATING [L] rq = task_rq()
  110. * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
  111. * [S] ->cpu = new_cpu [L] task_rq()
  112. * [L] ->on_rq
  113. * RELEASE (rq->lock)
  114. *
  115. * If we observe the old cpu in task_rq_lock, the acquire of
  116. * the old rq->lock will fully serialize against the stores.
  117. *
  118. * If we observe the new CPU in task_rq_lock, the acquire will
  119. * pair with the WMB to ensure we must then also see migrating.
  120. */
  121. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  122. rq_pin_lock(rq, rf);
  123. return rq;
  124. }
  125. raw_spin_unlock(&rq->lock);
  126. raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  127. while (unlikely(task_on_rq_migrating(p)))
  128. cpu_relax();
  129. }
  130. }
  131. /*
  132. * RQ-clock updating methods:
  133. */
  134. static void update_rq_clock_task(struct rq *rq, s64 delta)
  135. {
  136. /*
  137. * In theory, the compile should just see 0 here, and optimize out the call
  138. * to sched_rt_avg_update. But I don't trust it...
  139. */
  140. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  141. s64 steal = 0, irq_delta = 0;
  142. #endif
  143. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  144. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  145. /*
  146. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  147. * this case when a previous update_rq_clock() happened inside a
  148. * {soft,}irq region.
  149. *
  150. * When this happens, we stop ->clock_task and only update the
  151. * prev_irq_time stamp to account for the part that fit, so that a next
  152. * update will consume the rest. This ensures ->clock_task is
  153. * monotonic.
  154. *
  155. * It does however cause some slight miss-attribution of {soft,}irq
  156. * time, a more accurate solution would be to update the irq_time using
  157. * the current rq->clock timestamp, except that would require using
  158. * atomic ops.
  159. */
  160. if (irq_delta > delta)
  161. irq_delta = delta;
  162. rq->prev_irq_time += irq_delta;
  163. delta -= irq_delta;
  164. #endif
  165. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  166. if (static_key_false((&paravirt_steal_rq_enabled))) {
  167. steal = paravirt_steal_clock(cpu_of(rq));
  168. steal -= rq->prev_steal_time_rq;
  169. if (unlikely(steal > delta))
  170. steal = delta;
  171. rq->prev_steal_time_rq += steal;
  172. delta -= steal;
  173. }
  174. #endif
  175. rq->clock_task += delta;
  176. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  177. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  178. sched_rt_avg_update(rq, irq_delta + steal);
  179. #endif
  180. }
  181. void update_rq_clock(struct rq *rq)
  182. {
  183. s64 delta;
  184. lockdep_assert_held(&rq->lock);
  185. if (rq->clock_update_flags & RQCF_ACT_SKIP)
  186. return;
  187. #ifdef CONFIG_SCHED_DEBUG
  188. if (sched_feat(WARN_DOUBLE_CLOCK))
  189. SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
  190. rq->clock_update_flags |= RQCF_UPDATED;
  191. #endif
  192. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  193. if (delta < 0)
  194. return;
  195. rq->clock += delta;
  196. update_rq_clock_task(rq, delta);
  197. }
  198. #ifdef CONFIG_SCHED_HRTICK
  199. /*
  200. * Use HR-timers to deliver accurate preemption points.
  201. */
  202. static void hrtick_clear(struct rq *rq)
  203. {
  204. if (hrtimer_active(&rq->hrtick_timer))
  205. hrtimer_cancel(&rq->hrtick_timer);
  206. }
  207. /*
  208. * High-resolution timer tick.
  209. * Runs from hardirq context with interrupts disabled.
  210. */
  211. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  212. {
  213. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  214. struct rq_flags rf;
  215. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  216. rq_lock(rq, &rf);
  217. update_rq_clock(rq);
  218. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  219. rq_unlock(rq, &rf);
  220. return HRTIMER_NORESTART;
  221. }
  222. #ifdef CONFIG_SMP
  223. static void __hrtick_restart(struct rq *rq)
  224. {
  225. struct hrtimer *timer = &rq->hrtick_timer;
  226. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  227. }
  228. /*
  229. * called from hardirq (IPI) context
  230. */
  231. static void __hrtick_start(void *arg)
  232. {
  233. struct rq *rq = arg;
  234. struct rq_flags rf;
  235. rq_lock(rq, &rf);
  236. __hrtick_restart(rq);
  237. rq->hrtick_csd_pending = 0;
  238. rq_unlock(rq, &rf);
  239. }
  240. /*
  241. * Called to set the hrtick timer state.
  242. *
  243. * called with rq->lock held and irqs disabled
  244. */
  245. void hrtick_start(struct rq *rq, u64 delay)
  246. {
  247. struct hrtimer *timer = &rq->hrtick_timer;
  248. ktime_t time;
  249. s64 delta;
  250. /*
  251. * Don't schedule slices shorter than 10000ns, that just
  252. * doesn't make sense and can cause timer DoS.
  253. */
  254. delta = max_t(s64, delay, 10000LL);
  255. time = ktime_add_ns(timer->base->get_time(), delta);
  256. hrtimer_set_expires(timer, time);
  257. if (rq == this_rq()) {
  258. __hrtick_restart(rq);
  259. } else if (!rq->hrtick_csd_pending) {
  260. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  261. rq->hrtick_csd_pending = 1;
  262. }
  263. }
  264. #else
  265. /*
  266. * Called to set the hrtick timer state.
  267. *
  268. * called with rq->lock held and irqs disabled
  269. */
  270. void hrtick_start(struct rq *rq, u64 delay)
  271. {
  272. /*
  273. * Don't schedule slices shorter than 10000ns, that just
  274. * doesn't make sense. Rely on vruntime for fairness.
  275. */
  276. delay = max_t(u64, delay, 10000LL);
  277. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  278. HRTIMER_MODE_REL_PINNED);
  279. }
  280. #endif /* CONFIG_SMP */
  281. static void init_rq_hrtick(struct rq *rq)
  282. {
  283. #ifdef CONFIG_SMP
  284. rq->hrtick_csd_pending = 0;
  285. rq->hrtick_csd.flags = 0;
  286. rq->hrtick_csd.func = __hrtick_start;
  287. rq->hrtick_csd.info = rq;
  288. #endif
  289. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  290. rq->hrtick_timer.function = hrtick;
  291. }
  292. #else /* CONFIG_SCHED_HRTICK */
  293. static inline void hrtick_clear(struct rq *rq)
  294. {
  295. }
  296. static inline void init_rq_hrtick(struct rq *rq)
  297. {
  298. }
  299. #endif /* CONFIG_SCHED_HRTICK */
  300. /*
  301. * cmpxchg based fetch_or, macro so it works for different integer types
  302. */
  303. #define fetch_or(ptr, mask) \
  304. ({ \
  305. typeof(ptr) _ptr = (ptr); \
  306. typeof(mask) _mask = (mask); \
  307. typeof(*_ptr) _old, _val = *_ptr; \
  308. \
  309. for (;;) { \
  310. _old = cmpxchg(_ptr, _val, _val | _mask); \
  311. if (_old == _val) \
  312. break; \
  313. _val = _old; \
  314. } \
  315. _old; \
  316. })
  317. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  318. /*
  319. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  320. * this avoids any races wrt polling state changes and thereby avoids
  321. * spurious IPIs.
  322. */
  323. static bool set_nr_and_not_polling(struct task_struct *p)
  324. {
  325. struct thread_info *ti = task_thread_info(p);
  326. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  327. }
  328. /*
  329. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  330. *
  331. * If this returns true, then the idle task promises to call
  332. * sched_ttwu_pending() and reschedule soon.
  333. */
  334. static bool set_nr_if_polling(struct task_struct *p)
  335. {
  336. struct thread_info *ti = task_thread_info(p);
  337. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  338. for (;;) {
  339. if (!(val & _TIF_POLLING_NRFLAG))
  340. return false;
  341. if (val & _TIF_NEED_RESCHED)
  342. return true;
  343. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  344. if (old == val)
  345. break;
  346. val = old;
  347. }
  348. return true;
  349. }
  350. #else
  351. static bool set_nr_and_not_polling(struct task_struct *p)
  352. {
  353. set_tsk_need_resched(p);
  354. return true;
  355. }
  356. #ifdef CONFIG_SMP
  357. static bool set_nr_if_polling(struct task_struct *p)
  358. {
  359. return false;
  360. }
  361. #endif
  362. #endif
  363. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  364. {
  365. struct wake_q_node *node = &task->wake_q;
  366. /*
  367. * Atomically grab the task, if ->wake_q is !nil already it means
  368. * its already queued (either by us or someone else) and will get the
  369. * wakeup due to that.
  370. *
  371. * This cmpxchg() implies a full barrier, which pairs with the write
  372. * barrier implied by the wakeup in wake_up_q().
  373. */
  374. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  375. return;
  376. get_task_struct(task);
  377. /*
  378. * The head is context local, there can be no concurrency.
  379. */
  380. *head->lastp = node;
  381. head->lastp = &node->next;
  382. }
  383. void wake_up_q(struct wake_q_head *head)
  384. {
  385. struct wake_q_node *node = head->first;
  386. while (node != WAKE_Q_TAIL) {
  387. struct task_struct *task;
  388. task = container_of(node, struct task_struct, wake_q);
  389. BUG_ON(!task);
  390. /* Task can safely be re-inserted now: */
  391. node = node->next;
  392. task->wake_q.next = NULL;
  393. /*
  394. * wake_up_process() implies a wmb() to pair with the queueing
  395. * in wake_q_add() so as not to miss wakeups.
  396. */
  397. wake_up_process(task);
  398. put_task_struct(task);
  399. }
  400. }
  401. /*
  402. * resched_curr - mark rq's current task 'to be rescheduled now'.
  403. *
  404. * On UP this means the setting of the need_resched flag, on SMP it
  405. * might also involve a cross-CPU call to trigger the scheduler on
  406. * the target CPU.
  407. */
  408. void resched_curr(struct rq *rq)
  409. {
  410. struct task_struct *curr = rq->curr;
  411. int cpu;
  412. lockdep_assert_held(&rq->lock);
  413. if (test_tsk_need_resched(curr))
  414. return;
  415. cpu = cpu_of(rq);
  416. if (cpu == smp_processor_id()) {
  417. set_tsk_need_resched(curr);
  418. set_preempt_need_resched();
  419. return;
  420. }
  421. if (set_nr_and_not_polling(curr))
  422. smp_send_reschedule(cpu);
  423. else
  424. trace_sched_wake_idle_without_ipi(cpu);
  425. }
  426. void resched_cpu(int cpu)
  427. {
  428. struct rq *rq = cpu_rq(cpu);
  429. unsigned long flags;
  430. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  431. return;
  432. resched_curr(rq);
  433. raw_spin_unlock_irqrestore(&rq->lock, flags);
  434. }
  435. #ifdef CONFIG_SMP
  436. #ifdef CONFIG_NO_HZ_COMMON
  437. /*
  438. * In the semi idle case, use the nearest busy CPU for migrating timers
  439. * from an idle CPU. This is good for power-savings.
  440. *
  441. * We don't do similar optimization for completely idle system, as
  442. * selecting an idle CPU will add more delays to the timers than intended
  443. * (as that CPU's timer base may not be uptodate wrt jiffies etc).
  444. */
  445. int get_nohz_timer_target(void)
  446. {
  447. int i, cpu = smp_processor_id();
  448. struct sched_domain *sd;
  449. if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
  450. return cpu;
  451. rcu_read_lock();
  452. for_each_domain(cpu, sd) {
  453. for_each_cpu(i, sched_domain_span(sd)) {
  454. if (cpu == i)
  455. continue;
  456. if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
  457. cpu = i;
  458. goto unlock;
  459. }
  460. }
  461. }
  462. if (!is_housekeeping_cpu(cpu))
  463. cpu = housekeeping_any_cpu();
  464. unlock:
  465. rcu_read_unlock();
  466. return cpu;
  467. }
  468. /*
  469. * When add_timer_on() enqueues a timer into the timer wheel of an
  470. * idle CPU then this timer might expire before the next timer event
  471. * which is scheduled to wake up that CPU. In case of a completely
  472. * idle system the next event might even be infinite time into the
  473. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  474. * leaves the inner idle loop so the newly added timer is taken into
  475. * account when the CPU goes back to idle and evaluates the timer
  476. * wheel for the next timer event.
  477. */
  478. static void wake_up_idle_cpu(int cpu)
  479. {
  480. struct rq *rq = cpu_rq(cpu);
  481. if (cpu == smp_processor_id())
  482. return;
  483. if (set_nr_and_not_polling(rq->idle))
  484. smp_send_reschedule(cpu);
  485. else
  486. trace_sched_wake_idle_without_ipi(cpu);
  487. }
  488. static bool wake_up_full_nohz_cpu(int cpu)
  489. {
  490. /*
  491. * We just need the target to call irq_exit() and re-evaluate
  492. * the next tick. The nohz full kick at least implies that.
  493. * If needed we can still optimize that later with an
  494. * empty IRQ.
  495. */
  496. if (cpu_is_offline(cpu))
  497. return true; /* Don't try to wake offline CPUs. */
  498. if (tick_nohz_full_cpu(cpu)) {
  499. if (cpu != smp_processor_id() ||
  500. tick_nohz_tick_stopped())
  501. tick_nohz_full_kick_cpu(cpu);
  502. return true;
  503. }
  504. return false;
  505. }
  506. /*
  507. * Wake up the specified CPU. If the CPU is going offline, it is the
  508. * caller's responsibility to deal with the lost wakeup, for example,
  509. * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
  510. */
  511. void wake_up_nohz_cpu(int cpu)
  512. {
  513. if (!wake_up_full_nohz_cpu(cpu))
  514. wake_up_idle_cpu(cpu);
  515. }
  516. static inline bool got_nohz_idle_kick(void)
  517. {
  518. int cpu = smp_processor_id();
  519. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  520. return false;
  521. if (idle_cpu(cpu) && !need_resched())
  522. return true;
  523. /*
  524. * We can't run Idle Load Balance on this CPU for this time so we
  525. * cancel it and clear NOHZ_BALANCE_KICK
  526. */
  527. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  528. return false;
  529. }
  530. #else /* CONFIG_NO_HZ_COMMON */
  531. static inline bool got_nohz_idle_kick(void)
  532. {
  533. return false;
  534. }
  535. #endif /* CONFIG_NO_HZ_COMMON */
  536. #ifdef CONFIG_NO_HZ_FULL
  537. bool sched_can_stop_tick(struct rq *rq)
  538. {
  539. int fifo_nr_running;
  540. /* Deadline tasks, even if single, need the tick */
  541. if (rq->dl.dl_nr_running)
  542. return false;
  543. /*
  544. * If there are more than one RR tasks, we need the tick to effect the
  545. * actual RR behaviour.
  546. */
  547. if (rq->rt.rr_nr_running) {
  548. if (rq->rt.rr_nr_running == 1)
  549. return true;
  550. else
  551. return false;
  552. }
  553. /*
  554. * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
  555. * forced preemption between FIFO tasks.
  556. */
  557. fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
  558. if (fifo_nr_running)
  559. return true;
  560. /*
  561. * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
  562. * if there's more than one we need the tick for involuntary
  563. * preemption.
  564. */
  565. if (rq->nr_running > 1)
  566. return false;
  567. return true;
  568. }
  569. #endif /* CONFIG_NO_HZ_FULL */
  570. void sched_avg_update(struct rq *rq)
  571. {
  572. s64 period = sched_avg_period();
  573. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  574. /*
  575. * Inline assembly required to prevent the compiler
  576. * optimising this loop into a divmod call.
  577. * See __iter_div_u64_rem() for another example of this.
  578. */
  579. asm("" : "+rm" (rq->age_stamp));
  580. rq->age_stamp += period;
  581. rq->rt_avg /= 2;
  582. }
  583. }
  584. #endif /* CONFIG_SMP */
  585. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  586. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  587. /*
  588. * Iterate task_group tree rooted at *from, calling @down when first entering a
  589. * node and @up when leaving it for the final time.
  590. *
  591. * Caller must hold rcu_lock or sufficient equivalent.
  592. */
  593. int walk_tg_tree_from(struct task_group *from,
  594. tg_visitor down, tg_visitor up, void *data)
  595. {
  596. struct task_group *parent, *child;
  597. int ret;
  598. parent = from;
  599. down:
  600. ret = (*down)(parent, data);
  601. if (ret)
  602. goto out;
  603. list_for_each_entry_rcu(child, &parent->children, siblings) {
  604. parent = child;
  605. goto down;
  606. up:
  607. continue;
  608. }
  609. ret = (*up)(parent, data);
  610. if (ret || parent == from)
  611. goto out;
  612. child = parent;
  613. parent = parent->parent;
  614. if (parent)
  615. goto up;
  616. out:
  617. return ret;
  618. }
  619. int tg_nop(struct task_group *tg, void *data)
  620. {
  621. return 0;
  622. }
  623. #endif
  624. static void set_load_weight(struct task_struct *p)
  625. {
  626. int prio = p->static_prio - MAX_RT_PRIO;
  627. struct load_weight *load = &p->se.load;
  628. /*
  629. * SCHED_IDLE tasks get minimal weight:
  630. */
  631. if (idle_policy(p->policy)) {
  632. load->weight = scale_load(WEIGHT_IDLEPRIO);
  633. load->inv_weight = WMULT_IDLEPRIO;
  634. return;
  635. }
  636. load->weight = scale_load(sched_prio_to_weight[prio]);
  637. load->inv_weight = sched_prio_to_wmult[prio];
  638. }
  639. static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  640. {
  641. if (!(flags & ENQUEUE_NOCLOCK))
  642. update_rq_clock(rq);
  643. if (!(flags & ENQUEUE_RESTORE))
  644. sched_info_queued(rq, p);
  645. p->sched_class->enqueue_task(rq, p, flags);
  646. }
  647. static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (!(flags & DEQUEUE_NOCLOCK))
  650. update_rq_clock(rq);
  651. if (!(flags & DEQUEUE_SAVE))
  652. sched_info_dequeued(rq, p);
  653. p->sched_class->dequeue_task(rq, p, flags);
  654. }
  655. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  656. {
  657. if (task_contributes_to_load(p))
  658. rq->nr_uninterruptible--;
  659. enqueue_task(rq, p, flags);
  660. }
  661. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  662. {
  663. if (task_contributes_to_load(p))
  664. rq->nr_uninterruptible++;
  665. dequeue_task(rq, p, flags);
  666. }
  667. /*
  668. * __normal_prio - return the priority that is based on the static prio
  669. */
  670. static inline int __normal_prio(struct task_struct *p)
  671. {
  672. return p->static_prio;
  673. }
  674. /*
  675. * Calculate the expected normal priority: i.e. priority
  676. * without taking RT-inheritance into account. Might be
  677. * boosted by interactivity modifiers. Changes upon fork,
  678. * setprio syscalls, and whenever the interactivity
  679. * estimator recalculates.
  680. */
  681. static inline int normal_prio(struct task_struct *p)
  682. {
  683. int prio;
  684. if (task_has_dl_policy(p))
  685. prio = MAX_DL_PRIO-1;
  686. else if (task_has_rt_policy(p))
  687. prio = MAX_RT_PRIO-1 - p->rt_priority;
  688. else
  689. prio = __normal_prio(p);
  690. return prio;
  691. }
  692. /*
  693. * Calculate the current priority, i.e. the priority
  694. * taken into account by the scheduler. This value might
  695. * be boosted by RT tasks, or might be boosted by
  696. * interactivity modifiers. Will be RT if the task got
  697. * RT-boosted. If not then it returns p->normal_prio.
  698. */
  699. static int effective_prio(struct task_struct *p)
  700. {
  701. p->normal_prio = normal_prio(p);
  702. /*
  703. * If we are RT tasks or we were boosted to RT priority,
  704. * keep the priority unchanged. Otherwise, update priority
  705. * to the normal priority:
  706. */
  707. if (!rt_prio(p->prio))
  708. return p->normal_prio;
  709. return p->prio;
  710. }
  711. /**
  712. * task_curr - is this task currently executing on a CPU?
  713. * @p: the task in question.
  714. *
  715. * Return: 1 if the task is currently executing. 0 otherwise.
  716. */
  717. inline int task_curr(const struct task_struct *p)
  718. {
  719. return cpu_curr(task_cpu(p)) == p;
  720. }
  721. /*
  722. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  723. * use the balance_callback list if you want balancing.
  724. *
  725. * this means any call to check_class_changed() must be followed by a call to
  726. * balance_callback().
  727. */
  728. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  729. const struct sched_class *prev_class,
  730. int oldprio)
  731. {
  732. if (prev_class != p->sched_class) {
  733. if (prev_class->switched_from)
  734. prev_class->switched_from(rq, p);
  735. p->sched_class->switched_to(rq, p);
  736. } else if (oldprio != p->prio || dl_task(p))
  737. p->sched_class->prio_changed(rq, p, oldprio);
  738. }
  739. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  740. {
  741. const struct sched_class *class;
  742. if (p->sched_class == rq->curr->sched_class) {
  743. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  744. } else {
  745. for_each_class(class) {
  746. if (class == rq->curr->sched_class)
  747. break;
  748. if (class == p->sched_class) {
  749. resched_curr(rq);
  750. break;
  751. }
  752. }
  753. }
  754. /*
  755. * A queue event has occurred, and we're going to schedule. In
  756. * this case, we can save a useless back to back clock update.
  757. */
  758. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  759. rq_clock_skip_update(rq, true);
  760. }
  761. #ifdef CONFIG_SMP
  762. /*
  763. * This is how migration works:
  764. *
  765. * 1) we invoke migration_cpu_stop() on the target CPU using
  766. * stop_one_cpu().
  767. * 2) stopper starts to run (implicitly forcing the migrated thread
  768. * off the CPU)
  769. * 3) it checks whether the migrated task is still in the wrong runqueue.
  770. * 4) if it's in the wrong runqueue then the migration thread removes
  771. * it and puts it into the right queue.
  772. * 5) stopper completes and stop_one_cpu() returns and the migration
  773. * is done.
  774. */
  775. /*
  776. * move_queued_task - move a queued task to new rq.
  777. *
  778. * Returns (locked) new rq. Old rq's lock is released.
  779. */
  780. static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
  781. struct task_struct *p, int new_cpu)
  782. {
  783. lockdep_assert_held(&rq->lock);
  784. p->on_rq = TASK_ON_RQ_MIGRATING;
  785. dequeue_task(rq, p, DEQUEUE_NOCLOCK);
  786. set_task_cpu(p, new_cpu);
  787. rq_unlock(rq, rf);
  788. rq = cpu_rq(new_cpu);
  789. rq_lock(rq, rf);
  790. BUG_ON(task_cpu(p) != new_cpu);
  791. enqueue_task(rq, p, 0);
  792. p->on_rq = TASK_ON_RQ_QUEUED;
  793. check_preempt_curr(rq, p, 0);
  794. return rq;
  795. }
  796. struct migration_arg {
  797. struct task_struct *task;
  798. int dest_cpu;
  799. };
  800. /*
  801. * Move (not current) task off this CPU, onto the destination CPU. We're doing
  802. * this because either it can't run here any more (set_cpus_allowed()
  803. * away from this CPU, or CPU going down), or because we're
  804. * attempting to rebalance this task on exec (sched_exec).
  805. *
  806. * So we race with normal scheduler movements, but that's OK, as long
  807. * as the task is no longer on this CPU.
  808. */
  809. static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
  810. struct task_struct *p, int dest_cpu)
  811. {
  812. if (p->flags & PF_KTHREAD) {
  813. if (unlikely(!cpu_online(dest_cpu)))
  814. return rq;
  815. } else {
  816. if (unlikely(!cpu_active(dest_cpu)))
  817. return rq;
  818. }
  819. /* Affinity changed (again). */
  820. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  821. return rq;
  822. update_rq_clock(rq);
  823. rq = move_queued_task(rq, rf, p, dest_cpu);
  824. return rq;
  825. }
  826. /*
  827. * migration_cpu_stop - this will be executed by a highprio stopper thread
  828. * and performs thread migration by bumping thread off CPU then
  829. * 'pushing' onto another runqueue.
  830. */
  831. static int migration_cpu_stop(void *data)
  832. {
  833. struct migration_arg *arg = data;
  834. struct task_struct *p = arg->task;
  835. struct rq *rq = this_rq();
  836. struct rq_flags rf;
  837. /*
  838. * The original target CPU might have gone down and we might
  839. * be on another CPU but it doesn't matter.
  840. */
  841. local_irq_disable();
  842. /*
  843. * We need to explicitly wake pending tasks before running
  844. * __migrate_task() such that we will not miss enforcing cpus_allowed
  845. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  846. */
  847. sched_ttwu_pending();
  848. raw_spin_lock(&p->pi_lock);
  849. rq_lock(rq, &rf);
  850. /*
  851. * If task_rq(p) != rq, it cannot be migrated here, because we're
  852. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  853. * we're holding p->pi_lock.
  854. */
  855. if (task_rq(p) == rq) {
  856. if (task_on_rq_queued(p))
  857. rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
  858. else
  859. p->wake_cpu = arg->dest_cpu;
  860. }
  861. rq_unlock(rq, &rf);
  862. raw_spin_unlock(&p->pi_lock);
  863. local_irq_enable();
  864. return 0;
  865. }
  866. /*
  867. * sched_class::set_cpus_allowed must do the below, but is not required to
  868. * actually call this function.
  869. */
  870. void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
  871. {
  872. cpumask_copy(&p->cpus_allowed, new_mask);
  873. p->nr_cpus_allowed = cpumask_weight(new_mask);
  874. }
  875. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  876. {
  877. struct rq *rq = task_rq(p);
  878. bool queued, running;
  879. lockdep_assert_held(&p->pi_lock);
  880. queued = task_on_rq_queued(p);
  881. running = task_current(rq, p);
  882. if (queued) {
  883. /*
  884. * Because __kthread_bind() calls this on blocked tasks without
  885. * holding rq->lock.
  886. */
  887. lockdep_assert_held(&rq->lock);
  888. dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
  889. }
  890. if (running)
  891. put_prev_task(rq, p);
  892. p->sched_class->set_cpus_allowed(p, new_mask);
  893. if (queued)
  894. enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
  895. if (running)
  896. set_curr_task(rq, p);
  897. }
  898. /*
  899. * Change a given task's CPU affinity. Migrate the thread to a
  900. * proper CPU and schedule it away if the CPU it's executing on
  901. * is removed from the allowed bitmask.
  902. *
  903. * NOTE: the caller must have a valid reference to the task, the
  904. * task must not exit() & deallocate itself prematurely. The
  905. * call is not atomic; no spinlocks may be held.
  906. */
  907. static int __set_cpus_allowed_ptr(struct task_struct *p,
  908. const struct cpumask *new_mask, bool check)
  909. {
  910. const struct cpumask *cpu_valid_mask = cpu_active_mask;
  911. unsigned int dest_cpu;
  912. struct rq_flags rf;
  913. struct rq *rq;
  914. int ret = 0;
  915. rq = task_rq_lock(p, &rf);
  916. update_rq_clock(rq);
  917. if (p->flags & PF_KTHREAD) {
  918. /*
  919. * Kernel threads are allowed on online && !active CPUs
  920. */
  921. cpu_valid_mask = cpu_online_mask;
  922. }
  923. /*
  924. * Must re-check here, to close a race against __kthread_bind(),
  925. * sched_setaffinity() is not guaranteed to observe the flag.
  926. */
  927. if (check && (p->flags & PF_NO_SETAFFINITY)) {
  928. ret = -EINVAL;
  929. goto out;
  930. }
  931. if (cpumask_equal(&p->cpus_allowed, new_mask))
  932. goto out;
  933. if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
  934. ret = -EINVAL;
  935. goto out;
  936. }
  937. do_set_cpus_allowed(p, new_mask);
  938. if (p->flags & PF_KTHREAD) {
  939. /*
  940. * For kernel threads that do indeed end up on online &&
  941. * !active we want to ensure they are strict per-CPU threads.
  942. */
  943. WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
  944. !cpumask_intersects(new_mask, cpu_active_mask) &&
  945. p->nr_cpus_allowed != 1);
  946. }
  947. /* Can the task run on the task's current CPU? If so, we're done */
  948. if (cpumask_test_cpu(task_cpu(p), new_mask))
  949. goto out;
  950. dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
  951. if (task_running(rq, p) || p->state == TASK_WAKING) {
  952. struct migration_arg arg = { p, dest_cpu };
  953. /* Need help from migration thread: drop lock and wait. */
  954. task_rq_unlock(rq, p, &rf);
  955. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  956. tlb_migrate_finish(p->mm);
  957. return 0;
  958. } else if (task_on_rq_queued(p)) {
  959. /*
  960. * OK, since we're going to drop the lock immediately
  961. * afterwards anyway.
  962. */
  963. rq = move_queued_task(rq, &rf, p, dest_cpu);
  964. }
  965. out:
  966. task_rq_unlock(rq, p, &rf);
  967. return ret;
  968. }
  969. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  970. {
  971. return __set_cpus_allowed_ptr(p, new_mask, false);
  972. }
  973. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  974. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  975. {
  976. #ifdef CONFIG_SCHED_DEBUG
  977. /*
  978. * We should never call set_task_cpu() on a blocked task,
  979. * ttwu() will sort out the placement.
  980. */
  981. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  982. !p->on_rq);
  983. /*
  984. * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
  985. * because schedstat_wait_{start,end} rebase migrating task's wait_start
  986. * time relying on p->on_rq.
  987. */
  988. WARN_ON_ONCE(p->state == TASK_RUNNING &&
  989. p->sched_class == &fair_sched_class &&
  990. (p->on_rq && !task_on_rq_migrating(p)));
  991. #ifdef CONFIG_LOCKDEP
  992. /*
  993. * The caller should hold either p->pi_lock or rq->lock, when changing
  994. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  995. *
  996. * sched_move_task() holds both and thus holding either pins the cgroup,
  997. * see task_group().
  998. *
  999. * Furthermore, all task_rq users should acquire both locks, see
  1000. * task_rq_lock().
  1001. */
  1002. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1003. lockdep_is_held(&task_rq(p)->lock)));
  1004. #endif
  1005. /*
  1006. * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
  1007. */
  1008. WARN_ON_ONCE(!cpu_online(new_cpu));
  1009. #endif
  1010. trace_sched_migrate_task(p, new_cpu);
  1011. if (task_cpu(p) != new_cpu) {
  1012. if (p->sched_class->migrate_task_rq)
  1013. p->sched_class->migrate_task_rq(p);
  1014. p->se.nr_migrations++;
  1015. perf_event_task_migrate(p);
  1016. }
  1017. __set_task_cpu(p, new_cpu);
  1018. }
  1019. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1020. {
  1021. if (task_on_rq_queued(p)) {
  1022. struct rq *src_rq, *dst_rq;
  1023. struct rq_flags srf, drf;
  1024. src_rq = task_rq(p);
  1025. dst_rq = cpu_rq(cpu);
  1026. rq_pin_lock(src_rq, &srf);
  1027. rq_pin_lock(dst_rq, &drf);
  1028. p->on_rq = TASK_ON_RQ_MIGRATING;
  1029. deactivate_task(src_rq, p, 0);
  1030. set_task_cpu(p, cpu);
  1031. activate_task(dst_rq, p, 0);
  1032. p->on_rq = TASK_ON_RQ_QUEUED;
  1033. check_preempt_curr(dst_rq, p, 0);
  1034. rq_unpin_lock(dst_rq, &drf);
  1035. rq_unpin_lock(src_rq, &srf);
  1036. } else {
  1037. /*
  1038. * Task isn't running anymore; make it appear like we migrated
  1039. * it before it went to sleep. This means on wakeup we make the
  1040. * previous CPU our target instead of where it really is.
  1041. */
  1042. p->wake_cpu = cpu;
  1043. }
  1044. }
  1045. struct migration_swap_arg {
  1046. struct task_struct *src_task, *dst_task;
  1047. int src_cpu, dst_cpu;
  1048. };
  1049. static int migrate_swap_stop(void *data)
  1050. {
  1051. struct migration_swap_arg *arg = data;
  1052. struct rq *src_rq, *dst_rq;
  1053. int ret = -EAGAIN;
  1054. if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
  1055. return -EAGAIN;
  1056. src_rq = cpu_rq(arg->src_cpu);
  1057. dst_rq = cpu_rq(arg->dst_cpu);
  1058. double_raw_lock(&arg->src_task->pi_lock,
  1059. &arg->dst_task->pi_lock);
  1060. double_rq_lock(src_rq, dst_rq);
  1061. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1062. goto unlock;
  1063. if (task_cpu(arg->src_task) != arg->src_cpu)
  1064. goto unlock;
  1065. if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
  1066. goto unlock;
  1067. if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
  1068. goto unlock;
  1069. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1070. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1071. ret = 0;
  1072. unlock:
  1073. double_rq_unlock(src_rq, dst_rq);
  1074. raw_spin_unlock(&arg->dst_task->pi_lock);
  1075. raw_spin_unlock(&arg->src_task->pi_lock);
  1076. return ret;
  1077. }
  1078. /*
  1079. * Cross migrate two tasks
  1080. */
  1081. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1082. {
  1083. struct migration_swap_arg arg;
  1084. int ret = -EINVAL;
  1085. arg = (struct migration_swap_arg){
  1086. .src_task = cur,
  1087. .src_cpu = task_cpu(cur),
  1088. .dst_task = p,
  1089. .dst_cpu = task_cpu(p),
  1090. };
  1091. if (arg.src_cpu == arg.dst_cpu)
  1092. goto out;
  1093. /*
  1094. * These three tests are all lockless; this is OK since all of them
  1095. * will be re-checked with proper locks held further down the line.
  1096. */
  1097. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1098. goto out;
  1099. if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
  1100. goto out;
  1101. if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
  1102. goto out;
  1103. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1104. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1105. out:
  1106. return ret;
  1107. }
  1108. /*
  1109. * wait_task_inactive - wait for a thread to unschedule.
  1110. *
  1111. * If @match_state is nonzero, it's the @p->state value just checked and
  1112. * not expected to change. If it changes, i.e. @p might have woken up,
  1113. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1114. * we return a positive number (its total switch count). If a second call
  1115. * a short while later returns the same number, the caller can be sure that
  1116. * @p has remained unscheduled the whole time.
  1117. *
  1118. * The caller must ensure that the task *will* unschedule sometime soon,
  1119. * else this function might spin for a *long* time. This function can't
  1120. * be called with interrupts off, or it may introduce deadlock with
  1121. * smp_call_function() if an IPI is sent by the same process we are
  1122. * waiting to become inactive.
  1123. */
  1124. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1125. {
  1126. int running, queued;
  1127. struct rq_flags rf;
  1128. unsigned long ncsw;
  1129. struct rq *rq;
  1130. for (;;) {
  1131. /*
  1132. * We do the initial early heuristics without holding
  1133. * any task-queue locks at all. We'll only try to get
  1134. * the runqueue lock when things look like they will
  1135. * work out!
  1136. */
  1137. rq = task_rq(p);
  1138. /*
  1139. * If the task is actively running on another CPU
  1140. * still, just relax and busy-wait without holding
  1141. * any locks.
  1142. *
  1143. * NOTE! Since we don't hold any locks, it's not
  1144. * even sure that "rq" stays as the right runqueue!
  1145. * But we don't care, since "task_running()" will
  1146. * return false if the runqueue has changed and p
  1147. * is actually now running somewhere else!
  1148. */
  1149. while (task_running(rq, p)) {
  1150. if (match_state && unlikely(p->state != match_state))
  1151. return 0;
  1152. cpu_relax();
  1153. }
  1154. /*
  1155. * Ok, time to look more closely! We need the rq
  1156. * lock now, to be *sure*. If we're wrong, we'll
  1157. * just go back and repeat.
  1158. */
  1159. rq = task_rq_lock(p, &rf);
  1160. trace_sched_wait_task(p);
  1161. running = task_running(rq, p);
  1162. queued = task_on_rq_queued(p);
  1163. ncsw = 0;
  1164. if (!match_state || p->state == match_state)
  1165. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1166. task_rq_unlock(rq, p, &rf);
  1167. /*
  1168. * If it changed from the expected state, bail out now.
  1169. */
  1170. if (unlikely(!ncsw))
  1171. break;
  1172. /*
  1173. * Was it really running after all now that we
  1174. * checked with the proper locks actually held?
  1175. *
  1176. * Oops. Go back and try again..
  1177. */
  1178. if (unlikely(running)) {
  1179. cpu_relax();
  1180. continue;
  1181. }
  1182. /*
  1183. * It's not enough that it's not actively running,
  1184. * it must be off the runqueue _entirely_, and not
  1185. * preempted!
  1186. *
  1187. * So if it was still runnable (but just not actively
  1188. * running right now), it's preempted, and we should
  1189. * yield - it could be a while.
  1190. */
  1191. if (unlikely(queued)) {
  1192. ktime_t to = NSEC_PER_SEC / HZ;
  1193. set_current_state(TASK_UNINTERRUPTIBLE);
  1194. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1195. continue;
  1196. }
  1197. /*
  1198. * Ahh, all good. It wasn't running, and it wasn't
  1199. * runnable, which means that it will never become
  1200. * running in the future either. We're all done!
  1201. */
  1202. break;
  1203. }
  1204. return ncsw;
  1205. }
  1206. /***
  1207. * kick_process - kick a running thread to enter/exit the kernel
  1208. * @p: the to-be-kicked thread
  1209. *
  1210. * Cause a process which is running on another CPU to enter
  1211. * kernel-mode, without any delay. (to get signals handled.)
  1212. *
  1213. * NOTE: this function doesn't have to take the runqueue lock,
  1214. * because all it wants to ensure is that the remote task enters
  1215. * the kernel. If the IPI races and the task has been migrated
  1216. * to another CPU then no harm is done and the purpose has been
  1217. * achieved as well.
  1218. */
  1219. void kick_process(struct task_struct *p)
  1220. {
  1221. int cpu;
  1222. preempt_disable();
  1223. cpu = task_cpu(p);
  1224. if ((cpu != smp_processor_id()) && task_curr(p))
  1225. smp_send_reschedule(cpu);
  1226. preempt_enable();
  1227. }
  1228. EXPORT_SYMBOL_GPL(kick_process);
  1229. /*
  1230. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1231. *
  1232. * A few notes on cpu_active vs cpu_online:
  1233. *
  1234. * - cpu_active must be a subset of cpu_online
  1235. *
  1236. * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
  1237. * see __set_cpus_allowed_ptr(). At this point the newly online
  1238. * CPU isn't yet part of the sched domains, and balancing will not
  1239. * see it.
  1240. *
  1241. * - on CPU-down we clear cpu_active() to mask the sched domains and
  1242. * avoid the load balancer to place new tasks on the to be removed
  1243. * CPU. Existing tasks will remain running there and will be taken
  1244. * off.
  1245. *
  1246. * This means that fallback selection must not select !active CPUs.
  1247. * And can assume that any active CPU must be online. Conversely
  1248. * select_task_rq() below may allow selection of !active CPUs in order
  1249. * to satisfy the above rules.
  1250. */
  1251. static int select_fallback_rq(int cpu, struct task_struct *p)
  1252. {
  1253. int nid = cpu_to_node(cpu);
  1254. const struct cpumask *nodemask = NULL;
  1255. enum { cpuset, possible, fail } state = cpuset;
  1256. int dest_cpu;
  1257. /*
  1258. * If the node that the CPU is on has been offlined, cpu_to_node()
  1259. * will return -1. There is no CPU on the node, and we should
  1260. * select the CPU on the other node.
  1261. */
  1262. if (nid != -1) {
  1263. nodemask = cpumask_of_node(nid);
  1264. /* Look for allowed, online CPU in same node. */
  1265. for_each_cpu(dest_cpu, nodemask) {
  1266. if (!cpu_active(dest_cpu))
  1267. continue;
  1268. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1269. return dest_cpu;
  1270. }
  1271. }
  1272. for (;;) {
  1273. /* Any allowed, online CPU? */
  1274. for_each_cpu(dest_cpu, &p->cpus_allowed) {
  1275. if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
  1276. continue;
  1277. if (!cpu_online(dest_cpu))
  1278. continue;
  1279. goto out;
  1280. }
  1281. /* No more Mr. Nice Guy. */
  1282. switch (state) {
  1283. case cpuset:
  1284. if (IS_ENABLED(CONFIG_CPUSETS)) {
  1285. cpuset_cpus_allowed_fallback(p);
  1286. state = possible;
  1287. break;
  1288. }
  1289. /* Fall-through */
  1290. case possible:
  1291. do_set_cpus_allowed(p, cpu_possible_mask);
  1292. state = fail;
  1293. break;
  1294. case fail:
  1295. BUG();
  1296. break;
  1297. }
  1298. }
  1299. out:
  1300. if (state != cpuset) {
  1301. /*
  1302. * Don't tell them about moving exiting tasks or
  1303. * kernel threads (both mm NULL), since they never
  1304. * leave kernel.
  1305. */
  1306. if (p->mm && printk_ratelimit()) {
  1307. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1308. task_pid_nr(p), p->comm, cpu);
  1309. }
  1310. }
  1311. return dest_cpu;
  1312. }
  1313. /*
  1314. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1315. */
  1316. static inline
  1317. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1318. {
  1319. lockdep_assert_held(&p->pi_lock);
  1320. if (p->nr_cpus_allowed > 1)
  1321. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1322. else
  1323. cpu = cpumask_any(&p->cpus_allowed);
  1324. /*
  1325. * In order not to call set_task_cpu() on a blocking task we need
  1326. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1327. * CPU.
  1328. *
  1329. * Since this is common to all placement strategies, this lives here.
  1330. *
  1331. * [ this allows ->select_task() to simply return task_cpu(p) and
  1332. * not worry about this generic constraint ]
  1333. */
  1334. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1335. !cpu_online(cpu)))
  1336. cpu = select_fallback_rq(task_cpu(p), p);
  1337. return cpu;
  1338. }
  1339. static void update_avg(u64 *avg, u64 sample)
  1340. {
  1341. s64 diff = sample - *avg;
  1342. *avg += diff >> 3;
  1343. }
  1344. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1345. {
  1346. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1347. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1348. if (stop) {
  1349. /*
  1350. * Make it appear like a SCHED_FIFO task, its something
  1351. * userspace knows about and won't get confused about.
  1352. *
  1353. * Also, it will make PI more or less work without too
  1354. * much confusion -- but then, stop work should not
  1355. * rely on PI working anyway.
  1356. */
  1357. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1358. stop->sched_class = &stop_sched_class;
  1359. }
  1360. cpu_rq(cpu)->stop = stop;
  1361. if (old_stop) {
  1362. /*
  1363. * Reset it back to a normal scheduling class so that
  1364. * it can die in pieces.
  1365. */
  1366. old_stop->sched_class = &rt_sched_class;
  1367. }
  1368. }
  1369. #else
  1370. static inline int __set_cpus_allowed_ptr(struct task_struct *p,
  1371. const struct cpumask *new_mask, bool check)
  1372. {
  1373. return set_cpus_allowed_ptr(p, new_mask);
  1374. }
  1375. #endif /* CONFIG_SMP */
  1376. static void
  1377. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1378. {
  1379. struct rq *rq;
  1380. if (!schedstat_enabled())
  1381. return;
  1382. rq = this_rq();
  1383. #ifdef CONFIG_SMP
  1384. if (cpu == rq->cpu) {
  1385. schedstat_inc(rq->ttwu_local);
  1386. schedstat_inc(p->se.statistics.nr_wakeups_local);
  1387. } else {
  1388. struct sched_domain *sd;
  1389. schedstat_inc(p->se.statistics.nr_wakeups_remote);
  1390. rcu_read_lock();
  1391. for_each_domain(rq->cpu, sd) {
  1392. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1393. schedstat_inc(sd->ttwu_wake_remote);
  1394. break;
  1395. }
  1396. }
  1397. rcu_read_unlock();
  1398. }
  1399. if (wake_flags & WF_MIGRATED)
  1400. schedstat_inc(p->se.statistics.nr_wakeups_migrate);
  1401. #endif /* CONFIG_SMP */
  1402. schedstat_inc(rq->ttwu_count);
  1403. schedstat_inc(p->se.statistics.nr_wakeups);
  1404. if (wake_flags & WF_SYNC)
  1405. schedstat_inc(p->se.statistics.nr_wakeups_sync);
  1406. }
  1407. static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1408. {
  1409. activate_task(rq, p, en_flags);
  1410. p->on_rq = TASK_ON_RQ_QUEUED;
  1411. /* If a worker is waking up, notify the workqueue: */
  1412. if (p->flags & PF_WQ_WORKER)
  1413. wq_worker_waking_up(p, cpu_of(rq));
  1414. }
  1415. /*
  1416. * Mark the task runnable and perform wakeup-preemption.
  1417. */
  1418. static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
  1419. struct rq_flags *rf)
  1420. {
  1421. check_preempt_curr(rq, p, wake_flags);
  1422. p->state = TASK_RUNNING;
  1423. trace_sched_wakeup(p);
  1424. #ifdef CONFIG_SMP
  1425. if (p->sched_class->task_woken) {
  1426. /*
  1427. * Our task @p is fully woken up and running; so its safe to
  1428. * drop the rq->lock, hereafter rq is only used for statistics.
  1429. */
  1430. rq_unpin_lock(rq, rf);
  1431. p->sched_class->task_woken(rq, p);
  1432. rq_repin_lock(rq, rf);
  1433. }
  1434. if (rq->idle_stamp) {
  1435. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1436. u64 max = 2*rq->max_idle_balance_cost;
  1437. update_avg(&rq->avg_idle, delta);
  1438. if (rq->avg_idle > max)
  1439. rq->avg_idle = max;
  1440. rq->idle_stamp = 0;
  1441. }
  1442. #endif
  1443. }
  1444. static void
  1445. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
  1446. struct rq_flags *rf)
  1447. {
  1448. int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
  1449. lockdep_assert_held(&rq->lock);
  1450. #ifdef CONFIG_SMP
  1451. if (p->sched_contributes_to_load)
  1452. rq->nr_uninterruptible--;
  1453. if (wake_flags & WF_MIGRATED)
  1454. en_flags |= ENQUEUE_MIGRATED;
  1455. #endif
  1456. ttwu_activate(rq, p, en_flags);
  1457. ttwu_do_wakeup(rq, p, wake_flags, rf);
  1458. }
  1459. /*
  1460. * Called in case the task @p isn't fully descheduled from its runqueue,
  1461. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1462. * since all we need to do is flip p->state to TASK_RUNNING, since
  1463. * the task is still ->on_rq.
  1464. */
  1465. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1466. {
  1467. struct rq_flags rf;
  1468. struct rq *rq;
  1469. int ret = 0;
  1470. rq = __task_rq_lock(p, &rf);
  1471. if (task_on_rq_queued(p)) {
  1472. /* check_preempt_curr() may use rq clock */
  1473. update_rq_clock(rq);
  1474. ttwu_do_wakeup(rq, p, wake_flags, &rf);
  1475. ret = 1;
  1476. }
  1477. __task_rq_unlock(rq, &rf);
  1478. return ret;
  1479. }
  1480. #ifdef CONFIG_SMP
  1481. void sched_ttwu_pending(void)
  1482. {
  1483. struct rq *rq = this_rq();
  1484. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1485. struct task_struct *p, *t;
  1486. struct rq_flags rf;
  1487. if (!llist)
  1488. return;
  1489. rq_lock_irqsave(rq, &rf);
  1490. update_rq_clock(rq);
  1491. llist_for_each_entry_safe(p, t, llist, wake_entry)
  1492. ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
  1493. rq_unlock_irqrestore(rq, &rf);
  1494. }
  1495. void scheduler_ipi(void)
  1496. {
  1497. /*
  1498. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1499. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1500. * this IPI.
  1501. */
  1502. preempt_fold_need_resched();
  1503. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1504. return;
  1505. /*
  1506. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1507. * traditionally all their work was done from the interrupt return
  1508. * path. Now that we actually do some work, we need to make sure
  1509. * we do call them.
  1510. *
  1511. * Some archs already do call them, luckily irq_enter/exit nest
  1512. * properly.
  1513. *
  1514. * Arguably we should visit all archs and update all handlers,
  1515. * however a fair share of IPIs are still resched only so this would
  1516. * somewhat pessimize the simple resched case.
  1517. */
  1518. irq_enter();
  1519. sched_ttwu_pending();
  1520. /*
  1521. * Check if someone kicked us for doing the nohz idle load balance.
  1522. */
  1523. if (unlikely(got_nohz_idle_kick())) {
  1524. this_rq()->idle_balance = 1;
  1525. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1526. }
  1527. irq_exit();
  1528. }
  1529. static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
  1530. {
  1531. struct rq *rq = cpu_rq(cpu);
  1532. p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
  1533. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1534. if (!set_nr_if_polling(rq->idle))
  1535. smp_send_reschedule(cpu);
  1536. else
  1537. trace_sched_wake_idle_without_ipi(cpu);
  1538. }
  1539. }
  1540. void wake_up_if_idle(int cpu)
  1541. {
  1542. struct rq *rq = cpu_rq(cpu);
  1543. struct rq_flags rf;
  1544. rcu_read_lock();
  1545. if (!is_idle_task(rcu_dereference(rq->curr)))
  1546. goto out;
  1547. if (set_nr_if_polling(rq->idle)) {
  1548. trace_sched_wake_idle_without_ipi(cpu);
  1549. } else {
  1550. rq_lock_irqsave(rq, &rf);
  1551. if (is_idle_task(rq->curr))
  1552. smp_send_reschedule(cpu);
  1553. /* Else CPU is not idle, do nothing here: */
  1554. rq_unlock_irqrestore(rq, &rf);
  1555. }
  1556. out:
  1557. rcu_read_unlock();
  1558. }
  1559. bool cpus_share_cache(int this_cpu, int that_cpu)
  1560. {
  1561. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1562. }
  1563. #endif /* CONFIG_SMP */
  1564. static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
  1565. {
  1566. struct rq *rq = cpu_rq(cpu);
  1567. struct rq_flags rf;
  1568. #if defined(CONFIG_SMP)
  1569. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1570. sched_clock_cpu(cpu); /* Sync clocks across CPUs */
  1571. ttwu_queue_remote(p, cpu, wake_flags);
  1572. return;
  1573. }
  1574. #endif
  1575. rq_lock(rq, &rf);
  1576. update_rq_clock(rq);
  1577. ttwu_do_activate(rq, p, wake_flags, &rf);
  1578. rq_unlock(rq, &rf);
  1579. }
  1580. /*
  1581. * Notes on Program-Order guarantees on SMP systems.
  1582. *
  1583. * MIGRATION
  1584. *
  1585. * The basic program-order guarantee on SMP systems is that when a task [t]
  1586. * migrates, all its activity on its old CPU [c0] happens-before any subsequent
  1587. * execution on its new CPU [c1].
  1588. *
  1589. * For migration (of runnable tasks) this is provided by the following means:
  1590. *
  1591. * A) UNLOCK of the rq(c0)->lock scheduling out task t
  1592. * B) migration for t is required to synchronize *both* rq(c0)->lock and
  1593. * rq(c1)->lock (if not at the same time, then in that order).
  1594. * C) LOCK of the rq(c1)->lock scheduling in task
  1595. *
  1596. * Transitivity guarantees that B happens after A and C after B.
  1597. * Note: we only require RCpc transitivity.
  1598. * Note: the CPU doing B need not be c0 or c1
  1599. *
  1600. * Example:
  1601. *
  1602. * CPU0 CPU1 CPU2
  1603. *
  1604. * LOCK rq(0)->lock
  1605. * sched-out X
  1606. * sched-in Y
  1607. * UNLOCK rq(0)->lock
  1608. *
  1609. * LOCK rq(0)->lock // orders against CPU0
  1610. * dequeue X
  1611. * UNLOCK rq(0)->lock
  1612. *
  1613. * LOCK rq(1)->lock
  1614. * enqueue X
  1615. * UNLOCK rq(1)->lock
  1616. *
  1617. * LOCK rq(1)->lock // orders against CPU2
  1618. * sched-out Z
  1619. * sched-in X
  1620. * UNLOCK rq(1)->lock
  1621. *
  1622. *
  1623. * BLOCKING -- aka. SLEEP + WAKEUP
  1624. *
  1625. * For blocking we (obviously) need to provide the same guarantee as for
  1626. * migration. However the means are completely different as there is no lock
  1627. * chain to provide order. Instead we do:
  1628. *
  1629. * 1) smp_store_release(X->on_cpu, 0)
  1630. * 2) smp_cond_load_acquire(!X->on_cpu)
  1631. *
  1632. * Example:
  1633. *
  1634. * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
  1635. *
  1636. * LOCK rq(0)->lock LOCK X->pi_lock
  1637. * dequeue X
  1638. * sched-out X
  1639. * smp_store_release(X->on_cpu, 0);
  1640. *
  1641. * smp_cond_load_acquire(&X->on_cpu, !VAL);
  1642. * X->state = WAKING
  1643. * set_task_cpu(X,2)
  1644. *
  1645. * LOCK rq(2)->lock
  1646. * enqueue X
  1647. * X->state = RUNNING
  1648. * UNLOCK rq(2)->lock
  1649. *
  1650. * LOCK rq(2)->lock // orders against CPU1
  1651. * sched-out Z
  1652. * sched-in X
  1653. * UNLOCK rq(2)->lock
  1654. *
  1655. * UNLOCK X->pi_lock
  1656. * UNLOCK rq(0)->lock
  1657. *
  1658. *
  1659. * However; for wakeups there is a second guarantee we must provide, namely we
  1660. * must observe the state that lead to our wakeup. That is, not only must our
  1661. * task observe its own prior state, it must also observe the stores prior to
  1662. * its wakeup.
  1663. *
  1664. * This means that any means of doing remote wakeups must order the CPU doing
  1665. * the wakeup against the CPU the task is going to end up running on. This,
  1666. * however, is already required for the regular Program-Order guarantee above,
  1667. * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
  1668. *
  1669. */
  1670. /**
  1671. * try_to_wake_up - wake up a thread
  1672. * @p: the thread to be awakened
  1673. * @state: the mask of task states that can be woken
  1674. * @wake_flags: wake modifier flags (WF_*)
  1675. *
  1676. * If (@state & @p->state) @p->state = TASK_RUNNING.
  1677. *
  1678. * If the task was not queued/runnable, also place it back on a runqueue.
  1679. *
  1680. * Atomic against schedule() which would dequeue a task, also see
  1681. * set_current_state().
  1682. *
  1683. * Return: %true if @p->state changes (an actual wakeup was done),
  1684. * %false otherwise.
  1685. */
  1686. static int
  1687. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1688. {
  1689. unsigned long flags;
  1690. int cpu, success = 0;
  1691. /*
  1692. * If we are going to wake up a thread waiting for CONDITION we
  1693. * need to ensure that CONDITION=1 done by the caller can not be
  1694. * reordered with p->state check below. This pairs with mb() in
  1695. * set_current_state() the waiting thread does.
  1696. */
  1697. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1698. smp_mb__after_spinlock();
  1699. if (!(p->state & state))
  1700. goto out;
  1701. trace_sched_waking(p);
  1702. /* We're going to change ->state: */
  1703. success = 1;
  1704. cpu = task_cpu(p);
  1705. /*
  1706. * Ensure we load p->on_rq _after_ p->state, otherwise it would
  1707. * be possible to, falsely, observe p->on_rq == 0 and get stuck
  1708. * in smp_cond_load_acquire() below.
  1709. *
  1710. * sched_ttwu_pending() try_to_wake_up()
  1711. * [S] p->on_rq = 1; [L] P->state
  1712. * UNLOCK rq->lock -----.
  1713. * \
  1714. * +--- RMB
  1715. * schedule() /
  1716. * LOCK rq->lock -----'
  1717. * UNLOCK rq->lock
  1718. *
  1719. * [task p]
  1720. * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
  1721. *
  1722. * Pairs with the UNLOCK+LOCK on rq->lock from the
  1723. * last wakeup of our task and the schedule that got our task
  1724. * current.
  1725. */
  1726. smp_rmb();
  1727. if (p->on_rq && ttwu_remote(p, wake_flags))
  1728. goto stat;
  1729. #ifdef CONFIG_SMP
  1730. /*
  1731. * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
  1732. * possible to, falsely, observe p->on_cpu == 0.
  1733. *
  1734. * One must be running (->on_cpu == 1) in order to remove oneself
  1735. * from the runqueue.
  1736. *
  1737. * [S] ->on_cpu = 1; [L] ->on_rq
  1738. * UNLOCK rq->lock
  1739. * RMB
  1740. * LOCK rq->lock
  1741. * [S] ->on_rq = 0; [L] ->on_cpu
  1742. *
  1743. * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
  1744. * from the consecutive calls to schedule(); the first switching to our
  1745. * task, the second putting it to sleep.
  1746. */
  1747. smp_rmb();
  1748. /*
  1749. * If the owning (remote) CPU is still in the middle of schedule() with
  1750. * this task as prev, wait until its done referencing the task.
  1751. *
  1752. * Pairs with the smp_store_release() in finish_lock_switch().
  1753. *
  1754. * This ensures that tasks getting woken will be fully ordered against
  1755. * their previous state and preserve Program Order.
  1756. */
  1757. smp_cond_load_acquire(&p->on_cpu, !VAL);
  1758. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1759. p->state = TASK_WAKING;
  1760. if (p->in_iowait) {
  1761. delayacct_blkio_end();
  1762. atomic_dec(&task_rq(p)->nr_iowait);
  1763. }
  1764. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1765. if (task_cpu(p) != cpu) {
  1766. wake_flags |= WF_MIGRATED;
  1767. set_task_cpu(p, cpu);
  1768. }
  1769. #else /* CONFIG_SMP */
  1770. if (p->in_iowait) {
  1771. delayacct_blkio_end();
  1772. atomic_dec(&task_rq(p)->nr_iowait);
  1773. }
  1774. #endif /* CONFIG_SMP */
  1775. ttwu_queue(p, cpu, wake_flags);
  1776. stat:
  1777. ttwu_stat(p, cpu, wake_flags);
  1778. out:
  1779. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1780. return success;
  1781. }
  1782. /**
  1783. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1784. * @p: the thread to be awakened
  1785. * @rf: request-queue flags for pinning
  1786. *
  1787. * Put @p on the run-queue if it's not already there. The caller must
  1788. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1789. * the current task.
  1790. */
  1791. static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
  1792. {
  1793. struct rq *rq = task_rq(p);
  1794. if (WARN_ON_ONCE(rq != this_rq()) ||
  1795. WARN_ON_ONCE(p == current))
  1796. return;
  1797. lockdep_assert_held(&rq->lock);
  1798. if (!raw_spin_trylock(&p->pi_lock)) {
  1799. /*
  1800. * This is OK, because current is on_cpu, which avoids it being
  1801. * picked for load-balance and preemption/IRQs are still
  1802. * disabled avoiding further scheduler activity on it and we've
  1803. * not yet picked a replacement task.
  1804. */
  1805. rq_unlock(rq, rf);
  1806. raw_spin_lock(&p->pi_lock);
  1807. rq_relock(rq, rf);
  1808. }
  1809. if (!(p->state & TASK_NORMAL))
  1810. goto out;
  1811. trace_sched_waking(p);
  1812. if (!task_on_rq_queued(p)) {
  1813. if (p->in_iowait) {
  1814. delayacct_blkio_end();
  1815. atomic_dec(&rq->nr_iowait);
  1816. }
  1817. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
  1818. }
  1819. ttwu_do_wakeup(rq, p, 0, rf);
  1820. ttwu_stat(p, smp_processor_id(), 0);
  1821. out:
  1822. raw_spin_unlock(&p->pi_lock);
  1823. }
  1824. /**
  1825. * wake_up_process - Wake up a specific process
  1826. * @p: The process to be woken up.
  1827. *
  1828. * Attempt to wake up the nominated process and move it to the set of runnable
  1829. * processes.
  1830. *
  1831. * Return: 1 if the process was woken up, 0 if it was already running.
  1832. *
  1833. * It may be assumed that this function implies a write memory barrier before
  1834. * changing the task state if and only if any tasks are woken up.
  1835. */
  1836. int wake_up_process(struct task_struct *p)
  1837. {
  1838. return try_to_wake_up(p, TASK_NORMAL, 0);
  1839. }
  1840. EXPORT_SYMBOL(wake_up_process);
  1841. int wake_up_state(struct task_struct *p, unsigned int state)
  1842. {
  1843. return try_to_wake_up(p, state, 0);
  1844. }
  1845. /*
  1846. * Perform scheduler related setup for a newly forked process p.
  1847. * p is forked by current.
  1848. *
  1849. * __sched_fork() is basic setup used by init_idle() too:
  1850. */
  1851. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1852. {
  1853. p->on_rq = 0;
  1854. p->se.on_rq = 0;
  1855. p->se.exec_start = 0;
  1856. p->se.sum_exec_runtime = 0;
  1857. p->se.prev_sum_exec_runtime = 0;
  1858. p->se.nr_migrations = 0;
  1859. p->se.vruntime = 0;
  1860. INIT_LIST_HEAD(&p->se.group_node);
  1861. #ifdef CONFIG_FAIR_GROUP_SCHED
  1862. p->se.cfs_rq = NULL;
  1863. #endif
  1864. #ifdef CONFIG_SCHEDSTATS
  1865. /* Even if schedstat is disabled, there should not be garbage */
  1866. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1867. #endif
  1868. RB_CLEAR_NODE(&p->dl.rb_node);
  1869. init_dl_task_timer(&p->dl);
  1870. init_dl_inactive_task_timer(&p->dl);
  1871. __dl_clear_params(p);
  1872. INIT_LIST_HEAD(&p->rt.run_list);
  1873. p->rt.timeout = 0;
  1874. p->rt.time_slice = sched_rr_timeslice;
  1875. p->rt.on_rq = 0;
  1876. p->rt.on_list = 0;
  1877. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1878. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1879. #endif
  1880. #ifdef CONFIG_NUMA_BALANCING
  1881. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1882. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1883. p->mm->numa_scan_seq = 0;
  1884. }
  1885. if (clone_flags & CLONE_VM)
  1886. p->numa_preferred_nid = current->numa_preferred_nid;
  1887. else
  1888. p->numa_preferred_nid = -1;
  1889. p->node_stamp = 0ULL;
  1890. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1891. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1892. p->numa_work.next = &p->numa_work;
  1893. p->numa_faults = NULL;
  1894. p->last_task_numa_placement = 0;
  1895. p->last_sum_exec_runtime = 0;
  1896. p->numa_group = NULL;
  1897. #endif /* CONFIG_NUMA_BALANCING */
  1898. }
  1899. DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
  1900. #ifdef CONFIG_NUMA_BALANCING
  1901. void set_numabalancing_state(bool enabled)
  1902. {
  1903. if (enabled)
  1904. static_branch_enable(&sched_numa_balancing);
  1905. else
  1906. static_branch_disable(&sched_numa_balancing);
  1907. }
  1908. #ifdef CONFIG_PROC_SYSCTL
  1909. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1910. void __user *buffer, size_t *lenp, loff_t *ppos)
  1911. {
  1912. struct ctl_table t;
  1913. int err;
  1914. int state = static_branch_likely(&sched_numa_balancing);
  1915. if (write && !capable(CAP_SYS_ADMIN))
  1916. return -EPERM;
  1917. t = *table;
  1918. t.data = &state;
  1919. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1920. if (err < 0)
  1921. return err;
  1922. if (write)
  1923. set_numabalancing_state(state);
  1924. return err;
  1925. }
  1926. #endif
  1927. #endif
  1928. #ifdef CONFIG_SCHEDSTATS
  1929. DEFINE_STATIC_KEY_FALSE(sched_schedstats);
  1930. static bool __initdata __sched_schedstats = false;
  1931. static void set_schedstats(bool enabled)
  1932. {
  1933. if (enabled)
  1934. static_branch_enable(&sched_schedstats);
  1935. else
  1936. static_branch_disable(&sched_schedstats);
  1937. }
  1938. void force_schedstat_enabled(void)
  1939. {
  1940. if (!schedstat_enabled()) {
  1941. pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
  1942. static_branch_enable(&sched_schedstats);
  1943. }
  1944. }
  1945. static int __init setup_schedstats(char *str)
  1946. {
  1947. int ret = 0;
  1948. if (!str)
  1949. goto out;
  1950. /*
  1951. * This code is called before jump labels have been set up, so we can't
  1952. * change the static branch directly just yet. Instead set a temporary
  1953. * variable so init_schedstats() can do it later.
  1954. */
  1955. if (!strcmp(str, "enable")) {
  1956. __sched_schedstats = true;
  1957. ret = 1;
  1958. } else if (!strcmp(str, "disable")) {
  1959. __sched_schedstats = false;
  1960. ret = 1;
  1961. }
  1962. out:
  1963. if (!ret)
  1964. pr_warn("Unable to parse schedstats=\n");
  1965. return ret;
  1966. }
  1967. __setup("schedstats=", setup_schedstats);
  1968. static void __init init_schedstats(void)
  1969. {
  1970. set_schedstats(__sched_schedstats);
  1971. }
  1972. #ifdef CONFIG_PROC_SYSCTL
  1973. int sysctl_schedstats(struct ctl_table *table, int write,
  1974. void __user *buffer, size_t *lenp, loff_t *ppos)
  1975. {
  1976. struct ctl_table t;
  1977. int err;
  1978. int state = static_branch_likely(&sched_schedstats);
  1979. if (write && !capable(CAP_SYS_ADMIN))
  1980. return -EPERM;
  1981. t = *table;
  1982. t.data = &state;
  1983. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1984. if (err < 0)
  1985. return err;
  1986. if (write)
  1987. set_schedstats(state);
  1988. return err;
  1989. }
  1990. #endif /* CONFIG_PROC_SYSCTL */
  1991. #else /* !CONFIG_SCHEDSTATS */
  1992. static inline void init_schedstats(void) {}
  1993. #endif /* CONFIG_SCHEDSTATS */
  1994. /*
  1995. * fork()/clone()-time setup:
  1996. */
  1997. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1998. {
  1999. unsigned long flags;
  2000. int cpu = get_cpu();
  2001. __sched_fork(clone_flags, p);
  2002. /*
  2003. * We mark the process as NEW here. This guarantees that
  2004. * nobody will actually run it, and a signal or other external
  2005. * event cannot wake it up and insert it on the runqueue either.
  2006. */
  2007. p->state = TASK_NEW;
  2008. /*
  2009. * Make sure we do not leak PI boosting priority to the child.
  2010. */
  2011. p->prio = current->normal_prio;
  2012. /*
  2013. * Revert to default priority/policy on fork if requested.
  2014. */
  2015. if (unlikely(p->sched_reset_on_fork)) {
  2016. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2017. p->policy = SCHED_NORMAL;
  2018. p->static_prio = NICE_TO_PRIO(0);
  2019. p->rt_priority = 0;
  2020. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  2021. p->static_prio = NICE_TO_PRIO(0);
  2022. p->prio = p->normal_prio = __normal_prio(p);
  2023. set_load_weight(p);
  2024. /*
  2025. * We don't need the reset flag anymore after the fork. It has
  2026. * fulfilled its duty:
  2027. */
  2028. p->sched_reset_on_fork = 0;
  2029. }
  2030. if (dl_prio(p->prio)) {
  2031. put_cpu();
  2032. return -EAGAIN;
  2033. } else if (rt_prio(p->prio)) {
  2034. p->sched_class = &rt_sched_class;
  2035. } else {
  2036. p->sched_class = &fair_sched_class;
  2037. }
  2038. init_entity_runnable_average(&p->se);
  2039. /*
  2040. * The child is not yet in the pid-hash so no cgroup attach races,
  2041. * and the cgroup is pinned to this child due to cgroup_fork()
  2042. * is ran before sched_fork().
  2043. *
  2044. * Silence PROVE_RCU.
  2045. */
  2046. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2047. /*
  2048. * We're setting the CPU for the first time, we don't migrate,
  2049. * so use __set_task_cpu().
  2050. */
  2051. __set_task_cpu(p, cpu);
  2052. if (p->sched_class->task_fork)
  2053. p->sched_class->task_fork(p);
  2054. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2055. #ifdef CONFIG_SCHED_INFO
  2056. if (likely(sched_info_on()))
  2057. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2058. #endif
  2059. #if defined(CONFIG_SMP)
  2060. p->on_cpu = 0;
  2061. #endif
  2062. init_task_preempt_count(p);
  2063. #ifdef CONFIG_SMP
  2064. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2065. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  2066. #endif
  2067. put_cpu();
  2068. return 0;
  2069. }
  2070. unsigned long to_ratio(u64 period, u64 runtime)
  2071. {
  2072. if (runtime == RUNTIME_INF)
  2073. return BW_UNIT;
  2074. /*
  2075. * Doing this here saves a lot of checks in all
  2076. * the calling paths, and returning zero seems
  2077. * safe for them anyway.
  2078. */
  2079. if (period == 0)
  2080. return 0;
  2081. return div64_u64(runtime << BW_SHIFT, period);
  2082. }
  2083. /*
  2084. * wake_up_new_task - wake up a newly created task for the first time.
  2085. *
  2086. * This function will do some initial scheduler statistics housekeeping
  2087. * that must be done for every newly created context, then puts the task
  2088. * on the runqueue and wakes it.
  2089. */
  2090. void wake_up_new_task(struct task_struct *p)
  2091. {
  2092. struct rq_flags rf;
  2093. struct rq *rq;
  2094. raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
  2095. p->state = TASK_RUNNING;
  2096. #ifdef CONFIG_SMP
  2097. /*
  2098. * Fork balancing, do it here and not earlier because:
  2099. * - cpus_allowed can change in the fork path
  2100. * - any previously selected CPU might disappear through hotplug
  2101. *
  2102. * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
  2103. * as we're not fully set-up yet.
  2104. */
  2105. __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  2106. #endif
  2107. rq = __task_rq_lock(p, &rf);
  2108. update_rq_clock(rq);
  2109. post_init_entity_util_avg(&p->se);
  2110. activate_task(rq, p, ENQUEUE_NOCLOCK);
  2111. p->on_rq = TASK_ON_RQ_QUEUED;
  2112. trace_sched_wakeup_new(p);
  2113. check_preempt_curr(rq, p, WF_FORK);
  2114. #ifdef CONFIG_SMP
  2115. if (p->sched_class->task_woken) {
  2116. /*
  2117. * Nothing relies on rq->lock after this, so its fine to
  2118. * drop it.
  2119. */
  2120. rq_unpin_lock(rq, &rf);
  2121. p->sched_class->task_woken(rq, p);
  2122. rq_repin_lock(rq, &rf);
  2123. }
  2124. #endif
  2125. task_rq_unlock(rq, p, &rf);
  2126. }
  2127. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2128. static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
  2129. void preempt_notifier_inc(void)
  2130. {
  2131. static_key_slow_inc(&preempt_notifier_key);
  2132. }
  2133. EXPORT_SYMBOL_GPL(preempt_notifier_inc);
  2134. void preempt_notifier_dec(void)
  2135. {
  2136. static_key_slow_dec(&preempt_notifier_key);
  2137. }
  2138. EXPORT_SYMBOL_GPL(preempt_notifier_dec);
  2139. /**
  2140. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2141. * @notifier: notifier struct to register
  2142. */
  2143. void preempt_notifier_register(struct preempt_notifier *notifier)
  2144. {
  2145. if (!static_key_false(&preempt_notifier_key))
  2146. WARN(1, "registering preempt_notifier while notifiers disabled\n");
  2147. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2148. }
  2149. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2150. /**
  2151. * preempt_notifier_unregister - no longer interested in preemption notifications
  2152. * @notifier: notifier struct to unregister
  2153. *
  2154. * This is *not* safe to call from within a preemption notifier.
  2155. */
  2156. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2157. {
  2158. hlist_del(&notifier->link);
  2159. }
  2160. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2161. static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2162. {
  2163. struct preempt_notifier *notifier;
  2164. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2165. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2166. }
  2167. static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2168. {
  2169. if (static_key_false(&preempt_notifier_key))
  2170. __fire_sched_in_preempt_notifiers(curr);
  2171. }
  2172. static void
  2173. __fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2174. struct task_struct *next)
  2175. {
  2176. struct preempt_notifier *notifier;
  2177. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2178. notifier->ops->sched_out(notifier, next);
  2179. }
  2180. static __always_inline void
  2181. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2182. struct task_struct *next)
  2183. {
  2184. if (static_key_false(&preempt_notifier_key))
  2185. __fire_sched_out_preempt_notifiers(curr, next);
  2186. }
  2187. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2188. static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2189. {
  2190. }
  2191. static inline void
  2192. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2193. struct task_struct *next)
  2194. {
  2195. }
  2196. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2197. /**
  2198. * prepare_task_switch - prepare to switch tasks
  2199. * @rq: the runqueue preparing to switch
  2200. * @prev: the current task that is being switched out
  2201. * @next: the task we are going to switch to.
  2202. *
  2203. * This is called with the rq lock held and interrupts off. It must
  2204. * be paired with a subsequent finish_task_switch after the context
  2205. * switch.
  2206. *
  2207. * prepare_task_switch sets up locking and calls architecture specific
  2208. * hooks.
  2209. */
  2210. static inline void
  2211. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2212. struct task_struct *next)
  2213. {
  2214. sched_info_switch(rq, prev, next);
  2215. perf_event_task_sched_out(prev, next);
  2216. fire_sched_out_preempt_notifiers(prev, next);
  2217. prepare_lock_switch(rq, next);
  2218. prepare_arch_switch(next);
  2219. }
  2220. /**
  2221. * finish_task_switch - clean up after a task-switch
  2222. * @prev: the thread we just switched away from.
  2223. *
  2224. * finish_task_switch must be called after the context switch, paired
  2225. * with a prepare_task_switch call before the context switch.
  2226. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2227. * and do any other architecture-specific cleanup actions.
  2228. *
  2229. * Note that we may have delayed dropping an mm in context_switch(). If
  2230. * so, we finish that here outside of the runqueue lock. (Doing it
  2231. * with the lock held can cause deadlocks; see schedule() for
  2232. * details.)
  2233. *
  2234. * The context switch have flipped the stack from under us and restored the
  2235. * local variables which were saved when this task called schedule() in the
  2236. * past. prev == current is still correct but we need to recalculate this_rq
  2237. * because prev may have moved to another CPU.
  2238. */
  2239. static struct rq *finish_task_switch(struct task_struct *prev)
  2240. __releases(rq->lock)
  2241. {
  2242. struct rq *rq = this_rq();
  2243. struct mm_struct *mm = rq->prev_mm;
  2244. long prev_state;
  2245. /*
  2246. * The previous task will have left us with a preempt_count of 2
  2247. * because it left us after:
  2248. *
  2249. * schedule()
  2250. * preempt_disable(); // 1
  2251. * __schedule()
  2252. * raw_spin_lock_irq(&rq->lock) // 2
  2253. *
  2254. * Also, see FORK_PREEMPT_COUNT.
  2255. */
  2256. if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
  2257. "corrupted preempt_count: %s/%d/0x%x\n",
  2258. current->comm, current->pid, preempt_count()))
  2259. preempt_count_set(FORK_PREEMPT_COUNT);
  2260. rq->prev_mm = NULL;
  2261. /*
  2262. * A task struct has one reference for the use as "current".
  2263. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2264. * schedule one last time. The schedule call will never return, and
  2265. * the scheduled task must drop that reference.
  2266. *
  2267. * We must observe prev->state before clearing prev->on_cpu (in
  2268. * finish_lock_switch), otherwise a concurrent wakeup can get prev
  2269. * running on another CPU and we could rave with its RUNNING -> DEAD
  2270. * transition, resulting in a double drop.
  2271. */
  2272. prev_state = prev->state;
  2273. vtime_task_switch(prev);
  2274. perf_event_task_sched_in(prev, current);
  2275. /*
  2276. * The membarrier system call requires a full memory barrier
  2277. * after storing to rq->curr, before going back to user-space.
  2278. *
  2279. * TODO: This smp_mb__after_unlock_lock can go away if PPC end
  2280. * up adding a full barrier to switch_mm(), or we should figure
  2281. * out if a smp_mb__after_unlock_lock is really the proper API
  2282. * to use.
  2283. */
  2284. smp_mb__after_unlock_lock();
  2285. finish_lock_switch(rq, prev);
  2286. finish_arch_post_lock_switch();
  2287. fire_sched_in_preempt_notifiers(current);
  2288. if (mm)
  2289. mmdrop(mm);
  2290. if (unlikely(prev_state == TASK_DEAD)) {
  2291. if (prev->sched_class->task_dead)
  2292. prev->sched_class->task_dead(prev);
  2293. /*
  2294. * Remove function-return probe instances associated with this
  2295. * task and put them back on the free list.
  2296. */
  2297. kprobe_flush_task(prev);
  2298. /* Task is done with its stack. */
  2299. put_task_stack(prev);
  2300. put_task_struct(prev);
  2301. }
  2302. tick_nohz_task_switch();
  2303. return rq;
  2304. }
  2305. #ifdef CONFIG_SMP
  2306. /* rq->lock is NOT held, but preemption is disabled */
  2307. static void __balance_callback(struct rq *rq)
  2308. {
  2309. struct callback_head *head, *next;
  2310. void (*func)(struct rq *rq);
  2311. unsigned long flags;
  2312. raw_spin_lock_irqsave(&rq->lock, flags);
  2313. head = rq->balance_callback;
  2314. rq->balance_callback = NULL;
  2315. while (head) {
  2316. func = (void (*)(struct rq *))head->func;
  2317. next = head->next;
  2318. head->next = NULL;
  2319. head = next;
  2320. func(rq);
  2321. }
  2322. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2323. }
  2324. static inline void balance_callback(struct rq *rq)
  2325. {
  2326. if (unlikely(rq->balance_callback))
  2327. __balance_callback(rq);
  2328. }
  2329. #else
  2330. static inline void balance_callback(struct rq *rq)
  2331. {
  2332. }
  2333. #endif
  2334. /**
  2335. * schedule_tail - first thing a freshly forked thread must call.
  2336. * @prev: the thread we just switched away from.
  2337. */
  2338. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2339. __releases(rq->lock)
  2340. {
  2341. struct rq *rq;
  2342. /*
  2343. * New tasks start with FORK_PREEMPT_COUNT, see there and
  2344. * finish_task_switch() for details.
  2345. *
  2346. * finish_task_switch() will drop rq->lock() and lower preempt_count
  2347. * and the preempt_enable() will end up enabling preemption (on
  2348. * PREEMPT_COUNT kernels).
  2349. */
  2350. rq = finish_task_switch(prev);
  2351. balance_callback(rq);
  2352. preempt_enable();
  2353. if (current->set_child_tid)
  2354. put_user(task_pid_vnr(current), current->set_child_tid);
  2355. }
  2356. /*
  2357. * context_switch - switch to the new MM and the new thread's register state.
  2358. */
  2359. static __always_inline struct rq *
  2360. context_switch(struct rq *rq, struct task_struct *prev,
  2361. struct task_struct *next, struct rq_flags *rf)
  2362. {
  2363. struct mm_struct *mm, *oldmm;
  2364. prepare_task_switch(rq, prev, next);
  2365. mm = next->mm;
  2366. oldmm = prev->active_mm;
  2367. /*
  2368. * For paravirt, this is coupled with an exit in switch_to to
  2369. * combine the page table reload and the switch backend into
  2370. * one hypercall.
  2371. */
  2372. arch_start_context_switch(prev);
  2373. if (!mm) {
  2374. next->active_mm = oldmm;
  2375. mmgrab(oldmm);
  2376. enter_lazy_tlb(oldmm, next);
  2377. } else
  2378. switch_mm_irqs_off(oldmm, mm, next);
  2379. if (!prev->mm) {
  2380. prev->active_mm = NULL;
  2381. rq->prev_mm = oldmm;
  2382. }
  2383. rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
  2384. /*
  2385. * Since the runqueue lock will be released by the next
  2386. * task (which is an invalid locking op but in the case
  2387. * of the scheduler it's an obvious special-case), so we
  2388. * do an early lockdep release here:
  2389. */
  2390. rq_unpin_lock(rq, rf);
  2391. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2392. /* Here we just switch the register state and the stack. */
  2393. switch_to(prev, next, prev);
  2394. barrier();
  2395. return finish_task_switch(prev);
  2396. }
  2397. /*
  2398. * nr_running and nr_context_switches:
  2399. *
  2400. * externally visible scheduler statistics: current number of runnable
  2401. * threads, total number of context switches performed since bootup.
  2402. */
  2403. unsigned long nr_running(void)
  2404. {
  2405. unsigned long i, sum = 0;
  2406. for_each_online_cpu(i)
  2407. sum += cpu_rq(i)->nr_running;
  2408. return sum;
  2409. }
  2410. /*
  2411. * Check if only the current task is running on the CPU.
  2412. *
  2413. * Caution: this function does not check that the caller has disabled
  2414. * preemption, thus the result might have a time-of-check-to-time-of-use
  2415. * race. The caller is responsible to use it correctly, for example:
  2416. *
  2417. * - from a non-preemptable section (of course)
  2418. *
  2419. * - from a thread that is bound to a single CPU
  2420. *
  2421. * - in a loop with very short iterations (e.g. a polling loop)
  2422. */
  2423. bool single_task_running(void)
  2424. {
  2425. return raw_rq()->nr_running == 1;
  2426. }
  2427. EXPORT_SYMBOL(single_task_running);
  2428. unsigned long long nr_context_switches(void)
  2429. {
  2430. int i;
  2431. unsigned long long sum = 0;
  2432. for_each_possible_cpu(i)
  2433. sum += cpu_rq(i)->nr_switches;
  2434. return sum;
  2435. }
  2436. /*
  2437. * IO-wait accounting, and how its mostly bollocks (on SMP).
  2438. *
  2439. * The idea behind IO-wait account is to account the idle time that we could
  2440. * have spend running if it were not for IO. That is, if we were to improve the
  2441. * storage performance, we'd have a proportional reduction in IO-wait time.
  2442. *
  2443. * This all works nicely on UP, where, when a task blocks on IO, we account
  2444. * idle time as IO-wait, because if the storage were faster, it could've been
  2445. * running and we'd not be idle.
  2446. *
  2447. * This has been extended to SMP, by doing the same for each CPU. This however
  2448. * is broken.
  2449. *
  2450. * Imagine for instance the case where two tasks block on one CPU, only the one
  2451. * CPU will have IO-wait accounted, while the other has regular idle. Even
  2452. * though, if the storage were faster, both could've ran at the same time,
  2453. * utilising both CPUs.
  2454. *
  2455. * This means, that when looking globally, the current IO-wait accounting on
  2456. * SMP is a lower bound, by reason of under accounting.
  2457. *
  2458. * Worse, since the numbers are provided per CPU, they are sometimes
  2459. * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
  2460. * associated with any one particular CPU, it can wake to another CPU than it
  2461. * blocked on. This means the per CPU IO-wait number is meaningless.
  2462. *
  2463. * Task CPU affinities can make all that even more 'interesting'.
  2464. */
  2465. unsigned long nr_iowait(void)
  2466. {
  2467. unsigned long i, sum = 0;
  2468. for_each_possible_cpu(i)
  2469. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2470. return sum;
  2471. }
  2472. /*
  2473. * Consumers of these two interfaces, like for example the cpufreq menu
  2474. * governor are using nonsensical data. Boosting frequency for a CPU that has
  2475. * IO-wait which might not even end up running the task when it does become
  2476. * runnable.
  2477. */
  2478. unsigned long nr_iowait_cpu(int cpu)
  2479. {
  2480. struct rq *this = cpu_rq(cpu);
  2481. return atomic_read(&this->nr_iowait);
  2482. }
  2483. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2484. {
  2485. struct rq *rq = this_rq();
  2486. *nr_waiters = atomic_read(&rq->nr_iowait);
  2487. *load = rq->load.weight;
  2488. }
  2489. #ifdef CONFIG_SMP
  2490. /*
  2491. * sched_exec - execve() is a valuable balancing opportunity, because at
  2492. * this point the task has the smallest effective memory and cache footprint.
  2493. */
  2494. void sched_exec(void)
  2495. {
  2496. struct task_struct *p = current;
  2497. unsigned long flags;
  2498. int dest_cpu;
  2499. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2500. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2501. if (dest_cpu == smp_processor_id())
  2502. goto unlock;
  2503. if (likely(cpu_active(dest_cpu))) {
  2504. struct migration_arg arg = { p, dest_cpu };
  2505. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2506. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2507. return;
  2508. }
  2509. unlock:
  2510. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2511. }
  2512. #endif
  2513. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2514. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2515. EXPORT_PER_CPU_SYMBOL(kstat);
  2516. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2517. /*
  2518. * The function fair_sched_class.update_curr accesses the struct curr
  2519. * and its field curr->exec_start; when called from task_sched_runtime(),
  2520. * we observe a high rate of cache misses in practice.
  2521. * Prefetching this data results in improved performance.
  2522. */
  2523. static inline void prefetch_curr_exec_start(struct task_struct *p)
  2524. {
  2525. #ifdef CONFIG_FAIR_GROUP_SCHED
  2526. struct sched_entity *curr = (&p->se)->cfs_rq->curr;
  2527. #else
  2528. struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
  2529. #endif
  2530. prefetch(curr);
  2531. prefetch(&curr->exec_start);
  2532. }
  2533. /*
  2534. * Return accounted runtime for the task.
  2535. * In case the task is currently running, return the runtime plus current's
  2536. * pending runtime that have not been accounted yet.
  2537. */
  2538. unsigned long long task_sched_runtime(struct task_struct *p)
  2539. {
  2540. struct rq_flags rf;
  2541. struct rq *rq;
  2542. u64 ns;
  2543. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2544. /*
  2545. * 64-bit doesn't need locks to atomically read a 64bit value.
  2546. * So we have a optimization chance when the task's delta_exec is 0.
  2547. * Reading ->on_cpu is racy, but this is ok.
  2548. *
  2549. * If we race with it leaving CPU, we'll take a lock. So we're correct.
  2550. * If we race with it entering CPU, unaccounted time is 0. This is
  2551. * indistinguishable from the read occurring a few cycles earlier.
  2552. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2553. * been accounted, so we're correct here as well.
  2554. */
  2555. if (!p->on_cpu || !task_on_rq_queued(p))
  2556. return p->se.sum_exec_runtime;
  2557. #endif
  2558. rq = task_rq_lock(p, &rf);
  2559. /*
  2560. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2561. * project cycles that may never be accounted to this
  2562. * thread, breaking clock_gettime().
  2563. */
  2564. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2565. prefetch_curr_exec_start(p);
  2566. update_rq_clock(rq);
  2567. p->sched_class->update_curr(rq);
  2568. }
  2569. ns = p->se.sum_exec_runtime;
  2570. task_rq_unlock(rq, p, &rf);
  2571. return ns;
  2572. }
  2573. /*
  2574. * This function gets called by the timer code, with HZ frequency.
  2575. * We call it with interrupts disabled.
  2576. */
  2577. void scheduler_tick(void)
  2578. {
  2579. int cpu = smp_processor_id();
  2580. struct rq *rq = cpu_rq(cpu);
  2581. struct task_struct *curr = rq->curr;
  2582. struct rq_flags rf;
  2583. sched_clock_tick();
  2584. rq_lock(rq, &rf);
  2585. update_rq_clock(rq);
  2586. curr->sched_class->task_tick(rq, curr, 0);
  2587. cpu_load_update_active(rq);
  2588. calc_global_load_tick(rq);
  2589. rq_unlock(rq, &rf);
  2590. perf_event_task_tick();
  2591. #ifdef CONFIG_SMP
  2592. rq->idle_balance = idle_cpu(cpu);
  2593. trigger_load_balance(rq);
  2594. #endif
  2595. rq_last_tick_reset(rq);
  2596. }
  2597. #ifdef CONFIG_NO_HZ_FULL
  2598. /**
  2599. * scheduler_tick_max_deferment
  2600. *
  2601. * Keep at least one tick per second when a single
  2602. * active task is running because the scheduler doesn't
  2603. * yet completely support full dynticks environment.
  2604. *
  2605. * This makes sure that uptime, CFS vruntime, load
  2606. * balancing, etc... continue to move forward, even
  2607. * with a very low granularity.
  2608. *
  2609. * Return: Maximum deferment in nanoseconds.
  2610. */
  2611. u64 scheduler_tick_max_deferment(void)
  2612. {
  2613. struct rq *rq = this_rq();
  2614. unsigned long next, now = READ_ONCE(jiffies);
  2615. next = rq->last_sched_tick + HZ;
  2616. if (time_before_eq(next, now))
  2617. return 0;
  2618. return jiffies_to_nsecs(next - now);
  2619. }
  2620. #endif
  2621. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2622. defined(CONFIG_PREEMPT_TRACER))
  2623. /*
  2624. * If the value passed in is equal to the current preempt count
  2625. * then we just disabled preemption. Start timing the latency.
  2626. */
  2627. static inline void preempt_latency_start(int val)
  2628. {
  2629. if (preempt_count() == val) {
  2630. unsigned long ip = get_lock_parent_ip();
  2631. #ifdef CONFIG_DEBUG_PREEMPT
  2632. current->preempt_disable_ip = ip;
  2633. #endif
  2634. trace_preempt_off(CALLER_ADDR0, ip);
  2635. }
  2636. }
  2637. void preempt_count_add(int val)
  2638. {
  2639. #ifdef CONFIG_DEBUG_PREEMPT
  2640. /*
  2641. * Underflow?
  2642. */
  2643. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2644. return;
  2645. #endif
  2646. __preempt_count_add(val);
  2647. #ifdef CONFIG_DEBUG_PREEMPT
  2648. /*
  2649. * Spinlock count overflowing soon?
  2650. */
  2651. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2652. PREEMPT_MASK - 10);
  2653. #endif
  2654. preempt_latency_start(val);
  2655. }
  2656. EXPORT_SYMBOL(preempt_count_add);
  2657. NOKPROBE_SYMBOL(preempt_count_add);
  2658. /*
  2659. * If the value passed in equals to the current preempt count
  2660. * then we just enabled preemption. Stop timing the latency.
  2661. */
  2662. static inline void preempt_latency_stop(int val)
  2663. {
  2664. if (preempt_count() == val)
  2665. trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
  2666. }
  2667. void preempt_count_sub(int val)
  2668. {
  2669. #ifdef CONFIG_DEBUG_PREEMPT
  2670. /*
  2671. * Underflow?
  2672. */
  2673. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2674. return;
  2675. /*
  2676. * Is the spinlock portion underflowing?
  2677. */
  2678. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2679. !(preempt_count() & PREEMPT_MASK)))
  2680. return;
  2681. #endif
  2682. preempt_latency_stop(val);
  2683. __preempt_count_sub(val);
  2684. }
  2685. EXPORT_SYMBOL(preempt_count_sub);
  2686. NOKPROBE_SYMBOL(preempt_count_sub);
  2687. #else
  2688. static inline void preempt_latency_start(int val) { }
  2689. static inline void preempt_latency_stop(int val) { }
  2690. #endif
  2691. static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
  2692. {
  2693. #ifdef CONFIG_DEBUG_PREEMPT
  2694. return p->preempt_disable_ip;
  2695. #else
  2696. return 0;
  2697. #endif
  2698. }
  2699. /*
  2700. * Print scheduling while atomic bug:
  2701. */
  2702. static noinline void __schedule_bug(struct task_struct *prev)
  2703. {
  2704. /* Save this before calling printk(), since that will clobber it */
  2705. unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
  2706. if (oops_in_progress)
  2707. return;
  2708. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2709. prev->comm, prev->pid, preempt_count());
  2710. debug_show_held_locks(prev);
  2711. print_modules();
  2712. if (irqs_disabled())
  2713. print_irqtrace_events(prev);
  2714. if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
  2715. && in_atomic_preempt_off()) {
  2716. pr_err("Preemption disabled at:");
  2717. print_ip_sym(preempt_disable_ip);
  2718. pr_cont("\n");
  2719. }
  2720. if (panic_on_warn)
  2721. panic("scheduling while atomic\n");
  2722. dump_stack();
  2723. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2724. }
  2725. /*
  2726. * Various schedule()-time debugging checks and statistics:
  2727. */
  2728. static inline void schedule_debug(struct task_struct *prev)
  2729. {
  2730. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2731. if (task_stack_end_corrupted(prev))
  2732. panic("corrupted stack end detected inside scheduler\n");
  2733. #endif
  2734. if (unlikely(in_atomic_preempt_off())) {
  2735. __schedule_bug(prev);
  2736. preempt_count_set(PREEMPT_DISABLED);
  2737. }
  2738. rcu_sleep_check();
  2739. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2740. schedstat_inc(this_rq()->sched_count);
  2741. }
  2742. /*
  2743. * Pick up the highest-prio task:
  2744. */
  2745. static inline struct task_struct *
  2746. pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
  2747. {
  2748. const struct sched_class *class;
  2749. struct task_struct *p;
  2750. /*
  2751. * Optimization: we know that if all tasks are in the fair class we can
  2752. * call that function directly, but only if the @prev task wasn't of a
  2753. * higher scheduling class, because otherwise those loose the
  2754. * opportunity to pull in more work from other CPUs.
  2755. */
  2756. if (likely((prev->sched_class == &idle_sched_class ||
  2757. prev->sched_class == &fair_sched_class) &&
  2758. rq->nr_running == rq->cfs.h_nr_running)) {
  2759. p = fair_sched_class.pick_next_task(rq, prev, rf);
  2760. if (unlikely(p == RETRY_TASK))
  2761. goto again;
  2762. /* Assumes fair_sched_class->next == idle_sched_class */
  2763. if (unlikely(!p))
  2764. p = idle_sched_class.pick_next_task(rq, prev, rf);
  2765. return p;
  2766. }
  2767. again:
  2768. for_each_class(class) {
  2769. p = class->pick_next_task(rq, prev, rf);
  2770. if (p) {
  2771. if (unlikely(p == RETRY_TASK))
  2772. goto again;
  2773. return p;
  2774. }
  2775. }
  2776. /* The idle class should always have a runnable task: */
  2777. BUG();
  2778. }
  2779. /*
  2780. * __schedule() is the main scheduler function.
  2781. *
  2782. * The main means of driving the scheduler and thus entering this function are:
  2783. *
  2784. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2785. *
  2786. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2787. * paths. For example, see arch/x86/entry_64.S.
  2788. *
  2789. * To drive preemption between tasks, the scheduler sets the flag in timer
  2790. * interrupt handler scheduler_tick().
  2791. *
  2792. * 3. Wakeups don't really cause entry into schedule(). They add a
  2793. * task to the run-queue and that's it.
  2794. *
  2795. * Now, if the new task added to the run-queue preempts the current
  2796. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2797. * called on the nearest possible occasion:
  2798. *
  2799. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2800. *
  2801. * - in syscall or exception context, at the next outmost
  2802. * preempt_enable(). (this might be as soon as the wake_up()'s
  2803. * spin_unlock()!)
  2804. *
  2805. * - in IRQ context, return from interrupt-handler to
  2806. * preemptible context
  2807. *
  2808. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2809. * then at the next:
  2810. *
  2811. * - cond_resched() call
  2812. * - explicit schedule() call
  2813. * - return from syscall or exception to user-space
  2814. * - return from interrupt-handler to user-space
  2815. *
  2816. * WARNING: must be called with preemption disabled!
  2817. */
  2818. static void __sched notrace __schedule(bool preempt)
  2819. {
  2820. struct task_struct *prev, *next;
  2821. unsigned long *switch_count;
  2822. struct rq_flags rf;
  2823. struct rq *rq;
  2824. int cpu;
  2825. cpu = smp_processor_id();
  2826. rq = cpu_rq(cpu);
  2827. prev = rq->curr;
  2828. schedule_debug(prev);
  2829. if (sched_feat(HRTICK))
  2830. hrtick_clear(rq);
  2831. local_irq_disable();
  2832. rcu_note_context_switch(preempt);
  2833. /*
  2834. * Make sure that signal_pending_state()->signal_pending() below
  2835. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2836. * done by the caller to avoid the race with signal_wake_up().
  2837. */
  2838. rq_lock(rq, &rf);
  2839. smp_mb__after_spinlock();
  2840. /* Promote REQ to ACT */
  2841. rq->clock_update_flags <<= 1;
  2842. update_rq_clock(rq);
  2843. switch_count = &prev->nivcsw;
  2844. if (!preempt && prev->state) {
  2845. if (unlikely(signal_pending_state(prev->state, prev))) {
  2846. prev->state = TASK_RUNNING;
  2847. } else {
  2848. deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
  2849. prev->on_rq = 0;
  2850. if (prev->in_iowait) {
  2851. atomic_inc(&rq->nr_iowait);
  2852. delayacct_blkio_start();
  2853. }
  2854. /*
  2855. * If a worker went to sleep, notify and ask workqueue
  2856. * whether it wants to wake up a task to maintain
  2857. * concurrency.
  2858. */
  2859. if (prev->flags & PF_WQ_WORKER) {
  2860. struct task_struct *to_wakeup;
  2861. to_wakeup = wq_worker_sleeping(prev);
  2862. if (to_wakeup)
  2863. try_to_wake_up_local(to_wakeup, &rf);
  2864. }
  2865. }
  2866. switch_count = &prev->nvcsw;
  2867. }
  2868. next = pick_next_task(rq, prev, &rf);
  2869. clear_tsk_need_resched(prev);
  2870. clear_preempt_need_resched();
  2871. if (likely(prev != next)) {
  2872. rq->nr_switches++;
  2873. rq->curr = next;
  2874. /*
  2875. * The membarrier system call requires each architecture
  2876. * to have a full memory barrier after updating
  2877. * rq->curr, before returning to user-space. For TSO
  2878. * (e.g. x86), the architecture must provide its own
  2879. * barrier in switch_mm(). For weakly ordered machines
  2880. * for which spin_unlock() acts as a full memory
  2881. * barrier, finish_lock_switch() in common code takes
  2882. * care of this barrier. For weakly ordered machines for
  2883. * which spin_unlock() acts as a RELEASE barrier (only
  2884. * arm64 and PowerPC), arm64 has a full barrier in
  2885. * switch_to(), and PowerPC has
  2886. * smp_mb__after_unlock_lock() before
  2887. * finish_lock_switch().
  2888. */
  2889. ++*switch_count;
  2890. trace_sched_switch(preempt, prev, next);
  2891. /* Also unlocks the rq: */
  2892. rq = context_switch(rq, prev, next, &rf);
  2893. } else {
  2894. rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
  2895. rq_unlock_irq(rq, &rf);
  2896. }
  2897. balance_callback(rq);
  2898. }
  2899. void __noreturn do_task_dead(void)
  2900. {
  2901. /*
  2902. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  2903. * when the following two conditions become true.
  2904. * - There is race condition of mmap_sem (It is acquired by
  2905. * exit_mm()), and
  2906. * - SMI occurs before setting TASK_RUNINNG.
  2907. * (or hypervisor of virtual machine switches to other guest)
  2908. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  2909. *
  2910. * To avoid it, we have to wait for releasing tsk->pi_lock which
  2911. * is held by try_to_wake_up()
  2912. */
  2913. raw_spin_lock_irq(&current->pi_lock);
  2914. raw_spin_unlock_irq(&current->pi_lock);
  2915. /* Causes final put_task_struct in finish_task_switch(): */
  2916. __set_current_state(TASK_DEAD);
  2917. /* Tell freezer to ignore us: */
  2918. current->flags |= PF_NOFREEZE;
  2919. __schedule(false);
  2920. BUG();
  2921. /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
  2922. for (;;)
  2923. cpu_relax();
  2924. }
  2925. static inline void sched_submit_work(struct task_struct *tsk)
  2926. {
  2927. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2928. return;
  2929. /*
  2930. * If we are going to sleep and we have plugged IO queued,
  2931. * make sure to submit it to avoid deadlocks.
  2932. */
  2933. if (blk_needs_flush_plug(tsk))
  2934. blk_schedule_flush_plug(tsk);
  2935. }
  2936. asmlinkage __visible void __sched schedule(void)
  2937. {
  2938. struct task_struct *tsk = current;
  2939. sched_submit_work(tsk);
  2940. do {
  2941. preempt_disable();
  2942. __schedule(false);
  2943. sched_preempt_enable_no_resched();
  2944. } while (need_resched());
  2945. }
  2946. EXPORT_SYMBOL(schedule);
  2947. /*
  2948. * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
  2949. * state (have scheduled out non-voluntarily) by making sure that all
  2950. * tasks have either left the run queue or have gone into user space.
  2951. * As idle tasks do not do either, they must not ever be preempted
  2952. * (schedule out non-voluntarily).
  2953. *
  2954. * schedule_idle() is similar to schedule_preempt_disable() except that it
  2955. * never enables preemption because it does not call sched_submit_work().
  2956. */
  2957. void __sched schedule_idle(void)
  2958. {
  2959. /*
  2960. * As this skips calling sched_submit_work(), which the idle task does
  2961. * regardless because that function is a nop when the task is in a
  2962. * TASK_RUNNING state, make sure this isn't used someplace that the
  2963. * current task can be in any other state. Note, idle is always in the
  2964. * TASK_RUNNING state.
  2965. */
  2966. WARN_ON_ONCE(current->state);
  2967. do {
  2968. __schedule(false);
  2969. } while (need_resched());
  2970. }
  2971. #ifdef CONFIG_CONTEXT_TRACKING
  2972. asmlinkage __visible void __sched schedule_user(void)
  2973. {
  2974. /*
  2975. * If we come here after a random call to set_need_resched(),
  2976. * or we have been woken up remotely but the IPI has not yet arrived,
  2977. * we haven't yet exited the RCU idle mode. Do it here manually until
  2978. * we find a better solution.
  2979. *
  2980. * NB: There are buggy callers of this function. Ideally we
  2981. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2982. * too frequently to make sense yet.
  2983. */
  2984. enum ctx_state prev_state = exception_enter();
  2985. schedule();
  2986. exception_exit(prev_state);
  2987. }
  2988. #endif
  2989. /**
  2990. * schedule_preempt_disabled - called with preemption disabled
  2991. *
  2992. * Returns with preemption disabled. Note: preempt_count must be 1
  2993. */
  2994. void __sched schedule_preempt_disabled(void)
  2995. {
  2996. sched_preempt_enable_no_resched();
  2997. schedule();
  2998. preempt_disable();
  2999. }
  3000. static void __sched notrace preempt_schedule_common(void)
  3001. {
  3002. do {
  3003. /*
  3004. * Because the function tracer can trace preempt_count_sub()
  3005. * and it also uses preempt_enable/disable_notrace(), if
  3006. * NEED_RESCHED is set, the preempt_enable_notrace() called
  3007. * by the function tracer will call this function again and
  3008. * cause infinite recursion.
  3009. *
  3010. * Preemption must be disabled here before the function
  3011. * tracer can trace. Break up preempt_disable() into two
  3012. * calls. One to disable preemption without fear of being
  3013. * traced. The other to still record the preemption latency,
  3014. * which can also be traced by the function tracer.
  3015. */
  3016. preempt_disable_notrace();
  3017. preempt_latency_start(1);
  3018. __schedule(true);
  3019. preempt_latency_stop(1);
  3020. preempt_enable_no_resched_notrace();
  3021. /*
  3022. * Check again in case we missed a preemption opportunity
  3023. * between schedule and now.
  3024. */
  3025. } while (need_resched());
  3026. }
  3027. #ifdef CONFIG_PREEMPT
  3028. /*
  3029. * this is the entry point to schedule() from in-kernel preemption
  3030. * off of preempt_enable. Kernel preemptions off return from interrupt
  3031. * occur there and call schedule directly.
  3032. */
  3033. asmlinkage __visible void __sched notrace preempt_schedule(void)
  3034. {
  3035. /*
  3036. * If there is a non-zero preempt_count or interrupts are disabled,
  3037. * we do not want to preempt the current task. Just return..
  3038. */
  3039. if (likely(!preemptible()))
  3040. return;
  3041. preempt_schedule_common();
  3042. }
  3043. NOKPROBE_SYMBOL(preempt_schedule);
  3044. EXPORT_SYMBOL(preempt_schedule);
  3045. /**
  3046. * preempt_schedule_notrace - preempt_schedule called by tracing
  3047. *
  3048. * The tracing infrastructure uses preempt_enable_notrace to prevent
  3049. * recursion and tracing preempt enabling caused by the tracing
  3050. * infrastructure itself. But as tracing can happen in areas coming
  3051. * from userspace or just about to enter userspace, a preempt enable
  3052. * can occur before user_exit() is called. This will cause the scheduler
  3053. * to be called when the system is still in usermode.
  3054. *
  3055. * To prevent this, the preempt_enable_notrace will use this function
  3056. * instead of preempt_schedule() to exit user context if needed before
  3057. * calling the scheduler.
  3058. */
  3059. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  3060. {
  3061. enum ctx_state prev_ctx;
  3062. if (likely(!preemptible()))
  3063. return;
  3064. do {
  3065. /*
  3066. * Because the function tracer can trace preempt_count_sub()
  3067. * and it also uses preempt_enable/disable_notrace(), if
  3068. * NEED_RESCHED is set, the preempt_enable_notrace() called
  3069. * by the function tracer will call this function again and
  3070. * cause infinite recursion.
  3071. *
  3072. * Preemption must be disabled here before the function
  3073. * tracer can trace. Break up preempt_disable() into two
  3074. * calls. One to disable preemption without fear of being
  3075. * traced. The other to still record the preemption latency,
  3076. * which can also be traced by the function tracer.
  3077. */
  3078. preempt_disable_notrace();
  3079. preempt_latency_start(1);
  3080. /*
  3081. * Needs preempt disabled in case user_exit() is traced
  3082. * and the tracer calls preempt_enable_notrace() causing
  3083. * an infinite recursion.
  3084. */
  3085. prev_ctx = exception_enter();
  3086. __schedule(true);
  3087. exception_exit(prev_ctx);
  3088. preempt_latency_stop(1);
  3089. preempt_enable_no_resched_notrace();
  3090. } while (need_resched());
  3091. }
  3092. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  3093. #endif /* CONFIG_PREEMPT */
  3094. /*
  3095. * this is the entry point to schedule() from kernel preemption
  3096. * off of irq context.
  3097. * Note, that this is called and return with irqs disabled. This will
  3098. * protect us against recursive calling from irq.
  3099. */
  3100. asmlinkage __visible void __sched preempt_schedule_irq(void)
  3101. {
  3102. enum ctx_state prev_state;
  3103. /* Catch callers which need to be fixed */
  3104. BUG_ON(preempt_count() || !irqs_disabled());
  3105. prev_state = exception_enter();
  3106. do {
  3107. preempt_disable();
  3108. local_irq_enable();
  3109. __schedule(true);
  3110. local_irq_disable();
  3111. sched_preempt_enable_no_resched();
  3112. } while (need_resched());
  3113. exception_exit(prev_state);
  3114. }
  3115. int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
  3116. void *key)
  3117. {
  3118. return try_to_wake_up(curr->private, mode, wake_flags);
  3119. }
  3120. EXPORT_SYMBOL(default_wake_function);
  3121. #ifdef CONFIG_RT_MUTEXES
  3122. static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
  3123. {
  3124. if (pi_task)
  3125. prio = min(prio, pi_task->prio);
  3126. return prio;
  3127. }
  3128. static inline int rt_effective_prio(struct task_struct *p, int prio)
  3129. {
  3130. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  3131. return __rt_effective_prio(pi_task, prio);
  3132. }
  3133. /*
  3134. * rt_mutex_setprio - set the current priority of a task
  3135. * @p: task to boost
  3136. * @pi_task: donor task
  3137. *
  3138. * This function changes the 'effective' priority of a task. It does
  3139. * not touch ->normal_prio like __setscheduler().
  3140. *
  3141. * Used by the rt_mutex code to implement priority inheritance
  3142. * logic. Call site only calls if the priority of the task changed.
  3143. */
  3144. void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
  3145. {
  3146. int prio, oldprio, queued, running, queue_flag =
  3147. DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
  3148. const struct sched_class *prev_class;
  3149. struct rq_flags rf;
  3150. struct rq *rq;
  3151. /* XXX used to be waiter->prio, not waiter->task->prio */
  3152. prio = __rt_effective_prio(pi_task, p->normal_prio);
  3153. /*
  3154. * If nothing changed; bail early.
  3155. */
  3156. if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
  3157. return;
  3158. rq = __task_rq_lock(p, &rf);
  3159. update_rq_clock(rq);
  3160. /*
  3161. * Set under pi_lock && rq->lock, such that the value can be used under
  3162. * either lock.
  3163. *
  3164. * Note that there is loads of tricky to make this pointer cache work
  3165. * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
  3166. * ensure a task is de-boosted (pi_task is set to NULL) before the
  3167. * task is allowed to run again (and can exit). This ensures the pointer
  3168. * points to a blocked task -- which guaratees the task is present.
  3169. */
  3170. p->pi_top_task = pi_task;
  3171. /*
  3172. * For FIFO/RR we only need to set prio, if that matches we're done.
  3173. */
  3174. if (prio == p->prio && !dl_prio(prio))
  3175. goto out_unlock;
  3176. /*
  3177. * Idle task boosting is a nono in general. There is one
  3178. * exception, when PREEMPT_RT and NOHZ is active:
  3179. *
  3180. * The idle task calls get_next_timer_interrupt() and holds
  3181. * the timer wheel base->lock on the CPU and another CPU wants
  3182. * to access the timer (probably to cancel it). We can safely
  3183. * ignore the boosting request, as the idle CPU runs this code
  3184. * with interrupts disabled and will complete the lock
  3185. * protected section without being interrupted. So there is no
  3186. * real need to boost.
  3187. */
  3188. if (unlikely(p == rq->idle)) {
  3189. WARN_ON(p != rq->curr);
  3190. WARN_ON(p->pi_blocked_on);
  3191. goto out_unlock;
  3192. }
  3193. trace_sched_pi_setprio(p, pi_task);
  3194. oldprio = p->prio;
  3195. if (oldprio == prio)
  3196. queue_flag &= ~DEQUEUE_MOVE;
  3197. prev_class = p->sched_class;
  3198. queued = task_on_rq_queued(p);
  3199. running = task_current(rq, p);
  3200. if (queued)
  3201. dequeue_task(rq, p, queue_flag);
  3202. if (running)
  3203. put_prev_task(rq, p);
  3204. /*
  3205. * Boosting condition are:
  3206. * 1. -rt task is running and holds mutex A
  3207. * --> -dl task blocks on mutex A
  3208. *
  3209. * 2. -dl task is running and holds mutex A
  3210. * --> -dl task blocks on mutex A and could preempt the
  3211. * running task
  3212. */
  3213. if (dl_prio(prio)) {
  3214. if (!dl_prio(p->normal_prio) ||
  3215. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  3216. p->dl.dl_boosted = 1;
  3217. queue_flag |= ENQUEUE_REPLENISH;
  3218. } else
  3219. p->dl.dl_boosted = 0;
  3220. p->sched_class = &dl_sched_class;
  3221. } else if (rt_prio(prio)) {
  3222. if (dl_prio(oldprio))
  3223. p->dl.dl_boosted = 0;
  3224. if (oldprio < prio)
  3225. queue_flag |= ENQUEUE_HEAD;
  3226. p->sched_class = &rt_sched_class;
  3227. } else {
  3228. if (dl_prio(oldprio))
  3229. p->dl.dl_boosted = 0;
  3230. if (rt_prio(oldprio))
  3231. p->rt.timeout = 0;
  3232. p->sched_class = &fair_sched_class;
  3233. }
  3234. p->prio = prio;
  3235. if (queued)
  3236. enqueue_task(rq, p, queue_flag);
  3237. if (running)
  3238. set_curr_task(rq, p);
  3239. check_class_changed(rq, p, prev_class, oldprio);
  3240. out_unlock:
  3241. /* Avoid rq from going away on us: */
  3242. preempt_disable();
  3243. __task_rq_unlock(rq, &rf);
  3244. balance_callback(rq);
  3245. preempt_enable();
  3246. }
  3247. #else
  3248. static inline int rt_effective_prio(struct task_struct *p, int prio)
  3249. {
  3250. return prio;
  3251. }
  3252. #endif
  3253. void set_user_nice(struct task_struct *p, long nice)
  3254. {
  3255. bool queued, running;
  3256. int old_prio, delta;
  3257. struct rq_flags rf;
  3258. struct rq *rq;
  3259. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  3260. return;
  3261. /*
  3262. * We have to be careful, if called from sys_setpriority(),
  3263. * the task might be in the middle of scheduling on another CPU.
  3264. */
  3265. rq = task_rq_lock(p, &rf);
  3266. update_rq_clock(rq);
  3267. /*
  3268. * The RT priorities are set via sched_setscheduler(), but we still
  3269. * allow the 'normal' nice value to be set - but as expected
  3270. * it wont have any effect on scheduling until the task is
  3271. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  3272. */
  3273. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  3274. p->static_prio = NICE_TO_PRIO(nice);
  3275. goto out_unlock;
  3276. }
  3277. queued = task_on_rq_queued(p);
  3278. running = task_current(rq, p);
  3279. if (queued)
  3280. dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
  3281. if (running)
  3282. put_prev_task(rq, p);
  3283. p->static_prio = NICE_TO_PRIO(nice);
  3284. set_load_weight(p);
  3285. old_prio = p->prio;
  3286. p->prio = effective_prio(p);
  3287. delta = p->prio - old_prio;
  3288. if (queued) {
  3289. enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
  3290. /*
  3291. * If the task increased its priority or is running and
  3292. * lowered its priority, then reschedule its CPU:
  3293. */
  3294. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3295. resched_curr(rq);
  3296. }
  3297. if (running)
  3298. set_curr_task(rq, p);
  3299. out_unlock:
  3300. task_rq_unlock(rq, p, &rf);
  3301. }
  3302. EXPORT_SYMBOL(set_user_nice);
  3303. /*
  3304. * can_nice - check if a task can reduce its nice value
  3305. * @p: task
  3306. * @nice: nice value
  3307. */
  3308. int can_nice(const struct task_struct *p, const int nice)
  3309. {
  3310. /* Convert nice value [19,-20] to rlimit style value [1,40]: */
  3311. int nice_rlim = nice_to_rlimit(nice);
  3312. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3313. capable(CAP_SYS_NICE));
  3314. }
  3315. #ifdef __ARCH_WANT_SYS_NICE
  3316. /*
  3317. * sys_nice - change the priority of the current process.
  3318. * @increment: priority increment
  3319. *
  3320. * sys_setpriority is a more generic, but much slower function that
  3321. * does similar things.
  3322. */
  3323. SYSCALL_DEFINE1(nice, int, increment)
  3324. {
  3325. long nice, retval;
  3326. /*
  3327. * Setpriority might change our priority at the same moment.
  3328. * We don't have to worry. Conceptually one call occurs first
  3329. * and we have a single winner.
  3330. */
  3331. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  3332. nice = task_nice(current) + increment;
  3333. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  3334. if (increment < 0 && !can_nice(current, nice))
  3335. return -EPERM;
  3336. retval = security_task_setnice(current, nice);
  3337. if (retval)
  3338. return retval;
  3339. set_user_nice(current, nice);
  3340. return 0;
  3341. }
  3342. #endif
  3343. /**
  3344. * task_prio - return the priority value of a given task.
  3345. * @p: the task in question.
  3346. *
  3347. * Return: The priority value as seen by users in /proc.
  3348. * RT tasks are offset by -200. Normal tasks are centered
  3349. * around 0, value goes from -16 to +15.
  3350. */
  3351. int task_prio(const struct task_struct *p)
  3352. {
  3353. return p->prio - MAX_RT_PRIO;
  3354. }
  3355. /**
  3356. * idle_cpu - is a given CPU idle currently?
  3357. * @cpu: the processor in question.
  3358. *
  3359. * Return: 1 if the CPU is currently idle. 0 otherwise.
  3360. */
  3361. int idle_cpu(int cpu)
  3362. {
  3363. struct rq *rq = cpu_rq(cpu);
  3364. if (rq->curr != rq->idle)
  3365. return 0;
  3366. if (rq->nr_running)
  3367. return 0;
  3368. #ifdef CONFIG_SMP
  3369. if (!llist_empty(&rq->wake_list))
  3370. return 0;
  3371. #endif
  3372. return 1;
  3373. }
  3374. /**
  3375. * idle_task - return the idle task for a given CPU.
  3376. * @cpu: the processor in question.
  3377. *
  3378. * Return: The idle task for the CPU @cpu.
  3379. */
  3380. struct task_struct *idle_task(int cpu)
  3381. {
  3382. return cpu_rq(cpu)->idle;
  3383. }
  3384. /**
  3385. * find_process_by_pid - find a process with a matching PID value.
  3386. * @pid: the pid in question.
  3387. *
  3388. * The task of @pid, if found. %NULL otherwise.
  3389. */
  3390. static struct task_struct *find_process_by_pid(pid_t pid)
  3391. {
  3392. return pid ? find_task_by_vpid(pid) : current;
  3393. }
  3394. /*
  3395. * sched_setparam() passes in -1 for its policy, to let the functions
  3396. * it calls know not to change it.
  3397. */
  3398. #define SETPARAM_POLICY -1
  3399. static void __setscheduler_params(struct task_struct *p,
  3400. const struct sched_attr *attr)
  3401. {
  3402. int policy = attr->sched_policy;
  3403. if (policy == SETPARAM_POLICY)
  3404. policy = p->policy;
  3405. p->policy = policy;
  3406. if (dl_policy(policy))
  3407. __setparam_dl(p, attr);
  3408. else if (fair_policy(policy))
  3409. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3410. /*
  3411. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3412. * !rt_policy. Always setting this ensures that things like
  3413. * getparam()/getattr() don't report silly values for !rt tasks.
  3414. */
  3415. p->rt_priority = attr->sched_priority;
  3416. p->normal_prio = normal_prio(p);
  3417. set_load_weight(p);
  3418. }
  3419. /* Actually do priority change: must hold pi & rq lock. */
  3420. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3421. const struct sched_attr *attr, bool keep_boost)
  3422. {
  3423. __setscheduler_params(p, attr);
  3424. /*
  3425. * Keep a potential priority boosting if called from
  3426. * sched_setscheduler().
  3427. */
  3428. p->prio = normal_prio(p);
  3429. if (keep_boost)
  3430. p->prio = rt_effective_prio(p, p->prio);
  3431. if (dl_prio(p->prio))
  3432. p->sched_class = &dl_sched_class;
  3433. else if (rt_prio(p->prio))
  3434. p->sched_class = &rt_sched_class;
  3435. else
  3436. p->sched_class = &fair_sched_class;
  3437. }
  3438. /*
  3439. * Check the target process has a UID that matches the current process's:
  3440. */
  3441. static bool check_same_owner(struct task_struct *p)
  3442. {
  3443. const struct cred *cred = current_cred(), *pcred;
  3444. bool match;
  3445. rcu_read_lock();
  3446. pcred = __task_cred(p);
  3447. match = (uid_eq(cred->euid, pcred->euid) ||
  3448. uid_eq(cred->euid, pcred->uid));
  3449. rcu_read_unlock();
  3450. return match;
  3451. }
  3452. static int __sched_setscheduler(struct task_struct *p,
  3453. const struct sched_attr *attr,
  3454. bool user, bool pi)
  3455. {
  3456. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3457. MAX_RT_PRIO - 1 - attr->sched_priority;
  3458. int retval, oldprio, oldpolicy = -1, queued, running;
  3459. int new_effective_prio, policy = attr->sched_policy;
  3460. const struct sched_class *prev_class;
  3461. struct rq_flags rf;
  3462. int reset_on_fork;
  3463. int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
  3464. struct rq *rq;
  3465. /* The pi code expects interrupts enabled */
  3466. BUG_ON(pi && in_interrupt());
  3467. recheck:
  3468. /* Double check policy once rq lock held: */
  3469. if (policy < 0) {
  3470. reset_on_fork = p->sched_reset_on_fork;
  3471. policy = oldpolicy = p->policy;
  3472. } else {
  3473. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3474. if (!valid_policy(policy))
  3475. return -EINVAL;
  3476. }
  3477. if (attr->sched_flags &
  3478. ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
  3479. return -EINVAL;
  3480. /*
  3481. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3482. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3483. * SCHED_BATCH and SCHED_IDLE is 0.
  3484. */
  3485. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3486. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3487. return -EINVAL;
  3488. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3489. (rt_policy(policy) != (attr->sched_priority != 0)))
  3490. return -EINVAL;
  3491. /*
  3492. * Allow unprivileged RT tasks to decrease priority:
  3493. */
  3494. if (user && !capable(CAP_SYS_NICE)) {
  3495. if (fair_policy(policy)) {
  3496. if (attr->sched_nice < task_nice(p) &&
  3497. !can_nice(p, attr->sched_nice))
  3498. return -EPERM;
  3499. }
  3500. if (rt_policy(policy)) {
  3501. unsigned long rlim_rtprio =
  3502. task_rlimit(p, RLIMIT_RTPRIO);
  3503. /* Can't set/change the rt policy: */
  3504. if (policy != p->policy && !rlim_rtprio)
  3505. return -EPERM;
  3506. /* Can't increase priority: */
  3507. if (attr->sched_priority > p->rt_priority &&
  3508. attr->sched_priority > rlim_rtprio)
  3509. return -EPERM;
  3510. }
  3511. /*
  3512. * Can't set/change SCHED_DEADLINE policy at all for now
  3513. * (safest behavior); in the future we would like to allow
  3514. * unprivileged DL tasks to increase their relative deadline
  3515. * or reduce their runtime (both ways reducing utilization)
  3516. */
  3517. if (dl_policy(policy))
  3518. return -EPERM;
  3519. /*
  3520. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3521. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3522. */
  3523. if (idle_policy(p->policy) && !idle_policy(policy)) {
  3524. if (!can_nice(p, task_nice(p)))
  3525. return -EPERM;
  3526. }
  3527. /* Can't change other user's priorities: */
  3528. if (!check_same_owner(p))
  3529. return -EPERM;
  3530. /* Normal users shall not reset the sched_reset_on_fork flag: */
  3531. if (p->sched_reset_on_fork && !reset_on_fork)
  3532. return -EPERM;
  3533. }
  3534. if (user) {
  3535. retval = security_task_setscheduler(p);
  3536. if (retval)
  3537. return retval;
  3538. }
  3539. /*
  3540. * Make sure no PI-waiters arrive (or leave) while we are
  3541. * changing the priority of the task:
  3542. *
  3543. * To be able to change p->policy safely, the appropriate
  3544. * runqueue lock must be held.
  3545. */
  3546. rq = task_rq_lock(p, &rf);
  3547. update_rq_clock(rq);
  3548. /*
  3549. * Changing the policy of the stop threads its a very bad idea:
  3550. */
  3551. if (p == rq->stop) {
  3552. task_rq_unlock(rq, p, &rf);
  3553. return -EINVAL;
  3554. }
  3555. /*
  3556. * If not changing anything there's no need to proceed further,
  3557. * but store a possible modification of reset_on_fork.
  3558. */
  3559. if (unlikely(policy == p->policy)) {
  3560. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3561. goto change;
  3562. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3563. goto change;
  3564. if (dl_policy(policy) && dl_param_changed(p, attr))
  3565. goto change;
  3566. p->sched_reset_on_fork = reset_on_fork;
  3567. task_rq_unlock(rq, p, &rf);
  3568. return 0;
  3569. }
  3570. change:
  3571. if (user) {
  3572. #ifdef CONFIG_RT_GROUP_SCHED
  3573. /*
  3574. * Do not allow realtime tasks into groups that have no runtime
  3575. * assigned.
  3576. */
  3577. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3578. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3579. !task_group_is_autogroup(task_group(p))) {
  3580. task_rq_unlock(rq, p, &rf);
  3581. return -EPERM;
  3582. }
  3583. #endif
  3584. #ifdef CONFIG_SMP
  3585. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3586. cpumask_t *span = rq->rd->span;
  3587. /*
  3588. * Don't allow tasks with an affinity mask smaller than
  3589. * the entire root_domain to become SCHED_DEADLINE. We
  3590. * will also fail if there's no bandwidth available.
  3591. */
  3592. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3593. rq->rd->dl_bw.bw == 0) {
  3594. task_rq_unlock(rq, p, &rf);
  3595. return -EPERM;
  3596. }
  3597. }
  3598. #endif
  3599. }
  3600. /* Re-check policy now with rq lock held: */
  3601. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3602. policy = oldpolicy = -1;
  3603. task_rq_unlock(rq, p, &rf);
  3604. goto recheck;
  3605. }
  3606. /*
  3607. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3608. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3609. * is available.
  3610. */
  3611. if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
  3612. task_rq_unlock(rq, p, &rf);
  3613. return -EBUSY;
  3614. }
  3615. p->sched_reset_on_fork = reset_on_fork;
  3616. oldprio = p->prio;
  3617. if (pi) {
  3618. /*
  3619. * Take priority boosted tasks into account. If the new
  3620. * effective priority is unchanged, we just store the new
  3621. * normal parameters and do not touch the scheduler class and
  3622. * the runqueue. This will be done when the task deboost
  3623. * itself.
  3624. */
  3625. new_effective_prio = rt_effective_prio(p, newprio);
  3626. if (new_effective_prio == oldprio)
  3627. queue_flags &= ~DEQUEUE_MOVE;
  3628. }
  3629. queued = task_on_rq_queued(p);
  3630. running = task_current(rq, p);
  3631. if (queued)
  3632. dequeue_task(rq, p, queue_flags);
  3633. if (running)
  3634. put_prev_task(rq, p);
  3635. prev_class = p->sched_class;
  3636. __setscheduler(rq, p, attr, pi);
  3637. if (queued) {
  3638. /*
  3639. * We enqueue to tail when the priority of a task is
  3640. * increased (user space view).
  3641. */
  3642. if (oldprio < p->prio)
  3643. queue_flags |= ENQUEUE_HEAD;
  3644. enqueue_task(rq, p, queue_flags);
  3645. }
  3646. if (running)
  3647. set_curr_task(rq, p);
  3648. check_class_changed(rq, p, prev_class, oldprio);
  3649. /* Avoid rq from going away on us: */
  3650. preempt_disable();
  3651. task_rq_unlock(rq, p, &rf);
  3652. if (pi)
  3653. rt_mutex_adjust_pi(p);
  3654. /* Run balance callbacks after we've adjusted the PI chain: */
  3655. balance_callback(rq);
  3656. preempt_enable();
  3657. return 0;
  3658. }
  3659. static int _sched_setscheduler(struct task_struct *p, int policy,
  3660. const struct sched_param *param, bool check)
  3661. {
  3662. struct sched_attr attr = {
  3663. .sched_policy = policy,
  3664. .sched_priority = param->sched_priority,
  3665. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3666. };
  3667. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3668. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3669. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3670. policy &= ~SCHED_RESET_ON_FORK;
  3671. attr.sched_policy = policy;
  3672. }
  3673. return __sched_setscheduler(p, &attr, check, true);
  3674. }
  3675. /**
  3676. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3677. * @p: the task in question.
  3678. * @policy: new policy.
  3679. * @param: structure containing the new RT priority.
  3680. *
  3681. * Return: 0 on success. An error code otherwise.
  3682. *
  3683. * NOTE that the task may be already dead.
  3684. */
  3685. int sched_setscheduler(struct task_struct *p, int policy,
  3686. const struct sched_param *param)
  3687. {
  3688. return _sched_setscheduler(p, policy, param, true);
  3689. }
  3690. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3691. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3692. {
  3693. return __sched_setscheduler(p, attr, true, true);
  3694. }
  3695. EXPORT_SYMBOL_GPL(sched_setattr);
  3696. /**
  3697. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3698. * @p: the task in question.
  3699. * @policy: new policy.
  3700. * @param: structure containing the new RT priority.
  3701. *
  3702. * Just like sched_setscheduler, only don't bother checking if the
  3703. * current context has permission. For example, this is needed in
  3704. * stop_machine(): we create temporary high priority worker threads,
  3705. * but our caller might not have that capability.
  3706. *
  3707. * Return: 0 on success. An error code otherwise.
  3708. */
  3709. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3710. const struct sched_param *param)
  3711. {
  3712. return _sched_setscheduler(p, policy, param, false);
  3713. }
  3714. EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
  3715. static int
  3716. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3717. {
  3718. struct sched_param lparam;
  3719. struct task_struct *p;
  3720. int retval;
  3721. if (!param || pid < 0)
  3722. return -EINVAL;
  3723. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3724. return -EFAULT;
  3725. rcu_read_lock();
  3726. retval = -ESRCH;
  3727. p = find_process_by_pid(pid);
  3728. if (p != NULL)
  3729. retval = sched_setscheduler(p, policy, &lparam);
  3730. rcu_read_unlock();
  3731. return retval;
  3732. }
  3733. /*
  3734. * Mimics kernel/events/core.c perf_copy_attr().
  3735. */
  3736. static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
  3737. {
  3738. u32 size;
  3739. int ret;
  3740. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3741. return -EFAULT;
  3742. /* Zero the full structure, so that a short copy will be nice: */
  3743. memset(attr, 0, sizeof(*attr));
  3744. ret = get_user(size, &uattr->size);
  3745. if (ret)
  3746. return ret;
  3747. /* Bail out on silly large: */
  3748. if (size > PAGE_SIZE)
  3749. goto err_size;
  3750. /* ABI compatibility quirk: */
  3751. if (!size)
  3752. size = SCHED_ATTR_SIZE_VER0;
  3753. if (size < SCHED_ATTR_SIZE_VER0)
  3754. goto err_size;
  3755. /*
  3756. * If we're handed a bigger struct than we know of,
  3757. * ensure all the unknown bits are 0 - i.e. new
  3758. * user-space does not rely on any kernel feature
  3759. * extensions we dont know about yet.
  3760. */
  3761. if (size > sizeof(*attr)) {
  3762. unsigned char __user *addr;
  3763. unsigned char __user *end;
  3764. unsigned char val;
  3765. addr = (void __user *)uattr + sizeof(*attr);
  3766. end = (void __user *)uattr + size;
  3767. for (; addr < end; addr++) {
  3768. ret = get_user(val, addr);
  3769. if (ret)
  3770. return ret;
  3771. if (val)
  3772. goto err_size;
  3773. }
  3774. size = sizeof(*attr);
  3775. }
  3776. ret = copy_from_user(attr, uattr, size);
  3777. if (ret)
  3778. return -EFAULT;
  3779. /*
  3780. * XXX: Do we want to be lenient like existing syscalls; or do we want
  3781. * to be strict and return an error on out-of-bounds values?
  3782. */
  3783. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3784. return 0;
  3785. err_size:
  3786. put_user(sizeof(*attr), &uattr->size);
  3787. return -E2BIG;
  3788. }
  3789. /**
  3790. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3791. * @pid: the pid in question.
  3792. * @policy: new policy.
  3793. * @param: structure containing the new RT priority.
  3794. *
  3795. * Return: 0 on success. An error code otherwise.
  3796. */
  3797. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
  3798. {
  3799. if (policy < 0)
  3800. return -EINVAL;
  3801. return do_sched_setscheduler(pid, policy, param);
  3802. }
  3803. /**
  3804. * sys_sched_setparam - set/change the RT priority of a thread
  3805. * @pid: the pid in question.
  3806. * @param: structure containing the new RT priority.
  3807. *
  3808. * Return: 0 on success. An error code otherwise.
  3809. */
  3810. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3811. {
  3812. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3813. }
  3814. /**
  3815. * sys_sched_setattr - same as above, but with extended sched_attr
  3816. * @pid: the pid in question.
  3817. * @uattr: structure containing the extended parameters.
  3818. * @flags: for future extension.
  3819. */
  3820. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3821. unsigned int, flags)
  3822. {
  3823. struct sched_attr attr;
  3824. struct task_struct *p;
  3825. int retval;
  3826. if (!uattr || pid < 0 || flags)
  3827. return -EINVAL;
  3828. retval = sched_copy_attr(uattr, &attr);
  3829. if (retval)
  3830. return retval;
  3831. if ((int)attr.sched_policy < 0)
  3832. return -EINVAL;
  3833. rcu_read_lock();
  3834. retval = -ESRCH;
  3835. p = find_process_by_pid(pid);
  3836. if (p != NULL)
  3837. retval = sched_setattr(p, &attr);
  3838. rcu_read_unlock();
  3839. return retval;
  3840. }
  3841. /**
  3842. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3843. * @pid: the pid in question.
  3844. *
  3845. * Return: On success, the policy of the thread. Otherwise, a negative error
  3846. * code.
  3847. */
  3848. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3849. {
  3850. struct task_struct *p;
  3851. int retval;
  3852. if (pid < 0)
  3853. return -EINVAL;
  3854. retval = -ESRCH;
  3855. rcu_read_lock();
  3856. p = find_process_by_pid(pid);
  3857. if (p) {
  3858. retval = security_task_getscheduler(p);
  3859. if (!retval)
  3860. retval = p->policy
  3861. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3862. }
  3863. rcu_read_unlock();
  3864. return retval;
  3865. }
  3866. /**
  3867. * sys_sched_getparam - get the RT priority of a thread
  3868. * @pid: the pid in question.
  3869. * @param: structure containing the RT priority.
  3870. *
  3871. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3872. * code.
  3873. */
  3874. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3875. {
  3876. struct sched_param lp = { .sched_priority = 0 };
  3877. struct task_struct *p;
  3878. int retval;
  3879. if (!param || pid < 0)
  3880. return -EINVAL;
  3881. rcu_read_lock();
  3882. p = find_process_by_pid(pid);
  3883. retval = -ESRCH;
  3884. if (!p)
  3885. goto out_unlock;
  3886. retval = security_task_getscheduler(p);
  3887. if (retval)
  3888. goto out_unlock;
  3889. if (task_has_rt_policy(p))
  3890. lp.sched_priority = p->rt_priority;
  3891. rcu_read_unlock();
  3892. /*
  3893. * This one might sleep, we cannot do it with a spinlock held ...
  3894. */
  3895. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3896. return retval;
  3897. out_unlock:
  3898. rcu_read_unlock();
  3899. return retval;
  3900. }
  3901. static int sched_read_attr(struct sched_attr __user *uattr,
  3902. struct sched_attr *attr,
  3903. unsigned int usize)
  3904. {
  3905. int ret;
  3906. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3907. return -EFAULT;
  3908. /*
  3909. * If we're handed a smaller struct than we know of,
  3910. * ensure all the unknown bits are 0 - i.e. old
  3911. * user-space does not get uncomplete information.
  3912. */
  3913. if (usize < sizeof(*attr)) {
  3914. unsigned char *addr;
  3915. unsigned char *end;
  3916. addr = (void *)attr + usize;
  3917. end = (void *)attr + sizeof(*attr);
  3918. for (; addr < end; addr++) {
  3919. if (*addr)
  3920. return -EFBIG;
  3921. }
  3922. attr->size = usize;
  3923. }
  3924. ret = copy_to_user(uattr, attr, attr->size);
  3925. if (ret)
  3926. return -EFAULT;
  3927. return 0;
  3928. }
  3929. /**
  3930. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3931. * @pid: the pid in question.
  3932. * @uattr: structure containing the extended parameters.
  3933. * @size: sizeof(attr) for fwd/bwd comp.
  3934. * @flags: for future extension.
  3935. */
  3936. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3937. unsigned int, size, unsigned int, flags)
  3938. {
  3939. struct sched_attr attr = {
  3940. .size = sizeof(struct sched_attr),
  3941. };
  3942. struct task_struct *p;
  3943. int retval;
  3944. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3945. size < SCHED_ATTR_SIZE_VER0 || flags)
  3946. return -EINVAL;
  3947. rcu_read_lock();
  3948. p = find_process_by_pid(pid);
  3949. retval = -ESRCH;
  3950. if (!p)
  3951. goto out_unlock;
  3952. retval = security_task_getscheduler(p);
  3953. if (retval)
  3954. goto out_unlock;
  3955. attr.sched_policy = p->policy;
  3956. if (p->sched_reset_on_fork)
  3957. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3958. if (task_has_dl_policy(p))
  3959. __getparam_dl(p, &attr);
  3960. else if (task_has_rt_policy(p))
  3961. attr.sched_priority = p->rt_priority;
  3962. else
  3963. attr.sched_nice = task_nice(p);
  3964. rcu_read_unlock();
  3965. retval = sched_read_attr(uattr, &attr, size);
  3966. return retval;
  3967. out_unlock:
  3968. rcu_read_unlock();
  3969. return retval;
  3970. }
  3971. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3972. {
  3973. cpumask_var_t cpus_allowed, new_mask;
  3974. struct task_struct *p;
  3975. int retval;
  3976. rcu_read_lock();
  3977. p = find_process_by_pid(pid);
  3978. if (!p) {
  3979. rcu_read_unlock();
  3980. return -ESRCH;
  3981. }
  3982. /* Prevent p going away */
  3983. get_task_struct(p);
  3984. rcu_read_unlock();
  3985. if (p->flags & PF_NO_SETAFFINITY) {
  3986. retval = -EINVAL;
  3987. goto out_put_task;
  3988. }
  3989. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3990. retval = -ENOMEM;
  3991. goto out_put_task;
  3992. }
  3993. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3994. retval = -ENOMEM;
  3995. goto out_free_cpus_allowed;
  3996. }
  3997. retval = -EPERM;
  3998. if (!check_same_owner(p)) {
  3999. rcu_read_lock();
  4000. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  4001. rcu_read_unlock();
  4002. goto out_free_new_mask;
  4003. }
  4004. rcu_read_unlock();
  4005. }
  4006. retval = security_task_setscheduler(p);
  4007. if (retval)
  4008. goto out_free_new_mask;
  4009. cpuset_cpus_allowed(p, cpus_allowed);
  4010. cpumask_and(new_mask, in_mask, cpus_allowed);
  4011. /*
  4012. * Since bandwidth control happens on root_domain basis,
  4013. * if admission test is enabled, we only admit -deadline
  4014. * tasks allowed to run on all the CPUs in the task's
  4015. * root_domain.
  4016. */
  4017. #ifdef CONFIG_SMP
  4018. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  4019. rcu_read_lock();
  4020. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  4021. retval = -EBUSY;
  4022. rcu_read_unlock();
  4023. goto out_free_new_mask;
  4024. }
  4025. rcu_read_unlock();
  4026. }
  4027. #endif
  4028. again:
  4029. retval = __set_cpus_allowed_ptr(p, new_mask, true);
  4030. if (!retval) {
  4031. cpuset_cpus_allowed(p, cpus_allowed);
  4032. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4033. /*
  4034. * We must have raced with a concurrent cpuset
  4035. * update. Just reset the cpus_allowed to the
  4036. * cpuset's cpus_allowed
  4037. */
  4038. cpumask_copy(new_mask, cpus_allowed);
  4039. goto again;
  4040. }
  4041. }
  4042. out_free_new_mask:
  4043. free_cpumask_var(new_mask);
  4044. out_free_cpus_allowed:
  4045. free_cpumask_var(cpus_allowed);
  4046. out_put_task:
  4047. put_task_struct(p);
  4048. return retval;
  4049. }
  4050. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4051. struct cpumask *new_mask)
  4052. {
  4053. if (len < cpumask_size())
  4054. cpumask_clear(new_mask);
  4055. else if (len > cpumask_size())
  4056. len = cpumask_size();
  4057. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4058. }
  4059. /**
  4060. * sys_sched_setaffinity - set the CPU affinity of a process
  4061. * @pid: pid of the process
  4062. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4063. * @user_mask_ptr: user-space pointer to the new CPU mask
  4064. *
  4065. * Return: 0 on success. An error code otherwise.
  4066. */
  4067. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4068. unsigned long __user *, user_mask_ptr)
  4069. {
  4070. cpumask_var_t new_mask;
  4071. int retval;
  4072. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4073. return -ENOMEM;
  4074. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4075. if (retval == 0)
  4076. retval = sched_setaffinity(pid, new_mask);
  4077. free_cpumask_var(new_mask);
  4078. return retval;
  4079. }
  4080. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4081. {
  4082. struct task_struct *p;
  4083. unsigned long flags;
  4084. int retval;
  4085. rcu_read_lock();
  4086. retval = -ESRCH;
  4087. p = find_process_by_pid(pid);
  4088. if (!p)
  4089. goto out_unlock;
  4090. retval = security_task_getscheduler(p);
  4091. if (retval)
  4092. goto out_unlock;
  4093. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4094. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  4095. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4096. out_unlock:
  4097. rcu_read_unlock();
  4098. return retval;
  4099. }
  4100. /**
  4101. * sys_sched_getaffinity - get the CPU affinity of a process
  4102. * @pid: pid of the process
  4103. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4104. * @user_mask_ptr: user-space pointer to hold the current CPU mask
  4105. *
  4106. * Return: size of CPU mask copied to user_mask_ptr on success. An
  4107. * error code otherwise.
  4108. */
  4109. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4110. unsigned long __user *, user_mask_ptr)
  4111. {
  4112. int ret;
  4113. cpumask_var_t mask;
  4114. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4115. return -EINVAL;
  4116. if (len & (sizeof(unsigned long)-1))
  4117. return -EINVAL;
  4118. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4119. return -ENOMEM;
  4120. ret = sched_getaffinity(pid, mask);
  4121. if (ret == 0) {
  4122. size_t retlen = min_t(size_t, len, cpumask_size());
  4123. if (copy_to_user(user_mask_ptr, mask, retlen))
  4124. ret = -EFAULT;
  4125. else
  4126. ret = retlen;
  4127. }
  4128. free_cpumask_var(mask);
  4129. return ret;
  4130. }
  4131. /**
  4132. * sys_sched_yield - yield the current processor to other threads.
  4133. *
  4134. * This function yields the current CPU to other tasks. If there are no
  4135. * other threads running on this CPU then this function will return.
  4136. *
  4137. * Return: 0.
  4138. */
  4139. SYSCALL_DEFINE0(sched_yield)
  4140. {
  4141. struct rq_flags rf;
  4142. struct rq *rq;
  4143. local_irq_disable();
  4144. rq = this_rq();
  4145. rq_lock(rq, &rf);
  4146. schedstat_inc(rq->yld_count);
  4147. current->sched_class->yield_task(rq);
  4148. /*
  4149. * Since we are going to call schedule() anyway, there's
  4150. * no need to preempt or enable interrupts:
  4151. */
  4152. preempt_disable();
  4153. rq_unlock(rq, &rf);
  4154. sched_preempt_enable_no_resched();
  4155. schedule();
  4156. return 0;
  4157. }
  4158. #ifndef CONFIG_PREEMPT
  4159. int __sched _cond_resched(void)
  4160. {
  4161. if (should_resched(0)) {
  4162. preempt_schedule_common();
  4163. return 1;
  4164. }
  4165. return 0;
  4166. }
  4167. EXPORT_SYMBOL(_cond_resched);
  4168. #endif
  4169. /*
  4170. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4171. * call schedule, and on return reacquire the lock.
  4172. *
  4173. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4174. * operations here to prevent schedule() from being called twice (once via
  4175. * spin_unlock(), once by hand).
  4176. */
  4177. int __cond_resched_lock(spinlock_t *lock)
  4178. {
  4179. int resched = should_resched(PREEMPT_LOCK_OFFSET);
  4180. int ret = 0;
  4181. lockdep_assert_held(lock);
  4182. if (spin_needbreak(lock) || resched) {
  4183. spin_unlock(lock);
  4184. if (resched)
  4185. preempt_schedule_common();
  4186. else
  4187. cpu_relax();
  4188. ret = 1;
  4189. spin_lock(lock);
  4190. }
  4191. return ret;
  4192. }
  4193. EXPORT_SYMBOL(__cond_resched_lock);
  4194. int __sched __cond_resched_softirq(void)
  4195. {
  4196. BUG_ON(!in_softirq());
  4197. if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
  4198. local_bh_enable();
  4199. preempt_schedule_common();
  4200. local_bh_disable();
  4201. return 1;
  4202. }
  4203. return 0;
  4204. }
  4205. EXPORT_SYMBOL(__cond_resched_softirq);
  4206. /**
  4207. * yield - yield the current processor to other threads.
  4208. *
  4209. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  4210. *
  4211. * The scheduler is at all times free to pick the calling task as the most
  4212. * eligible task to run, if removing the yield() call from your code breaks
  4213. * it, its already broken.
  4214. *
  4215. * Typical broken usage is:
  4216. *
  4217. * while (!event)
  4218. * yield();
  4219. *
  4220. * where one assumes that yield() will let 'the other' process run that will
  4221. * make event true. If the current task is a SCHED_FIFO task that will never
  4222. * happen. Never use yield() as a progress guarantee!!
  4223. *
  4224. * If you want to use yield() to wait for something, use wait_event().
  4225. * If you want to use yield() to be 'nice' for others, use cond_resched().
  4226. * If you still want to use yield(), do not!
  4227. */
  4228. void __sched yield(void)
  4229. {
  4230. set_current_state(TASK_RUNNING);
  4231. sys_sched_yield();
  4232. }
  4233. EXPORT_SYMBOL(yield);
  4234. /**
  4235. * yield_to - yield the current processor to another thread in
  4236. * your thread group, or accelerate that thread toward the
  4237. * processor it's on.
  4238. * @p: target task
  4239. * @preempt: whether task preemption is allowed or not
  4240. *
  4241. * It's the caller's job to ensure that the target task struct
  4242. * can't go away on us before we can do any checks.
  4243. *
  4244. * Return:
  4245. * true (>0) if we indeed boosted the target task.
  4246. * false (0) if we failed to boost the target.
  4247. * -ESRCH if there's no task to yield to.
  4248. */
  4249. int __sched yield_to(struct task_struct *p, bool preempt)
  4250. {
  4251. struct task_struct *curr = current;
  4252. struct rq *rq, *p_rq;
  4253. unsigned long flags;
  4254. int yielded = 0;
  4255. local_irq_save(flags);
  4256. rq = this_rq();
  4257. again:
  4258. p_rq = task_rq(p);
  4259. /*
  4260. * If we're the only runnable task on the rq and target rq also
  4261. * has only one task, there's absolutely no point in yielding.
  4262. */
  4263. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  4264. yielded = -ESRCH;
  4265. goto out_irq;
  4266. }
  4267. double_rq_lock(rq, p_rq);
  4268. if (task_rq(p) != p_rq) {
  4269. double_rq_unlock(rq, p_rq);
  4270. goto again;
  4271. }
  4272. if (!curr->sched_class->yield_to_task)
  4273. goto out_unlock;
  4274. if (curr->sched_class != p->sched_class)
  4275. goto out_unlock;
  4276. if (task_running(p_rq, p) || p->state)
  4277. goto out_unlock;
  4278. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4279. if (yielded) {
  4280. schedstat_inc(rq->yld_count);
  4281. /*
  4282. * Make p's CPU reschedule; pick_next_entity takes care of
  4283. * fairness.
  4284. */
  4285. if (preempt && rq != p_rq)
  4286. resched_curr(p_rq);
  4287. }
  4288. out_unlock:
  4289. double_rq_unlock(rq, p_rq);
  4290. out_irq:
  4291. local_irq_restore(flags);
  4292. if (yielded > 0)
  4293. schedule();
  4294. return yielded;
  4295. }
  4296. EXPORT_SYMBOL_GPL(yield_to);
  4297. int io_schedule_prepare(void)
  4298. {
  4299. int old_iowait = current->in_iowait;
  4300. current->in_iowait = 1;
  4301. blk_schedule_flush_plug(current);
  4302. return old_iowait;
  4303. }
  4304. void io_schedule_finish(int token)
  4305. {
  4306. current->in_iowait = token;
  4307. }
  4308. /*
  4309. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4310. * that process accounting knows that this is a task in IO wait state.
  4311. */
  4312. long __sched io_schedule_timeout(long timeout)
  4313. {
  4314. int token;
  4315. long ret;
  4316. token = io_schedule_prepare();
  4317. ret = schedule_timeout(timeout);
  4318. io_schedule_finish(token);
  4319. return ret;
  4320. }
  4321. EXPORT_SYMBOL(io_schedule_timeout);
  4322. void io_schedule(void)
  4323. {
  4324. int token;
  4325. token = io_schedule_prepare();
  4326. schedule();
  4327. io_schedule_finish(token);
  4328. }
  4329. EXPORT_SYMBOL(io_schedule);
  4330. /**
  4331. * sys_sched_get_priority_max - return maximum RT priority.
  4332. * @policy: scheduling class.
  4333. *
  4334. * Return: On success, this syscall returns the maximum
  4335. * rt_priority that can be used by a given scheduling class.
  4336. * On failure, a negative error code is returned.
  4337. */
  4338. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4339. {
  4340. int ret = -EINVAL;
  4341. switch (policy) {
  4342. case SCHED_FIFO:
  4343. case SCHED_RR:
  4344. ret = MAX_USER_RT_PRIO-1;
  4345. break;
  4346. case SCHED_DEADLINE:
  4347. case SCHED_NORMAL:
  4348. case SCHED_BATCH:
  4349. case SCHED_IDLE:
  4350. ret = 0;
  4351. break;
  4352. }
  4353. return ret;
  4354. }
  4355. /**
  4356. * sys_sched_get_priority_min - return minimum RT priority.
  4357. * @policy: scheduling class.
  4358. *
  4359. * Return: On success, this syscall returns the minimum
  4360. * rt_priority that can be used by a given scheduling class.
  4361. * On failure, a negative error code is returned.
  4362. */
  4363. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4364. {
  4365. int ret = -EINVAL;
  4366. switch (policy) {
  4367. case SCHED_FIFO:
  4368. case SCHED_RR:
  4369. ret = 1;
  4370. break;
  4371. case SCHED_DEADLINE:
  4372. case SCHED_NORMAL:
  4373. case SCHED_BATCH:
  4374. case SCHED_IDLE:
  4375. ret = 0;
  4376. }
  4377. return ret;
  4378. }
  4379. /**
  4380. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4381. * @pid: pid of the process.
  4382. * @interval: userspace pointer to the timeslice value.
  4383. *
  4384. * this syscall writes the default timeslice value of a given process
  4385. * into the user-space timespec buffer. A value of '0' means infinity.
  4386. *
  4387. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4388. * an error code.
  4389. */
  4390. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4391. struct timespec __user *, interval)
  4392. {
  4393. struct task_struct *p;
  4394. unsigned int time_slice;
  4395. struct rq_flags rf;
  4396. struct timespec t;
  4397. struct rq *rq;
  4398. int retval;
  4399. if (pid < 0)
  4400. return -EINVAL;
  4401. retval = -ESRCH;
  4402. rcu_read_lock();
  4403. p = find_process_by_pid(pid);
  4404. if (!p)
  4405. goto out_unlock;
  4406. retval = security_task_getscheduler(p);
  4407. if (retval)
  4408. goto out_unlock;
  4409. rq = task_rq_lock(p, &rf);
  4410. time_slice = 0;
  4411. if (p->sched_class->get_rr_interval)
  4412. time_slice = p->sched_class->get_rr_interval(rq, p);
  4413. task_rq_unlock(rq, p, &rf);
  4414. rcu_read_unlock();
  4415. jiffies_to_timespec(time_slice, &t);
  4416. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4417. return retval;
  4418. out_unlock:
  4419. rcu_read_unlock();
  4420. return retval;
  4421. }
  4422. void sched_show_task(struct task_struct *p)
  4423. {
  4424. unsigned long free = 0;
  4425. int ppid;
  4426. if (!try_get_task_stack(p))
  4427. return;
  4428. printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
  4429. if (p->state == TASK_RUNNING)
  4430. printk(KERN_CONT " running task ");
  4431. #ifdef CONFIG_DEBUG_STACK_USAGE
  4432. free = stack_not_used(p);
  4433. #endif
  4434. ppid = 0;
  4435. rcu_read_lock();
  4436. if (pid_alive(p))
  4437. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4438. rcu_read_unlock();
  4439. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4440. task_pid_nr(p), ppid,
  4441. (unsigned long)task_thread_info(p)->flags);
  4442. print_worker_info(KERN_INFO, p);
  4443. show_stack(p, NULL);
  4444. put_task_stack(p);
  4445. }
  4446. void show_state_filter(unsigned long state_filter)
  4447. {
  4448. struct task_struct *g, *p;
  4449. #if BITS_PER_LONG == 32
  4450. printk(KERN_INFO
  4451. " task PC stack pid father\n");
  4452. #else
  4453. printk(KERN_INFO
  4454. " task PC stack pid father\n");
  4455. #endif
  4456. rcu_read_lock();
  4457. for_each_process_thread(g, p) {
  4458. /*
  4459. * reset the NMI-timeout, listing all files on a slow
  4460. * console might take a lot of time:
  4461. * Also, reset softlockup watchdogs on all CPUs, because
  4462. * another CPU might be blocked waiting for us to process
  4463. * an IPI.
  4464. */
  4465. touch_nmi_watchdog();
  4466. touch_all_softlockup_watchdogs();
  4467. if (!state_filter || (p->state & state_filter))
  4468. sched_show_task(p);
  4469. }
  4470. #ifdef CONFIG_SCHED_DEBUG
  4471. if (!state_filter)
  4472. sysrq_sched_debug_show();
  4473. #endif
  4474. rcu_read_unlock();
  4475. /*
  4476. * Only show locks if all tasks are dumped:
  4477. */
  4478. if (!state_filter)
  4479. debug_show_all_locks();
  4480. }
  4481. /**
  4482. * init_idle - set up an idle thread for a given CPU
  4483. * @idle: task in question
  4484. * @cpu: CPU the idle task belongs to
  4485. *
  4486. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4487. * flag, to make booting more robust.
  4488. */
  4489. void init_idle(struct task_struct *idle, int cpu)
  4490. {
  4491. struct rq *rq = cpu_rq(cpu);
  4492. unsigned long flags;
  4493. raw_spin_lock_irqsave(&idle->pi_lock, flags);
  4494. raw_spin_lock(&rq->lock);
  4495. __sched_fork(0, idle);
  4496. idle->state = TASK_RUNNING;
  4497. idle->se.exec_start = sched_clock();
  4498. idle->flags |= PF_IDLE;
  4499. kasan_unpoison_task_stack(idle);
  4500. #ifdef CONFIG_SMP
  4501. /*
  4502. * Its possible that init_idle() gets called multiple times on a task,
  4503. * in that case do_set_cpus_allowed() will not do the right thing.
  4504. *
  4505. * And since this is boot we can forgo the serialization.
  4506. */
  4507. set_cpus_allowed_common(idle, cpumask_of(cpu));
  4508. #endif
  4509. /*
  4510. * We're having a chicken and egg problem, even though we are
  4511. * holding rq->lock, the CPU isn't yet set to this CPU so the
  4512. * lockdep check in task_group() will fail.
  4513. *
  4514. * Similar case to sched_fork(). / Alternatively we could
  4515. * use task_rq_lock() here and obtain the other rq->lock.
  4516. *
  4517. * Silence PROVE_RCU
  4518. */
  4519. rcu_read_lock();
  4520. __set_task_cpu(idle, cpu);
  4521. rcu_read_unlock();
  4522. rq->curr = rq->idle = idle;
  4523. idle->on_rq = TASK_ON_RQ_QUEUED;
  4524. #ifdef CONFIG_SMP
  4525. idle->on_cpu = 1;
  4526. #endif
  4527. raw_spin_unlock(&rq->lock);
  4528. raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
  4529. /* Set the preempt count _outside_ the spinlocks! */
  4530. init_idle_preempt_count(idle, cpu);
  4531. /*
  4532. * The idle tasks have their own, simple scheduling class:
  4533. */
  4534. idle->sched_class = &idle_sched_class;
  4535. ftrace_graph_init_idle_task(idle, cpu);
  4536. vtime_init_idle(idle, cpu);
  4537. #ifdef CONFIG_SMP
  4538. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4539. #endif
  4540. }
  4541. #ifdef CONFIG_SMP
  4542. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4543. const struct cpumask *trial)
  4544. {
  4545. int ret = 1;
  4546. if (!cpumask_weight(cur))
  4547. return ret;
  4548. ret = dl_cpuset_cpumask_can_shrink(cur, trial);
  4549. return ret;
  4550. }
  4551. int task_can_attach(struct task_struct *p,
  4552. const struct cpumask *cs_cpus_allowed)
  4553. {
  4554. int ret = 0;
  4555. /*
  4556. * Kthreads which disallow setaffinity shouldn't be moved
  4557. * to a new cpuset; we don't want to change their CPU
  4558. * affinity and isolating such threads by their set of
  4559. * allowed nodes is unnecessary. Thus, cpusets are not
  4560. * applicable for such threads. This prevents checking for
  4561. * success of set_cpus_allowed_ptr() on all attached tasks
  4562. * before cpus_allowed may be changed.
  4563. */
  4564. if (p->flags & PF_NO_SETAFFINITY) {
  4565. ret = -EINVAL;
  4566. goto out;
  4567. }
  4568. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4569. cs_cpus_allowed))
  4570. ret = dl_task_can_attach(p, cs_cpus_allowed);
  4571. out:
  4572. return ret;
  4573. }
  4574. bool sched_smp_initialized __read_mostly;
  4575. #ifdef CONFIG_NUMA_BALANCING
  4576. /* Migrate current task p to target_cpu */
  4577. int migrate_task_to(struct task_struct *p, int target_cpu)
  4578. {
  4579. struct migration_arg arg = { p, target_cpu };
  4580. int curr_cpu = task_cpu(p);
  4581. if (curr_cpu == target_cpu)
  4582. return 0;
  4583. if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
  4584. return -EINVAL;
  4585. /* TODO: This is not properly updating schedstats */
  4586. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4587. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4588. }
  4589. /*
  4590. * Requeue a task on a given node and accurately track the number of NUMA
  4591. * tasks on the runqueues
  4592. */
  4593. void sched_setnuma(struct task_struct *p, int nid)
  4594. {
  4595. bool queued, running;
  4596. struct rq_flags rf;
  4597. struct rq *rq;
  4598. rq = task_rq_lock(p, &rf);
  4599. queued = task_on_rq_queued(p);
  4600. running = task_current(rq, p);
  4601. if (queued)
  4602. dequeue_task(rq, p, DEQUEUE_SAVE);
  4603. if (running)
  4604. put_prev_task(rq, p);
  4605. p->numa_preferred_nid = nid;
  4606. if (queued)
  4607. enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
  4608. if (running)
  4609. set_curr_task(rq, p);
  4610. task_rq_unlock(rq, p, &rf);
  4611. }
  4612. #endif /* CONFIG_NUMA_BALANCING */
  4613. #ifdef CONFIG_HOTPLUG_CPU
  4614. /*
  4615. * Ensure that the idle task is using init_mm right before its CPU goes
  4616. * offline.
  4617. */
  4618. void idle_task_exit(void)
  4619. {
  4620. struct mm_struct *mm = current->active_mm;
  4621. BUG_ON(cpu_online(smp_processor_id()));
  4622. if (mm != &init_mm) {
  4623. switch_mm(mm, &init_mm, current);
  4624. finish_arch_post_lock_switch();
  4625. }
  4626. mmdrop(mm);
  4627. }
  4628. /*
  4629. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4630. * we might have. Assumes we're called after migrate_tasks() so that the
  4631. * nr_active count is stable. We need to take the teardown thread which
  4632. * is calling this into account, so we hand in adjust = 1 to the load
  4633. * calculation.
  4634. *
  4635. * Also see the comment "Global load-average calculations".
  4636. */
  4637. static void calc_load_migrate(struct rq *rq)
  4638. {
  4639. long delta = calc_load_fold_active(rq, 1);
  4640. if (delta)
  4641. atomic_long_add(delta, &calc_load_tasks);
  4642. }
  4643. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4644. {
  4645. }
  4646. static const struct sched_class fake_sched_class = {
  4647. .put_prev_task = put_prev_task_fake,
  4648. };
  4649. static struct task_struct fake_task = {
  4650. /*
  4651. * Avoid pull_{rt,dl}_task()
  4652. */
  4653. .prio = MAX_PRIO + 1,
  4654. .sched_class = &fake_sched_class,
  4655. };
  4656. /*
  4657. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4658. * try_to_wake_up()->select_task_rq().
  4659. *
  4660. * Called with rq->lock held even though we'er in stop_machine() and
  4661. * there's no concurrency possible, we hold the required locks anyway
  4662. * because of lock validation efforts.
  4663. */
  4664. static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
  4665. {
  4666. struct rq *rq = dead_rq;
  4667. struct task_struct *next, *stop = rq->stop;
  4668. struct rq_flags orf = *rf;
  4669. int dest_cpu;
  4670. /*
  4671. * Fudge the rq selection such that the below task selection loop
  4672. * doesn't get stuck on the currently eligible stop task.
  4673. *
  4674. * We're currently inside stop_machine() and the rq is either stuck
  4675. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4676. * either way we should never end up calling schedule() until we're
  4677. * done here.
  4678. */
  4679. rq->stop = NULL;
  4680. /*
  4681. * put_prev_task() and pick_next_task() sched
  4682. * class method both need to have an up-to-date
  4683. * value of rq->clock[_task]
  4684. */
  4685. update_rq_clock(rq);
  4686. for (;;) {
  4687. /*
  4688. * There's this thread running, bail when that's the only
  4689. * remaining thread:
  4690. */
  4691. if (rq->nr_running == 1)
  4692. break;
  4693. /*
  4694. * pick_next_task() assumes pinned rq->lock:
  4695. */
  4696. next = pick_next_task(rq, &fake_task, rf);
  4697. BUG_ON(!next);
  4698. put_prev_task(rq, next);
  4699. /*
  4700. * Rules for changing task_struct::cpus_allowed are holding
  4701. * both pi_lock and rq->lock, such that holding either
  4702. * stabilizes the mask.
  4703. *
  4704. * Drop rq->lock is not quite as disastrous as it usually is
  4705. * because !cpu_active at this point, which means load-balance
  4706. * will not interfere. Also, stop-machine.
  4707. */
  4708. rq_unlock(rq, rf);
  4709. raw_spin_lock(&next->pi_lock);
  4710. rq_relock(rq, rf);
  4711. /*
  4712. * Since we're inside stop-machine, _nothing_ should have
  4713. * changed the task, WARN if weird stuff happened, because in
  4714. * that case the above rq->lock drop is a fail too.
  4715. */
  4716. if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
  4717. raw_spin_unlock(&next->pi_lock);
  4718. continue;
  4719. }
  4720. /* Find suitable destination for @next, with force if needed. */
  4721. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4722. rq = __migrate_task(rq, rf, next, dest_cpu);
  4723. if (rq != dead_rq) {
  4724. rq_unlock(rq, rf);
  4725. rq = dead_rq;
  4726. *rf = orf;
  4727. rq_relock(rq, rf);
  4728. }
  4729. raw_spin_unlock(&next->pi_lock);
  4730. }
  4731. rq->stop = stop;
  4732. }
  4733. #endif /* CONFIG_HOTPLUG_CPU */
  4734. void set_rq_online(struct rq *rq)
  4735. {
  4736. if (!rq->online) {
  4737. const struct sched_class *class;
  4738. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4739. rq->online = 1;
  4740. for_each_class(class) {
  4741. if (class->rq_online)
  4742. class->rq_online(rq);
  4743. }
  4744. }
  4745. }
  4746. void set_rq_offline(struct rq *rq)
  4747. {
  4748. if (rq->online) {
  4749. const struct sched_class *class;
  4750. for_each_class(class) {
  4751. if (class->rq_offline)
  4752. class->rq_offline(rq);
  4753. }
  4754. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4755. rq->online = 0;
  4756. }
  4757. }
  4758. static void set_cpu_rq_start_time(unsigned int cpu)
  4759. {
  4760. struct rq *rq = cpu_rq(cpu);
  4761. rq->age_stamp = sched_clock_cpu(cpu);
  4762. }
  4763. /*
  4764. * used to mark begin/end of suspend/resume:
  4765. */
  4766. static int num_cpus_frozen;
  4767. /*
  4768. * Update cpusets according to cpu_active mask. If cpusets are
  4769. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  4770. * around partition_sched_domains().
  4771. *
  4772. * If we come here as part of a suspend/resume, don't touch cpusets because we
  4773. * want to restore it back to its original state upon resume anyway.
  4774. */
  4775. static void cpuset_cpu_active(void)
  4776. {
  4777. if (cpuhp_tasks_frozen) {
  4778. /*
  4779. * num_cpus_frozen tracks how many CPUs are involved in suspend
  4780. * resume sequence. As long as this is not the last online
  4781. * operation in the resume sequence, just build a single sched
  4782. * domain, ignoring cpusets.
  4783. */
  4784. partition_sched_domains(1, NULL, NULL);
  4785. if (--num_cpus_frozen)
  4786. return;
  4787. /*
  4788. * This is the last CPU online operation. So fall through and
  4789. * restore the original sched domains by considering the
  4790. * cpuset configurations.
  4791. */
  4792. cpuset_force_rebuild();
  4793. }
  4794. cpuset_update_active_cpus();
  4795. }
  4796. static int cpuset_cpu_inactive(unsigned int cpu)
  4797. {
  4798. if (!cpuhp_tasks_frozen) {
  4799. if (dl_cpu_busy(cpu))
  4800. return -EBUSY;
  4801. cpuset_update_active_cpus();
  4802. } else {
  4803. num_cpus_frozen++;
  4804. partition_sched_domains(1, NULL, NULL);
  4805. }
  4806. return 0;
  4807. }
  4808. int sched_cpu_activate(unsigned int cpu)
  4809. {
  4810. struct rq *rq = cpu_rq(cpu);
  4811. struct rq_flags rf;
  4812. set_cpu_active(cpu, true);
  4813. if (sched_smp_initialized) {
  4814. sched_domains_numa_masks_set(cpu);
  4815. cpuset_cpu_active();
  4816. }
  4817. /*
  4818. * Put the rq online, if not already. This happens:
  4819. *
  4820. * 1) In the early boot process, because we build the real domains
  4821. * after all CPUs have been brought up.
  4822. *
  4823. * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
  4824. * domains.
  4825. */
  4826. rq_lock_irqsave(rq, &rf);
  4827. if (rq->rd) {
  4828. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4829. set_rq_online(rq);
  4830. }
  4831. rq_unlock_irqrestore(rq, &rf);
  4832. update_max_interval();
  4833. return 0;
  4834. }
  4835. int sched_cpu_deactivate(unsigned int cpu)
  4836. {
  4837. int ret;
  4838. set_cpu_active(cpu, false);
  4839. /*
  4840. * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
  4841. * users of this state to go away such that all new such users will
  4842. * observe it.
  4843. *
  4844. * Do sync before park smpboot threads to take care the rcu boost case.
  4845. */
  4846. synchronize_rcu_mult(call_rcu, call_rcu_sched);
  4847. if (!sched_smp_initialized)
  4848. return 0;
  4849. ret = cpuset_cpu_inactive(cpu);
  4850. if (ret) {
  4851. set_cpu_active(cpu, true);
  4852. return ret;
  4853. }
  4854. sched_domains_numa_masks_clear(cpu);
  4855. return 0;
  4856. }
  4857. static void sched_rq_cpu_starting(unsigned int cpu)
  4858. {
  4859. struct rq *rq = cpu_rq(cpu);
  4860. rq->calc_load_update = calc_load_update;
  4861. update_max_interval();
  4862. }
  4863. int sched_cpu_starting(unsigned int cpu)
  4864. {
  4865. set_cpu_rq_start_time(cpu);
  4866. sched_rq_cpu_starting(cpu);
  4867. return 0;
  4868. }
  4869. #ifdef CONFIG_HOTPLUG_CPU
  4870. int sched_cpu_dying(unsigned int cpu)
  4871. {
  4872. struct rq *rq = cpu_rq(cpu);
  4873. struct rq_flags rf;
  4874. /* Handle pending wakeups and then migrate everything off */
  4875. sched_ttwu_pending();
  4876. rq_lock_irqsave(rq, &rf);
  4877. if (rq->rd) {
  4878. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4879. set_rq_offline(rq);
  4880. }
  4881. migrate_tasks(rq, &rf);
  4882. BUG_ON(rq->nr_running != 1);
  4883. rq_unlock_irqrestore(rq, &rf);
  4884. calc_load_migrate(rq);
  4885. update_max_interval();
  4886. nohz_balance_exit_idle(cpu);
  4887. hrtick_clear(rq);
  4888. return 0;
  4889. }
  4890. #endif
  4891. #ifdef CONFIG_SCHED_SMT
  4892. DEFINE_STATIC_KEY_FALSE(sched_smt_present);
  4893. static void sched_init_smt(void)
  4894. {
  4895. /*
  4896. * We've enumerated all CPUs and will assume that if any CPU
  4897. * has SMT siblings, CPU0 will too.
  4898. */
  4899. if (cpumask_weight(cpu_smt_mask(0)) > 1)
  4900. static_branch_enable(&sched_smt_present);
  4901. }
  4902. #else
  4903. static inline void sched_init_smt(void) { }
  4904. #endif
  4905. void __init sched_init_smp(void)
  4906. {
  4907. cpumask_var_t non_isolated_cpus;
  4908. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  4909. sched_init_numa();
  4910. /*
  4911. * There's no userspace yet to cause hotplug operations; hence all the
  4912. * CPU masks are stable and all blatant races in the below code cannot
  4913. * happen.
  4914. */
  4915. mutex_lock(&sched_domains_mutex);
  4916. sched_init_domains(cpu_active_mask);
  4917. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  4918. if (cpumask_empty(non_isolated_cpus))
  4919. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  4920. mutex_unlock(&sched_domains_mutex);
  4921. /* Move init over to a non-isolated CPU */
  4922. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  4923. BUG();
  4924. sched_init_granularity();
  4925. free_cpumask_var(non_isolated_cpus);
  4926. init_sched_rt_class();
  4927. init_sched_dl_class();
  4928. sched_init_smt();
  4929. sched_smp_initialized = true;
  4930. }
  4931. static int __init migration_init(void)
  4932. {
  4933. sched_rq_cpu_starting(smp_processor_id());
  4934. return 0;
  4935. }
  4936. early_initcall(migration_init);
  4937. #else
  4938. void __init sched_init_smp(void)
  4939. {
  4940. sched_init_granularity();
  4941. }
  4942. #endif /* CONFIG_SMP */
  4943. int in_sched_functions(unsigned long addr)
  4944. {
  4945. return in_lock_functions(addr) ||
  4946. (addr >= (unsigned long)__sched_text_start
  4947. && addr < (unsigned long)__sched_text_end);
  4948. }
  4949. #ifdef CONFIG_CGROUP_SCHED
  4950. /*
  4951. * Default task group.
  4952. * Every task in system belongs to this group at bootup.
  4953. */
  4954. struct task_group root_task_group;
  4955. LIST_HEAD(task_groups);
  4956. /* Cacheline aligned slab cache for task_group */
  4957. static struct kmem_cache *task_group_cache __read_mostly;
  4958. #endif
  4959. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  4960. DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
  4961. void __init sched_init(void)
  4962. {
  4963. int i, j;
  4964. unsigned long alloc_size = 0, ptr;
  4965. sched_clock_init();
  4966. wait_bit_init();
  4967. #ifdef CONFIG_FAIR_GROUP_SCHED
  4968. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  4969. #endif
  4970. #ifdef CONFIG_RT_GROUP_SCHED
  4971. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  4972. #endif
  4973. if (alloc_size) {
  4974. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  4975. #ifdef CONFIG_FAIR_GROUP_SCHED
  4976. root_task_group.se = (struct sched_entity **)ptr;
  4977. ptr += nr_cpu_ids * sizeof(void **);
  4978. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  4979. ptr += nr_cpu_ids * sizeof(void **);
  4980. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4981. #ifdef CONFIG_RT_GROUP_SCHED
  4982. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  4983. ptr += nr_cpu_ids * sizeof(void **);
  4984. root_task_group.rt_rq = (struct rt_rq **)ptr;
  4985. ptr += nr_cpu_ids * sizeof(void **);
  4986. #endif /* CONFIG_RT_GROUP_SCHED */
  4987. }
  4988. #ifdef CONFIG_CPUMASK_OFFSTACK
  4989. for_each_possible_cpu(i) {
  4990. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  4991. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  4992. per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
  4993. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  4994. }
  4995. #endif /* CONFIG_CPUMASK_OFFSTACK */
  4996. init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
  4997. init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
  4998. #ifdef CONFIG_SMP
  4999. init_defrootdomain();
  5000. #endif
  5001. #ifdef CONFIG_RT_GROUP_SCHED
  5002. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5003. global_rt_period(), global_rt_runtime());
  5004. #endif /* CONFIG_RT_GROUP_SCHED */
  5005. #ifdef CONFIG_CGROUP_SCHED
  5006. task_group_cache = KMEM_CACHE(task_group, 0);
  5007. list_add(&root_task_group.list, &task_groups);
  5008. INIT_LIST_HEAD(&root_task_group.children);
  5009. INIT_LIST_HEAD(&root_task_group.siblings);
  5010. autogroup_init(&init_task);
  5011. #endif /* CONFIG_CGROUP_SCHED */
  5012. for_each_possible_cpu(i) {
  5013. struct rq *rq;
  5014. rq = cpu_rq(i);
  5015. raw_spin_lock_init(&rq->lock);
  5016. rq->nr_running = 0;
  5017. rq->calc_load_active = 0;
  5018. rq->calc_load_update = jiffies + LOAD_FREQ;
  5019. init_cfs_rq(&rq->cfs);
  5020. init_rt_rq(&rq->rt);
  5021. init_dl_rq(&rq->dl);
  5022. #ifdef CONFIG_FAIR_GROUP_SCHED
  5023. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5024. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5025. rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  5026. /*
  5027. * How much CPU bandwidth does root_task_group get?
  5028. *
  5029. * In case of task-groups formed thr' the cgroup filesystem, it
  5030. * gets 100% of the CPU resources in the system. This overall
  5031. * system CPU resource is divided among the tasks of
  5032. * root_task_group and its child task-groups in a fair manner,
  5033. * based on each entity's (task or task-group's) weight
  5034. * (se->load.weight).
  5035. *
  5036. * In other words, if root_task_group has 10 tasks of weight
  5037. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5038. * then A0's share of the CPU resource is:
  5039. *
  5040. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5041. *
  5042. * We achieve this by letting root_task_group's tasks sit
  5043. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5044. */
  5045. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5046. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5047. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5048. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5049. #ifdef CONFIG_RT_GROUP_SCHED
  5050. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5051. #endif
  5052. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5053. rq->cpu_load[j] = 0;
  5054. #ifdef CONFIG_SMP
  5055. rq->sd = NULL;
  5056. rq->rd = NULL;
  5057. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  5058. rq->balance_callback = NULL;
  5059. rq->active_balance = 0;
  5060. rq->next_balance = jiffies;
  5061. rq->push_cpu = 0;
  5062. rq->cpu = i;
  5063. rq->online = 0;
  5064. rq->idle_stamp = 0;
  5065. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5066. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5067. INIT_LIST_HEAD(&rq->cfs_tasks);
  5068. rq_attach_root(rq, &def_root_domain);
  5069. #ifdef CONFIG_NO_HZ_COMMON
  5070. rq->last_load_update_tick = jiffies;
  5071. rq->nohz_flags = 0;
  5072. #endif
  5073. #ifdef CONFIG_NO_HZ_FULL
  5074. rq->last_sched_tick = 0;
  5075. #endif
  5076. #endif /* CONFIG_SMP */
  5077. init_rq_hrtick(rq);
  5078. atomic_set(&rq->nr_iowait, 0);
  5079. }
  5080. set_load_weight(&init_task);
  5081. /*
  5082. * The boot idle thread does lazy MMU switching as well:
  5083. */
  5084. mmgrab(&init_mm);
  5085. enter_lazy_tlb(&init_mm, current);
  5086. /*
  5087. * Make us the idle thread. Technically, schedule() should not be
  5088. * called from this thread, however somewhere below it might be,
  5089. * but because we are the idle thread, we just pick up running again
  5090. * when this runqueue becomes "idle".
  5091. */
  5092. init_idle(current, smp_processor_id());
  5093. calc_load_update = jiffies + LOAD_FREQ;
  5094. #ifdef CONFIG_SMP
  5095. /* May be allocated at isolcpus cmdline parse time */
  5096. if (cpu_isolated_map == NULL)
  5097. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5098. idle_thread_set_boot_cpu();
  5099. set_cpu_rq_start_time(smp_processor_id());
  5100. #endif
  5101. init_sched_fair_class();
  5102. init_schedstats();
  5103. scheduler_running = 1;
  5104. }
  5105. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5106. static inline int preempt_count_equals(int preempt_offset)
  5107. {
  5108. int nested = preempt_count() + rcu_preempt_depth();
  5109. return (nested == preempt_offset);
  5110. }
  5111. void __might_sleep(const char *file, int line, int preempt_offset)
  5112. {
  5113. /*
  5114. * Blocking primitives will set (and therefore destroy) current->state,
  5115. * since we will exit with TASK_RUNNING make sure we enter with it,
  5116. * otherwise we will destroy state.
  5117. */
  5118. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  5119. "do not call blocking ops when !TASK_RUNNING; "
  5120. "state=%lx set at [<%p>] %pS\n",
  5121. current->state,
  5122. (void *)current->task_state_change,
  5123. (void *)current->task_state_change);
  5124. ___might_sleep(file, line, preempt_offset);
  5125. }
  5126. EXPORT_SYMBOL(__might_sleep);
  5127. void ___might_sleep(const char *file, int line, int preempt_offset)
  5128. {
  5129. /* Ratelimiting timestamp: */
  5130. static unsigned long prev_jiffy;
  5131. unsigned long preempt_disable_ip;
  5132. /* WARN_ON_ONCE() by default, no rate limit required: */
  5133. rcu_sleep_check();
  5134. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  5135. !is_idle_task(current)) ||
  5136. system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
  5137. oops_in_progress)
  5138. return;
  5139. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5140. return;
  5141. prev_jiffy = jiffies;
  5142. /* Save this before calling printk(), since that will clobber it: */
  5143. preempt_disable_ip = get_preempt_disable_ip(current);
  5144. printk(KERN_ERR
  5145. "BUG: sleeping function called from invalid context at %s:%d\n",
  5146. file, line);
  5147. printk(KERN_ERR
  5148. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5149. in_atomic(), irqs_disabled(),
  5150. current->pid, current->comm);
  5151. if (task_stack_end_corrupted(current))
  5152. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  5153. debug_show_held_locks(current);
  5154. if (irqs_disabled())
  5155. print_irqtrace_events(current);
  5156. if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
  5157. && !preempt_count_equals(preempt_offset)) {
  5158. pr_err("Preemption disabled at:");
  5159. print_ip_sym(preempt_disable_ip);
  5160. pr_cont("\n");
  5161. }
  5162. dump_stack();
  5163. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  5164. }
  5165. EXPORT_SYMBOL(___might_sleep);
  5166. #endif
  5167. #ifdef CONFIG_MAGIC_SYSRQ
  5168. void normalize_rt_tasks(void)
  5169. {
  5170. struct task_struct *g, *p;
  5171. struct sched_attr attr = {
  5172. .sched_policy = SCHED_NORMAL,
  5173. };
  5174. read_lock(&tasklist_lock);
  5175. for_each_process_thread(g, p) {
  5176. /*
  5177. * Only normalize user tasks:
  5178. */
  5179. if (p->flags & PF_KTHREAD)
  5180. continue;
  5181. p->se.exec_start = 0;
  5182. schedstat_set(p->se.statistics.wait_start, 0);
  5183. schedstat_set(p->se.statistics.sleep_start, 0);
  5184. schedstat_set(p->se.statistics.block_start, 0);
  5185. if (!dl_task(p) && !rt_task(p)) {
  5186. /*
  5187. * Renice negative nice level userspace
  5188. * tasks back to 0:
  5189. */
  5190. if (task_nice(p) < 0)
  5191. set_user_nice(p, 0);
  5192. continue;
  5193. }
  5194. __sched_setscheduler(p, &attr, false, false);
  5195. }
  5196. read_unlock(&tasklist_lock);
  5197. }
  5198. #endif /* CONFIG_MAGIC_SYSRQ */
  5199. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5200. /*
  5201. * These functions are only useful for the IA64 MCA handling, or kdb.
  5202. *
  5203. * They can only be called when the whole system has been
  5204. * stopped - every CPU needs to be quiescent, and no scheduling
  5205. * activity can take place. Using them for anything else would
  5206. * be a serious bug, and as a result, they aren't even visible
  5207. * under any other configuration.
  5208. */
  5209. /**
  5210. * curr_task - return the current task for a given CPU.
  5211. * @cpu: the processor in question.
  5212. *
  5213. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5214. *
  5215. * Return: The current task for @cpu.
  5216. */
  5217. struct task_struct *curr_task(int cpu)
  5218. {
  5219. return cpu_curr(cpu);
  5220. }
  5221. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5222. #ifdef CONFIG_IA64
  5223. /**
  5224. * set_curr_task - set the current task for a given CPU.
  5225. * @cpu: the processor in question.
  5226. * @p: the task pointer to set.
  5227. *
  5228. * Description: This function must only be used when non-maskable interrupts
  5229. * are serviced on a separate stack. It allows the architecture to switch the
  5230. * notion of the current task on a CPU in a non-blocking manner. This function
  5231. * must be called with all CPU's synchronized, and interrupts disabled, the
  5232. * and caller must save the original value of the current task (see
  5233. * curr_task() above) and restore that value before reenabling interrupts and
  5234. * re-starting the system.
  5235. *
  5236. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5237. */
  5238. void ia64_set_curr_task(int cpu, struct task_struct *p)
  5239. {
  5240. cpu_curr(cpu) = p;
  5241. }
  5242. #endif
  5243. #ifdef CONFIG_CGROUP_SCHED
  5244. /* task_group_lock serializes the addition/removal of task groups */
  5245. static DEFINE_SPINLOCK(task_group_lock);
  5246. static void sched_free_group(struct task_group *tg)
  5247. {
  5248. free_fair_sched_group(tg);
  5249. free_rt_sched_group(tg);
  5250. autogroup_free(tg);
  5251. kmem_cache_free(task_group_cache, tg);
  5252. }
  5253. /* allocate runqueue etc for a new task group */
  5254. struct task_group *sched_create_group(struct task_group *parent)
  5255. {
  5256. struct task_group *tg;
  5257. tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
  5258. if (!tg)
  5259. return ERR_PTR(-ENOMEM);
  5260. if (!alloc_fair_sched_group(tg, parent))
  5261. goto err;
  5262. if (!alloc_rt_sched_group(tg, parent))
  5263. goto err;
  5264. return tg;
  5265. err:
  5266. sched_free_group(tg);
  5267. return ERR_PTR(-ENOMEM);
  5268. }
  5269. void sched_online_group(struct task_group *tg, struct task_group *parent)
  5270. {
  5271. unsigned long flags;
  5272. spin_lock_irqsave(&task_group_lock, flags);
  5273. list_add_rcu(&tg->list, &task_groups);
  5274. /* Root should already exist: */
  5275. WARN_ON(!parent);
  5276. tg->parent = parent;
  5277. INIT_LIST_HEAD(&tg->children);
  5278. list_add_rcu(&tg->siblings, &parent->children);
  5279. spin_unlock_irqrestore(&task_group_lock, flags);
  5280. online_fair_sched_group(tg);
  5281. }
  5282. /* rcu callback to free various structures associated with a task group */
  5283. static void sched_free_group_rcu(struct rcu_head *rhp)
  5284. {
  5285. /* Now it should be safe to free those cfs_rqs: */
  5286. sched_free_group(container_of(rhp, struct task_group, rcu));
  5287. }
  5288. void sched_destroy_group(struct task_group *tg)
  5289. {
  5290. /* Wait for possible concurrent references to cfs_rqs complete: */
  5291. call_rcu(&tg->rcu, sched_free_group_rcu);
  5292. }
  5293. void sched_offline_group(struct task_group *tg)
  5294. {
  5295. unsigned long flags;
  5296. /* End participation in shares distribution: */
  5297. unregister_fair_sched_group(tg);
  5298. spin_lock_irqsave(&task_group_lock, flags);
  5299. list_del_rcu(&tg->list);
  5300. list_del_rcu(&tg->siblings);
  5301. spin_unlock_irqrestore(&task_group_lock, flags);
  5302. }
  5303. static void sched_change_group(struct task_struct *tsk, int type)
  5304. {
  5305. struct task_group *tg;
  5306. /*
  5307. * All callers are synchronized by task_rq_lock(); we do not use RCU
  5308. * which is pointless here. Thus, we pass "true" to task_css_check()
  5309. * to prevent lockdep warnings.
  5310. */
  5311. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  5312. struct task_group, css);
  5313. tg = autogroup_task_group(tsk, tg);
  5314. tsk->sched_task_group = tg;
  5315. #ifdef CONFIG_FAIR_GROUP_SCHED
  5316. if (tsk->sched_class->task_change_group)
  5317. tsk->sched_class->task_change_group(tsk, type);
  5318. else
  5319. #endif
  5320. set_task_rq(tsk, task_cpu(tsk));
  5321. }
  5322. /*
  5323. * Change task's runqueue when it moves between groups.
  5324. *
  5325. * The caller of this function should have put the task in its new group by
  5326. * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
  5327. * its new group.
  5328. */
  5329. void sched_move_task(struct task_struct *tsk)
  5330. {
  5331. int queued, running, queue_flags =
  5332. DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
  5333. struct rq_flags rf;
  5334. struct rq *rq;
  5335. rq = task_rq_lock(tsk, &rf);
  5336. update_rq_clock(rq);
  5337. running = task_current(rq, tsk);
  5338. queued = task_on_rq_queued(tsk);
  5339. if (queued)
  5340. dequeue_task(rq, tsk, queue_flags);
  5341. if (running)
  5342. put_prev_task(rq, tsk);
  5343. sched_change_group(tsk, TASK_MOVE_GROUP);
  5344. if (queued)
  5345. enqueue_task(rq, tsk, queue_flags);
  5346. if (running)
  5347. set_curr_task(rq, tsk);
  5348. task_rq_unlock(rq, tsk, &rf);
  5349. }
  5350. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  5351. {
  5352. return css ? container_of(css, struct task_group, css) : NULL;
  5353. }
  5354. static struct cgroup_subsys_state *
  5355. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  5356. {
  5357. struct task_group *parent = css_tg(parent_css);
  5358. struct task_group *tg;
  5359. if (!parent) {
  5360. /* This is early initialization for the top cgroup */
  5361. return &root_task_group.css;
  5362. }
  5363. tg = sched_create_group(parent);
  5364. if (IS_ERR(tg))
  5365. return ERR_PTR(-ENOMEM);
  5366. return &tg->css;
  5367. }
  5368. /* Expose task group only after completing cgroup initialization */
  5369. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  5370. {
  5371. struct task_group *tg = css_tg(css);
  5372. struct task_group *parent = css_tg(css->parent);
  5373. if (parent)
  5374. sched_online_group(tg, parent);
  5375. return 0;
  5376. }
  5377. static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
  5378. {
  5379. struct task_group *tg = css_tg(css);
  5380. sched_offline_group(tg);
  5381. }
  5382. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  5383. {
  5384. struct task_group *tg = css_tg(css);
  5385. /*
  5386. * Relies on the RCU grace period between css_released() and this.
  5387. */
  5388. sched_free_group(tg);
  5389. }
  5390. /*
  5391. * This is called before wake_up_new_task(), therefore we really only
  5392. * have to set its group bits, all the other stuff does not apply.
  5393. */
  5394. static void cpu_cgroup_fork(struct task_struct *task)
  5395. {
  5396. struct rq_flags rf;
  5397. struct rq *rq;
  5398. rq = task_rq_lock(task, &rf);
  5399. update_rq_clock(rq);
  5400. sched_change_group(task, TASK_SET_GROUP);
  5401. task_rq_unlock(rq, task, &rf);
  5402. }
  5403. static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
  5404. {
  5405. struct task_struct *task;
  5406. struct cgroup_subsys_state *css;
  5407. int ret = 0;
  5408. cgroup_taskset_for_each(task, css, tset) {
  5409. #ifdef CONFIG_RT_GROUP_SCHED
  5410. if (!sched_rt_can_attach(css_tg(css), task))
  5411. return -EINVAL;
  5412. #else
  5413. /* We don't support RT-tasks being in separate groups */
  5414. if (task->sched_class != &fair_sched_class)
  5415. return -EINVAL;
  5416. #endif
  5417. /*
  5418. * Serialize against wake_up_new_task() such that if its
  5419. * running, we're sure to observe its full state.
  5420. */
  5421. raw_spin_lock_irq(&task->pi_lock);
  5422. /*
  5423. * Avoid calling sched_move_task() before wake_up_new_task()
  5424. * has happened. This would lead to problems with PELT, due to
  5425. * move wanting to detach+attach while we're not attached yet.
  5426. */
  5427. if (task->state == TASK_NEW)
  5428. ret = -EINVAL;
  5429. raw_spin_unlock_irq(&task->pi_lock);
  5430. if (ret)
  5431. break;
  5432. }
  5433. return ret;
  5434. }
  5435. static void cpu_cgroup_attach(struct cgroup_taskset *tset)
  5436. {
  5437. struct task_struct *task;
  5438. struct cgroup_subsys_state *css;
  5439. cgroup_taskset_for_each(task, css, tset)
  5440. sched_move_task(task);
  5441. }
  5442. #ifdef CONFIG_FAIR_GROUP_SCHED
  5443. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  5444. struct cftype *cftype, u64 shareval)
  5445. {
  5446. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  5447. }
  5448. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  5449. struct cftype *cft)
  5450. {
  5451. struct task_group *tg = css_tg(css);
  5452. return (u64) scale_load_down(tg->shares);
  5453. }
  5454. #ifdef CONFIG_CFS_BANDWIDTH
  5455. static DEFINE_MUTEX(cfs_constraints_mutex);
  5456. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  5457. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  5458. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  5459. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  5460. {
  5461. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  5462. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  5463. if (tg == &root_task_group)
  5464. return -EINVAL;
  5465. /*
  5466. * Ensure we have at some amount of bandwidth every period. This is
  5467. * to prevent reaching a state of large arrears when throttled via
  5468. * entity_tick() resulting in prolonged exit starvation.
  5469. */
  5470. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  5471. return -EINVAL;
  5472. /*
  5473. * Likewise, bound things on the otherside by preventing insane quota
  5474. * periods. This also allows us to normalize in computing quota
  5475. * feasibility.
  5476. */
  5477. if (period > max_cfs_quota_period)
  5478. return -EINVAL;
  5479. /*
  5480. * Prevent race between setting of cfs_rq->runtime_enabled and
  5481. * unthrottle_offline_cfs_rqs().
  5482. */
  5483. get_online_cpus();
  5484. mutex_lock(&cfs_constraints_mutex);
  5485. ret = __cfs_schedulable(tg, period, quota);
  5486. if (ret)
  5487. goto out_unlock;
  5488. runtime_enabled = quota != RUNTIME_INF;
  5489. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  5490. /*
  5491. * If we need to toggle cfs_bandwidth_used, off->on must occur
  5492. * before making related changes, and on->off must occur afterwards
  5493. */
  5494. if (runtime_enabled && !runtime_was_enabled)
  5495. cfs_bandwidth_usage_inc();
  5496. raw_spin_lock_irq(&cfs_b->lock);
  5497. cfs_b->period = ns_to_ktime(period);
  5498. cfs_b->quota = quota;
  5499. __refill_cfs_bandwidth_runtime(cfs_b);
  5500. /* Restart the period timer (if active) to handle new period expiry: */
  5501. if (runtime_enabled)
  5502. start_cfs_bandwidth(cfs_b);
  5503. raw_spin_unlock_irq(&cfs_b->lock);
  5504. for_each_online_cpu(i) {
  5505. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  5506. struct rq *rq = cfs_rq->rq;
  5507. struct rq_flags rf;
  5508. rq_lock_irq(rq, &rf);
  5509. cfs_rq->runtime_enabled = runtime_enabled;
  5510. cfs_rq->runtime_remaining = 0;
  5511. if (cfs_rq->throttled)
  5512. unthrottle_cfs_rq(cfs_rq);
  5513. rq_unlock_irq(rq, &rf);
  5514. }
  5515. if (runtime_was_enabled && !runtime_enabled)
  5516. cfs_bandwidth_usage_dec();
  5517. out_unlock:
  5518. mutex_unlock(&cfs_constraints_mutex);
  5519. put_online_cpus();
  5520. return ret;
  5521. }
  5522. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  5523. {
  5524. u64 quota, period;
  5525. period = ktime_to_ns(tg->cfs_bandwidth.period);
  5526. if (cfs_quota_us < 0)
  5527. quota = RUNTIME_INF;
  5528. else
  5529. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  5530. return tg_set_cfs_bandwidth(tg, period, quota);
  5531. }
  5532. long tg_get_cfs_quota(struct task_group *tg)
  5533. {
  5534. u64 quota_us;
  5535. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  5536. return -1;
  5537. quota_us = tg->cfs_bandwidth.quota;
  5538. do_div(quota_us, NSEC_PER_USEC);
  5539. return quota_us;
  5540. }
  5541. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  5542. {
  5543. u64 quota, period;
  5544. period = (u64)cfs_period_us * NSEC_PER_USEC;
  5545. quota = tg->cfs_bandwidth.quota;
  5546. return tg_set_cfs_bandwidth(tg, period, quota);
  5547. }
  5548. long tg_get_cfs_period(struct task_group *tg)
  5549. {
  5550. u64 cfs_period_us;
  5551. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  5552. do_div(cfs_period_us, NSEC_PER_USEC);
  5553. return cfs_period_us;
  5554. }
  5555. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  5556. struct cftype *cft)
  5557. {
  5558. return tg_get_cfs_quota(css_tg(css));
  5559. }
  5560. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  5561. struct cftype *cftype, s64 cfs_quota_us)
  5562. {
  5563. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  5564. }
  5565. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  5566. struct cftype *cft)
  5567. {
  5568. return tg_get_cfs_period(css_tg(css));
  5569. }
  5570. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  5571. struct cftype *cftype, u64 cfs_period_us)
  5572. {
  5573. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  5574. }
  5575. struct cfs_schedulable_data {
  5576. struct task_group *tg;
  5577. u64 period, quota;
  5578. };
  5579. /*
  5580. * normalize group quota/period to be quota/max_period
  5581. * note: units are usecs
  5582. */
  5583. static u64 normalize_cfs_quota(struct task_group *tg,
  5584. struct cfs_schedulable_data *d)
  5585. {
  5586. u64 quota, period;
  5587. if (tg == d->tg) {
  5588. period = d->period;
  5589. quota = d->quota;
  5590. } else {
  5591. period = tg_get_cfs_period(tg);
  5592. quota = tg_get_cfs_quota(tg);
  5593. }
  5594. /* note: these should typically be equivalent */
  5595. if (quota == RUNTIME_INF || quota == -1)
  5596. return RUNTIME_INF;
  5597. return to_ratio(period, quota);
  5598. }
  5599. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  5600. {
  5601. struct cfs_schedulable_data *d = data;
  5602. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  5603. s64 quota = 0, parent_quota = -1;
  5604. if (!tg->parent) {
  5605. quota = RUNTIME_INF;
  5606. } else {
  5607. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  5608. quota = normalize_cfs_quota(tg, d);
  5609. parent_quota = parent_b->hierarchical_quota;
  5610. /*
  5611. * Ensure max(child_quota) <= parent_quota, inherit when no
  5612. * limit is set:
  5613. */
  5614. if (quota == RUNTIME_INF)
  5615. quota = parent_quota;
  5616. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  5617. return -EINVAL;
  5618. }
  5619. cfs_b->hierarchical_quota = quota;
  5620. return 0;
  5621. }
  5622. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  5623. {
  5624. int ret;
  5625. struct cfs_schedulable_data data = {
  5626. .tg = tg,
  5627. .period = period,
  5628. .quota = quota,
  5629. };
  5630. if (quota != RUNTIME_INF) {
  5631. do_div(data.period, NSEC_PER_USEC);
  5632. do_div(data.quota, NSEC_PER_USEC);
  5633. }
  5634. rcu_read_lock();
  5635. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  5636. rcu_read_unlock();
  5637. return ret;
  5638. }
  5639. static int cpu_stats_show(struct seq_file *sf, void *v)
  5640. {
  5641. struct task_group *tg = css_tg(seq_css(sf));
  5642. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  5643. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  5644. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  5645. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  5646. return 0;
  5647. }
  5648. #endif /* CONFIG_CFS_BANDWIDTH */
  5649. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5650. #ifdef CONFIG_RT_GROUP_SCHED
  5651. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  5652. struct cftype *cft, s64 val)
  5653. {
  5654. return sched_group_set_rt_runtime(css_tg(css), val);
  5655. }
  5656. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  5657. struct cftype *cft)
  5658. {
  5659. return sched_group_rt_runtime(css_tg(css));
  5660. }
  5661. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  5662. struct cftype *cftype, u64 rt_period_us)
  5663. {
  5664. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  5665. }
  5666. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  5667. struct cftype *cft)
  5668. {
  5669. return sched_group_rt_period(css_tg(css));
  5670. }
  5671. #endif /* CONFIG_RT_GROUP_SCHED */
  5672. static struct cftype cpu_files[] = {
  5673. #ifdef CONFIG_FAIR_GROUP_SCHED
  5674. {
  5675. .name = "shares",
  5676. .read_u64 = cpu_shares_read_u64,
  5677. .write_u64 = cpu_shares_write_u64,
  5678. },
  5679. #endif
  5680. #ifdef CONFIG_CFS_BANDWIDTH
  5681. {
  5682. .name = "cfs_quota_us",
  5683. .read_s64 = cpu_cfs_quota_read_s64,
  5684. .write_s64 = cpu_cfs_quota_write_s64,
  5685. },
  5686. {
  5687. .name = "cfs_period_us",
  5688. .read_u64 = cpu_cfs_period_read_u64,
  5689. .write_u64 = cpu_cfs_period_write_u64,
  5690. },
  5691. {
  5692. .name = "stat",
  5693. .seq_show = cpu_stats_show,
  5694. },
  5695. #endif
  5696. #ifdef CONFIG_RT_GROUP_SCHED
  5697. {
  5698. .name = "rt_runtime_us",
  5699. .read_s64 = cpu_rt_runtime_read,
  5700. .write_s64 = cpu_rt_runtime_write,
  5701. },
  5702. {
  5703. .name = "rt_period_us",
  5704. .read_u64 = cpu_rt_period_read_uint,
  5705. .write_u64 = cpu_rt_period_write_uint,
  5706. },
  5707. #endif
  5708. { } /* Terminate */
  5709. };
  5710. struct cgroup_subsys cpu_cgrp_subsys = {
  5711. .css_alloc = cpu_cgroup_css_alloc,
  5712. .css_online = cpu_cgroup_css_online,
  5713. .css_released = cpu_cgroup_css_released,
  5714. .css_free = cpu_cgroup_css_free,
  5715. .fork = cpu_cgroup_fork,
  5716. .can_attach = cpu_cgroup_can_attach,
  5717. .attach = cpu_cgroup_attach,
  5718. .legacy_cftypes = cpu_files,
  5719. .early_init = true,
  5720. };
  5721. #endif /* CONFIG_CGROUP_SCHED */
  5722. void dump_cpu_task(int cpu)
  5723. {
  5724. pr_info("Task dump for CPU %d:\n", cpu);
  5725. sched_show_task(cpu_curr(cpu));
  5726. }
  5727. /*
  5728. * Nice levels are multiplicative, with a gentle 10% change for every
  5729. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  5730. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  5731. * that remained on nice 0.
  5732. *
  5733. * The "10% effect" is relative and cumulative: from _any_ nice level,
  5734. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  5735. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  5736. * If a task goes up by ~10% and another task goes down by ~10% then
  5737. * the relative distance between them is ~25%.)
  5738. */
  5739. const int sched_prio_to_weight[40] = {
  5740. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  5741. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  5742. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  5743. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  5744. /* 0 */ 1024, 820, 655, 526, 423,
  5745. /* 5 */ 335, 272, 215, 172, 137,
  5746. /* 10 */ 110, 87, 70, 56, 45,
  5747. /* 15 */ 36, 29, 23, 18, 15,
  5748. };
  5749. /*
  5750. * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
  5751. *
  5752. * In cases where the weight does not change often, we can use the
  5753. * precalculated inverse to speed up arithmetics by turning divisions
  5754. * into multiplications:
  5755. */
  5756. const u32 sched_prio_to_wmult[40] = {
  5757. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  5758. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  5759. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  5760. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  5761. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  5762. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  5763. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  5764. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  5765. };