intel_ringbuffer.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ring *ring)
  47. {
  48. if (ring->last_retired_head != -1) {
  49. ring->head = ring->last_retired_head;
  50. ring->last_retired_head = -1;
  51. }
  52. ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  53. ring->tail, ring->size);
  54. }
  55. static int
  56. gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  57. {
  58. struct intel_ring *ring = req->ring;
  59. u32 cmd;
  60. int ret;
  61. cmd = MI_FLUSH;
  62. if (mode & EMIT_INVALIDATE)
  63. cmd |= MI_READ_FLUSH;
  64. ret = intel_ring_begin(req, 2);
  65. if (ret)
  66. return ret;
  67. intel_ring_emit(ring, cmd);
  68. intel_ring_emit(ring, MI_NOOP);
  69. intel_ring_advance(ring);
  70. return 0;
  71. }
  72. static int
  73. gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  74. {
  75. struct intel_ring *ring = req->ring;
  76. u32 cmd;
  77. int ret;
  78. /*
  79. * read/write caches:
  80. *
  81. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  82. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  83. * also flushed at 2d versus 3d pipeline switches.
  84. *
  85. * read-only caches:
  86. *
  87. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  88. * MI_READ_FLUSH is set, and is always flushed on 965.
  89. *
  90. * I915_GEM_DOMAIN_COMMAND may not exist?
  91. *
  92. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  93. * invalidated when MI_EXE_FLUSH is set.
  94. *
  95. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  96. * invalidated with every MI_FLUSH.
  97. *
  98. * TLBs:
  99. *
  100. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  101. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  102. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  103. * are flushed at any MI_FLUSH.
  104. */
  105. cmd = MI_FLUSH;
  106. if (mode & EMIT_INVALIDATE) {
  107. cmd |= MI_EXE_FLUSH;
  108. if (IS_G4X(req->i915) || IS_GEN5(req->i915))
  109. cmd |= MI_INVALIDATE_ISP;
  110. }
  111. ret = intel_ring_begin(req, 2);
  112. if (ret)
  113. return ret;
  114. intel_ring_emit(ring, cmd);
  115. intel_ring_emit(ring, MI_NOOP);
  116. intel_ring_advance(ring);
  117. return 0;
  118. }
  119. /**
  120. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  121. * implementing two workarounds on gen6. From section 1.4.7.1
  122. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  123. *
  124. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  125. * produced by non-pipelined state commands), software needs to first
  126. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  127. * 0.
  128. *
  129. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  130. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  131. *
  132. * And the workaround for these two requires this workaround first:
  133. *
  134. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  135. * BEFORE the pipe-control with a post-sync op and no write-cache
  136. * flushes.
  137. *
  138. * And this last workaround is tricky because of the requirements on
  139. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  140. * volume 2 part 1:
  141. *
  142. * "1 of the following must also be set:
  143. * - Render Target Cache Flush Enable ([12] of DW1)
  144. * - Depth Cache Flush Enable ([0] of DW1)
  145. * - Stall at Pixel Scoreboard ([1] of DW1)
  146. * - Depth Stall ([13] of DW1)
  147. * - Post-Sync Operation ([13] of DW1)
  148. * - Notify Enable ([8] of DW1)"
  149. *
  150. * The cache flushes require the workaround flush that triggered this
  151. * one, so we can't use it. Depth stall would trigger the same.
  152. * Post-sync nonzero is what triggered this second workaround, so we
  153. * can't use that one either. Notify enable is IRQs, which aren't
  154. * really our business. That leaves only stall at scoreboard.
  155. */
  156. static int
  157. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  158. {
  159. struct intel_ring *ring = req->ring;
  160. u32 scratch_addr =
  161. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  162. int ret;
  163. ret = intel_ring_begin(req, 6);
  164. if (ret)
  165. return ret;
  166. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  167. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  168. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  169. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  170. intel_ring_emit(ring, 0); /* low dword */
  171. intel_ring_emit(ring, 0); /* high dword */
  172. intel_ring_emit(ring, MI_NOOP);
  173. intel_ring_advance(ring);
  174. ret = intel_ring_begin(req, 6);
  175. if (ret)
  176. return ret;
  177. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  178. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  179. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, MI_NOOP);
  183. intel_ring_advance(ring);
  184. return 0;
  185. }
  186. static int
  187. gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  188. {
  189. struct intel_ring *ring = req->ring;
  190. u32 scratch_addr =
  191. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  192. u32 flags = 0;
  193. int ret;
  194. /* Force SNB workarounds for PIPE_CONTROL flushes */
  195. ret = intel_emit_post_sync_nonzero_flush(req);
  196. if (ret)
  197. return ret;
  198. /* Just flush everything. Experiments have shown that reducing the
  199. * number of bits based on the write domains has little performance
  200. * impact.
  201. */
  202. if (mode & EMIT_FLUSH) {
  203. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  204. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  205. /*
  206. * Ensure that any following seqno writes only happen
  207. * when the render cache is indeed flushed.
  208. */
  209. flags |= PIPE_CONTROL_CS_STALL;
  210. }
  211. if (mode & EMIT_INVALIDATE) {
  212. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  213. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  216. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  217. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  218. /*
  219. * TLB invalidate requires a post-sync write.
  220. */
  221. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  222. }
  223. ret = intel_ring_begin(req, 4);
  224. if (ret)
  225. return ret;
  226. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  227. intel_ring_emit(ring, flags);
  228. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  229. intel_ring_emit(ring, 0);
  230. intel_ring_advance(ring);
  231. return 0;
  232. }
  233. static int
  234. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  235. {
  236. struct intel_ring *ring = req->ring;
  237. int ret;
  238. ret = intel_ring_begin(req, 4);
  239. if (ret)
  240. return ret;
  241. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  242. intel_ring_emit(ring,
  243. PIPE_CONTROL_CS_STALL |
  244. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  245. intel_ring_emit(ring, 0);
  246. intel_ring_emit(ring, 0);
  247. intel_ring_advance(ring);
  248. return 0;
  249. }
  250. static int
  251. gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  252. {
  253. struct intel_ring *ring = req->ring;
  254. u32 scratch_addr =
  255. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  256. u32 flags = 0;
  257. int ret;
  258. /*
  259. * Ensure that any following seqno writes only happen when the render
  260. * cache is indeed flushed.
  261. *
  262. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  263. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  264. * don't try to be clever and just set it unconditionally.
  265. */
  266. flags |= PIPE_CONTROL_CS_STALL;
  267. /* Just flush everything. Experiments have shown that reducing the
  268. * number of bits based on the write domains has little performance
  269. * impact.
  270. */
  271. if (mode & EMIT_FLUSH) {
  272. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  273. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  274. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  275. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  276. }
  277. if (mode & EMIT_INVALIDATE) {
  278. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  279. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  280. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  281. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  282. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  283. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  284. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  285. /*
  286. * TLB invalidate requires a post-sync write.
  287. */
  288. flags |= PIPE_CONTROL_QW_WRITE;
  289. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  290. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  291. /* Workaround: we must issue a pipe_control with CS-stall bit
  292. * set before a pipe_control command that has the state cache
  293. * invalidate bit set. */
  294. gen7_render_ring_cs_stall_wa(req);
  295. }
  296. ret = intel_ring_begin(req, 4);
  297. if (ret)
  298. return ret;
  299. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  300. intel_ring_emit(ring, flags);
  301. intel_ring_emit(ring, scratch_addr);
  302. intel_ring_emit(ring, 0);
  303. intel_ring_advance(ring);
  304. return 0;
  305. }
  306. static int
  307. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  308. u32 flags, u32 scratch_addr)
  309. {
  310. struct intel_ring *ring = req->ring;
  311. int ret;
  312. ret = intel_ring_begin(req, 6);
  313. if (ret)
  314. return ret;
  315. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  316. intel_ring_emit(ring, flags);
  317. intel_ring_emit(ring, scratch_addr);
  318. intel_ring_emit(ring, 0);
  319. intel_ring_emit(ring, 0);
  320. intel_ring_emit(ring, 0);
  321. intel_ring_advance(ring);
  322. return 0;
  323. }
  324. static int
  325. gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  326. {
  327. u32 scratch_addr =
  328. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  329. u32 flags = 0;
  330. int ret;
  331. flags |= PIPE_CONTROL_CS_STALL;
  332. if (mode & EMIT_FLUSH) {
  333. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  334. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  335. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  336. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  337. }
  338. if (mode & EMIT_INVALIDATE) {
  339. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  340. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  341. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  342. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  343. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  344. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  345. flags |= PIPE_CONTROL_QW_WRITE;
  346. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  347. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  348. ret = gen8_emit_pipe_control(req,
  349. PIPE_CONTROL_CS_STALL |
  350. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  351. 0);
  352. if (ret)
  353. return ret;
  354. }
  355. return gen8_emit_pipe_control(req, flags, scratch_addr);
  356. }
  357. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  358. {
  359. struct drm_i915_private *dev_priv = engine->i915;
  360. u32 addr;
  361. addr = dev_priv->status_page_dmah->busaddr;
  362. if (INTEL_GEN(dev_priv) >= 4)
  363. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  364. I915_WRITE(HWS_PGA, addr);
  365. }
  366. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  367. {
  368. struct drm_i915_private *dev_priv = engine->i915;
  369. i915_reg_t mmio;
  370. /* The ring status page addresses are no longer next to the rest of
  371. * the ring registers as of gen7.
  372. */
  373. if (IS_GEN7(dev_priv)) {
  374. switch (engine->id) {
  375. case RCS:
  376. mmio = RENDER_HWS_PGA_GEN7;
  377. break;
  378. case BCS:
  379. mmio = BLT_HWS_PGA_GEN7;
  380. break;
  381. /*
  382. * VCS2 actually doesn't exist on Gen7. Only shut up
  383. * gcc switch check warning
  384. */
  385. case VCS2:
  386. case VCS:
  387. mmio = BSD_HWS_PGA_GEN7;
  388. break;
  389. case VECS:
  390. mmio = VEBOX_HWS_PGA_GEN7;
  391. break;
  392. }
  393. } else if (IS_GEN6(dev_priv)) {
  394. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  395. } else {
  396. /* XXX: gen8 returns to sanity */
  397. mmio = RING_HWS_PGA(engine->mmio_base);
  398. }
  399. I915_WRITE(mmio, engine->status_page.ggtt_offset);
  400. POSTING_READ(mmio);
  401. /*
  402. * Flush the TLB for this page
  403. *
  404. * FIXME: These two bits have disappeared on gen8, so a question
  405. * arises: do we still need this and if so how should we go about
  406. * invalidating the TLB?
  407. */
  408. if (IS_GEN(dev_priv, 6, 7)) {
  409. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  410. /* ring should be idle before issuing a sync flush*/
  411. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  412. I915_WRITE(reg,
  413. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  414. INSTPM_SYNC_FLUSH));
  415. if (intel_wait_for_register(dev_priv,
  416. reg, INSTPM_SYNC_FLUSH, 0,
  417. 1000))
  418. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  419. engine->name);
  420. }
  421. }
  422. static bool stop_ring(struct intel_engine_cs *engine)
  423. {
  424. struct drm_i915_private *dev_priv = engine->i915;
  425. if (INTEL_GEN(dev_priv) > 2) {
  426. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  427. if (intel_wait_for_register(dev_priv,
  428. RING_MI_MODE(engine->mmio_base),
  429. MODE_IDLE,
  430. MODE_IDLE,
  431. 1000)) {
  432. DRM_ERROR("%s : timed out trying to stop ring\n",
  433. engine->name);
  434. /* Sometimes we observe that the idle flag is not
  435. * set even though the ring is empty. So double
  436. * check before giving up.
  437. */
  438. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  439. return false;
  440. }
  441. }
  442. I915_WRITE_CTL(engine, 0);
  443. I915_WRITE_HEAD(engine, 0);
  444. I915_WRITE_TAIL(engine, 0);
  445. if (INTEL_GEN(dev_priv) > 2) {
  446. (void)I915_READ_CTL(engine);
  447. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  448. }
  449. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  450. }
  451. static int init_ring_common(struct intel_engine_cs *engine)
  452. {
  453. struct drm_i915_private *dev_priv = engine->i915;
  454. struct intel_ring *ring = engine->buffer;
  455. int ret = 0;
  456. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  457. if (!stop_ring(engine)) {
  458. /* G45 ring initialization often fails to reset head to zero */
  459. DRM_DEBUG_KMS("%s head not reset to zero "
  460. "ctl %08x head %08x tail %08x start %08x\n",
  461. engine->name,
  462. I915_READ_CTL(engine),
  463. I915_READ_HEAD(engine),
  464. I915_READ_TAIL(engine),
  465. I915_READ_START(engine));
  466. if (!stop_ring(engine)) {
  467. DRM_ERROR("failed to set %s head to zero "
  468. "ctl %08x head %08x tail %08x start %08x\n",
  469. engine->name,
  470. I915_READ_CTL(engine),
  471. I915_READ_HEAD(engine),
  472. I915_READ_TAIL(engine),
  473. I915_READ_START(engine));
  474. ret = -EIO;
  475. goto out;
  476. }
  477. }
  478. if (HWS_NEEDS_PHYSICAL(dev_priv))
  479. ring_setup_phys_status_page(engine);
  480. else
  481. intel_ring_setup_status_page(engine);
  482. intel_engine_reset_breadcrumbs(engine);
  483. /* Enforce ordering by reading HEAD register back */
  484. I915_READ_HEAD(engine);
  485. /* Initialize the ring. This must happen _after_ we've cleared the ring
  486. * registers with the above sequence (the readback of the HEAD registers
  487. * also enforces ordering), otherwise the hw might lose the new ring
  488. * register values. */
  489. I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
  490. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  491. if (I915_READ_HEAD(engine))
  492. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  493. engine->name, I915_READ_HEAD(engine));
  494. intel_ring_update_space(ring);
  495. I915_WRITE_HEAD(engine, ring->head);
  496. I915_WRITE_TAIL(engine, ring->tail);
  497. (void)I915_READ_TAIL(engine);
  498. I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
  499. /* If the head is still not zero, the ring is dead */
  500. if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
  501. RING_VALID, RING_VALID,
  502. 50)) {
  503. DRM_ERROR("%s initialization failed "
  504. "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
  505. engine->name,
  506. I915_READ_CTL(engine),
  507. I915_READ_CTL(engine) & RING_VALID,
  508. I915_READ_HEAD(engine), ring->head,
  509. I915_READ_TAIL(engine), ring->tail,
  510. I915_READ_START(engine),
  511. i915_ggtt_offset(ring->vma));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. intel_engine_init_hangcheck(engine);
  516. out:
  517. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  518. return ret;
  519. }
  520. static void reset_ring_common(struct intel_engine_cs *engine,
  521. struct drm_i915_gem_request *request)
  522. {
  523. /* Try to restore the logical GPU state to match the continuation
  524. * of the request queue. If we skip the context/PD restore, then
  525. * the next request may try to execute assuming that its context
  526. * is valid and loaded on the GPU and so may try to access invalid
  527. * memory, prompting repeated GPU hangs.
  528. *
  529. * If the request was guilty, we still restore the logical state
  530. * in case the next request requires it (e.g. the aliasing ppgtt),
  531. * but skip over the hung batch.
  532. *
  533. * If the request was innocent, we try to replay the request with
  534. * the restored context.
  535. */
  536. if (request) {
  537. struct drm_i915_private *dev_priv = request->i915;
  538. struct intel_context *ce = &request->ctx->engine[engine->id];
  539. struct i915_hw_ppgtt *ppgtt;
  540. /* FIXME consider gen8 reset */
  541. if (ce->state) {
  542. I915_WRITE(CCID,
  543. i915_ggtt_offset(ce->state) |
  544. BIT(8) /* must be set! */ |
  545. CCID_EXTENDED_STATE_SAVE |
  546. CCID_EXTENDED_STATE_RESTORE |
  547. CCID_EN);
  548. }
  549. ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
  550. if (ppgtt) {
  551. u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
  552. I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
  553. I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
  554. /* Wait for the PD reload to complete */
  555. if (intel_wait_for_register(dev_priv,
  556. RING_PP_DIR_BASE(engine),
  557. BIT(0), 0,
  558. 10))
  559. DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
  560. ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
  561. }
  562. /* If the rq hung, jump to its breadcrumb and skip the batch */
  563. if (request->fence.error == -EIO) {
  564. struct intel_ring *ring = request->ring;
  565. ring->head = request->postfix;
  566. ring->last_retired_head = -1;
  567. }
  568. } else {
  569. engine->legacy_active_context = NULL;
  570. }
  571. }
  572. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  573. {
  574. struct intel_ring *ring = req->ring;
  575. struct i915_workarounds *w = &req->i915->workarounds;
  576. int ret, i;
  577. if (w->count == 0)
  578. return 0;
  579. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  580. if (ret)
  581. return ret;
  582. ret = intel_ring_begin(req, (w->count * 2 + 2));
  583. if (ret)
  584. return ret;
  585. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  586. for (i = 0; i < w->count; i++) {
  587. intel_ring_emit_reg(ring, w->reg[i].addr);
  588. intel_ring_emit(ring, w->reg[i].value);
  589. }
  590. intel_ring_emit(ring, MI_NOOP);
  591. intel_ring_advance(ring);
  592. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  593. if (ret)
  594. return ret;
  595. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  596. return 0;
  597. }
  598. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  599. {
  600. int ret;
  601. ret = intel_ring_workarounds_emit(req);
  602. if (ret != 0)
  603. return ret;
  604. ret = i915_gem_render_state_emit(req);
  605. if (ret)
  606. return ret;
  607. return 0;
  608. }
  609. static int wa_add(struct drm_i915_private *dev_priv,
  610. i915_reg_t addr,
  611. const u32 mask, const u32 val)
  612. {
  613. const u32 idx = dev_priv->workarounds.count;
  614. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  615. return -ENOSPC;
  616. dev_priv->workarounds.reg[idx].addr = addr;
  617. dev_priv->workarounds.reg[idx].value = val;
  618. dev_priv->workarounds.reg[idx].mask = mask;
  619. dev_priv->workarounds.count++;
  620. return 0;
  621. }
  622. #define WA_REG(addr, mask, val) do { \
  623. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  624. if (r) \
  625. return r; \
  626. } while (0)
  627. #define WA_SET_BIT_MASKED(addr, mask) \
  628. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  629. #define WA_CLR_BIT_MASKED(addr, mask) \
  630. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  631. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  632. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  633. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  634. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  635. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  636. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  637. i915_reg_t reg)
  638. {
  639. struct drm_i915_private *dev_priv = engine->i915;
  640. struct i915_workarounds *wa = &dev_priv->workarounds;
  641. const uint32_t index = wa->hw_whitelist_count[engine->id];
  642. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  643. return -EINVAL;
  644. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  645. i915_mmio_reg_offset(reg));
  646. wa->hw_whitelist_count[engine->id]++;
  647. return 0;
  648. }
  649. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  650. {
  651. struct drm_i915_private *dev_priv = engine->i915;
  652. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  653. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  654. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  655. /* WaDisablePartialInstShootdown:bdw,chv */
  656. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  657. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  658. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  659. * workaround for for a possible hang in the unlikely event a TLB
  660. * invalidation occurs during a PSD flush.
  661. */
  662. /* WaForceEnableNonCoherent:bdw,chv */
  663. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  664. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  665. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  666. HDC_FORCE_NON_COHERENT);
  667. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  668. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  669. * polygons in the same 8x4 pixel/sample area to be processed without
  670. * stalling waiting for the earlier ones to write to Hierarchical Z
  671. * buffer."
  672. *
  673. * This optimization is off by default for BDW and CHV; turn it on.
  674. */
  675. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  676. /* Wa4x4STCOptimizationDisable:bdw,chv */
  677. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  678. /*
  679. * BSpec recommends 8x4 when MSAA is used,
  680. * however in practice 16x4 seems fastest.
  681. *
  682. * Note that PS/WM thread counts depend on the WIZ hashing
  683. * disable bit, which we don't touch here, but it's good
  684. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  685. */
  686. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  687. GEN6_WIZ_HASHING_MASK,
  688. GEN6_WIZ_HASHING_16x4);
  689. return 0;
  690. }
  691. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  692. {
  693. struct drm_i915_private *dev_priv = engine->i915;
  694. int ret;
  695. ret = gen8_init_workarounds(engine);
  696. if (ret)
  697. return ret;
  698. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  699. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  700. /* WaDisableDopClockGating:bdw */
  701. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  702. DOP_CLOCK_GATING_DISABLE);
  703. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  704. GEN8_SAMPLER_POWER_BYPASS_DIS);
  705. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  706. /* WaForceContextSaveRestoreNonCoherent:bdw */
  707. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  708. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  709. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  710. return 0;
  711. }
  712. static int chv_init_workarounds(struct intel_engine_cs *engine)
  713. {
  714. struct drm_i915_private *dev_priv = engine->i915;
  715. int ret;
  716. ret = gen8_init_workarounds(engine);
  717. if (ret)
  718. return ret;
  719. /* WaDisableThreadStallDopClockGating:chv */
  720. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  721. /* Improve HiZ throughput on CHV. */
  722. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  723. return 0;
  724. }
  725. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  726. {
  727. struct drm_i915_private *dev_priv = engine->i915;
  728. int ret;
  729. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  730. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  731. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  732. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  733. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  734. /* WaDisableKillLogic:bxt,skl,kbl */
  735. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  736. ECOCHK_DIS_TLB);
  737. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  738. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  739. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  740. FLOW_CONTROL_ENABLE |
  741. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  742. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  743. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  744. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  745. /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
  746. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  747. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  748. GEN9_DG_MIRROR_FIX_ENABLE);
  749. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
  750. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  751. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  752. GEN9_RHWO_OPTIMIZATION_DISABLE);
  753. /*
  754. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  755. * but we do that in per ctx batchbuffer as there is an issue
  756. * with this register not getting restored on ctx restore
  757. */
  758. }
  759. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  760. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  761. GEN9_ENABLE_GPGPU_PREEMPTION);
  762. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  763. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  764. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  765. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  766. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  767. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  768. GEN9_CCS_TLB_PREFETCH_ENABLE);
  769. /* WaDisableMaskBasedCammingInRCC:bxt */
  770. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  771. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  772. PIXEL_MASK_CAMMING_DISABLE);
  773. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  774. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  775. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  776. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  777. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  778. * both tied to WaForceContextSaveRestoreNonCoherent
  779. * in some hsds for skl. We keep the tie for all gen9. The
  780. * documentation is a bit hazy and so we want to get common behaviour,
  781. * even though there is no clear evidence we would need both on kbl/bxt.
  782. * This area has been source of system hangs so we play it safe
  783. * and mimic the skl regardless of what bspec says.
  784. *
  785. * Use Force Non-Coherent whenever executing a 3D context. This
  786. * is a workaround for a possible hang in the unlikely event
  787. * a TLB invalidation occurs during a PSD flush.
  788. */
  789. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  790. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  791. HDC_FORCE_NON_COHERENT);
  792. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  793. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  794. BDW_DISABLE_HDC_INVALIDATION);
  795. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  796. if (IS_SKYLAKE(dev_priv) ||
  797. IS_KABYLAKE(dev_priv) ||
  798. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  799. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  800. GEN8_SAMPLER_POWER_BYPASS_DIS);
  801. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  802. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  803. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  804. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  805. GEN8_LQSC_FLUSH_COHERENT_LINES));
  806. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  807. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  808. if (ret)
  809. return ret;
  810. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  811. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  812. if (ret)
  813. return ret;
  814. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  815. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  816. if (ret)
  817. return ret;
  818. return 0;
  819. }
  820. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  821. {
  822. struct drm_i915_private *dev_priv = engine->i915;
  823. u8 vals[3] = { 0, 0, 0 };
  824. unsigned int i;
  825. for (i = 0; i < 3; i++) {
  826. u8 ss;
  827. /*
  828. * Only consider slices where one, and only one, subslice has 7
  829. * EUs
  830. */
  831. if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
  832. continue;
  833. /*
  834. * subslice_7eu[i] != 0 (because of the check above) and
  835. * ss_max == 4 (maximum number of subslices possible per slice)
  836. *
  837. * -> 0 <= ss <= 3;
  838. */
  839. ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
  840. vals[i] = 3 - ss;
  841. }
  842. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  843. return 0;
  844. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  845. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  846. GEN9_IZ_HASHING_MASK(2) |
  847. GEN9_IZ_HASHING_MASK(1) |
  848. GEN9_IZ_HASHING_MASK(0),
  849. GEN9_IZ_HASHING(2, vals[2]) |
  850. GEN9_IZ_HASHING(1, vals[1]) |
  851. GEN9_IZ_HASHING(0, vals[0]));
  852. return 0;
  853. }
  854. static int skl_init_workarounds(struct intel_engine_cs *engine)
  855. {
  856. struct drm_i915_private *dev_priv = engine->i915;
  857. int ret;
  858. ret = gen9_init_workarounds(engine);
  859. if (ret)
  860. return ret;
  861. /*
  862. * Actual WA is to disable percontext preemption granularity control
  863. * until D0 which is the default case so this is equivalent to
  864. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  865. */
  866. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  867. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  868. /* WaEnableGapsTsvCreditFix:skl */
  869. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  870. GEN9_GAPS_TSV_CREDIT_DISABLE));
  871. /* WaDisableGafsUnitClkGating:skl */
  872. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  873. /* WaInPlaceDecompressionHang:skl */
  874. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  875. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  876. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  877. /* WaDisableLSQCROPERFforOCL:skl */
  878. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  879. if (ret)
  880. return ret;
  881. return skl_tune_iz_hashing(engine);
  882. }
  883. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  884. {
  885. struct drm_i915_private *dev_priv = engine->i915;
  886. int ret;
  887. ret = gen9_init_workarounds(engine);
  888. if (ret)
  889. return ret;
  890. /* WaStoreMultiplePTEenable:bxt */
  891. /* This is a requirement according to Hardware specification */
  892. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  893. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  894. /* WaSetClckGatingDisableMedia:bxt */
  895. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  896. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  897. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  898. }
  899. /* WaDisableThreadStallDopClockGating:bxt */
  900. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  901. STALL_DOP_GATING_DISABLE);
  902. /* WaDisablePooledEuLoadBalancingFix:bxt */
  903. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  904. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  905. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  906. }
  907. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  908. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  909. WA_SET_BIT_MASKED(
  910. GEN7_HALF_SLICE_CHICKEN1,
  911. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  912. }
  913. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  914. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  915. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  916. /* WaDisableLSQCROPERFforOCL:bxt */
  917. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  918. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  919. if (ret)
  920. return ret;
  921. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  922. if (ret)
  923. return ret;
  924. }
  925. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  926. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  927. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  928. L3_HIGH_PRIO_CREDITS(2));
  929. /* WaToEnableHwFixForPushConstHWBug:bxt */
  930. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  931. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  932. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  933. /* WaInPlaceDecompressionHang:bxt */
  934. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  935. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  936. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  937. return 0;
  938. }
  939. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  940. {
  941. struct drm_i915_private *dev_priv = engine->i915;
  942. int ret;
  943. ret = gen9_init_workarounds(engine);
  944. if (ret)
  945. return ret;
  946. /* WaEnableGapsTsvCreditFix:kbl */
  947. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  948. GEN9_GAPS_TSV_CREDIT_DISABLE));
  949. /* WaDisableDynamicCreditSharing:kbl */
  950. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  951. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  952. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  953. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  954. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  955. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  956. HDC_FENCE_DEST_SLM_DISABLE);
  957. /* WaToEnableHwFixForPushConstHWBug:kbl */
  958. if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
  959. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  960. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  961. /* WaDisableGafsUnitClkGating:kbl */
  962. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  963. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  964. WA_SET_BIT_MASKED(
  965. GEN7_HALF_SLICE_CHICKEN1,
  966. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  967. /* WaInPlaceDecompressionHang:kbl */
  968. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  969. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  970. /* WaDisableLSQCROPERFforOCL:kbl */
  971. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  972. if (ret)
  973. return ret;
  974. return 0;
  975. }
  976. int init_workarounds_ring(struct intel_engine_cs *engine)
  977. {
  978. struct drm_i915_private *dev_priv = engine->i915;
  979. WARN_ON(engine->id != RCS);
  980. dev_priv->workarounds.count = 0;
  981. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  982. if (IS_BROADWELL(dev_priv))
  983. return bdw_init_workarounds(engine);
  984. if (IS_CHERRYVIEW(dev_priv))
  985. return chv_init_workarounds(engine);
  986. if (IS_SKYLAKE(dev_priv))
  987. return skl_init_workarounds(engine);
  988. if (IS_BROXTON(dev_priv))
  989. return bxt_init_workarounds(engine);
  990. if (IS_KABYLAKE(dev_priv))
  991. return kbl_init_workarounds(engine);
  992. return 0;
  993. }
  994. static int init_render_ring(struct intel_engine_cs *engine)
  995. {
  996. struct drm_i915_private *dev_priv = engine->i915;
  997. int ret = init_ring_common(engine);
  998. if (ret)
  999. return ret;
  1000. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1001. if (IS_GEN(dev_priv, 4, 6))
  1002. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1003. /* We need to disable the AsyncFlip performance optimisations in order
  1004. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1005. * programmed to '1' on all products.
  1006. *
  1007. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1008. */
  1009. if (IS_GEN(dev_priv, 6, 7))
  1010. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1011. /* Required for the hardware to program scanline values for waiting */
  1012. /* WaEnableFlushTlbInvalidationMode:snb */
  1013. if (IS_GEN6(dev_priv))
  1014. I915_WRITE(GFX_MODE,
  1015. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1016. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1017. if (IS_GEN7(dev_priv))
  1018. I915_WRITE(GFX_MODE_GEN7,
  1019. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1020. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1021. if (IS_GEN6(dev_priv)) {
  1022. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1023. * "If this bit is set, STCunit will have LRA as replacement
  1024. * policy. [...] This bit must be reset. LRA replacement
  1025. * policy is not supported."
  1026. */
  1027. I915_WRITE(CACHE_MODE_0,
  1028. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1029. }
  1030. if (IS_GEN(dev_priv, 6, 7))
  1031. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1032. if (INTEL_INFO(dev_priv)->gen >= 6)
  1033. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1034. return init_workarounds_ring(engine);
  1035. }
  1036. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1037. {
  1038. struct drm_i915_private *dev_priv = engine->i915;
  1039. i915_vma_unpin_and_release(&dev_priv->semaphore);
  1040. }
  1041. static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
  1042. {
  1043. struct drm_i915_private *dev_priv = req->i915;
  1044. struct intel_engine_cs *waiter;
  1045. enum intel_engine_id id;
  1046. for_each_engine(waiter, dev_priv, id) {
  1047. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1048. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1049. continue;
  1050. *out++ = GFX_OP_PIPE_CONTROL(6);
  1051. *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1052. PIPE_CONTROL_QW_WRITE |
  1053. PIPE_CONTROL_CS_STALL);
  1054. *out++ = lower_32_bits(gtt_offset);
  1055. *out++ = upper_32_bits(gtt_offset);
  1056. *out++ = req->global_seqno;
  1057. *out++ = 0;
  1058. *out++ = (MI_SEMAPHORE_SIGNAL |
  1059. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1060. *out++ = 0;
  1061. }
  1062. return out;
  1063. }
  1064. static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
  1065. {
  1066. struct drm_i915_private *dev_priv = req->i915;
  1067. struct intel_engine_cs *waiter;
  1068. enum intel_engine_id id;
  1069. for_each_engine(waiter, dev_priv, id) {
  1070. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1071. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1072. continue;
  1073. *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
  1074. *out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
  1075. *out++ = upper_32_bits(gtt_offset);
  1076. *out++ = req->global_seqno;
  1077. *out++ = (MI_SEMAPHORE_SIGNAL |
  1078. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1079. *out++ = 0;
  1080. }
  1081. return out;
  1082. }
  1083. static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
  1084. {
  1085. struct drm_i915_private *dev_priv = req->i915;
  1086. struct intel_engine_cs *engine;
  1087. enum intel_engine_id id;
  1088. int num_rings = 0;
  1089. for_each_engine(engine, dev_priv, id) {
  1090. i915_reg_t mbox_reg;
  1091. if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
  1092. continue;
  1093. mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
  1094. if (i915_mmio_reg_valid(mbox_reg)) {
  1095. *out++ = MI_LOAD_REGISTER_IMM(1);
  1096. *out++ = i915_mmio_reg_offset(mbox_reg);
  1097. *out++ = req->global_seqno;
  1098. num_rings++;
  1099. }
  1100. }
  1101. if (num_rings & 1)
  1102. *out++ = MI_NOOP;
  1103. return out;
  1104. }
  1105. static void i9xx_submit_request(struct drm_i915_gem_request *request)
  1106. {
  1107. struct drm_i915_private *dev_priv = request->i915;
  1108. i915_gem_request_submit(request);
  1109. I915_WRITE_TAIL(request->engine, request->tail);
  1110. }
  1111. static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
  1112. u32 *out)
  1113. {
  1114. *out++ = MI_STORE_DWORD_INDEX;
  1115. *out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
  1116. *out++ = req->global_seqno;
  1117. *out++ = MI_USER_INTERRUPT;
  1118. req->tail = intel_ring_offset(req->ring, out);
  1119. }
  1120. static const int i9xx_emit_breadcrumb_sz = 4;
  1121. /**
  1122. * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
  1123. *
  1124. * @request - request to write to the ring
  1125. *
  1126. * Update the mailbox registers in the *other* rings with the current seqno.
  1127. * This acts like a signal in the canonical semaphore.
  1128. */
  1129. static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
  1130. u32 *out)
  1131. {
  1132. return i9xx_emit_breadcrumb(req,
  1133. req->engine->semaphore.signal(req, out));
  1134. }
  1135. static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
  1136. u32 *out)
  1137. {
  1138. struct intel_engine_cs *engine = req->engine;
  1139. if (engine->semaphore.signal)
  1140. out = engine->semaphore.signal(req, out);
  1141. *out++ = GFX_OP_PIPE_CONTROL(6);
  1142. *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1143. PIPE_CONTROL_CS_STALL |
  1144. PIPE_CONTROL_QW_WRITE);
  1145. *out++ = intel_hws_seqno_address(engine);
  1146. *out++ = 0;
  1147. *out++ = req->global_seqno;
  1148. /* We're thrashing one dword of HWS. */
  1149. *out++ = 0;
  1150. *out++ = MI_USER_INTERRUPT;
  1151. *out++ = MI_NOOP;
  1152. req->tail = intel_ring_offset(req->ring, out);
  1153. }
  1154. static const int gen8_render_emit_breadcrumb_sz = 8;
  1155. /**
  1156. * intel_ring_sync - sync the waiter to the signaller on seqno
  1157. *
  1158. * @waiter - ring that is waiting
  1159. * @signaller - ring which has, or will signal
  1160. * @seqno - seqno which the waiter will block on
  1161. */
  1162. static int
  1163. gen8_ring_sync_to(struct drm_i915_gem_request *req,
  1164. struct drm_i915_gem_request *signal)
  1165. {
  1166. struct intel_ring *ring = req->ring;
  1167. struct drm_i915_private *dev_priv = req->i915;
  1168. u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
  1169. struct i915_hw_ppgtt *ppgtt;
  1170. int ret;
  1171. ret = intel_ring_begin(req, 4);
  1172. if (ret)
  1173. return ret;
  1174. intel_ring_emit(ring,
  1175. MI_SEMAPHORE_WAIT |
  1176. MI_SEMAPHORE_GLOBAL_GTT |
  1177. MI_SEMAPHORE_SAD_GTE_SDD);
  1178. intel_ring_emit(ring, signal->global_seqno);
  1179. intel_ring_emit(ring, lower_32_bits(offset));
  1180. intel_ring_emit(ring, upper_32_bits(offset));
  1181. intel_ring_advance(ring);
  1182. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1183. * pagetables and we must reload them before executing the batch.
  1184. * We do this on the i915_switch_context() following the wait and
  1185. * before the dispatch.
  1186. */
  1187. ppgtt = req->ctx->ppgtt;
  1188. if (ppgtt && req->engine->id != RCS)
  1189. ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
  1190. return 0;
  1191. }
  1192. static int
  1193. gen6_ring_sync_to(struct drm_i915_gem_request *req,
  1194. struct drm_i915_gem_request *signal)
  1195. {
  1196. struct intel_ring *ring = req->ring;
  1197. u32 dw1 = MI_SEMAPHORE_MBOX |
  1198. MI_SEMAPHORE_COMPARE |
  1199. MI_SEMAPHORE_REGISTER;
  1200. u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
  1201. int ret;
  1202. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1203. ret = intel_ring_begin(req, 4);
  1204. if (ret)
  1205. return ret;
  1206. intel_ring_emit(ring, dw1 | wait_mbox);
  1207. /* Throughout all of the GEM code, seqno passed implies our current
  1208. * seqno is >= the last seqno executed. However for hardware the
  1209. * comparison is strictly greater than.
  1210. */
  1211. intel_ring_emit(ring, signal->global_seqno - 1);
  1212. intel_ring_emit(ring, 0);
  1213. intel_ring_emit(ring, MI_NOOP);
  1214. intel_ring_advance(ring);
  1215. return 0;
  1216. }
  1217. static void
  1218. gen5_seqno_barrier(struct intel_engine_cs *engine)
  1219. {
  1220. /* MI_STORE are internally buffered by the GPU and not flushed
  1221. * either by MI_FLUSH or SyncFlush or any other combination of
  1222. * MI commands.
  1223. *
  1224. * "Only the submission of the store operation is guaranteed.
  1225. * The write result will be complete (coherent) some time later
  1226. * (this is practically a finite period but there is no guaranteed
  1227. * latency)."
  1228. *
  1229. * Empirically, we observe that we need a delay of at least 75us to
  1230. * be sure that the seqno write is visible by the CPU.
  1231. */
  1232. usleep_range(125, 250);
  1233. }
  1234. static void
  1235. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1236. {
  1237. struct drm_i915_private *dev_priv = engine->i915;
  1238. /* Workaround to force correct ordering between irq and seqno writes on
  1239. * ivb (and maybe also on snb) by reading from a CS register (like
  1240. * ACTHD) before reading the status page.
  1241. *
  1242. * Note that this effectively stalls the read by the time it takes to
  1243. * do a memory transaction, which more or less ensures that the write
  1244. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1245. * Alternatively we could delay the interrupt from the CS ring to give
  1246. * the write time to land, but that would incur a delay after every
  1247. * batch i.e. much more frequent than a delay when waiting for the
  1248. * interrupt (with the same net latency).
  1249. *
  1250. * Also note that to prevent whole machine hangs on gen7, we have to
  1251. * take the spinlock to guard against concurrent cacheline access.
  1252. */
  1253. spin_lock_irq(&dev_priv->uncore.lock);
  1254. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1255. spin_unlock_irq(&dev_priv->uncore.lock);
  1256. }
  1257. static void
  1258. gen5_irq_enable(struct intel_engine_cs *engine)
  1259. {
  1260. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1261. }
  1262. static void
  1263. gen5_irq_disable(struct intel_engine_cs *engine)
  1264. {
  1265. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1266. }
  1267. static void
  1268. i9xx_irq_enable(struct intel_engine_cs *engine)
  1269. {
  1270. struct drm_i915_private *dev_priv = engine->i915;
  1271. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1272. I915_WRITE(IMR, dev_priv->irq_mask);
  1273. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1274. }
  1275. static void
  1276. i9xx_irq_disable(struct intel_engine_cs *engine)
  1277. {
  1278. struct drm_i915_private *dev_priv = engine->i915;
  1279. dev_priv->irq_mask |= engine->irq_enable_mask;
  1280. I915_WRITE(IMR, dev_priv->irq_mask);
  1281. }
  1282. static void
  1283. i8xx_irq_enable(struct intel_engine_cs *engine)
  1284. {
  1285. struct drm_i915_private *dev_priv = engine->i915;
  1286. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1287. I915_WRITE16(IMR, dev_priv->irq_mask);
  1288. POSTING_READ16(RING_IMR(engine->mmio_base));
  1289. }
  1290. static void
  1291. i8xx_irq_disable(struct intel_engine_cs *engine)
  1292. {
  1293. struct drm_i915_private *dev_priv = engine->i915;
  1294. dev_priv->irq_mask |= engine->irq_enable_mask;
  1295. I915_WRITE16(IMR, dev_priv->irq_mask);
  1296. }
  1297. static int
  1298. bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1299. {
  1300. struct intel_ring *ring = req->ring;
  1301. int ret;
  1302. ret = intel_ring_begin(req, 2);
  1303. if (ret)
  1304. return ret;
  1305. intel_ring_emit(ring, MI_FLUSH);
  1306. intel_ring_emit(ring, MI_NOOP);
  1307. intel_ring_advance(ring);
  1308. return 0;
  1309. }
  1310. static void
  1311. gen6_irq_enable(struct intel_engine_cs *engine)
  1312. {
  1313. struct drm_i915_private *dev_priv = engine->i915;
  1314. I915_WRITE_IMR(engine,
  1315. ~(engine->irq_enable_mask |
  1316. engine->irq_keep_mask));
  1317. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1318. }
  1319. static void
  1320. gen6_irq_disable(struct intel_engine_cs *engine)
  1321. {
  1322. struct drm_i915_private *dev_priv = engine->i915;
  1323. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1324. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1325. }
  1326. static void
  1327. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1328. {
  1329. struct drm_i915_private *dev_priv = engine->i915;
  1330. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1331. gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
  1332. }
  1333. static void
  1334. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1335. {
  1336. struct drm_i915_private *dev_priv = engine->i915;
  1337. I915_WRITE_IMR(engine, ~0);
  1338. gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
  1339. }
  1340. static void
  1341. gen8_irq_enable(struct intel_engine_cs *engine)
  1342. {
  1343. struct drm_i915_private *dev_priv = engine->i915;
  1344. I915_WRITE_IMR(engine,
  1345. ~(engine->irq_enable_mask |
  1346. engine->irq_keep_mask));
  1347. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1348. }
  1349. static void
  1350. gen8_irq_disable(struct intel_engine_cs *engine)
  1351. {
  1352. struct drm_i915_private *dev_priv = engine->i915;
  1353. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1354. }
  1355. static int
  1356. i965_emit_bb_start(struct drm_i915_gem_request *req,
  1357. u64 offset, u32 length,
  1358. unsigned int dispatch_flags)
  1359. {
  1360. struct intel_ring *ring = req->ring;
  1361. int ret;
  1362. ret = intel_ring_begin(req, 2);
  1363. if (ret)
  1364. return ret;
  1365. intel_ring_emit(ring,
  1366. MI_BATCH_BUFFER_START |
  1367. MI_BATCH_GTT |
  1368. (dispatch_flags & I915_DISPATCH_SECURE ?
  1369. 0 : MI_BATCH_NON_SECURE_I965));
  1370. intel_ring_emit(ring, offset);
  1371. intel_ring_advance(ring);
  1372. return 0;
  1373. }
  1374. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1375. #define I830_BATCH_LIMIT (256*1024)
  1376. #define I830_TLB_ENTRIES (2)
  1377. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1378. static int
  1379. i830_emit_bb_start(struct drm_i915_gem_request *req,
  1380. u64 offset, u32 len,
  1381. unsigned int dispatch_flags)
  1382. {
  1383. struct intel_ring *ring = req->ring;
  1384. u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
  1385. int ret;
  1386. ret = intel_ring_begin(req, 6);
  1387. if (ret)
  1388. return ret;
  1389. /* Evict the invalid PTE TLBs */
  1390. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1391. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1392. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1393. intel_ring_emit(ring, cs_offset);
  1394. intel_ring_emit(ring, 0xdeadbeef);
  1395. intel_ring_emit(ring, MI_NOOP);
  1396. intel_ring_advance(ring);
  1397. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1398. if (len > I830_BATCH_LIMIT)
  1399. return -ENOSPC;
  1400. ret = intel_ring_begin(req, 6 + 2);
  1401. if (ret)
  1402. return ret;
  1403. /* Blit the batch (which has now all relocs applied) to the
  1404. * stable batch scratch bo area (so that the CS never
  1405. * stumbles over its tlb invalidation bug) ...
  1406. */
  1407. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1408. intel_ring_emit(ring,
  1409. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1410. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1411. intel_ring_emit(ring, cs_offset);
  1412. intel_ring_emit(ring, 4096);
  1413. intel_ring_emit(ring, offset);
  1414. intel_ring_emit(ring, MI_FLUSH);
  1415. intel_ring_emit(ring, MI_NOOP);
  1416. intel_ring_advance(ring);
  1417. /* ... and execute it. */
  1418. offset = cs_offset;
  1419. }
  1420. ret = intel_ring_begin(req, 2);
  1421. if (ret)
  1422. return ret;
  1423. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1424. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1425. 0 : MI_BATCH_NON_SECURE));
  1426. intel_ring_advance(ring);
  1427. return 0;
  1428. }
  1429. static int
  1430. i915_emit_bb_start(struct drm_i915_gem_request *req,
  1431. u64 offset, u32 len,
  1432. unsigned int dispatch_flags)
  1433. {
  1434. struct intel_ring *ring = req->ring;
  1435. int ret;
  1436. ret = intel_ring_begin(req, 2);
  1437. if (ret)
  1438. return ret;
  1439. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1440. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1441. 0 : MI_BATCH_NON_SECURE));
  1442. intel_ring_advance(ring);
  1443. return 0;
  1444. }
  1445. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1446. {
  1447. struct drm_i915_private *dev_priv = engine->i915;
  1448. if (!dev_priv->status_page_dmah)
  1449. return;
  1450. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1451. engine->status_page.page_addr = NULL;
  1452. }
  1453. static void cleanup_status_page(struct intel_engine_cs *engine)
  1454. {
  1455. struct i915_vma *vma;
  1456. struct drm_i915_gem_object *obj;
  1457. vma = fetch_and_zero(&engine->status_page.vma);
  1458. if (!vma)
  1459. return;
  1460. obj = vma->obj;
  1461. i915_vma_unpin(vma);
  1462. i915_vma_close(vma);
  1463. i915_gem_object_unpin_map(obj);
  1464. __i915_gem_object_release_unless_active(obj);
  1465. }
  1466. static int init_status_page(struct intel_engine_cs *engine)
  1467. {
  1468. struct drm_i915_gem_object *obj;
  1469. struct i915_vma *vma;
  1470. unsigned int flags;
  1471. void *vaddr;
  1472. int ret;
  1473. obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
  1474. if (IS_ERR(obj)) {
  1475. DRM_ERROR("Failed to allocate status page\n");
  1476. return PTR_ERR(obj);
  1477. }
  1478. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1479. if (ret)
  1480. goto err;
  1481. vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
  1482. if (IS_ERR(vma)) {
  1483. ret = PTR_ERR(vma);
  1484. goto err;
  1485. }
  1486. flags = PIN_GLOBAL;
  1487. if (!HAS_LLC(engine->i915))
  1488. /* On g33, we cannot place HWS above 256MiB, so
  1489. * restrict its pinning to the low mappable arena.
  1490. * Though this restriction is not documented for
  1491. * gen4, gen5, or byt, they also behave similarly
  1492. * and hang if the HWS is placed at the top of the
  1493. * GTT. To generalise, it appears that all !llc
  1494. * platforms have issues with us placing the HWS
  1495. * above the mappable region (even though we never
  1496. * actualy map it).
  1497. */
  1498. flags |= PIN_MAPPABLE;
  1499. ret = i915_vma_pin(vma, 0, 4096, flags);
  1500. if (ret)
  1501. goto err;
  1502. vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
  1503. if (IS_ERR(vaddr)) {
  1504. ret = PTR_ERR(vaddr);
  1505. goto err_unpin;
  1506. }
  1507. engine->status_page.vma = vma;
  1508. engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
  1509. engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
  1510. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1511. engine->name, i915_ggtt_offset(vma));
  1512. return 0;
  1513. err_unpin:
  1514. i915_vma_unpin(vma);
  1515. err:
  1516. i915_gem_object_put(obj);
  1517. return ret;
  1518. }
  1519. static int init_phys_status_page(struct intel_engine_cs *engine)
  1520. {
  1521. struct drm_i915_private *dev_priv = engine->i915;
  1522. dev_priv->status_page_dmah =
  1523. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1524. if (!dev_priv->status_page_dmah)
  1525. return -ENOMEM;
  1526. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1527. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1528. return 0;
  1529. }
  1530. int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
  1531. {
  1532. unsigned int flags;
  1533. enum i915_map_type map;
  1534. struct i915_vma *vma = ring->vma;
  1535. void *addr;
  1536. int ret;
  1537. GEM_BUG_ON(ring->vaddr);
  1538. map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
  1539. flags = PIN_GLOBAL;
  1540. if (offset_bias)
  1541. flags |= PIN_OFFSET_BIAS | offset_bias;
  1542. if (vma->obj->stolen)
  1543. flags |= PIN_MAPPABLE;
  1544. if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
  1545. if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
  1546. ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
  1547. else
  1548. ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
  1549. if (unlikely(ret))
  1550. return ret;
  1551. }
  1552. ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
  1553. if (unlikely(ret))
  1554. return ret;
  1555. if (i915_vma_is_map_and_fenceable(vma))
  1556. addr = (void __force *)i915_vma_pin_iomap(vma);
  1557. else
  1558. addr = i915_gem_object_pin_map(vma->obj, map);
  1559. if (IS_ERR(addr))
  1560. goto err;
  1561. ring->vaddr = addr;
  1562. return 0;
  1563. err:
  1564. i915_vma_unpin(vma);
  1565. return PTR_ERR(addr);
  1566. }
  1567. void intel_ring_unpin(struct intel_ring *ring)
  1568. {
  1569. GEM_BUG_ON(!ring->vma);
  1570. GEM_BUG_ON(!ring->vaddr);
  1571. if (i915_vma_is_map_and_fenceable(ring->vma))
  1572. i915_vma_unpin_iomap(ring->vma);
  1573. else
  1574. i915_gem_object_unpin_map(ring->vma->obj);
  1575. ring->vaddr = NULL;
  1576. i915_vma_unpin(ring->vma);
  1577. }
  1578. static struct i915_vma *
  1579. intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
  1580. {
  1581. struct drm_i915_gem_object *obj;
  1582. struct i915_vma *vma;
  1583. obj = i915_gem_object_create_stolen(dev_priv, size);
  1584. if (!obj)
  1585. obj = i915_gem_object_create(dev_priv, size);
  1586. if (IS_ERR(obj))
  1587. return ERR_CAST(obj);
  1588. /* mark ring buffers as read-only from GPU side by default */
  1589. obj->gt_ro = 1;
  1590. vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
  1591. if (IS_ERR(vma))
  1592. goto err;
  1593. return vma;
  1594. err:
  1595. i915_gem_object_put(obj);
  1596. return vma;
  1597. }
  1598. struct intel_ring *
  1599. intel_engine_create_ring(struct intel_engine_cs *engine, int size)
  1600. {
  1601. struct intel_ring *ring;
  1602. struct i915_vma *vma;
  1603. GEM_BUG_ON(!is_power_of_2(size));
  1604. GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
  1605. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1606. if (!ring)
  1607. return ERR_PTR(-ENOMEM);
  1608. ring->engine = engine;
  1609. INIT_LIST_HEAD(&ring->request_list);
  1610. ring->size = size;
  1611. /* Workaround an erratum on the i830 which causes a hang if
  1612. * the TAIL pointer points to within the last 2 cachelines
  1613. * of the buffer.
  1614. */
  1615. ring->effective_size = size;
  1616. if (IS_I830(engine->i915) || IS_I845G(engine->i915))
  1617. ring->effective_size -= 2 * CACHELINE_BYTES;
  1618. ring->last_retired_head = -1;
  1619. intel_ring_update_space(ring);
  1620. vma = intel_ring_create_vma(engine->i915, size);
  1621. if (IS_ERR(vma)) {
  1622. kfree(ring);
  1623. return ERR_CAST(vma);
  1624. }
  1625. ring->vma = vma;
  1626. return ring;
  1627. }
  1628. void
  1629. intel_ring_free(struct intel_ring *ring)
  1630. {
  1631. struct drm_i915_gem_object *obj = ring->vma->obj;
  1632. i915_vma_close(ring->vma);
  1633. __i915_gem_object_release_unless_active(obj);
  1634. kfree(ring);
  1635. }
  1636. static int context_pin(struct i915_gem_context *ctx, unsigned int flags)
  1637. {
  1638. struct i915_vma *vma = ctx->engine[RCS].state;
  1639. int ret;
  1640. /* Clear this page out of any CPU caches for coherent swap-in/out.
  1641. * We only want to do this on the first bind so that we do not stall
  1642. * on an active context (which by nature is already on the GPU).
  1643. */
  1644. if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
  1645. ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
  1646. if (ret)
  1647. return ret;
  1648. }
  1649. return i915_vma_pin(vma, 0, ctx->ggtt_alignment, PIN_GLOBAL | flags);
  1650. }
  1651. static int intel_ring_context_pin(struct intel_engine_cs *engine,
  1652. struct i915_gem_context *ctx)
  1653. {
  1654. struct intel_context *ce = &ctx->engine[engine->id];
  1655. int ret;
  1656. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1657. if (ce->pin_count++)
  1658. return 0;
  1659. if (ce->state) {
  1660. unsigned int flags;
  1661. flags = 0;
  1662. if (i915_gem_context_is_kernel(ctx))
  1663. flags = PIN_HIGH;
  1664. ret = context_pin(ctx, flags);
  1665. if (ret)
  1666. goto error;
  1667. }
  1668. /* The kernel context is only used as a placeholder for flushing the
  1669. * active context. It is never used for submitting user rendering and
  1670. * as such never requires the golden render context, and so we can skip
  1671. * emitting it when we switch to the kernel context. This is required
  1672. * as during eviction we cannot allocate and pin the renderstate in
  1673. * order to initialise the context.
  1674. */
  1675. if (i915_gem_context_is_kernel(ctx))
  1676. ce->initialised = true;
  1677. i915_gem_context_get(ctx);
  1678. return 0;
  1679. error:
  1680. ce->pin_count = 0;
  1681. return ret;
  1682. }
  1683. static void intel_ring_context_unpin(struct intel_engine_cs *engine,
  1684. struct i915_gem_context *ctx)
  1685. {
  1686. struct intel_context *ce = &ctx->engine[engine->id];
  1687. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1688. GEM_BUG_ON(ce->pin_count == 0);
  1689. if (--ce->pin_count)
  1690. return;
  1691. if (ce->state)
  1692. i915_vma_unpin(ce->state);
  1693. i915_gem_context_put(ctx);
  1694. }
  1695. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1696. {
  1697. struct drm_i915_private *dev_priv = engine->i915;
  1698. struct intel_ring *ring;
  1699. int ret;
  1700. WARN_ON(engine->buffer);
  1701. intel_engine_setup_common(engine);
  1702. ret = intel_engine_init_common(engine);
  1703. if (ret)
  1704. goto error;
  1705. ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
  1706. if (IS_ERR(ring)) {
  1707. ret = PTR_ERR(ring);
  1708. goto error;
  1709. }
  1710. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1711. WARN_ON(engine->id != RCS);
  1712. ret = init_phys_status_page(engine);
  1713. if (ret)
  1714. goto error;
  1715. } else {
  1716. ret = init_status_page(engine);
  1717. if (ret)
  1718. goto error;
  1719. }
  1720. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1721. ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
  1722. if (ret) {
  1723. intel_ring_free(ring);
  1724. goto error;
  1725. }
  1726. engine->buffer = ring;
  1727. return 0;
  1728. error:
  1729. intel_engine_cleanup(engine);
  1730. return ret;
  1731. }
  1732. void intel_engine_cleanup(struct intel_engine_cs *engine)
  1733. {
  1734. struct drm_i915_private *dev_priv;
  1735. dev_priv = engine->i915;
  1736. if (engine->buffer) {
  1737. WARN_ON(INTEL_GEN(dev_priv) > 2 &&
  1738. (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1739. intel_ring_unpin(engine->buffer);
  1740. intel_ring_free(engine->buffer);
  1741. engine->buffer = NULL;
  1742. }
  1743. if (engine->cleanup)
  1744. engine->cleanup(engine);
  1745. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1746. WARN_ON(engine->id != RCS);
  1747. cleanup_phys_status_page(engine);
  1748. } else {
  1749. cleanup_status_page(engine);
  1750. }
  1751. intel_engine_cleanup_common(engine);
  1752. engine->i915 = NULL;
  1753. dev_priv->engine[engine->id] = NULL;
  1754. kfree(engine);
  1755. }
  1756. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
  1757. {
  1758. struct intel_engine_cs *engine;
  1759. enum intel_engine_id id;
  1760. for_each_engine(engine, dev_priv, id) {
  1761. engine->buffer->head = engine->buffer->tail;
  1762. engine->buffer->last_retired_head = -1;
  1763. }
  1764. }
  1765. static int ring_request_alloc(struct drm_i915_gem_request *request)
  1766. {
  1767. int ret;
  1768. GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
  1769. /* Flush enough space to reduce the likelihood of waiting after
  1770. * we start building the request - in which case we will just
  1771. * have to repeat work.
  1772. */
  1773. request->reserved_space += LEGACY_REQUEST_SIZE;
  1774. GEM_BUG_ON(!request->engine->buffer);
  1775. request->ring = request->engine->buffer;
  1776. ret = intel_ring_begin(request, 0);
  1777. if (ret)
  1778. return ret;
  1779. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1780. return 0;
  1781. }
  1782. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1783. {
  1784. struct intel_ring *ring = req->ring;
  1785. struct drm_i915_gem_request *target;
  1786. long timeout;
  1787. lockdep_assert_held(&req->i915->drm.struct_mutex);
  1788. intel_ring_update_space(ring);
  1789. if (ring->space >= bytes)
  1790. return 0;
  1791. /*
  1792. * Space is reserved in the ringbuffer for finalising the request,
  1793. * as that cannot be allowed to fail. During request finalisation,
  1794. * reserved_space is set to 0 to stop the overallocation and the
  1795. * assumption is that then we never need to wait (which has the
  1796. * risk of failing with EINTR).
  1797. *
  1798. * See also i915_gem_request_alloc() and i915_add_request().
  1799. */
  1800. GEM_BUG_ON(!req->reserved_space);
  1801. list_for_each_entry(target, &ring->request_list, ring_link) {
  1802. unsigned space;
  1803. /* Would completion of this request free enough space? */
  1804. space = __intel_ring_space(target->postfix, ring->tail,
  1805. ring->size);
  1806. if (space >= bytes)
  1807. break;
  1808. }
  1809. if (WARN_ON(&target->ring_link == &ring->request_list))
  1810. return -ENOSPC;
  1811. timeout = i915_wait_request(target,
  1812. I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
  1813. MAX_SCHEDULE_TIMEOUT);
  1814. if (timeout < 0)
  1815. return timeout;
  1816. i915_gem_request_retire_upto(target);
  1817. intel_ring_update_space(ring);
  1818. GEM_BUG_ON(ring->space < bytes);
  1819. return 0;
  1820. }
  1821. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1822. {
  1823. struct intel_ring *ring = req->ring;
  1824. int remain_actual = ring->size - ring->tail;
  1825. int remain_usable = ring->effective_size - ring->tail;
  1826. int bytes = num_dwords * sizeof(u32);
  1827. int total_bytes, wait_bytes;
  1828. bool need_wrap = false;
  1829. total_bytes = bytes + req->reserved_space;
  1830. if (unlikely(bytes > remain_usable)) {
  1831. /*
  1832. * Not enough space for the basic request. So need to flush
  1833. * out the remainder and then wait for base + reserved.
  1834. */
  1835. wait_bytes = remain_actual + total_bytes;
  1836. need_wrap = true;
  1837. } else if (unlikely(total_bytes > remain_usable)) {
  1838. /*
  1839. * The base request will fit but the reserved space
  1840. * falls off the end. So we don't need an immediate wrap
  1841. * and only need to effectively wait for the reserved
  1842. * size space from the start of ringbuffer.
  1843. */
  1844. wait_bytes = remain_actual + req->reserved_space;
  1845. } else {
  1846. /* No wrapping required, just waiting. */
  1847. wait_bytes = total_bytes;
  1848. }
  1849. if (wait_bytes > ring->space) {
  1850. int ret = wait_for_space(req, wait_bytes);
  1851. if (unlikely(ret))
  1852. return ret;
  1853. }
  1854. if (unlikely(need_wrap)) {
  1855. GEM_BUG_ON(remain_actual > ring->space);
  1856. GEM_BUG_ON(ring->tail + remain_actual > ring->size);
  1857. /* Fill the tail with MI_NOOP */
  1858. memset(ring->vaddr + ring->tail, 0, remain_actual);
  1859. ring->tail = 0;
  1860. ring->space -= remain_actual;
  1861. }
  1862. ring->space -= bytes;
  1863. GEM_BUG_ON(ring->space < 0);
  1864. return 0;
  1865. }
  1866. /* Align the ring tail to a cacheline boundary */
  1867. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1868. {
  1869. struct intel_ring *ring = req->ring;
  1870. int num_dwords =
  1871. (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1872. int ret;
  1873. if (num_dwords == 0)
  1874. return 0;
  1875. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1876. ret = intel_ring_begin(req, num_dwords);
  1877. if (ret)
  1878. return ret;
  1879. while (num_dwords--)
  1880. intel_ring_emit(ring, MI_NOOP);
  1881. intel_ring_advance(ring);
  1882. return 0;
  1883. }
  1884. static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
  1885. {
  1886. struct drm_i915_private *dev_priv = request->i915;
  1887. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1888. /* Every tail move must follow the sequence below */
  1889. /* Disable notification that the ring is IDLE. The GT
  1890. * will then assume that it is busy and bring it out of rc6.
  1891. */
  1892. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1893. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1894. /* Clear the context id. Here be magic! */
  1895. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  1896. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1897. if (intel_wait_for_register_fw(dev_priv,
  1898. GEN6_BSD_SLEEP_PSMI_CONTROL,
  1899. GEN6_BSD_SLEEP_INDICATOR,
  1900. 0,
  1901. 50))
  1902. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1903. /* Now that the ring is fully powered up, update the tail */
  1904. i9xx_submit_request(request);
  1905. /* Let the ring send IDLE messages to the GT again,
  1906. * and so let it sleep to conserve power when idle.
  1907. */
  1908. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1909. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1910. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1911. }
  1912. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1913. {
  1914. struct intel_ring *ring = req->ring;
  1915. uint32_t cmd;
  1916. int ret;
  1917. ret = intel_ring_begin(req, 4);
  1918. if (ret)
  1919. return ret;
  1920. cmd = MI_FLUSH_DW;
  1921. if (INTEL_GEN(req->i915) >= 8)
  1922. cmd += 1;
  1923. /* We always require a command barrier so that subsequent
  1924. * commands, such as breadcrumb interrupts, are strictly ordered
  1925. * wrt the contents of the write cache being flushed to memory
  1926. * (and thus being coherent from the CPU).
  1927. */
  1928. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1929. /*
  1930. * Bspec vol 1c.5 - video engine command streamer:
  1931. * "If ENABLED, all TLBs will be invalidated once the flush
  1932. * operation is complete. This bit is only valid when the
  1933. * Post-Sync Operation field is a value of 1h or 3h."
  1934. */
  1935. if (mode & EMIT_INVALIDATE)
  1936. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1937. intel_ring_emit(ring, cmd);
  1938. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1939. if (INTEL_GEN(req->i915) >= 8) {
  1940. intel_ring_emit(ring, 0); /* upper addr */
  1941. intel_ring_emit(ring, 0); /* value */
  1942. } else {
  1943. intel_ring_emit(ring, 0);
  1944. intel_ring_emit(ring, MI_NOOP);
  1945. }
  1946. intel_ring_advance(ring);
  1947. return 0;
  1948. }
  1949. static int
  1950. gen8_emit_bb_start(struct drm_i915_gem_request *req,
  1951. u64 offset, u32 len,
  1952. unsigned int dispatch_flags)
  1953. {
  1954. struct intel_ring *ring = req->ring;
  1955. bool ppgtt = USES_PPGTT(req->i915) &&
  1956. !(dispatch_flags & I915_DISPATCH_SECURE);
  1957. int ret;
  1958. ret = intel_ring_begin(req, 4);
  1959. if (ret)
  1960. return ret;
  1961. /* FIXME(BDW): Address space and security selectors. */
  1962. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  1963. (dispatch_flags & I915_DISPATCH_RS ?
  1964. MI_BATCH_RESOURCE_STREAMER : 0));
  1965. intel_ring_emit(ring, lower_32_bits(offset));
  1966. intel_ring_emit(ring, upper_32_bits(offset));
  1967. intel_ring_emit(ring, MI_NOOP);
  1968. intel_ring_advance(ring);
  1969. return 0;
  1970. }
  1971. static int
  1972. hsw_emit_bb_start(struct drm_i915_gem_request *req,
  1973. u64 offset, u32 len,
  1974. unsigned int dispatch_flags)
  1975. {
  1976. struct intel_ring *ring = req->ring;
  1977. int ret;
  1978. ret = intel_ring_begin(req, 2);
  1979. if (ret)
  1980. return ret;
  1981. intel_ring_emit(ring,
  1982. MI_BATCH_BUFFER_START |
  1983. (dispatch_flags & I915_DISPATCH_SECURE ?
  1984. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  1985. (dispatch_flags & I915_DISPATCH_RS ?
  1986. MI_BATCH_RESOURCE_STREAMER : 0));
  1987. /* bit0-7 is the length on GEN6+ */
  1988. intel_ring_emit(ring, offset);
  1989. intel_ring_advance(ring);
  1990. return 0;
  1991. }
  1992. static int
  1993. gen6_emit_bb_start(struct drm_i915_gem_request *req,
  1994. u64 offset, u32 len,
  1995. unsigned int dispatch_flags)
  1996. {
  1997. struct intel_ring *ring = req->ring;
  1998. int ret;
  1999. ret = intel_ring_begin(req, 2);
  2000. if (ret)
  2001. return ret;
  2002. intel_ring_emit(ring,
  2003. MI_BATCH_BUFFER_START |
  2004. (dispatch_flags & I915_DISPATCH_SECURE ?
  2005. 0 : MI_BATCH_NON_SECURE_I965));
  2006. /* bit0-7 is the length on GEN6+ */
  2007. intel_ring_emit(ring, offset);
  2008. intel_ring_advance(ring);
  2009. return 0;
  2010. }
  2011. /* Blitter support (SandyBridge+) */
  2012. static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  2013. {
  2014. struct intel_ring *ring = req->ring;
  2015. uint32_t cmd;
  2016. int ret;
  2017. ret = intel_ring_begin(req, 4);
  2018. if (ret)
  2019. return ret;
  2020. cmd = MI_FLUSH_DW;
  2021. if (INTEL_GEN(req->i915) >= 8)
  2022. cmd += 1;
  2023. /* We always require a command barrier so that subsequent
  2024. * commands, such as breadcrumb interrupts, are strictly ordered
  2025. * wrt the contents of the write cache being flushed to memory
  2026. * (and thus being coherent from the CPU).
  2027. */
  2028. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2029. /*
  2030. * Bspec vol 1c.3 - blitter engine command streamer:
  2031. * "If ENABLED, all TLBs will be invalidated once the flush
  2032. * operation is complete. This bit is only valid when the
  2033. * Post-Sync Operation field is a value of 1h or 3h."
  2034. */
  2035. if (mode & EMIT_INVALIDATE)
  2036. cmd |= MI_INVALIDATE_TLB;
  2037. intel_ring_emit(ring, cmd);
  2038. intel_ring_emit(ring,
  2039. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2040. if (INTEL_GEN(req->i915) >= 8) {
  2041. intel_ring_emit(ring, 0); /* upper addr */
  2042. intel_ring_emit(ring, 0); /* value */
  2043. } else {
  2044. intel_ring_emit(ring, 0);
  2045. intel_ring_emit(ring, MI_NOOP);
  2046. }
  2047. intel_ring_advance(ring);
  2048. return 0;
  2049. }
  2050. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2051. struct intel_engine_cs *engine)
  2052. {
  2053. struct drm_i915_gem_object *obj;
  2054. int ret, i;
  2055. if (!i915.semaphores)
  2056. return;
  2057. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
  2058. struct i915_vma *vma;
  2059. obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
  2060. if (IS_ERR(obj))
  2061. goto err;
  2062. vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
  2063. if (IS_ERR(vma))
  2064. goto err_obj;
  2065. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  2066. if (ret)
  2067. goto err_obj;
  2068. ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
  2069. if (ret)
  2070. goto err_obj;
  2071. dev_priv->semaphore = vma;
  2072. }
  2073. if (INTEL_GEN(dev_priv) >= 8) {
  2074. u32 offset = i915_ggtt_offset(dev_priv->semaphore);
  2075. engine->semaphore.sync_to = gen8_ring_sync_to;
  2076. engine->semaphore.signal = gen8_xcs_signal;
  2077. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2078. u32 ring_offset;
  2079. if (i != engine->id)
  2080. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2081. else
  2082. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2083. engine->semaphore.signal_ggtt[i] = ring_offset;
  2084. }
  2085. } else if (INTEL_GEN(dev_priv) >= 6) {
  2086. engine->semaphore.sync_to = gen6_ring_sync_to;
  2087. engine->semaphore.signal = gen6_signal;
  2088. /*
  2089. * The current semaphore is only applied on pre-gen8
  2090. * platform. And there is no VCS2 ring on the pre-gen8
  2091. * platform. So the semaphore between RCS and VCS2 is
  2092. * initialized as INVALID. Gen8 will initialize the
  2093. * sema between VCS2 and RCS later.
  2094. */
  2095. for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
  2096. static const struct {
  2097. u32 wait_mbox;
  2098. i915_reg_t mbox_reg;
  2099. } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
  2100. [RCS_HW] = {
  2101. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2102. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2103. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2104. },
  2105. [VCS_HW] = {
  2106. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2107. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2108. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2109. },
  2110. [BCS_HW] = {
  2111. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2112. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2113. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2114. },
  2115. [VECS_HW] = {
  2116. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2117. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2118. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2119. },
  2120. };
  2121. u32 wait_mbox;
  2122. i915_reg_t mbox_reg;
  2123. if (i == engine->hw_id) {
  2124. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2125. mbox_reg = GEN6_NOSYNC;
  2126. } else {
  2127. wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
  2128. mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
  2129. }
  2130. engine->semaphore.mbox.wait[i] = wait_mbox;
  2131. engine->semaphore.mbox.signal[i] = mbox_reg;
  2132. }
  2133. }
  2134. return;
  2135. err_obj:
  2136. i915_gem_object_put(obj);
  2137. err:
  2138. DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
  2139. i915.semaphores = 0;
  2140. }
  2141. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2142. struct intel_engine_cs *engine)
  2143. {
  2144. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2145. if (INTEL_GEN(dev_priv) >= 8) {
  2146. engine->irq_enable = gen8_irq_enable;
  2147. engine->irq_disable = gen8_irq_disable;
  2148. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2149. } else if (INTEL_GEN(dev_priv) >= 6) {
  2150. engine->irq_enable = gen6_irq_enable;
  2151. engine->irq_disable = gen6_irq_disable;
  2152. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2153. } else if (INTEL_GEN(dev_priv) >= 5) {
  2154. engine->irq_enable = gen5_irq_enable;
  2155. engine->irq_disable = gen5_irq_disable;
  2156. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2157. } else if (INTEL_GEN(dev_priv) >= 3) {
  2158. engine->irq_enable = i9xx_irq_enable;
  2159. engine->irq_disable = i9xx_irq_disable;
  2160. } else {
  2161. engine->irq_enable = i8xx_irq_enable;
  2162. engine->irq_disable = i8xx_irq_disable;
  2163. }
  2164. }
  2165. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2166. struct intel_engine_cs *engine)
  2167. {
  2168. intel_ring_init_irq(dev_priv, engine);
  2169. intel_ring_init_semaphores(dev_priv, engine);
  2170. engine->init_hw = init_ring_common;
  2171. engine->reset_hw = reset_ring_common;
  2172. engine->context_pin = intel_ring_context_pin;
  2173. engine->context_unpin = intel_ring_context_unpin;
  2174. engine->request_alloc = ring_request_alloc;
  2175. engine->emit_breadcrumb = i9xx_emit_breadcrumb;
  2176. engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
  2177. if (i915.semaphores) {
  2178. int num_rings;
  2179. engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
  2180. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
  2181. if (INTEL_GEN(dev_priv) >= 8) {
  2182. engine->emit_breadcrumb_sz += num_rings * 6;
  2183. } else {
  2184. engine->emit_breadcrumb_sz += num_rings * 3;
  2185. if (num_rings & 1)
  2186. engine->emit_breadcrumb_sz++;
  2187. }
  2188. }
  2189. engine->submit_request = i9xx_submit_request;
  2190. if (INTEL_GEN(dev_priv) >= 8)
  2191. engine->emit_bb_start = gen8_emit_bb_start;
  2192. else if (INTEL_GEN(dev_priv) >= 6)
  2193. engine->emit_bb_start = gen6_emit_bb_start;
  2194. else if (INTEL_GEN(dev_priv) >= 4)
  2195. engine->emit_bb_start = i965_emit_bb_start;
  2196. else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
  2197. engine->emit_bb_start = i830_emit_bb_start;
  2198. else
  2199. engine->emit_bb_start = i915_emit_bb_start;
  2200. }
  2201. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2202. {
  2203. struct drm_i915_private *dev_priv = engine->i915;
  2204. int ret;
  2205. intel_ring_default_vfuncs(dev_priv, engine);
  2206. if (HAS_L3_DPF(dev_priv))
  2207. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2208. if (INTEL_GEN(dev_priv) >= 8) {
  2209. engine->init_context = intel_rcs_ctx_init;
  2210. engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
  2211. engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
  2212. engine->emit_flush = gen8_render_ring_flush;
  2213. if (i915.semaphores) {
  2214. int num_rings;
  2215. engine->semaphore.signal = gen8_rcs_signal;
  2216. num_rings =
  2217. hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
  2218. engine->emit_breadcrumb_sz += num_rings * 6;
  2219. }
  2220. } else if (INTEL_GEN(dev_priv) >= 6) {
  2221. engine->init_context = intel_rcs_ctx_init;
  2222. engine->emit_flush = gen7_render_ring_flush;
  2223. if (IS_GEN6(dev_priv))
  2224. engine->emit_flush = gen6_render_ring_flush;
  2225. } else if (IS_GEN5(dev_priv)) {
  2226. engine->emit_flush = gen4_render_ring_flush;
  2227. } else {
  2228. if (INTEL_GEN(dev_priv) < 4)
  2229. engine->emit_flush = gen2_render_ring_flush;
  2230. else
  2231. engine->emit_flush = gen4_render_ring_flush;
  2232. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2233. }
  2234. if (IS_HASWELL(dev_priv))
  2235. engine->emit_bb_start = hsw_emit_bb_start;
  2236. engine->init_hw = init_render_ring;
  2237. engine->cleanup = render_ring_cleanup;
  2238. ret = intel_init_ring_buffer(engine);
  2239. if (ret)
  2240. return ret;
  2241. if (INTEL_GEN(dev_priv) >= 6) {
  2242. ret = intel_engine_create_scratch(engine, PAGE_SIZE);
  2243. if (ret)
  2244. return ret;
  2245. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2246. ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
  2247. if (ret)
  2248. return ret;
  2249. }
  2250. return 0;
  2251. }
  2252. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2253. {
  2254. struct drm_i915_private *dev_priv = engine->i915;
  2255. intel_ring_default_vfuncs(dev_priv, engine);
  2256. if (INTEL_GEN(dev_priv) >= 6) {
  2257. /* gen6 bsd needs a special wa for tail updates */
  2258. if (IS_GEN6(dev_priv))
  2259. engine->submit_request = gen6_bsd_submit_request;
  2260. engine->emit_flush = gen6_bsd_ring_flush;
  2261. if (INTEL_GEN(dev_priv) < 8)
  2262. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2263. } else {
  2264. engine->mmio_base = BSD_RING_BASE;
  2265. engine->emit_flush = bsd_ring_flush;
  2266. if (IS_GEN5(dev_priv))
  2267. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2268. else
  2269. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2270. }
  2271. return intel_init_ring_buffer(engine);
  2272. }
  2273. /**
  2274. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2275. */
  2276. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2277. {
  2278. struct drm_i915_private *dev_priv = engine->i915;
  2279. intel_ring_default_vfuncs(dev_priv, engine);
  2280. engine->emit_flush = gen6_bsd_ring_flush;
  2281. return intel_init_ring_buffer(engine);
  2282. }
  2283. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2284. {
  2285. struct drm_i915_private *dev_priv = engine->i915;
  2286. intel_ring_default_vfuncs(dev_priv, engine);
  2287. engine->emit_flush = gen6_ring_flush;
  2288. if (INTEL_GEN(dev_priv) < 8)
  2289. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2290. return intel_init_ring_buffer(engine);
  2291. }
  2292. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2293. {
  2294. struct drm_i915_private *dev_priv = engine->i915;
  2295. intel_ring_default_vfuncs(dev_priv, engine);
  2296. engine->emit_flush = gen6_ring_flush;
  2297. if (INTEL_GEN(dev_priv) < 8) {
  2298. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2299. engine->irq_enable = hsw_vebox_irq_enable;
  2300. engine->irq_disable = hsw_vebox_irq_disable;
  2301. }
  2302. return intel_init_ring_buffer(engine);
  2303. }