sparse-vmemmap.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Virtual Memory Map support
  4. *
  5. * (C) 2007 sgi. Christoph Lameter.
  6. *
  7. * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  8. * virt_to_page, page_address() to be implemented as a base offset
  9. * calculation without memory access.
  10. *
  11. * However, virtual mappings need a page table and TLBs. Many Linux
  12. * architectures already map their physical space using 1-1 mappings
  13. * via TLBs. For those arches the virtual memory map is essentially
  14. * for free if we use the same page size as the 1-1 mappings. In that
  15. * case the overhead consists of a few additional pages that are
  16. * allocated to create a view of memory for vmemmap.
  17. *
  18. * The architecture is expected to provide a vmemmap_populate() function
  19. * to instantiate the mapping.
  20. */
  21. #include <linux/mm.h>
  22. #include <linux/mmzone.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/memremap.h>
  25. #include <linux/highmem.h>
  26. #include <linux/slab.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/sched.h>
  30. #include <asm/dma.h>
  31. #include <asm/pgalloc.h>
  32. #include <asm/pgtable.h>
  33. /*
  34. * Allocate a block of memory to be used to back the virtual memory map
  35. * or to back the page tables that are used to create the mapping.
  36. * Uses the main allocators if they are available, else bootmem.
  37. */
  38. static void * __ref __earlyonly_bootmem_alloc(int node,
  39. unsigned long size,
  40. unsigned long align,
  41. unsigned long goal)
  42. {
  43. return memblock_virt_alloc_try_nid_raw(size, align, goal,
  44. BOOTMEM_ALLOC_ACCESSIBLE, node);
  45. }
  46. static void *vmemmap_buf;
  47. static void *vmemmap_buf_end;
  48. void * __meminit vmemmap_alloc_block(unsigned long size, int node)
  49. {
  50. /* If the main allocator is up use that, fallback to bootmem. */
  51. if (slab_is_available()) {
  52. gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
  53. int order = get_order(size);
  54. static bool warned;
  55. struct page *page;
  56. page = alloc_pages_node(node, gfp_mask, order);
  57. if (page)
  58. return page_address(page);
  59. if (!warned) {
  60. warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
  61. "vmemmap alloc failure: order:%u", order);
  62. warned = true;
  63. }
  64. return NULL;
  65. } else
  66. return __earlyonly_bootmem_alloc(node, size, size,
  67. __pa(MAX_DMA_ADDRESS));
  68. }
  69. /* need to make sure size is all the same during early stage */
  70. void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
  71. {
  72. void *ptr;
  73. if (!vmemmap_buf)
  74. return vmemmap_alloc_block(size, node);
  75. /* take the from buf */
  76. ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
  77. if (ptr + size > vmemmap_buf_end)
  78. return vmemmap_alloc_block(size, node);
  79. vmemmap_buf = ptr + size;
  80. return ptr;
  81. }
  82. static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
  83. {
  84. return altmap->base_pfn + altmap->reserve + altmap->alloc
  85. + altmap->align;
  86. }
  87. static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
  88. {
  89. unsigned long allocated = altmap->alloc + altmap->align;
  90. if (altmap->free > allocated)
  91. return altmap->free - allocated;
  92. return 0;
  93. }
  94. /**
  95. * altmap_alloc_block_buf - allocate pages from the device page map
  96. * @altmap: device page map
  97. * @size: size (in bytes) of the allocation
  98. *
  99. * Allocations are aligned to the size of the request.
  100. */
  101. void * __meminit altmap_alloc_block_buf(unsigned long size,
  102. struct vmem_altmap *altmap)
  103. {
  104. unsigned long pfn, nr_pfns, nr_align;
  105. if (size & ~PAGE_MASK) {
  106. pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
  107. __func__, size);
  108. return NULL;
  109. }
  110. pfn = vmem_altmap_next_pfn(altmap);
  111. nr_pfns = size >> PAGE_SHIFT;
  112. nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
  113. nr_align = ALIGN(pfn, nr_align) - pfn;
  114. if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
  115. return NULL;
  116. altmap->alloc += nr_pfns;
  117. altmap->align += nr_align;
  118. pfn += nr_align;
  119. pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
  120. __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
  121. return __va(__pfn_to_phys(pfn));
  122. }
  123. void __meminit vmemmap_verify(pte_t *pte, int node,
  124. unsigned long start, unsigned long end)
  125. {
  126. unsigned long pfn = pte_pfn(*pte);
  127. int actual_node = early_pfn_to_nid(pfn);
  128. if (node_distance(actual_node, node) > LOCAL_DISTANCE)
  129. pr_warn("[%lx-%lx] potential offnode page_structs\n",
  130. start, end - 1);
  131. }
  132. pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
  133. {
  134. pte_t *pte = pte_offset_kernel(pmd, addr);
  135. if (pte_none(*pte)) {
  136. pte_t entry;
  137. void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
  138. if (!p)
  139. return NULL;
  140. entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
  141. set_pte_at(&init_mm, addr, pte, entry);
  142. }
  143. return pte;
  144. }
  145. static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
  146. {
  147. void *p = vmemmap_alloc_block(size, node);
  148. if (!p)
  149. return NULL;
  150. memset(p, 0, size);
  151. return p;
  152. }
  153. pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
  154. {
  155. pmd_t *pmd = pmd_offset(pud, addr);
  156. if (pmd_none(*pmd)) {
  157. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  158. if (!p)
  159. return NULL;
  160. pmd_populate_kernel(&init_mm, pmd, p);
  161. }
  162. return pmd;
  163. }
  164. pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
  165. {
  166. pud_t *pud = pud_offset(p4d, addr);
  167. if (pud_none(*pud)) {
  168. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  169. if (!p)
  170. return NULL;
  171. pud_populate(&init_mm, pud, p);
  172. }
  173. return pud;
  174. }
  175. p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
  176. {
  177. p4d_t *p4d = p4d_offset(pgd, addr);
  178. if (p4d_none(*p4d)) {
  179. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  180. if (!p)
  181. return NULL;
  182. p4d_populate(&init_mm, p4d, p);
  183. }
  184. return p4d;
  185. }
  186. pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
  187. {
  188. pgd_t *pgd = pgd_offset_k(addr);
  189. if (pgd_none(*pgd)) {
  190. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  191. if (!p)
  192. return NULL;
  193. pgd_populate(&init_mm, pgd, p);
  194. }
  195. return pgd;
  196. }
  197. int __meminit vmemmap_populate_basepages(unsigned long start,
  198. unsigned long end, int node)
  199. {
  200. unsigned long addr = start;
  201. pgd_t *pgd;
  202. p4d_t *p4d;
  203. pud_t *pud;
  204. pmd_t *pmd;
  205. pte_t *pte;
  206. for (; addr < end; addr += PAGE_SIZE) {
  207. pgd = vmemmap_pgd_populate(addr, node);
  208. if (!pgd)
  209. return -ENOMEM;
  210. p4d = vmemmap_p4d_populate(pgd, addr, node);
  211. if (!p4d)
  212. return -ENOMEM;
  213. pud = vmemmap_pud_populate(p4d, addr, node);
  214. if (!pud)
  215. return -ENOMEM;
  216. pmd = vmemmap_pmd_populate(pud, addr, node);
  217. if (!pmd)
  218. return -ENOMEM;
  219. pte = vmemmap_pte_populate(pmd, addr, node);
  220. if (!pte)
  221. return -ENOMEM;
  222. vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
  223. }
  224. return 0;
  225. }
  226. struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid,
  227. struct vmem_altmap *altmap)
  228. {
  229. unsigned long start;
  230. unsigned long end;
  231. struct page *map;
  232. map = pfn_to_page(pnum * PAGES_PER_SECTION);
  233. start = (unsigned long)map;
  234. end = (unsigned long)(map + PAGES_PER_SECTION);
  235. if (vmemmap_populate(start, end, nid, altmap))
  236. return NULL;
  237. return map;
  238. }
  239. void __init sparse_mem_maps_populate_node(struct page **map_map,
  240. unsigned long pnum_begin,
  241. unsigned long pnum_end,
  242. unsigned long map_count, int nodeid)
  243. {
  244. unsigned long pnum;
  245. unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
  246. void *vmemmap_buf_start;
  247. size = ALIGN(size, PMD_SIZE);
  248. vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
  249. PMD_SIZE, __pa(MAX_DMA_ADDRESS));
  250. if (vmemmap_buf_start) {
  251. vmemmap_buf = vmemmap_buf_start;
  252. vmemmap_buf_end = vmemmap_buf_start + size * map_count;
  253. }
  254. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  255. struct mem_section *ms;
  256. if (!present_section_nr(pnum))
  257. continue;
  258. map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
  259. if (map_map[pnum])
  260. continue;
  261. ms = __nr_to_section(pnum);
  262. pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
  263. __func__);
  264. ms->section_mem_map = 0;
  265. }
  266. if (vmemmap_buf_start) {
  267. /* need to free left buf */
  268. memblock_free_early(__pa(vmemmap_buf),
  269. vmemmap_buf_end - vmemmap_buf);
  270. vmemmap_buf = NULL;
  271. vmemmap_buf_end = NULL;
  272. }
  273. }