msg.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * linux/ipc/msg.c
  4. * Copyright (C) 1992 Krishna Balasubramanian
  5. *
  6. * Removed all the remaining kerneld mess
  7. * Catch the -EFAULT stuff properly
  8. * Use GFP_KERNEL for messages as in 1.2
  9. * Fixed up the unchecked user space derefs
  10. * Copyright (C) 1998 Alan Cox & Andi Kleen
  11. *
  12. * /proc/sysvipc/msg support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
  13. *
  14. * mostly rewritten, threaded and wake-one semantics added
  15. * MSGMAX limit removed, sysctl's added
  16. * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  17. *
  18. * support for audit of ipc object properties and permission changes
  19. * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  20. *
  21. * namespaces support
  22. * OpenVZ, SWsoft Inc.
  23. * Pavel Emelianov <xemul@openvz.org>
  24. */
  25. #include <linux/capability.h>
  26. #include <linux/msg.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/init.h>
  29. #include <linux/mm.h>
  30. #include <linux/proc_fs.h>
  31. #include <linux/list.h>
  32. #include <linux/security.h>
  33. #include <linux/sched/wake_q.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/audit.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/rwsem.h>
  38. #include <linux/nsproxy.h>
  39. #include <linux/ipc_namespace.h>
  40. #include <asm/current.h>
  41. #include <linux/uaccess.h>
  42. #include "util.h"
  43. /* one msq_queue structure for each present queue on the system */
  44. struct msg_queue {
  45. struct kern_ipc_perm q_perm;
  46. time64_t q_stime; /* last msgsnd time */
  47. time64_t q_rtime; /* last msgrcv time */
  48. time64_t q_ctime; /* last change time */
  49. unsigned long q_cbytes; /* current number of bytes on queue */
  50. unsigned long q_qnum; /* number of messages in queue */
  51. unsigned long q_qbytes; /* max number of bytes on queue */
  52. struct pid *q_lspid; /* pid of last msgsnd */
  53. struct pid *q_lrpid; /* last receive pid */
  54. struct list_head q_messages;
  55. struct list_head q_receivers;
  56. struct list_head q_senders;
  57. } __randomize_layout;
  58. /* one msg_receiver structure for each sleeping receiver */
  59. struct msg_receiver {
  60. struct list_head r_list;
  61. struct task_struct *r_tsk;
  62. int r_mode;
  63. long r_msgtype;
  64. long r_maxsize;
  65. struct msg_msg *r_msg;
  66. };
  67. /* one msg_sender for each sleeping sender */
  68. struct msg_sender {
  69. struct list_head list;
  70. struct task_struct *tsk;
  71. size_t msgsz;
  72. };
  73. #define SEARCH_ANY 1
  74. #define SEARCH_EQUAL 2
  75. #define SEARCH_NOTEQUAL 3
  76. #define SEARCH_LESSEQUAL 4
  77. #define SEARCH_NUMBER 5
  78. #define msg_ids(ns) ((ns)->ids[IPC_MSG_IDS])
  79. static inline struct msg_queue *msq_obtain_object(struct ipc_namespace *ns, int id)
  80. {
  81. struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&msg_ids(ns), id);
  82. if (IS_ERR(ipcp))
  83. return ERR_CAST(ipcp);
  84. return container_of(ipcp, struct msg_queue, q_perm);
  85. }
  86. static inline struct msg_queue *msq_obtain_object_check(struct ipc_namespace *ns,
  87. int id)
  88. {
  89. struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&msg_ids(ns), id);
  90. if (IS_ERR(ipcp))
  91. return ERR_CAST(ipcp);
  92. return container_of(ipcp, struct msg_queue, q_perm);
  93. }
  94. static inline void msg_rmid(struct ipc_namespace *ns, struct msg_queue *s)
  95. {
  96. ipc_rmid(&msg_ids(ns), &s->q_perm);
  97. }
  98. static void msg_rcu_free(struct rcu_head *head)
  99. {
  100. struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
  101. struct msg_queue *msq = container_of(p, struct msg_queue, q_perm);
  102. security_msg_queue_free(&msq->q_perm);
  103. kvfree(msq);
  104. }
  105. /**
  106. * newque - Create a new msg queue
  107. * @ns: namespace
  108. * @params: ptr to the structure that contains the key and msgflg
  109. *
  110. * Called with msg_ids.rwsem held (writer)
  111. */
  112. static int newque(struct ipc_namespace *ns, struct ipc_params *params)
  113. {
  114. struct msg_queue *msq;
  115. int retval;
  116. key_t key = params->key;
  117. int msgflg = params->flg;
  118. msq = kvmalloc(sizeof(*msq), GFP_KERNEL);
  119. if (unlikely(!msq))
  120. return -ENOMEM;
  121. msq->q_perm.mode = msgflg & S_IRWXUGO;
  122. msq->q_perm.key = key;
  123. msq->q_perm.security = NULL;
  124. retval = security_msg_queue_alloc(&msq->q_perm);
  125. if (retval) {
  126. kvfree(msq);
  127. return retval;
  128. }
  129. msq->q_stime = msq->q_rtime = 0;
  130. msq->q_ctime = ktime_get_real_seconds();
  131. msq->q_cbytes = msq->q_qnum = 0;
  132. msq->q_qbytes = ns->msg_ctlmnb;
  133. msq->q_lspid = msq->q_lrpid = NULL;
  134. INIT_LIST_HEAD(&msq->q_messages);
  135. INIT_LIST_HEAD(&msq->q_receivers);
  136. INIT_LIST_HEAD(&msq->q_senders);
  137. /* ipc_addid() locks msq upon success. */
  138. retval = ipc_addid(&msg_ids(ns), &msq->q_perm, ns->msg_ctlmni);
  139. if (retval < 0) {
  140. call_rcu(&msq->q_perm.rcu, msg_rcu_free);
  141. return retval;
  142. }
  143. ipc_unlock_object(&msq->q_perm);
  144. rcu_read_unlock();
  145. return msq->q_perm.id;
  146. }
  147. static inline bool msg_fits_inqueue(struct msg_queue *msq, size_t msgsz)
  148. {
  149. return msgsz + msq->q_cbytes <= msq->q_qbytes &&
  150. 1 + msq->q_qnum <= msq->q_qbytes;
  151. }
  152. static inline void ss_add(struct msg_queue *msq,
  153. struct msg_sender *mss, size_t msgsz)
  154. {
  155. mss->tsk = current;
  156. mss->msgsz = msgsz;
  157. __set_current_state(TASK_INTERRUPTIBLE);
  158. list_add_tail(&mss->list, &msq->q_senders);
  159. }
  160. static inline void ss_del(struct msg_sender *mss)
  161. {
  162. if (mss->list.next)
  163. list_del(&mss->list);
  164. }
  165. static void ss_wakeup(struct msg_queue *msq,
  166. struct wake_q_head *wake_q, bool kill)
  167. {
  168. struct msg_sender *mss, *t;
  169. struct task_struct *stop_tsk = NULL;
  170. struct list_head *h = &msq->q_senders;
  171. list_for_each_entry_safe(mss, t, h, list) {
  172. if (kill)
  173. mss->list.next = NULL;
  174. /*
  175. * Stop at the first task we don't wakeup,
  176. * we've already iterated the original
  177. * sender queue.
  178. */
  179. else if (stop_tsk == mss->tsk)
  180. break;
  181. /*
  182. * We are not in an EIDRM scenario here, therefore
  183. * verify that we really need to wakeup the task.
  184. * To maintain current semantics and wakeup order,
  185. * move the sender to the tail on behalf of the
  186. * blocked task.
  187. */
  188. else if (!msg_fits_inqueue(msq, mss->msgsz)) {
  189. if (!stop_tsk)
  190. stop_tsk = mss->tsk;
  191. list_move_tail(&mss->list, &msq->q_senders);
  192. continue;
  193. }
  194. wake_q_add(wake_q, mss->tsk);
  195. }
  196. }
  197. static void expunge_all(struct msg_queue *msq, int res,
  198. struct wake_q_head *wake_q)
  199. {
  200. struct msg_receiver *msr, *t;
  201. list_for_each_entry_safe(msr, t, &msq->q_receivers, r_list) {
  202. wake_q_add(wake_q, msr->r_tsk);
  203. WRITE_ONCE(msr->r_msg, ERR_PTR(res));
  204. }
  205. }
  206. /*
  207. * freeque() wakes up waiters on the sender and receiver waiting queue,
  208. * removes the message queue from message queue ID IDR, and cleans up all the
  209. * messages associated with this queue.
  210. *
  211. * msg_ids.rwsem (writer) and the spinlock for this message queue are held
  212. * before freeque() is called. msg_ids.rwsem remains locked on exit.
  213. */
  214. static void freeque(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
  215. {
  216. struct msg_msg *msg, *t;
  217. struct msg_queue *msq = container_of(ipcp, struct msg_queue, q_perm);
  218. DEFINE_WAKE_Q(wake_q);
  219. expunge_all(msq, -EIDRM, &wake_q);
  220. ss_wakeup(msq, &wake_q, true);
  221. msg_rmid(ns, msq);
  222. ipc_unlock_object(&msq->q_perm);
  223. wake_up_q(&wake_q);
  224. rcu_read_unlock();
  225. list_for_each_entry_safe(msg, t, &msq->q_messages, m_list) {
  226. atomic_dec(&ns->msg_hdrs);
  227. free_msg(msg);
  228. }
  229. atomic_sub(msq->q_cbytes, &ns->msg_bytes);
  230. ipc_update_pid(&msq->q_lspid, NULL);
  231. ipc_update_pid(&msq->q_lrpid, NULL);
  232. ipc_rcu_putref(&msq->q_perm, msg_rcu_free);
  233. }
  234. long ksys_msgget(key_t key, int msgflg)
  235. {
  236. struct ipc_namespace *ns;
  237. static const struct ipc_ops msg_ops = {
  238. .getnew = newque,
  239. .associate = security_msg_queue_associate,
  240. };
  241. struct ipc_params msg_params;
  242. ns = current->nsproxy->ipc_ns;
  243. msg_params.key = key;
  244. msg_params.flg = msgflg;
  245. return ipcget(ns, &msg_ids(ns), &msg_ops, &msg_params);
  246. }
  247. SYSCALL_DEFINE2(msgget, key_t, key, int, msgflg)
  248. {
  249. return ksys_msgget(key, msgflg);
  250. }
  251. static inline unsigned long
  252. copy_msqid_to_user(void __user *buf, struct msqid64_ds *in, int version)
  253. {
  254. switch (version) {
  255. case IPC_64:
  256. return copy_to_user(buf, in, sizeof(*in));
  257. case IPC_OLD:
  258. {
  259. struct msqid_ds out;
  260. memset(&out, 0, sizeof(out));
  261. ipc64_perm_to_ipc_perm(&in->msg_perm, &out.msg_perm);
  262. out.msg_stime = in->msg_stime;
  263. out.msg_rtime = in->msg_rtime;
  264. out.msg_ctime = in->msg_ctime;
  265. if (in->msg_cbytes > USHRT_MAX)
  266. out.msg_cbytes = USHRT_MAX;
  267. else
  268. out.msg_cbytes = in->msg_cbytes;
  269. out.msg_lcbytes = in->msg_cbytes;
  270. if (in->msg_qnum > USHRT_MAX)
  271. out.msg_qnum = USHRT_MAX;
  272. else
  273. out.msg_qnum = in->msg_qnum;
  274. if (in->msg_qbytes > USHRT_MAX)
  275. out.msg_qbytes = USHRT_MAX;
  276. else
  277. out.msg_qbytes = in->msg_qbytes;
  278. out.msg_lqbytes = in->msg_qbytes;
  279. out.msg_lspid = in->msg_lspid;
  280. out.msg_lrpid = in->msg_lrpid;
  281. return copy_to_user(buf, &out, sizeof(out));
  282. }
  283. default:
  284. return -EINVAL;
  285. }
  286. }
  287. static inline unsigned long
  288. copy_msqid_from_user(struct msqid64_ds *out, void __user *buf, int version)
  289. {
  290. switch (version) {
  291. case IPC_64:
  292. if (copy_from_user(out, buf, sizeof(*out)))
  293. return -EFAULT;
  294. return 0;
  295. case IPC_OLD:
  296. {
  297. struct msqid_ds tbuf_old;
  298. if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
  299. return -EFAULT;
  300. out->msg_perm.uid = tbuf_old.msg_perm.uid;
  301. out->msg_perm.gid = tbuf_old.msg_perm.gid;
  302. out->msg_perm.mode = tbuf_old.msg_perm.mode;
  303. if (tbuf_old.msg_qbytes == 0)
  304. out->msg_qbytes = tbuf_old.msg_lqbytes;
  305. else
  306. out->msg_qbytes = tbuf_old.msg_qbytes;
  307. return 0;
  308. }
  309. default:
  310. return -EINVAL;
  311. }
  312. }
  313. /*
  314. * This function handles some msgctl commands which require the rwsem
  315. * to be held in write mode.
  316. * NOTE: no locks must be held, the rwsem is taken inside this function.
  317. */
  318. static int msgctl_down(struct ipc_namespace *ns, int msqid, int cmd,
  319. struct msqid64_ds *msqid64)
  320. {
  321. struct kern_ipc_perm *ipcp;
  322. struct msg_queue *msq;
  323. int err;
  324. down_write(&msg_ids(ns).rwsem);
  325. rcu_read_lock();
  326. ipcp = ipcctl_pre_down_nolock(ns, &msg_ids(ns), msqid, cmd,
  327. &msqid64->msg_perm, msqid64->msg_qbytes);
  328. if (IS_ERR(ipcp)) {
  329. err = PTR_ERR(ipcp);
  330. goto out_unlock1;
  331. }
  332. msq = container_of(ipcp, struct msg_queue, q_perm);
  333. err = security_msg_queue_msgctl(&msq->q_perm, cmd);
  334. if (err)
  335. goto out_unlock1;
  336. switch (cmd) {
  337. case IPC_RMID:
  338. ipc_lock_object(&msq->q_perm);
  339. /* freeque unlocks the ipc object and rcu */
  340. freeque(ns, ipcp);
  341. goto out_up;
  342. case IPC_SET:
  343. {
  344. DEFINE_WAKE_Q(wake_q);
  345. if (msqid64->msg_qbytes > ns->msg_ctlmnb &&
  346. !capable(CAP_SYS_RESOURCE)) {
  347. err = -EPERM;
  348. goto out_unlock1;
  349. }
  350. ipc_lock_object(&msq->q_perm);
  351. err = ipc_update_perm(&msqid64->msg_perm, ipcp);
  352. if (err)
  353. goto out_unlock0;
  354. msq->q_qbytes = msqid64->msg_qbytes;
  355. msq->q_ctime = ktime_get_real_seconds();
  356. /*
  357. * Sleeping receivers might be excluded by
  358. * stricter permissions.
  359. */
  360. expunge_all(msq, -EAGAIN, &wake_q);
  361. /*
  362. * Sleeping senders might be able to send
  363. * due to a larger queue size.
  364. */
  365. ss_wakeup(msq, &wake_q, false);
  366. ipc_unlock_object(&msq->q_perm);
  367. wake_up_q(&wake_q);
  368. goto out_unlock1;
  369. }
  370. default:
  371. err = -EINVAL;
  372. goto out_unlock1;
  373. }
  374. out_unlock0:
  375. ipc_unlock_object(&msq->q_perm);
  376. out_unlock1:
  377. rcu_read_unlock();
  378. out_up:
  379. up_write(&msg_ids(ns).rwsem);
  380. return err;
  381. }
  382. static int msgctl_info(struct ipc_namespace *ns, int msqid,
  383. int cmd, struct msginfo *msginfo)
  384. {
  385. int err;
  386. int max_id;
  387. /*
  388. * We must not return kernel stack data.
  389. * due to padding, it's not enough
  390. * to set all member fields.
  391. */
  392. err = security_msg_queue_msgctl(NULL, cmd);
  393. if (err)
  394. return err;
  395. memset(msginfo, 0, sizeof(*msginfo));
  396. msginfo->msgmni = ns->msg_ctlmni;
  397. msginfo->msgmax = ns->msg_ctlmax;
  398. msginfo->msgmnb = ns->msg_ctlmnb;
  399. msginfo->msgssz = MSGSSZ;
  400. msginfo->msgseg = MSGSEG;
  401. down_read(&msg_ids(ns).rwsem);
  402. if (cmd == MSG_INFO) {
  403. msginfo->msgpool = msg_ids(ns).in_use;
  404. msginfo->msgmap = atomic_read(&ns->msg_hdrs);
  405. msginfo->msgtql = atomic_read(&ns->msg_bytes);
  406. } else {
  407. msginfo->msgmap = MSGMAP;
  408. msginfo->msgpool = MSGPOOL;
  409. msginfo->msgtql = MSGTQL;
  410. }
  411. max_id = ipc_get_maxid(&msg_ids(ns));
  412. up_read(&msg_ids(ns).rwsem);
  413. return (max_id < 0) ? 0 : max_id;
  414. }
  415. static int msgctl_stat(struct ipc_namespace *ns, int msqid,
  416. int cmd, struct msqid64_ds *p)
  417. {
  418. struct msg_queue *msq;
  419. int id = 0;
  420. int err;
  421. memset(p, 0, sizeof(*p));
  422. rcu_read_lock();
  423. if (cmd == MSG_STAT || cmd == MSG_STAT_ANY) {
  424. msq = msq_obtain_object(ns, msqid);
  425. if (IS_ERR(msq)) {
  426. err = PTR_ERR(msq);
  427. goto out_unlock;
  428. }
  429. id = msq->q_perm.id;
  430. } else { /* IPC_STAT */
  431. msq = msq_obtain_object_check(ns, msqid);
  432. if (IS_ERR(msq)) {
  433. err = PTR_ERR(msq);
  434. goto out_unlock;
  435. }
  436. }
  437. /* see comment for SHM_STAT_ANY */
  438. if (cmd == MSG_STAT_ANY)
  439. audit_ipc_obj(&msq->q_perm);
  440. else {
  441. err = -EACCES;
  442. if (ipcperms(ns, &msq->q_perm, S_IRUGO))
  443. goto out_unlock;
  444. }
  445. err = security_msg_queue_msgctl(&msq->q_perm, cmd);
  446. if (err)
  447. goto out_unlock;
  448. ipc_lock_object(&msq->q_perm);
  449. if (!ipc_valid_object(&msq->q_perm)) {
  450. ipc_unlock_object(&msq->q_perm);
  451. err = -EIDRM;
  452. goto out_unlock;
  453. }
  454. kernel_to_ipc64_perm(&msq->q_perm, &p->msg_perm);
  455. p->msg_stime = msq->q_stime;
  456. p->msg_rtime = msq->q_rtime;
  457. p->msg_ctime = msq->q_ctime;
  458. #ifndef CONFIG_64BIT
  459. p->msg_stime_high = msq->q_stime >> 32;
  460. p->msg_rtime_high = msq->q_rtime >> 32;
  461. p->msg_ctime_high = msq->q_ctime >> 32;
  462. #endif
  463. p->msg_cbytes = msq->q_cbytes;
  464. p->msg_qnum = msq->q_qnum;
  465. p->msg_qbytes = msq->q_qbytes;
  466. p->msg_lspid = pid_vnr(msq->q_lspid);
  467. p->msg_lrpid = pid_vnr(msq->q_lrpid);
  468. ipc_unlock_object(&msq->q_perm);
  469. rcu_read_unlock();
  470. return id;
  471. out_unlock:
  472. rcu_read_unlock();
  473. return err;
  474. }
  475. long ksys_msgctl(int msqid, int cmd, struct msqid_ds __user *buf)
  476. {
  477. int version;
  478. struct ipc_namespace *ns;
  479. struct msqid64_ds msqid64;
  480. int err;
  481. if (msqid < 0 || cmd < 0)
  482. return -EINVAL;
  483. version = ipc_parse_version(&cmd);
  484. ns = current->nsproxy->ipc_ns;
  485. switch (cmd) {
  486. case IPC_INFO:
  487. case MSG_INFO: {
  488. struct msginfo msginfo;
  489. err = msgctl_info(ns, msqid, cmd, &msginfo);
  490. if (err < 0)
  491. return err;
  492. if (copy_to_user(buf, &msginfo, sizeof(struct msginfo)))
  493. err = -EFAULT;
  494. return err;
  495. }
  496. case MSG_STAT: /* msqid is an index rather than a msg queue id */
  497. case MSG_STAT_ANY:
  498. case IPC_STAT:
  499. err = msgctl_stat(ns, msqid, cmd, &msqid64);
  500. if (err < 0)
  501. return err;
  502. if (copy_msqid_to_user(buf, &msqid64, version))
  503. err = -EFAULT;
  504. return err;
  505. case IPC_SET:
  506. if (copy_msqid_from_user(&msqid64, buf, version))
  507. return -EFAULT;
  508. /* fallthru */
  509. case IPC_RMID:
  510. return msgctl_down(ns, msqid, cmd, &msqid64);
  511. default:
  512. return -EINVAL;
  513. }
  514. }
  515. SYSCALL_DEFINE3(msgctl, int, msqid, int, cmd, struct msqid_ds __user *, buf)
  516. {
  517. return ksys_msgctl(msqid, cmd, buf);
  518. }
  519. #ifdef CONFIG_COMPAT
  520. struct compat_msqid_ds {
  521. struct compat_ipc_perm msg_perm;
  522. compat_uptr_t msg_first;
  523. compat_uptr_t msg_last;
  524. compat_time_t msg_stime;
  525. compat_time_t msg_rtime;
  526. compat_time_t msg_ctime;
  527. compat_ulong_t msg_lcbytes;
  528. compat_ulong_t msg_lqbytes;
  529. unsigned short msg_cbytes;
  530. unsigned short msg_qnum;
  531. unsigned short msg_qbytes;
  532. compat_ipc_pid_t msg_lspid;
  533. compat_ipc_pid_t msg_lrpid;
  534. };
  535. static int copy_compat_msqid_from_user(struct msqid64_ds *out, void __user *buf,
  536. int version)
  537. {
  538. memset(out, 0, sizeof(*out));
  539. if (version == IPC_64) {
  540. struct compat_msqid64_ds __user *p = buf;
  541. if (get_compat_ipc64_perm(&out->msg_perm, &p->msg_perm))
  542. return -EFAULT;
  543. if (get_user(out->msg_qbytes, &p->msg_qbytes))
  544. return -EFAULT;
  545. } else {
  546. struct compat_msqid_ds __user *p = buf;
  547. if (get_compat_ipc_perm(&out->msg_perm, &p->msg_perm))
  548. return -EFAULT;
  549. if (get_user(out->msg_qbytes, &p->msg_qbytes))
  550. return -EFAULT;
  551. }
  552. return 0;
  553. }
  554. static int copy_compat_msqid_to_user(void __user *buf, struct msqid64_ds *in,
  555. int version)
  556. {
  557. if (version == IPC_64) {
  558. struct compat_msqid64_ds v;
  559. memset(&v, 0, sizeof(v));
  560. to_compat_ipc64_perm(&v.msg_perm, &in->msg_perm);
  561. v.msg_stime = lower_32_bits(in->msg_stime);
  562. v.msg_stime_high = upper_32_bits(in->msg_stime);
  563. v.msg_rtime = lower_32_bits(in->msg_rtime);
  564. v.msg_rtime_high = upper_32_bits(in->msg_rtime);
  565. v.msg_ctime = lower_32_bits(in->msg_ctime);
  566. v.msg_ctime_high = upper_32_bits(in->msg_ctime);
  567. v.msg_cbytes = in->msg_cbytes;
  568. v.msg_qnum = in->msg_qnum;
  569. v.msg_qbytes = in->msg_qbytes;
  570. v.msg_lspid = in->msg_lspid;
  571. v.msg_lrpid = in->msg_lrpid;
  572. return copy_to_user(buf, &v, sizeof(v));
  573. } else {
  574. struct compat_msqid_ds v;
  575. memset(&v, 0, sizeof(v));
  576. to_compat_ipc_perm(&v.msg_perm, &in->msg_perm);
  577. v.msg_stime = in->msg_stime;
  578. v.msg_rtime = in->msg_rtime;
  579. v.msg_ctime = in->msg_ctime;
  580. v.msg_cbytes = in->msg_cbytes;
  581. v.msg_qnum = in->msg_qnum;
  582. v.msg_qbytes = in->msg_qbytes;
  583. v.msg_lspid = in->msg_lspid;
  584. v.msg_lrpid = in->msg_lrpid;
  585. return copy_to_user(buf, &v, sizeof(v));
  586. }
  587. }
  588. long compat_ksys_msgctl(int msqid, int cmd, void __user *uptr)
  589. {
  590. struct ipc_namespace *ns;
  591. int err;
  592. struct msqid64_ds msqid64;
  593. int version = compat_ipc_parse_version(&cmd);
  594. ns = current->nsproxy->ipc_ns;
  595. if (msqid < 0 || cmd < 0)
  596. return -EINVAL;
  597. switch (cmd & (~IPC_64)) {
  598. case IPC_INFO:
  599. case MSG_INFO: {
  600. struct msginfo msginfo;
  601. err = msgctl_info(ns, msqid, cmd, &msginfo);
  602. if (err < 0)
  603. return err;
  604. if (copy_to_user(uptr, &msginfo, sizeof(struct msginfo)))
  605. err = -EFAULT;
  606. return err;
  607. }
  608. case IPC_STAT:
  609. case MSG_STAT:
  610. case MSG_STAT_ANY:
  611. err = msgctl_stat(ns, msqid, cmd, &msqid64);
  612. if (err < 0)
  613. return err;
  614. if (copy_compat_msqid_to_user(uptr, &msqid64, version))
  615. err = -EFAULT;
  616. return err;
  617. case IPC_SET:
  618. if (copy_compat_msqid_from_user(&msqid64, uptr, version))
  619. return -EFAULT;
  620. /* fallthru */
  621. case IPC_RMID:
  622. return msgctl_down(ns, msqid, cmd, &msqid64);
  623. default:
  624. return -EINVAL;
  625. }
  626. }
  627. COMPAT_SYSCALL_DEFINE3(msgctl, int, msqid, int, cmd, void __user *, uptr)
  628. {
  629. return compat_ksys_msgctl(msqid, cmd, uptr);
  630. }
  631. #endif
  632. static int testmsg(struct msg_msg *msg, long type, int mode)
  633. {
  634. switch (mode) {
  635. case SEARCH_ANY:
  636. case SEARCH_NUMBER:
  637. return 1;
  638. case SEARCH_LESSEQUAL:
  639. if (msg->m_type <= type)
  640. return 1;
  641. break;
  642. case SEARCH_EQUAL:
  643. if (msg->m_type == type)
  644. return 1;
  645. break;
  646. case SEARCH_NOTEQUAL:
  647. if (msg->m_type != type)
  648. return 1;
  649. break;
  650. }
  651. return 0;
  652. }
  653. static inline int pipelined_send(struct msg_queue *msq, struct msg_msg *msg,
  654. struct wake_q_head *wake_q)
  655. {
  656. struct msg_receiver *msr, *t;
  657. list_for_each_entry_safe(msr, t, &msq->q_receivers, r_list) {
  658. if (testmsg(msg, msr->r_msgtype, msr->r_mode) &&
  659. !security_msg_queue_msgrcv(&msq->q_perm, msg, msr->r_tsk,
  660. msr->r_msgtype, msr->r_mode)) {
  661. list_del(&msr->r_list);
  662. if (msr->r_maxsize < msg->m_ts) {
  663. wake_q_add(wake_q, msr->r_tsk);
  664. WRITE_ONCE(msr->r_msg, ERR_PTR(-E2BIG));
  665. } else {
  666. ipc_update_pid(&msq->q_lrpid, task_pid(msr->r_tsk));
  667. msq->q_rtime = ktime_get_real_seconds();
  668. wake_q_add(wake_q, msr->r_tsk);
  669. WRITE_ONCE(msr->r_msg, msg);
  670. return 1;
  671. }
  672. }
  673. }
  674. return 0;
  675. }
  676. static long do_msgsnd(int msqid, long mtype, void __user *mtext,
  677. size_t msgsz, int msgflg)
  678. {
  679. struct msg_queue *msq;
  680. struct msg_msg *msg;
  681. int err;
  682. struct ipc_namespace *ns;
  683. DEFINE_WAKE_Q(wake_q);
  684. ns = current->nsproxy->ipc_ns;
  685. if (msgsz > ns->msg_ctlmax || (long) msgsz < 0 || msqid < 0)
  686. return -EINVAL;
  687. if (mtype < 1)
  688. return -EINVAL;
  689. msg = load_msg(mtext, msgsz);
  690. if (IS_ERR(msg))
  691. return PTR_ERR(msg);
  692. msg->m_type = mtype;
  693. msg->m_ts = msgsz;
  694. rcu_read_lock();
  695. msq = msq_obtain_object_check(ns, msqid);
  696. if (IS_ERR(msq)) {
  697. err = PTR_ERR(msq);
  698. goto out_unlock1;
  699. }
  700. ipc_lock_object(&msq->q_perm);
  701. for (;;) {
  702. struct msg_sender s;
  703. err = -EACCES;
  704. if (ipcperms(ns, &msq->q_perm, S_IWUGO))
  705. goto out_unlock0;
  706. /* raced with RMID? */
  707. if (!ipc_valid_object(&msq->q_perm)) {
  708. err = -EIDRM;
  709. goto out_unlock0;
  710. }
  711. err = security_msg_queue_msgsnd(&msq->q_perm, msg, msgflg);
  712. if (err)
  713. goto out_unlock0;
  714. if (msg_fits_inqueue(msq, msgsz))
  715. break;
  716. /* queue full, wait: */
  717. if (msgflg & IPC_NOWAIT) {
  718. err = -EAGAIN;
  719. goto out_unlock0;
  720. }
  721. /* enqueue the sender and prepare to block */
  722. ss_add(msq, &s, msgsz);
  723. if (!ipc_rcu_getref(&msq->q_perm)) {
  724. err = -EIDRM;
  725. goto out_unlock0;
  726. }
  727. ipc_unlock_object(&msq->q_perm);
  728. rcu_read_unlock();
  729. schedule();
  730. rcu_read_lock();
  731. ipc_lock_object(&msq->q_perm);
  732. ipc_rcu_putref(&msq->q_perm, msg_rcu_free);
  733. /* raced with RMID? */
  734. if (!ipc_valid_object(&msq->q_perm)) {
  735. err = -EIDRM;
  736. goto out_unlock0;
  737. }
  738. ss_del(&s);
  739. if (signal_pending(current)) {
  740. err = -ERESTARTNOHAND;
  741. goto out_unlock0;
  742. }
  743. }
  744. ipc_update_pid(&msq->q_lspid, task_tgid(current));
  745. msq->q_stime = ktime_get_real_seconds();
  746. if (!pipelined_send(msq, msg, &wake_q)) {
  747. /* no one is waiting for this message, enqueue it */
  748. list_add_tail(&msg->m_list, &msq->q_messages);
  749. msq->q_cbytes += msgsz;
  750. msq->q_qnum++;
  751. atomic_add(msgsz, &ns->msg_bytes);
  752. atomic_inc(&ns->msg_hdrs);
  753. }
  754. err = 0;
  755. msg = NULL;
  756. out_unlock0:
  757. ipc_unlock_object(&msq->q_perm);
  758. wake_up_q(&wake_q);
  759. out_unlock1:
  760. rcu_read_unlock();
  761. if (msg != NULL)
  762. free_msg(msg);
  763. return err;
  764. }
  765. long ksys_msgsnd(int msqid, struct msgbuf __user *msgp, size_t msgsz,
  766. int msgflg)
  767. {
  768. long mtype;
  769. if (get_user(mtype, &msgp->mtype))
  770. return -EFAULT;
  771. return do_msgsnd(msqid, mtype, msgp->mtext, msgsz, msgflg);
  772. }
  773. SYSCALL_DEFINE4(msgsnd, int, msqid, struct msgbuf __user *, msgp, size_t, msgsz,
  774. int, msgflg)
  775. {
  776. return ksys_msgsnd(msqid, msgp, msgsz, msgflg);
  777. }
  778. #ifdef CONFIG_COMPAT
  779. struct compat_msgbuf {
  780. compat_long_t mtype;
  781. char mtext[1];
  782. };
  783. long compat_ksys_msgsnd(int msqid, compat_uptr_t msgp,
  784. compat_ssize_t msgsz, int msgflg)
  785. {
  786. struct compat_msgbuf __user *up = compat_ptr(msgp);
  787. compat_long_t mtype;
  788. if (get_user(mtype, &up->mtype))
  789. return -EFAULT;
  790. return do_msgsnd(msqid, mtype, up->mtext, (ssize_t)msgsz, msgflg);
  791. }
  792. COMPAT_SYSCALL_DEFINE4(msgsnd, int, msqid, compat_uptr_t, msgp,
  793. compat_ssize_t, msgsz, int, msgflg)
  794. {
  795. return compat_ksys_msgsnd(msqid, msgp, msgsz, msgflg);
  796. }
  797. #endif
  798. static inline int convert_mode(long *msgtyp, int msgflg)
  799. {
  800. if (msgflg & MSG_COPY)
  801. return SEARCH_NUMBER;
  802. /*
  803. * find message of correct type.
  804. * msgtyp = 0 => get first.
  805. * msgtyp > 0 => get first message of matching type.
  806. * msgtyp < 0 => get message with least type must be < abs(msgtype).
  807. */
  808. if (*msgtyp == 0)
  809. return SEARCH_ANY;
  810. if (*msgtyp < 0) {
  811. if (*msgtyp == LONG_MIN) /* -LONG_MIN is undefined */
  812. *msgtyp = LONG_MAX;
  813. else
  814. *msgtyp = -*msgtyp;
  815. return SEARCH_LESSEQUAL;
  816. }
  817. if (msgflg & MSG_EXCEPT)
  818. return SEARCH_NOTEQUAL;
  819. return SEARCH_EQUAL;
  820. }
  821. static long do_msg_fill(void __user *dest, struct msg_msg *msg, size_t bufsz)
  822. {
  823. struct msgbuf __user *msgp = dest;
  824. size_t msgsz;
  825. if (put_user(msg->m_type, &msgp->mtype))
  826. return -EFAULT;
  827. msgsz = (bufsz > msg->m_ts) ? msg->m_ts : bufsz;
  828. if (store_msg(msgp->mtext, msg, msgsz))
  829. return -EFAULT;
  830. return msgsz;
  831. }
  832. #ifdef CONFIG_CHECKPOINT_RESTORE
  833. /*
  834. * This function creates new kernel message structure, large enough to store
  835. * bufsz message bytes.
  836. */
  837. static inline struct msg_msg *prepare_copy(void __user *buf, size_t bufsz)
  838. {
  839. struct msg_msg *copy;
  840. /*
  841. * Create dummy message to copy real message to.
  842. */
  843. copy = load_msg(buf, bufsz);
  844. if (!IS_ERR(copy))
  845. copy->m_ts = bufsz;
  846. return copy;
  847. }
  848. static inline void free_copy(struct msg_msg *copy)
  849. {
  850. if (copy)
  851. free_msg(copy);
  852. }
  853. #else
  854. static inline struct msg_msg *prepare_copy(void __user *buf, size_t bufsz)
  855. {
  856. return ERR_PTR(-ENOSYS);
  857. }
  858. static inline void free_copy(struct msg_msg *copy)
  859. {
  860. }
  861. #endif
  862. static struct msg_msg *find_msg(struct msg_queue *msq, long *msgtyp, int mode)
  863. {
  864. struct msg_msg *msg, *found = NULL;
  865. long count = 0;
  866. list_for_each_entry(msg, &msq->q_messages, m_list) {
  867. if (testmsg(msg, *msgtyp, mode) &&
  868. !security_msg_queue_msgrcv(&msq->q_perm, msg, current,
  869. *msgtyp, mode)) {
  870. if (mode == SEARCH_LESSEQUAL && msg->m_type != 1) {
  871. *msgtyp = msg->m_type - 1;
  872. found = msg;
  873. } else if (mode == SEARCH_NUMBER) {
  874. if (*msgtyp == count)
  875. return msg;
  876. } else
  877. return msg;
  878. count++;
  879. }
  880. }
  881. return found ?: ERR_PTR(-EAGAIN);
  882. }
  883. static long do_msgrcv(int msqid, void __user *buf, size_t bufsz, long msgtyp, int msgflg,
  884. long (*msg_handler)(void __user *, struct msg_msg *, size_t))
  885. {
  886. int mode;
  887. struct msg_queue *msq;
  888. struct ipc_namespace *ns;
  889. struct msg_msg *msg, *copy = NULL;
  890. DEFINE_WAKE_Q(wake_q);
  891. ns = current->nsproxy->ipc_ns;
  892. if (msqid < 0 || (long) bufsz < 0)
  893. return -EINVAL;
  894. if (msgflg & MSG_COPY) {
  895. if ((msgflg & MSG_EXCEPT) || !(msgflg & IPC_NOWAIT))
  896. return -EINVAL;
  897. copy = prepare_copy(buf, min_t(size_t, bufsz, ns->msg_ctlmax));
  898. if (IS_ERR(copy))
  899. return PTR_ERR(copy);
  900. }
  901. mode = convert_mode(&msgtyp, msgflg);
  902. rcu_read_lock();
  903. msq = msq_obtain_object_check(ns, msqid);
  904. if (IS_ERR(msq)) {
  905. rcu_read_unlock();
  906. free_copy(copy);
  907. return PTR_ERR(msq);
  908. }
  909. for (;;) {
  910. struct msg_receiver msr_d;
  911. msg = ERR_PTR(-EACCES);
  912. if (ipcperms(ns, &msq->q_perm, S_IRUGO))
  913. goto out_unlock1;
  914. ipc_lock_object(&msq->q_perm);
  915. /* raced with RMID? */
  916. if (!ipc_valid_object(&msq->q_perm)) {
  917. msg = ERR_PTR(-EIDRM);
  918. goto out_unlock0;
  919. }
  920. msg = find_msg(msq, &msgtyp, mode);
  921. if (!IS_ERR(msg)) {
  922. /*
  923. * Found a suitable message.
  924. * Unlink it from the queue.
  925. */
  926. if ((bufsz < msg->m_ts) && !(msgflg & MSG_NOERROR)) {
  927. msg = ERR_PTR(-E2BIG);
  928. goto out_unlock0;
  929. }
  930. /*
  931. * If we are copying, then do not unlink message and do
  932. * not update queue parameters.
  933. */
  934. if (msgflg & MSG_COPY) {
  935. msg = copy_msg(msg, copy);
  936. goto out_unlock0;
  937. }
  938. list_del(&msg->m_list);
  939. msq->q_qnum--;
  940. msq->q_rtime = ktime_get_real_seconds();
  941. ipc_update_pid(&msq->q_lrpid, task_tgid(current));
  942. msq->q_cbytes -= msg->m_ts;
  943. atomic_sub(msg->m_ts, &ns->msg_bytes);
  944. atomic_dec(&ns->msg_hdrs);
  945. ss_wakeup(msq, &wake_q, false);
  946. goto out_unlock0;
  947. }
  948. /* No message waiting. Wait for a message */
  949. if (msgflg & IPC_NOWAIT) {
  950. msg = ERR_PTR(-ENOMSG);
  951. goto out_unlock0;
  952. }
  953. list_add_tail(&msr_d.r_list, &msq->q_receivers);
  954. msr_d.r_tsk = current;
  955. msr_d.r_msgtype = msgtyp;
  956. msr_d.r_mode = mode;
  957. if (msgflg & MSG_NOERROR)
  958. msr_d.r_maxsize = INT_MAX;
  959. else
  960. msr_d.r_maxsize = bufsz;
  961. msr_d.r_msg = ERR_PTR(-EAGAIN);
  962. __set_current_state(TASK_INTERRUPTIBLE);
  963. ipc_unlock_object(&msq->q_perm);
  964. rcu_read_unlock();
  965. schedule();
  966. /*
  967. * Lockless receive, part 1:
  968. * We don't hold a reference to the queue and getting a
  969. * reference would defeat the idea of a lockless operation,
  970. * thus the code relies on rcu to guarantee the existence of
  971. * msq:
  972. * Prior to destruction, expunge_all(-EIRDM) changes r_msg.
  973. * Thus if r_msg is -EAGAIN, then the queue not yet destroyed.
  974. */
  975. rcu_read_lock();
  976. /*
  977. * Lockless receive, part 2:
  978. * The work in pipelined_send() and expunge_all():
  979. * - Set pointer to message
  980. * - Queue the receiver task for later wakeup
  981. * - Wake up the process after the lock is dropped.
  982. *
  983. * Should the process wake up before this wakeup (due to a
  984. * signal) it will either see the message and continue ...
  985. */
  986. msg = READ_ONCE(msr_d.r_msg);
  987. if (msg != ERR_PTR(-EAGAIN))
  988. goto out_unlock1;
  989. /*
  990. * ... or see -EAGAIN, acquire the lock to check the message
  991. * again.
  992. */
  993. ipc_lock_object(&msq->q_perm);
  994. msg = msr_d.r_msg;
  995. if (msg != ERR_PTR(-EAGAIN))
  996. goto out_unlock0;
  997. list_del(&msr_d.r_list);
  998. if (signal_pending(current)) {
  999. msg = ERR_PTR(-ERESTARTNOHAND);
  1000. goto out_unlock0;
  1001. }
  1002. ipc_unlock_object(&msq->q_perm);
  1003. }
  1004. out_unlock0:
  1005. ipc_unlock_object(&msq->q_perm);
  1006. wake_up_q(&wake_q);
  1007. out_unlock1:
  1008. rcu_read_unlock();
  1009. if (IS_ERR(msg)) {
  1010. free_copy(copy);
  1011. return PTR_ERR(msg);
  1012. }
  1013. bufsz = msg_handler(buf, msg, bufsz);
  1014. free_msg(msg);
  1015. return bufsz;
  1016. }
  1017. long ksys_msgrcv(int msqid, struct msgbuf __user *msgp, size_t msgsz,
  1018. long msgtyp, int msgflg)
  1019. {
  1020. return do_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg, do_msg_fill);
  1021. }
  1022. SYSCALL_DEFINE5(msgrcv, int, msqid, struct msgbuf __user *, msgp, size_t, msgsz,
  1023. long, msgtyp, int, msgflg)
  1024. {
  1025. return ksys_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);
  1026. }
  1027. #ifdef CONFIG_COMPAT
  1028. static long compat_do_msg_fill(void __user *dest, struct msg_msg *msg, size_t bufsz)
  1029. {
  1030. struct compat_msgbuf __user *msgp = dest;
  1031. size_t msgsz;
  1032. if (put_user(msg->m_type, &msgp->mtype))
  1033. return -EFAULT;
  1034. msgsz = (bufsz > msg->m_ts) ? msg->m_ts : bufsz;
  1035. if (store_msg(msgp->mtext, msg, msgsz))
  1036. return -EFAULT;
  1037. return msgsz;
  1038. }
  1039. long compat_ksys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz,
  1040. compat_long_t msgtyp, int msgflg)
  1041. {
  1042. return do_msgrcv(msqid, compat_ptr(msgp), (ssize_t)msgsz, (long)msgtyp,
  1043. msgflg, compat_do_msg_fill);
  1044. }
  1045. COMPAT_SYSCALL_DEFINE5(msgrcv, int, msqid, compat_uptr_t, msgp,
  1046. compat_ssize_t, msgsz, compat_long_t, msgtyp,
  1047. int, msgflg)
  1048. {
  1049. return compat_ksys_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);
  1050. }
  1051. #endif
  1052. int msg_init_ns(struct ipc_namespace *ns)
  1053. {
  1054. ns->msg_ctlmax = MSGMAX;
  1055. ns->msg_ctlmnb = MSGMNB;
  1056. ns->msg_ctlmni = MSGMNI;
  1057. atomic_set(&ns->msg_bytes, 0);
  1058. atomic_set(&ns->msg_hdrs, 0);
  1059. return ipc_init_ids(&ns->ids[IPC_MSG_IDS]);
  1060. }
  1061. #ifdef CONFIG_IPC_NS
  1062. void msg_exit_ns(struct ipc_namespace *ns)
  1063. {
  1064. free_ipcs(ns, &msg_ids(ns), freeque);
  1065. idr_destroy(&ns->ids[IPC_MSG_IDS].ipcs_idr);
  1066. rhashtable_destroy(&ns->ids[IPC_MSG_IDS].key_ht);
  1067. }
  1068. #endif
  1069. #ifdef CONFIG_PROC_FS
  1070. static int sysvipc_msg_proc_show(struct seq_file *s, void *it)
  1071. {
  1072. struct pid_namespace *pid_ns = ipc_seq_pid_ns(s);
  1073. struct user_namespace *user_ns = seq_user_ns(s);
  1074. struct kern_ipc_perm *ipcp = it;
  1075. struct msg_queue *msq = container_of(ipcp, struct msg_queue, q_perm);
  1076. seq_printf(s,
  1077. "%10d %10d %4o %10lu %10lu %5u %5u %5u %5u %5u %5u %10llu %10llu %10llu\n",
  1078. msq->q_perm.key,
  1079. msq->q_perm.id,
  1080. msq->q_perm.mode,
  1081. msq->q_cbytes,
  1082. msq->q_qnum,
  1083. pid_nr_ns(msq->q_lspid, pid_ns),
  1084. pid_nr_ns(msq->q_lrpid, pid_ns),
  1085. from_kuid_munged(user_ns, msq->q_perm.uid),
  1086. from_kgid_munged(user_ns, msq->q_perm.gid),
  1087. from_kuid_munged(user_ns, msq->q_perm.cuid),
  1088. from_kgid_munged(user_ns, msq->q_perm.cgid),
  1089. msq->q_stime,
  1090. msq->q_rtime,
  1091. msq->q_ctime);
  1092. return 0;
  1093. }
  1094. #endif
  1095. int __init msg_init(void)
  1096. {
  1097. const int err = msg_init_ns(&init_ipc_ns);
  1098. ipc_init_proc_interface("sysvipc/msg",
  1099. " key msqid perms cbytes qnum lspid lrpid uid gid cuid cgid stime rtime ctime\n",
  1100. IPC_MSG_IDS, sysvipc_msg_proc_show);
  1101. return err;
  1102. }