amdgpu_amdkfd_gfx_v8.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/firmware.h>
  26. #include <drm/drmP.h>
  27. #include "amdgpu.h"
  28. #include "amdgpu_amdkfd.h"
  29. #include "amdgpu_ucode.h"
  30. #include "gfx_v8_0.h"
  31. #include "gca/gfx_8_0_sh_mask.h"
  32. #include "gca/gfx_8_0_d.h"
  33. #include "gca/gfx_8_0_enum.h"
  34. #include "oss/oss_3_0_sh_mask.h"
  35. #include "oss/oss_3_0_d.h"
  36. #include "gmc/gmc_8_1_sh_mask.h"
  37. #include "gmc/gmc_8_1_d.h"
  38. #include "vi_structs.h"
  39. #include "vid.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. struct vi_sdma_mqd;
  46. /*
  47. * Register access functions
  48. */
  49. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  50. uint32_t sh_mem_config,
  51. uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
  52. uint32_t sh_mem_bases);
  53. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  54. unsigned int vmid);
  55. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  56. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  57. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  58. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  59. uint32_t queue_id, uint32_t __user *wptr,
  60. uint32_t wptr_shift, uint32_t wptr_mask,
  61. struct mm_struct *mm);
  62. static int kgd_hqd_dump(struct kgd_dev *kgd,
  63. uint32_t pipe_id, uint32_t queue_id,
  64. uint32_t (**dump)[2], uint32_t *n_regs);
  65. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  66. uint32_t __user *wptr, struct mm_struct *mm);
  67. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  68. uint32_t engine_id, uint32_t queue_id,
  69. uint32_t (**dump)[2], uint32_t *n_regs);
  70. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  71. uint32_t pipe_id, uint32_t queue_id);
  72. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  73. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  74. enum kfd_preempt_type reset_type,
  75. unsigned int utimeout, uint32_t pipe_id,
  76. uint32_t queue_id);
  77. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  78. unsigned int utimeout);
  79. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  80. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  81. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  82. unsigned int watch_point_id,
  83. uint32_t cntl_val,
  84. uint32_t addr_hi,
  85. uint32_t addr_lo);
  86. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  87. uint32_t gfx_index_val,
  88. uint32_t sq_cmd);
  89. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  90. unsigned int watch_point_id,
  91. unsigned int reg_offset);
  92. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  93. uint8_t vmid);
  94. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  95. uint8_t vmid);
  96. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  97. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  98. static void set_scratch_backing_va(struct kgd_dev *kgd,
  99. uint64_t va, uint32_t vmid);
  100. /* Because of REG_GET_FIELD() being used, we put this function in the
  101. * asic specific file.
  102. */
  103. static int get_tile_config(struct kgd_dev *kgd,
  104. struct tile_config *config)
  105. {
  106. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  107. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  108. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  109. MC_ARB_RAMCFG, NOOFBANK);
  110. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  111. MC_ARB_RAMCFG, NOOFRANKS);
  112. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  113. config->num_tile_configs =
  114. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  115. config->macro_tile_config_ptr =
  116. adev->gfx.config.macrotile_mode_array;
  117. config->num_macro_tile_configs =
  118. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  119. return 0;
  120. }
  121. static const struct kfd2kgd_calls kfd2kgd = {
  122. .init_gtt_mem_allocation = alloc_gtt_mem,
  123. .free_gtt_mem = free_gtt_mem,
  124. .get_vmem_size = get_vmem_size,
  125. .get_gpu_clock_counter = get_gpu_clock_counter,
  126. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  127. .alloc_pasid = amdgpu_vm_alloc_pasid,
  128. .free_pasid = amdgpu_vm_free_pasid,
  129. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  130. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  131. .init_pipeline = kgd_init_pipeline,
  132. .init_interrupts = kgd_init_interrupts,
  133. .hqd_load = kgd_hqd_load,
  134. .hqd_sdma_load = kgd_hqd_sdma_load,
  135. .hqd_dump = kgd_hqd_dump,
  136. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  137. .hqd_is_occupied = kgd_hqd_is_occupied,
  138. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  139. .hqd_destroy = kgd_hqd_destroy,
  140. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  141. .address_watch_disable = kgd_address_watch_disable,
  142. .address_watch_execute = kgd_address_watch_execute,
  143. .wave_control_execute = kgd_wave_control_execute,
  144. .address_watch_get_offset = kgd_address_watch_get_offset,
  145. .get_atc_vmid_pasid_mapping_pasid =
  146. get_atc_vmid_pasid_mapping_pasid,
  147. .get_atc_vmid_pasid_mapping_valid =
  148. get_atc_vmid_pasid_mapping_valid,
  149. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  150. .get_fw_version = get_fw_version,
  151. .set_scratch_backing_va = set_scratch_backing_va,
  152. .get_tile_config = get_tile_config,
  153. .get_cu_info = get_cu_info
  154. };
  155. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
  156. {
  157. return (struct kfd2kgd_calls *)&kfd2kgd;
  158. }
  159. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  160. {
  161. return (struct amdgpu_device *)kgd;
  162. }
  163. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  164. uint32_t queue, uint32_t vmid)
  165. {
  166. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  167. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  168. mutex_lock(&adev->srbm_mutex);
  169. WREG32(mmSRBM_GFX_CNTL, value);
  170. }
  171. static void unlock_srbm(struct kgd_dev *kgd)
  172. {
  173. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  174. WREG32(mmSRBM_GFX_CNTL, 0);
  175. mutex_unlock(&adev->srbm_mutex);
  176. }
  177. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  178. uint32_t queue_id)
  179. {
  180. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  181. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  182. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  183. lock_srbm(kgd, mec, pipe, queue_id, 0);
  184. }
  185. static void release_queue(struct kgd_dev *kgd)
  186. {
  187. unlock_srbm(kgd);
  188. }
  189. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  190. uint32_t sh_mem_config,
  191. uint32_t sh_mem_ape1_base,
  192. uint32_t sh_mem_ape1_limit,
  193. uint32_t sh_mem_bases)
  194. {
  195. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  196. lock_srbm(kgd, 0, 0, 0, vmid);
  197. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  198. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  199. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  200. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  201. unlock_srbm(kgd);
  202. }
  203. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  204. unsigned int vmid)
  205. {
  206. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  207. /*
  208. * We have to assume that there is no outstanding mapping.
  209. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  210. * a mapping is in progress or because a mapping finished
  211. * and the SW cleared it.
  212. * So the protocol is to always wait & clear.
  213. */
  214. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  215. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  216. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  217. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  218. cpu_relax();
  219. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  220. /* Mapping vmid to pasid also for IH block */
  221. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  222. return 0;
  223. }
  224. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  225. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  226. {
  227. /* amdgpu owns the per-pipe state */
  228. return 0;
  229. }
  230. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  231. {
  232. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  233. uint32_t mec;
  234. uint32_t pipe;
  235. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  236. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  237. lock_srbm(kgd, mec, pipe, 0, 0);
  238. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
  239. unlock_srbm(kgd);
  240. return 0;
  241. }
  242. static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
  243. {
  244. uint32_t retval;
  245. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  246. m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  247. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  248. return retval;
  249. }
  250. static inline struct vi_mqd *get_mqd(void *mqd)
  251. {
  252. return (struct vi_mqd *)mqd;
  253. }
  254. static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
  255. {
  256. return (struct vi_sdma_mqd *)mqd;
  257. }
  258. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  259. uint32_t queue_id, uint32_t __user *wptr,
  260. uint32_t wptr_shift, uint32_t wptr_mask,
  261. struct mm_struct *mm)
  262. {
  263. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  264. struct vi_mqd *m;
  265. uint32_t *mqd_hqd;
  266. uint32_t reg, wptr_val, data;
  267. bool valid_wptr = false;
  268. m = get_mqd(mqd);
  269. acquire_queue(kgd, pipe_id, queue_id);
  270. /* HIQ is set during driver init period with vmid set to 0*/
  271. if (m->cp_hqd_vmid == 0) {
  272. uint32_t value, mec, pipe;
  273. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  274. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  275. pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
  276. mec, pipe, queue_id);
  277. value = RREG32(mmRLC_CP_SCHEDULERS);
  278. value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
  279. ((mec << 5) | (pipe << 3) | queue_id | 0x80));
  280. WREG32(mmRLC_CP_SCHEDULERS, value);
  281. }
  282. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
  283. mqd_hqd = &m->cp_mqd_base_addr_lo;
  284. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
  285. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  286. /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
  287. * This is safe since EOP RPTR==WPTR for any inactive HQD
  288. * on ASICs that do not support context-save.
  289. * EOP writes/reads can start anywhere in the ring.
  290. */
  291. if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
  292. WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
  293. WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
  294. WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
  295. }
  296. for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
  297. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  298. /* Copy userspace write pointer value to register.
  299. * Activate doorbell logic to monitor subsequent changes.
  300. */
  301. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  302. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  303. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  304. /* read_user_ptr may take the mm->mmap_sem.
  305. * release srbm_mutex to avoid circular dependency between
  306. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  307. */
  308. release_queue(kgd);
  309. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  310. acquire_queue(kgd, pipe_id, queue_id);
  311. if (valid_wptr)
  312. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  313. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  314. WREG32(mmCP_HQD_ACTIVE, data);
  315. release_queue(kgd);
  316. return 0;
  317. }
  318. static int kgd_hqd_dump(struct kgd_dev *kgd,
  319. uint32_t pipe_id, uint32_t queue_id,
  320. uint32_t (**dump)[2], uint32_t *n_regs)
  321. {
  322. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  323. uint32_t i = 0, reg;
  324. #define HQD_N_REGS (54+4)
  325. #define DUMP_REG(addr) do { \
  326. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  327. break; \
  328. (*dump)[i][0] = (addr) << 2; \
  329. (*dump)[i++][1] = RREG32(addr); \
  330. } while (0)
  331. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  332. if (*dump == NULL)
  333. return -ENOMEM;
  334. acquire_queue(kgd, pipe_id, queue_id);
  335. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  336. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  337. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  338. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  339. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
  340. DUMP_REG(reg);
  341. release_queue(kgd);
  342. WARN_ON_ONCE(i != HQD_N_REGS);
  343. *n_regs = i;
  344. return 0;
  345. }
  346. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  347. uint32_t __user *wptr, struct mm_struct *mm)
  348. {
  349. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  350. struct vi_sdma_mqd *m;
  351. unsigned long end_jiffies;
  352. uint32_t sdma_base_addr;
  353. uint32_t data;
  354. m = get_sdma_mqd(mqd);
  355. sdma_base_addr = get_sdma_base_addr(m);
  356. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  357. m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  358. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  359. while (true) {
  360. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  361. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  362. break;
  363. if (time_after(jiffies, end_jiffies))
  364. return -ETIME;
  365. usleep_range(500, 1000);
  366. }
  367. if (m->sdma_engine_id) {
  368. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  369. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  370. RESUME_CTX, 0);
  371. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  372. } else {
  373. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  374. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  375. RESUME_CTX, 0);
  376. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  377. }
  378. data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
  379. ENABLE, 1);
  380. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  381. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
  382. if (read_user_wptr(mm, wptr, data))
  383. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  384. else
  385. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  386. m->sdmax_rlcx_rb_rptr);
  387. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  388. m->sdmax_rlcx_virtual_addr);
  389. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
  390. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  391. m->sdmax_rlcx_rb_base_hi);
  392. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  393. m->sdmax_rlcx_rb_rptr_addr_lo);
  394. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  395. m->sdmax_rlcx_rb_rptr_addr_hi);
  396. data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
  397. RB_ENABLE, 1);
  398. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  399. return 0;
  400. }
  401. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  402. uint32_t engine_id, uint32_t queue_id,
  403. uint32_t (**dump)[2], uint32_t *n_regs)
  404. {
  405. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  406. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  407. queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  408. uint32_t i = 0, reg;
  409. #undef HQD_N_REGS
  410. #define HQD_N_REGS (19+4+2+3+7)
  411. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  412. if (*dump == NULL)
  413. return -ENOMEM;
  414. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  415. DUMP_REG(sdma_offset + reg);
  416. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  417. reg++)
  418. DUMP_REG(sdma_offset + reg);
  419. for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
  420. reg++)
  421. DUMP_REG(sdma_offset + reg);
  422. for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
  423. reg++)
  424. DUMP_REG(sdma_offset + reg);
  425. for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
  426. reg++)
  427. DUMP_REG(sdma_offset + reg);
  428. WARN_ON_ONCE(i != HQD_N_REGS);
  429. *n_regs = i;
  430. return 0;
  431. }
  432. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  433. uint32_t pipe_id, uint32_t queue_id)
  434. {
  435. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  436. uint32_t act;
  437. bool retval = false;
  438. uint32_t low, high;
  439. acquire_queue(kgd, pipe_id, queue_id);
  440. act = RREG32(mmCP_HQD_ACTIVE);
  441. if (act) {
  442. low = lower_32_bits(queue_address >> 8);
  443. high = upper_32_bits(queue_address >> 8);
  444. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  445. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  446. retval = true;
  447. }
  448. release_queue(kgd);
  449. return retval;
  450. }
  451. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  452. {
  453. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  454. struct vi_sdma_mqd *m;
  455. uint32_t sdma_base_addr;
  456. uint32_t sdma_rlc_rb_cntl;
  457. m = get_sdma_mqd(mqd);
  458. sdma_base_addr = get_sdma_base_addr(m);
  459. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  460. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  461. return true;
  462. return false;
  463. }
  464. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  465. enum kfd_preempt_type reset_type,
  466. unsigned int utimeout, uint32_t pipe_id,
  467. uint32_t queue_id)
  468. {
  469. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  470. uint32_t temp;
  471. enum hqd_dequeue_request_type type;
  472. unsigned long flags, end_jiffies;
  473. int retry;
  474. struct vi_mqd *m = get_mqd(mqd);
  475. acquire_queue(kgd, pipe_id, queue_id);
  476. if (m->cp_hqd_vmid == 0)
  477. WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
  478. switch (reset_type) {
  479. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  480. type = DRAIN_PIPE;
  481. break;
  482. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  483. type = RESET_WAVES;
  484. break;
  485. default:
  486. type = DRAIN_PIPE;
  487. break;
  488. }
  489. /* Workaround: If IQ timer is active and the wait time is close to or
  490. * equal to 0, dequeueing is not safe. Wait until either the wait time
  491. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  492. * cleared before continuing. Also, ensure wait times are set to at
  493. * least 0x3.
  494. */
  495. local_irq_save(flags);
  496. preempt_disable();
  497. retry = 5000; /* wait for 500 usecs at maximum */
  498. while (true) {
  499. temp = RREG32(mmCP_HQD_IQ_TIMER);
  500. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  501. pr_debug("HW is processing IQ\n");
  502. goto loop;
  503. }
  504. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  505. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  506. == 3) /* SEM-rearm is safe */
  507. break;
  508. /* Wait time 3 is safe for CP, but our MMIO read/write
  509. * time is close to 1 microsecond, so check for 10 to
  510. * leave more buffer room
  511. */
  512. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  513. >= 10)
  514. break;
  515. pr_debug("IQ timer is active\n");
  516. } else
  517. break;
  518. loop:
  519. if (!retry) {
  520. pr_err("CP HQD IQ timer status time out\n");
  521. break;
  522. }
  523. ndelay(100);
  524. --retry;
  525. }
  526. retry = 1000;
  527. while (true) {
  528. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  529. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  530. break;
  531. pr_debug("Dequeue request is pending\n");
  532. if (!retry) {
  533. pr_err("CP HQD dequeue request time out\n");
  534. break;
  535. }
  536. ndelay(100);
  537. --retry;
  538. }
  539. local_irq_restore(flags);
  540. preempt_enable();
  541. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  542. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  543. while (true) {
  544. temp = RREG32(mmCP_HQD_ACTIVE);
  545. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  546. break;
  547. if (time_after(jiffies, end_jiffies)) {
  548. pr_err("cp queue preemption time out.\n");
  549. release_queue(kgd);
  550. return -ETIME;
  551. }
  552. usleep_range(500, 1000);
  553. }
  554. release_queue(kgd);
  555. return 0;
  556. }
  557. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  558. unsigned int utimeout)
  559. {
  560. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  561. struct vi_sdma_mqd *m;
  562. uint32_t sdma_base_addr;
  563. uint32_t temp;
  564. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  565. m = get_sdma_mqd(mqd);
  566. sdma_base_addr = get_sdma_base_addr(m);
  567. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  568. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  569. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  570. while (true) {
  571. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  572. if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  573. break;
  574. if (time_after(jiffies, end_jiffies))
  575. return -ETIME;
  576. usleep_range(500, 1000);
  577. }
  578. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  579. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  580. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  581. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  582. m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  583. return 0;
  584. }
  585. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  586. uint8_t vmid)
  587. {
  588. uint32_t reg;
  589. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  590. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  591. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  592. }
  593. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  594. uint8_t vmid)
  595. {
  596. uint32_t reg;
  597. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  598. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  599. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  600. }
  601. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  602. {
  603. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  604. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  605. }
  606. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  607. {
  608. return 0;
  609. }
  610. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  611. unsigned int watch_point_id,
  612. uint32_t cntl_val,
  613. uint32_t addr_hi,
  614. uint32_t addr_lo)
  615. {
  616. return 0;
  617. }
  618. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  619. uint32_t gfx_index_val,
  620. uint32_t sq_cmd)
  621. {
  622. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  623. uint32_t data = 0;
  624. mutex_lock(&adev->grbm_idx_mutex);
  625. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  626. WREG32(mmSQ_CMD, sq_cmd);
  627. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  628. INSTANCE_BROADCAST_WRITES, 1);
  629. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  630. SH_BROADCAST_WRITES, 1);
  631. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  632. SE_BROADCAST_WRITES, 1);
  633. WREG32(mmGRBM_GFX_INDEX, data);
  634. mutex_unlock(&adev->grbm_idx_mutex);
  635. return 0;
  636. }
  637. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  638. unsigned int watch_point_id,
  639. unsigned int reg_offset)
  640. {
  641. return 0;
  642. }
  643. static void set_scratch_backing_va(struct kgd_dev *kgd,
  644. uint64_t va, uint32_t vmid)
  645. {
  646. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  647. lock_srbm(kgd, 0, 0, 0, vmid);
  648. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  649. unlock_srbm(kgd);
  650. }
  651. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  652. {
  653. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  654. const union amdgpu_firmware_header *hdr;
  655. BUG_ON(kgd == NULL);
  656. switch (type) {
  657. case KGD_ENGINE_PFP:
  658. hdr = (const union amdgpu_firmware_header *)
  659. adev->gfx.pfp_fw->data;
  660. break;
  661. case KGD_ENGINE_ME:
  662. hdr = (const union amdgpu_firmware_header *)
  663. adev->gfx.me_fw->data;
  664. break;
  665. case KGD_ENGINE_CE:
  666. hdr = (const union amdgpu_firmware_header *)
  667. adev->gfx.ce_fw->data;
  668. break;
  669. case KGD_ENGINE_MEC1:
  670. hdr = (const union amdgpu_firmware_header *)
  671. adev->gfx.mec_fw->data;
  672. break;
  673. case KGD_ENGINE_MEC2:
  674. hdr = (const union amdgpu_firmware_header *)
  675. adev->gfx.mec2_fw->data;
  676. break;
  677. case KGD_ENGINE_RLC:
  678. hdr = (const union amdgpu_firmware_header *)
  679. adev->gfx.rlc_fw->data;
  680. break;
  681. case KGD_ENGINE_SDMA1:
  682. hdr = (const union amdgpu_firmware_header *)
  683. adev->sdma.instance[0].fw->data;
  684. break;
  685. case KGD_ENGINE_SDMA2:
  686. hdr = (const union amdgpu_firmware_header *)
  687. adev->sdma.instance[1].fw->data;
  688. break;
  689. default:
  690. return 0;
  691. }
  692. if (hdr == NULL)
  693. return 0;
  694. /* Only 12 bit in use*/
  695. return hdr->common.ucode_version;
  696. }