amdgpu_amdkfd_gfx_v7.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/fdtable.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_amdkfd.h"
  28. #include "cikd.h"
  29. #include "cik_sdma.h"
  30. #include "amdgpu_ucode.h"
  31. #include "gfx_v7_0.h"
  32. #include "gca/gfx_7_2_d.h"
  33. #include "gca/gfx_7_2_enum.h"
  34. #include "gca/gfx_7_2_sh_mask.h"
  35. #include "oss/oss_2_0_d.h"
  36. #include "oss/oss_2_0_sh_mask.h"
  37. #include "gmc/gmc_7_1_d.h"
  38. #include "gmc/gmc_7_1_sh_mask.h"
  39. #include "cik_structs.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. enum {
  46. MAX_TRAPID = 8, /* 3 bits in the bitfield. */
  47. MAX_WATCH_ADDRESSES = 4
  48. };
  49. enum {
  50. ADDRESS_WATCH_REG_ADDR_HI = 0,
  51. ADDRESS_WATCH_REG_ADDR_LO,
  52. ADDRESS_WATCH_REG_CNTL,
  53. ADDRESS_WATCH_REG_MAX
  54. };
  55. /* not defined in the CI/KV reg file */
  56. enum {
  57. ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  58. ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  59. ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  60. /* extend the mask to 26 bits to match the low address field */
  61. ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  62. ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  63. };
  64. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  65. mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  66. mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  67. mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  68. mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  69. };
  70. union TCP_WATCH_CNTL_BITS {
  71. struct {
  72. uint32_t mask:24;
  73. uint32_t vmid:4;
  74. uint32_t atc:1;
  75. uint32_t mode:2;
  76. uint32_t valid:1;
  77. } bitfields, bits;
  78. uint32_t u32All;
  79. signed int i32All;
  80. float f32All;
  81. };
  82. /*
  83. * Register access functions
  84. */
  85. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  86. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  87. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  88. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  89. unsigned int vmid);
  90. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  91. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  92. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  93. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  94. uint32_t queue_id, uint32_t __user *wptr,
  95. uint32_t wptr_shift, uint32_t wptr_mask,
  96. struct mm_struct *mm);
  97. static int kgd_hqd_dump(struct kgd_dev *kgd,
  98. uint32_t pipe_id, uint32_t queue_id,
  99. uint32_t (**dump)[2], uint32_t *n_regs);
  100. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  101. uint32_t __user *wptr, struct mm_struct *mm);
  102. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  103. uint32_t engine_id, uint32_t queue_id,
  104. uint32_t (**dump)[2], uint32_t *n_regs);
  105. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  106. uint32_t pipe_id, uint32_t queue_id);
  107. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  108. enum kfd_preempt_type reset_type,
  109. unsigned int utimeout, uint32_t pipe_id,
  110. uint32_t queue_id);
  111. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  112. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  113. unsigned int utimeout);
  114. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  115. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  116. unsigned int watch_point_id,
  117. uint32_t cntl_val,
  118. uint32_t addr_hi,
  119. uint32_t addr_lo);
  120. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  121. uint32_t gfx_index_val,
  122. uint32_t sq_cmd);
  123. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  124. unsigned int watch_point_id,
  125. unsigned int reg_offset);
  126. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  127. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  128. uint8_t vmid);
  129. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  130. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  131. static void set_scratch_backing_va(struct kgd_dev *kgd,
  132. uint64_t va, uint32_t vmid);
  133. /* Because of REG_GET_FIELD() being used, we put this function in the
  134. * asic specific file.
  135. */
  136. static int get_tile_config(struct kgd_dev *kgd,
  137. struct tile_config *config)
  138. {
  139. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  140. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  141. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  142. MC_ARB_RAMCFG, NOOFBANK);
  143. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  144. MC_ARB_RAMCFG, NOOFRANKS);
  145. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  146. config->num_tile_configs =
  147. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  148. config->macro_tile_config_ptr =
  149. adev->gfx.config.macrotile_mode_array;
  150. config->num_macro_tile_configs =
  151. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  152. return 0;
  153. }
  154. static const struct kfd2kgd_calls kfd2kgd = {
  155. .init_gtt_mem_allocation = alloc_gtt_mem,
  156. .free_gtt_mem = free_gtt_mem,
  157. .get_vmem_size = get_vmem_size,
  158. .get_gpu_clock_counter = get_gpu_clock_counter,
  159. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  160. .alloc_pasid = amdgpu_vm_alloc_pasid,
  161. .free_pasid = amdgpu_vm_free_pasid,
  162. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  163. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  164. .init_pipeline = kgd_init_pipeline,
  165. .init_interrupts = kgd_init_interrupts,
  166. .hqd_load = kgd_hqd_load,
  167. .hqd_sdma_load = kgd_hqd_sdma_load,
  168. .hqd_dump = kgd_hqd_dump,
  169. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  170. .hqd_is_occupied = kgd_hqd_is_occupied,
  171. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  172. .hqd_destroy = kgd_hqd_destroy,
  173. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  174. .address_watch_disable = kgd_address_watch_disable,
  175. .address_watch_execute = kgd_address_watch_execute,
  176. .wave_control_execute = kgd_wave_control_execute,
  177. .address_watch_get_offset = kgd_address_watch_get_offset,
  178. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  179. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  180. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  181. .get_fw_version = get_fw_version,
  182. .set_scratch_backing_va = set_scratch_backing_va,
  183. .get_tile_config = get_tile_config,
  184. .get_cu_info = get_cu_info
  185. };
  186. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
  187. {
  188. return (struct kfd2kgd_calls *)&kfd2kgd;
  189. }
  190. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  191. {
  192. return (struct amdgpu_device *)kgd;
  193. }
  194. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  195. uint32_t queue, uint32_t vmid)
  196. {
  197. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  198. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  199. mutex_lock(&adev->srbm_mutex);
  200. WREG32(mmSRBM_GFX_CNTL, value);
  201. }
  202. static void unlock_srbm(struct kgd_dev *kgd)
  203. {
  204. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  205. WREG32(mmSRBM_GFX_CNTL, 0);
  206. mutex_unlock(&adev->srbm_mutex);
  207. }
  208. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  209. uint32_t queue_id)
  210. {
  211. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  212. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  213. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  214. lock_srbm(kgd, mec, pipe, queue_id, 0);
  215. }
  216. static void release_queue(struct kgd_dev *kgd)
  217. {
  218. unlock_srbm(kgd);
  219. }
  220. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  221. uint32_t sh_mem_config,
  222. uint32_t sh_mem_ape1_base,
  223. uint32_t sh_mem_ape1_limit,
  224. uint32_t sh_mem_bases)
  225. {
  226. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  227. lock_srbm(kgd, 0, 0, 0, vmid);
  228. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  229. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  230. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  231. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  232. unlock_srbm(kgd);
  233. }
  234. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  235. unsigned int vmid)
  236. {
  237. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  238. /*
  239. * We have to assume that there is no outstanding mapping.
  240. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  241. * a mapping is in progress or because a mapping finished and the
  242. * SW cleared it. So the protocol is to always wait & clear.
  243. */
  244. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  245. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  246. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  247. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  248. cpu_relax();
  249. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  250. /* Mapping vmid to pasid also for IH block */
  251. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  252. return 0;
  253. }
  254. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  255. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  256. {
  257. /* amdgpu owns the per-pipe state */
  258. return 0;
  259. }
  260. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  261. {
  262. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  263. uint32_t mec;
  264. uint32_t pipe;
  265. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  266. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  267. lock_srbm(kgd, mec, pipe, 0, 0);
  268. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
  269. CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
  270. unlock_srbm(kgd);
  271. return 0;
  272. }
  273. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  274. {
  275. uint32_t retval;
  276. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  277. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  278. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  279. return retval;
  280. }
  281. static inline struct cik_mqd *get_mqd(void *mqd)
  282. {
  283. return (struct cik_mqd *)mqd;
  284. }
  285. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  286. {
  287. return (struct cik_sdma_rlc_registers *)mqd;
  288. }
  289. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  290. uint32_t queue_id, uint32_t __user *wptr,
  291. uint32_t wptr_shift, uint32_t wptr_mask,
  292. struct mm_struct *mm)
  293. {
  294. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  295. struct cik_mqd *m;
  296. uint32_t *mqd_hqd;
  297. uint32_t reg, wptr_val, data;
  298. bool valid_wptr = false;
  299. m = get_mqd(mqd);
  300. acquire_queue(kgd, pipe_id, queue_id);
  301. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
  302. mqd_hqd = &m->cp_mqd_base_addr_lo;
  303. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  304. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  305. /* Copy userspace write pointer value to register.
  306. * Activate doorbell logic to monitor subsequent changes.
  307. */
  308. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  309. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  310. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  311. /* read_user_ptr may take the mm->mmap_sem.
  312. * release srbm_mutex to avoid circular dependency between
  313. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  314. */
  315. release_queue(kgd);
  316. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  317. acquire_queue(kgd, pipe_id, queue_id);
  318. if (valid_wptr)
  319. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  320. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  321. WREG32(mmCP_HQD_ACTIVE, data);
  322. release_queue(kgd);
  323. return 0;
  324. }
  325. static int kgd_hqd_dump(struct kgd_dev *kgd,
  326. uint32_t pipe_id, uint32_t queue_id,
  327. uint32_t (**dump)[2], uint32_t *n_regs)
  328. {
  329. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  330. uint32_t i = 0, reg;
  331. #define HQD_N_REGS (35+4)
  332. #define DUMP_REG(addr) do { \
  333. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  334. break; \
  335. (*dump)[i][0] = (addr) << 2; \
  336. (*dump)[i++][1] = RREG32(addr); \
  337. } while (0)
  338. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  339. if (*dump == NULL)
  340. return -ENOMEM;
  341. acquire_queue(kgd, pipe_id, queue_id);
  342. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  343. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  344. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  345. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  346. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  347. DUMP_REG(reg);
  348. release_queue(kgd);
  349. WARN_ON_ONCE(i != HQD_N_REGS);
  350. *n_regs = i;
  351. return 0;
  352. }
  353. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  354. uint32_t __user *wptr, struct mm_struct *mm)
  355. {
  356. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  357. struct cik_sdma_rlc_registers *m;
  358. unsigned long end_jiffies;
  359. uint32_t sdma_base_addr;
  360. uint32_t data;
  361. m = get_sdma_mqd(mqd);
  362. sdma_base_addr = get_sdma_base_addr(m);
  363. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  364. m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  365. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  366. while (true) {
  367. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  368. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  369. break;
  370. if (time_after(jiffies, end_jiffies))
  371. return -ETIME;
  372. usleep_range(500, 1000);
  373. }
  374. if (m->sdma_engine_id) {
  375. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  376. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  377. RESUME_CTX, 0);
  378. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  379. } else {
  380. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  381. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  382. RESUME_CTX, 0);
  383. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  384. }
  385. data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
  386. ENABLE, 1);
  387. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  388. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
  389. if (read_user_wptr(mm, wptr, data))
  390. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  391. else
  392. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  393. m->sdma_rlc_rb_rptr);
  394. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  395. m->sdma_rlc_virtual_addr);
  396. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
  397. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  398. m->sdma_rlc_rb_base_hi);
  399. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  400. m->sdma_rlc_rb_rptr_addr_lo);
  401. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  402. m->sdma_rlc_rb_rptr_addr_hi);
  403. data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
  404. RB_ENABLE, 1);
  405. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  406. return 0;
  407. }
  408. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  409. uint32_t engine_id, uint32_t queue_id,
  410. uint32_t (**dump)[2], uint32_t *n_regs)
  411. {
  412. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  413. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  414. queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  415. uint32_t i = 0, reg;
  416. #undef HQD_N_REGS
  417. #define HQD_N_REGS (19+4)
  418. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  419. if (*dump == NULL)
  420. return -ENOMEM;
  421. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  422. DUMP_REG(sdma_offset + reg);
  423. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  424. reg++)
  425. DUMP_REG(sdma_offset + reg);
  426. WARN_ON_ONCE(i != HQD_N_REGS);
  427. *n_regs = i;
  428. return 0;
  429. }
  430. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  431. uint32_t pipe_id, uint32_t queue_id)
  432. {
  433. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  434. uint32_t act;
  435. bool retval = false;
  436. uint32_t low, high;
  437. acquire_queue(kgd, pipe_id, queue_id);
  438. act = RREG32(mmCP_HQD_ACTIVE);
  439. if (act) {
  440. low = lower_32_bits(queue_address >> 8);
  441. high = upper_32_bits(queue_address >> 8);
  442. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  443. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  444. retval = true;
  445. }
  446. release_queue(kgd);
  447. return retval;
  448. }
  449. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  450. {
  451. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  452. struct cik_sdma_rlc_registers *m;
  453. uint32_t sdma_base_addr;
  454. uint32_t sdma_rlc_rb_cntl;
  455. m = get_sdma_mqd(mqd);
  456. sdma_base_addr = get_sdma_base_addr(m);
  457. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  458. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  459. return true;
  460. return false;
  461. }
  462. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  463. enum kfd_preempt_type reset_type,
  464. unsigned int utimeout, uint32_t pipe_id,
  465. uint32_t queue_id)
  466. {
  467. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  468. uint32_t temp;
  469. enum hqd_dequeue_request_type type;
  470. unsigned long flags, end_jiffies;
  471. int retry;
  472. acquire_queue(kgd, pipe_id, queue_id);
  473. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
  474. switch (reset_type) {
  475. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  476. type = DRAIN_PIPE;
  477. break;
  478. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  479. type = RESET_WAVES;
  480. break;
  481. default:
  482. type = DRAIN_PIPE;
  483. break;
  484. }
  485. /* Workaround: If IQ timer is active and the wait time is close to or
  486. * equal to 0, dequeueing is not safe. Wait until either the wait time
  487. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  488. * cleared before continuing. Also, ensure wait times are set to at
  489. * least 0x3.
  490. */
  491. local_irq_save(flags);
  492. preempt_disable();
  493. retry = 5000; /* wait for 500 usecs at maximum */
  494. while (true) {
  495. temp = RREG32(mmCP_HQD_IQ_TIMER);
  496. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  497. pr_debug("HW is processing IQ\n");
  498. goto loop;
  499. }
  500. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  501. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  502. == 3) /* SEM-rearm is safe */
  503. break;
  504. /* Wait time 3 is safe for CP, but our MMIO read/write
  505. * time is close to 1 microsecond, so check for 10 to
  506. * leave more buffer room
  507. */
  508. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  509. >= 10)
  510. break;
  511. pr_debug("IQ timer is active\n");
  512. } else
  513. break;
  514. loop:
  515. if (!retry) {
  516. pr_err("CP HQD IQ timer status time out\n");
  517. break;
  518. }
  519. ndelay(100);
  520. --retry;
  521. }
  522. retry = 1000;
  523. while (true) {
  524. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  525. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  526. break;
  527. pr_debug("Dequeue request is pending\n");
  528. if (!retry) {
  529. pr_err("CP HQD dequeue request time out\n");
  530. break;
  531. }
  532. ndelay(100);
  533. --retry;
  534. }
  535. local_irq_restore(flags);
  536. preempt_enable();
  537. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  538. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  539. while (true) {
  540. temp = RREG32(mmCP_HQD_ACTIVE);
  541. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  542. break;
  543. if (time_after(jiffies, end_jiffies)) {
  544. pr_err("cp queue preemption time out\n");
  545. release_queue(kgd);
  546. return -ETIME;
  547. }
  548. usleep_range(500, 1000);
  549. }
  550. release_queue(kgd);
  551. return 0;
  552. }
  553. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  554. unsigned int utimeout)
  555. {
  556. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  557. struct cik_sdma_rlc_registers *m;
  558. uint32_t sdma_base_addr;
  559. uint32_t temp;
  560. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  561. m = get_sdma_mqd(mqd);
  562. sdma_base_addr = get_sdma_base_addr(m);
  563. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  564. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  565. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  566. while (true) {
  567. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  568. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  569. break;
  570. if (time_after(jiffies, end_jiffies))
  571. return -ETIME;
  572. usleep_range(500, 1000);
  573. }
  574. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  575. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  576. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  577. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  578. m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  579. return 0;
  580. }
  581. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  582. {
  583. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  584. union TCP_WATCH_CNTL_BITS cntl;
  585. unsigned int i;
  586. cntl.u32All = 0;
  587. cntl.bitfields.valid = 0;
  588. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  589. cntl.bitfields.atc = 1;
  590. /* Turning off this address until we set all the registers */
  591. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  592. WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
  593. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  594. return 0;
  595. }
  596. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  597. unsigned int watch_point_id,
  598. uint32_t cntl_val,
  599. uint32_t addr_hi,
  600. uint32_t addr_lo)
  601. {
  602. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  603. union TCP_WATCH_CNTL_BITS cntl;
  604. cntl.u32All = cntl_val;
  605. /* Turning off this watch point until we set all the registers */
  606. cntl.bitfields.valid = 0;
  607. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  608. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  609. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  610. ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
  611. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  612. ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
  613. /* Enable the watch point */
  614. cntl.bitfields.valid = 1;
  615. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  616. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  617. return 0;
  618. }
  619. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  620. uint32_t gfx_index_val,
  621. uint32_t sq_cmd)
  622. {
  623. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  624. uint32_t data;
  625. mutex_lock(&adev->grbm_idx_mutex);
  626. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  627. WREG32(mmSQ_CMD, sq_cmd);
  628. /* Restore the GRBM_GFX_INDEX register */
  629. data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
  630. GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
  631. GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
  632. WREG32(mmGRBM_GFX_INDEX, data);
  633. mutex_unlock(&adev->grbm_idx_mutex);
  634. return 0;
  635. }
  636. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  637. unsigned int watch_point_id,
  638. unsigned int reg_offset)
  639. {
  640. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
  641. }
  642. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  643. uint8_t vmid)
  644. {
  645. uint32_t reg;
  646. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  647. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  648. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  649. }
  650. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  651. uint8_t vmid)
  652. {
  653. uint32_t reg;
  654. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  655. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  656. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  657. }
  658. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  659. {
  660. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  661. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  662. }
  663. static void set_scratch_backing_va(struct kgd_dev *kgd,
  664. uint64_t va, uint32_t vmid)
  665. {
  666. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  667. lock_srbm(kgd, 0, 0, 0, vmid);
  668. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  669. unlock_srbm(kgd);
  670. }
  671. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  672. {
  673. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  674. const union amdgpu_firmware_header *hdr;
  675. BUG_ON(kgd == NULL);
  676. switch (type) {
  677. case KGD_ENGINE_PFP:
  678. hdr = (const union amdgpu_firmware_header *)
  679. adev->gfx.pfp_fw->data;
  680. break;
  681. case KGD_ENGINE_ME:
  682. hdr = (const union amdgpu_firmware_header *)
  683. adev->gfx.me_fw->data;
  684. break;
  685. case KGD_ENGINE_CE:
  686. hdr = (const union amdgpu_firmware_header *)
  687. adev->gfx.ce_fw->data;
  688. break;
  689. case KGD_ENGINE_MEC1:
  690. hdr = (const union amdgpu_firmware_header *)
  691. adev->gfx.mec_fw->data;
  692. break;
  693. case KGD_ENGINE_MEC2:
  694. hdr = (const union amdgpu_firmware_header *)
  695. adev->gfx.mec2_fw->data;
  696. break;
  697. case KGD_ENGINE_RLC:
  698. hdr = (const union amdgpu_firmware_header *)
  699. adev->gfx.rlc_fw->data;
  700. break;
  701. case KGD_ENGINE_SDMA1:
  702. hdr = (const union amdgpu_firmware_header *)
  703. adev->sdma.instance[0].fw->data;
  704. break;
  705. case KGD_ENGINE_SDMA2:
  706. hdr = (const union amdgpu_firmware_header *)
  707. adev->sdma.instance[1].fw->data;
  708. break;
  709. default:
  710. return 0;
  711. }
  712. if (hdr == NULL)
  713. return 0;
  714. /* Only 12 bit in use*/
  715. return hdr->common.ucode_version;
  716. }