spi.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147
  1. /*
  2. * SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. * Copyright (C) 2008 Secret Lab Technologies Ltd.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. */
  17. #include <linux/kernel.h>
  18. #include <linux/device.h>
  19. #include <linux/init.h>
  20. #include <linux/cache.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/mutex.h>
  24. #include <linux/of_device.h>
  25. #include <linux/of_irq.h>
  26. #include <linux/clk/clk-conf.h>
  27. #include <linux/slab.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/spi/spi.h>
  30. #include <linux/of_gpio.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/pm_domain.h>
  33. #include <linux/export.h>
  34. #include <linux/sched/rt.h>
  35. #include <linux/delay.h>
  36. #include <linux/kthread.h>
  37. #include <linux/ioport.h>
  38. #include <linux/acpi.h>
  39. #define CREATE_TRACE_POINTS
  40. #include <trace/events/spi.h>
  41. static void spidev_release(struct device *dev)
  42. {
  43. struct spi_device *spi = to_spi_device(dev);
  44. /* spi masters may cleanup for released devices */
  45. if (spi->master->cleanup)
  46. spi->master->cleanup(spi);
  47. spi_master_put(spi->master);
  48. kfree(spi);
  49. }
  50. static ssize_t
  51. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  52. {
  53. const struct spi_device *spi = to_spi_device(dev);
  54. int len;
  55. len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  56. if (len != -ENODEV)
  57. return len;
  58. return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  59. }
  60. static DEVICE_ATTR_RO(modalias);
  61. #define SPI_STATISTICS_ATTRS(field, file) \
  62. static ssize_t spi_master_##field##_show(struct device *dev, \
  63. struct device_attribute *attr, \
  64. char *buf) \
  65. { \
  66. struct spi_master *master = container_of(dev, \
  67. struct spi_master, dev); \
  68. return spi_statistics_##field##_show(&master->statistics, buf); \
  69. } \
  70. static struct device_attribute dev_attr_spi_master_##field = { \
  71. .attr = { .name = file, .mode = S_IRUGO }, \
  72. .show = spi_master_##field##_show, \
  73. }; \
  74. static ssize_t spi_device_##field##_show(struct device *dev, \
  75. struct device_attribute *attr, \
  76. char *buf) \
  77. { \
  78. struct spi_device *spi = to_spi_device(dev); \
  79. return spi_statistics_##field##_show(&spi->statistics, buf); \
  80. } \
  81. static struct device_attribute dev_attr_spi_device_##field = { \
  82. .attr = { .name = file, .mode = S_IRUGO }, \
  83. .show = spi_device_##field##_show, \
  84. }
  85. #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
  86. static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
  87. char *buf) \
  88. { \
  89. unsigned long flags; \
  90. ssize_t len; \
  91. spin_lock_irqsave(&stat->lock, flags); \
  92. len = sprintf(buf, format_string, stat->field); \
  93. spin_unlock_irqrestore(&stat->lock, flags); \
  94. return len; \
  95. } \
  96. SPI_STATISTICS_ATTRS(name, file)
  97. #define SPI_STATISTICS_SHOW(field, format_string) \
  98. SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
  99. field, format_string)
  100. SPI_STATISTICS_SHOW(messages, "%lu");
  101. SPI_STATISTICS_SHOW(transfers, "%lu");
  102. SPI_STATISTICS_SHOW(errors, "%lu");
  103. SPI_STATISTICS_SHOW(timedout, "%lu");
  104. SPI_STATISTICS_SHOW(spi_sync, "%lu");
  105. SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
  106. SPI_STATISTICS_SHOW(spi_async, "%lu");
  107. SPI_STATISTICS_SHOW(bytes, "%llu");
  108. SPI_STATISTICS_SHOW(bytes_rx, "%llu");
  109. SPI_STATISTICS_SHOW(bytes_tx, "%llu");
  110. #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
  111. SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
  112. "transfer_bytes_histo_" number, \
  113. transfer_bytes_histo[index], "%lu")
  114. SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
  115. SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
  116. SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
  117. SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
  118. SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
  119. SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
  120. SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
  121. SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
  122. SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
  123. SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
  124. SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
  125. SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
  126. SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
  127. SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
  128. SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
  129. SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
  130. SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
  131. SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
  132. static struct attribute *spi_dev_attrs[] = {
  133. &dev_attr_modalias.attr,
  134. NULL,
  135. };
  136. static const struct attribute_group spi_dev_group = {
  137. .attrs = spi_dev_attrs,
  138. };
  139. static struct attribute *spi_device_statistics_attrs[] = {
  140. &dev_attr_spi_device_messages.attr,
  141. &dev_attr_spi_device_transfers.attr,
  142. &dev_attr_spi_device_errors.attr,
  143. &dev_attr_spi_device_timedout.attr,
  144. &dev_attr_spi_device_spi_sync.attr,
  145. &dev_attr_spi_device_spi_sync_immediate.attr,
  146. &dev_attr_spi_device_spi_async.attr,
  147. &dev_attr_spi_device_bytes.attr,
  148. &dev_attr_spi_device_bytes_rx.attr,
  149. &dev_attr_spi_device_bytes_tx.attr,
  150. &dev_attr_spi_device_transfer_bytes_histo0.attr,
  151. &dev_attr_spi_device_transfer_bytes_histo1.attr,
  152. &dev_attr_spi_device_transfer_bytes_histo2.attr,
  153. &dev_attr_spi_device_transfer_bytes_histo3.attr,
  154. &dev_attr_spi_device_transfer_bytes_histo4.attr,
  155. &dev_attr_spi_device_transfer_bytes_histo5.attr,
  156. &dev_attr_spi_device_transfer_bytes_histo6.attr,
  157. &dev_attr_spi_device_transfer_bytes_histo7.attr,
  158. &dev_attr_spi_device_transfer_bytes_histo8.attr,
  159. &dev_attr_spi_device_transfer_bytes_histo9.attr,
  160. &dev_attr_spi_device_transfer_bytes_histo10.attr,
  161. &dev_attr_spi_device_transfer_bytes_histo11.attr,
  162. &dev_attr_spi_device_transfer_bytes_histo12.attr,
  163. &dev_attr_spi_device_transfer_bytes_histo13.attr,
  164. &dev_attr_spi_device_transfer_bytes_histo14.attr,
  165. &dev_attr_spi_device_transfer_bytes_histo15.attr,
  166. &dev_attr_spi_device_transfer_bytes_histo16.attr,
  167. &dev_attr_spi_device_transfers_split_maxsize.attr,
  168. NULL,
  169. };
  170. static const struct attribute_group spi_device_statistics_group = {
  171. .name = "statistics",
  172. .attrs = spi_device_statistics_attrs,
  173. };
  174. static const struct attribute_group *spi_dev_groups[] = {
  175. &spi_dev_group,
  176. &spi_device_statistics_group,
  177. NULL,
  178. };
  179. static struct attribute *spi_master_statistics_attrs[] = {
  180. &dev_attr_spi_master_messages.attr,
  181. &dev_attr_spi_master_transfers.attr,
  182. &dev_attr_spi_master_errors.attr,
  183. &dev_attr_spi_master_timedout.attr,
  184. &dev_attr_spi_master_spi_sync.attr,
  185. &dev_attr_spi_master_spi_sync_immediate.attr,
  186. &dev_attr_spi_master_spi_async.attr,
  187. &dev_attr_spi_master_bytes.attr,
  188. &dev_attr_spi_master_bytes_rx.attr,
  189. &dev_attr_spi_master_bytes_tx.attr,
  190. &dev_attr_spi_master_transfer_bytes_histo0.attr,
  191. &dev_attr_spi_master_transfer_bytes_histo1.attr,
  192. &dev_attr_spi_master_transfer_bytes_histo2.attr,
  193. &dev_attr_spi_master_transfer_bytes_histo3.attr,
  194. &dev_attr_spi_master_transfer_bytes_histo4.attr,
  195. &dev_attr_spi_master_transfer_bytes_histo5.attr,
  196. &dev_attr_spi_master_transfer_bytes_histo6.attr,
  197. &dev_attr_spi_master_transfer_bytes_histo7.attr,
  198. &dev_attr_spi_master_transfer_bytes_histo8.attr,
  199. &dev_attr_spi_master_transfer_bytes_histo9.attr,
  200. &dev_attr_spi_master_transfer_bytes_histo10.attr,
  201. &dev_attr_spi_master_transfer_bytes_histo11.attr,
  202. &dev_attr_spi_master_transfer_bytes_histo12.attr,
  203. &dev_attr_spi_master_transfer_bytes_histo13.attr,
  204. &dev_attr_spi_master_transfer_bytes_histo14.attr,
  205. &dev_attr_spi_master_transfer_bytes_histo15.attr,
  206. &dev_attr_spi_master_transfer_bytes_histo16.attr,
  207. &dev_attr_spi_master_transfers_split_maxsize.attr,
  208. NULL,
  209. };
  210. static const struct attribute_group spi_master_statistics_group = {
  211. .name = "statistics",
  212. .attrs = spi_master_statistics_attrs,
  213. };
  214. static const struct attribute_group *spi_master_groups[] = {
  215. &spi_master_statistics_group,
  216. NULL,
  217. };
  218. void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
  219. struct spi_transfer *xfer,
  220. struct spi_master *master)
  221. {
  222. unsigned long flags;
  223. int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
  224. if (l2len < 0)
  225. l2len = 0;
  226. spin_lock_irqsave(&stats->lock, flags);
  227. stats->transfers++;
  228. stats->transfer_bytes_histo[l2len]++;
  229. stats->bytes += xfer->len;
  230. if ((xfer->tx_buf) &&
  231. (xfer->tx_buf != master->dummy_tx))
  232. stats->bytes_tx += xfer->len;
  233. if ((xfer->rx_buf) &&
  234. (xfer->rx_buf != master->dummy_rx))
  235. stats->bytes_rx += xfer->len;
  236. spin_unlock_irqrestore(&stats->lock, flags);
  237. }
  238. EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
  239. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  240. * and the sysfs version makes coldplug work too.
  241. */
  242. static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  243. const struct spi_device *sdev)
  244. {
  245. while (id->name[0]) {
  246. if (!strcmp(sdev->modalias, id->name))
  247. return id;
  248. id++;
  249. }
  250. return NULL;
  251. }
  252. const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  253. {
  254. const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  255. return spi_match_id(sdrv->id_table, sdev);
  256. }
  257. EXPORT_SYMBOL_GPL(spi_get_device_id);
  258. static int spi_match_device(struct device *dev, struct device_driver *drv)
  259. {
  260. const struct spi_device *spi = to_spi_device(dev);
  261. const struct spi_driver *sdrv = to_spi_driver(drv);
  262. /* Attempt an OF style match */
  263. if (of_driver_match_device(dev, drv))
  264. return 1;
  265. /* Then try ACPI */
  266. if (acpi_driver_match_device(dev, drv))
  267. return 1;
  268. if (sdrv->id_table)
  269. return !!spi_match_id(sdrv->id_table, spi);
  270. return strcmp(spi->modalias, drv->name) == 0;
  271. }
  272. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  273. {
  274. const struct spi_device *spi = to_spi_device(dev);
  275. int rc;
  276. rc = acpi_device_uevent_modalias(dev, env);
  277. if (rc != -ENODEV)
  278. return rc;
  279. add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
  280. return 0;
  281. }
  282. struct bus_type spi_bus_type = {
  283. .name = "spi",
  284. .dev_groups = spi_dev_groups,
  285. .match = spi_match_device,
  286. .uevent = spi_uevent,
  287. };
  288. EXPORT_SYMBOL_GPL(spi_bus_type);
  289. static int spi_drv_probe(struct device *dev)
  290. {
  291. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  292. struct spi_device *spi = to_spi_device(dev);
  293. int ret;
  294. ret = of_clk_set_defaults(dev->of_node, false);
  295. if (ret)
  296. return ret;
  297. if (dev->of_node) {
  298. spi->irq = of_irq_get(dev->of_node, 0);
  299. if (spi->irq == -EPROBE_DEFER)
  300. return -EPROBE_DEFER;
  301. if (spi->irq < 0)
  302. spi->irq = 0;
  303. }
  304. ret = dev_pm_domain_attach(dev, true);
  305. if (ret != -EPROBE_DEFER) {
  306. ret = sdrv->probe(spi);
  307. if (ret)
  308. dev_pm_domain_detach(dev, true);
  309. }
  310. return ret;
  311. }
  312. static int spi_drv_remove(struct device *dev)
  313. {
  314. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  315. int ret;
  316. ret = sdrv->remove(to_spi_device(dev));
  317. dev_pm_domain_detach(dev, true);
  318. return ret;
  319. }
  320. static void spi_drv_shutdown(struct device *dev)
  321. {
  322. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  323. sdrv->shutdown(to_spi_device(dev));
  324. }
  325. /**
  326. * __spi_register_driver - register a SPI driver
  327. * @owner: owner module of the driver to register
  328. * @sdrv: the driver to register
  329. * Context: can sleep
  330. *
  331. * Return: zero on success, else a negative error code.
  332. */
  333. int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
  334. {
  335. sdrv->driver.owner = owner;
  336. sdrv->driver.bus = &spi_bus_type;
  337. if (sdrv->probe)
  338. sdrv->driver.probe = spi_drv_probe;
  339. if (sdrv->remove)
  340. sdrv->driver.remove = spi_drv_remove;
  341. if (sdrv->shutdown)
  342. sdrv->driver.shutdown = spi_drv_shutdown;
  343. return driver_register(&sdrv->driver);
  344. }
  345. EXPORT_SYMBOL_GPL(__spi_register_driver);
  346. /*-------------------------------------------------------------------------*/
  347. /* SPI devices should normally not be created by SPI device drivers; that
  348. * would make them board-specific. Similarly with SPI master drivers.
  349. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  350. * with other readonly (flashable) information about mainboard devices.
  351. */
  352. struct boardinfo {
  353. struct list_head list;
  354. struct spi_board_info board_info;
  355. };
  356. static LIST_HEAD(board_list);
  357. static LIST_HEAD(spi_master_list);
  358. /*
  359. * Used to protect add/del opertion for board_info list and
  360. * spi_master list, and their matching process
  361. */
  362. static DEFINE_MUTEX(board_lock);
  363. /**
  364. * spi_alloc_device - Allocate a new SPI device
  365. * @master: Controller to which device is connected
  366. * Context: can sleep
  367. *
  368. * Allows a driver to allocate and initialize a spi_device without
  369. * registering it immediately. This allows a driver to directly
  370. * fill the spi_device with device parameters before calling
  371. * spi_add_device() on it.
  372. *
  373. * Caller is responsible to call spi_add_device() on the returned
  374. * spi_device structure to add it to the SPI master. If the caller
  375. * needs to discard the spi_device without adding it, then it should
  376. * call spi_dev_put() on it.
  377. *
  378. * Return: a pointer to the new device, or NULL.
  379. */
  380. struct spi_device *spi_alloc_device(struct spi_master *master)
  381. {
  382. struct spi_device *spi;
  383. if (!spi_master_get(master))
  384. return NULL;
  385. spi = kzalloc(sizeof(*spi), GFP_KERNEL);
  386. if (!spi) {
  387. spi_master_put(master);
  388. return NULL;
  389. }
  390. spi->master = master;
  391. spi->dev.parent = &master->dev;
  392. spi->dev.bus = &spi_bus_type;
  393. spi->dev.release = spidev_release;
  394. spi->cs_gpio = -ENOENT;
  395. spin_lock_init(&spi->statistics.lock);
  396. device_initialize(&spi->dev);
  397. return spi;
  398. }
  399. EXPORT_SYMBOL_GPL(spi_alloc_device);
  400. static void spi_dev_set_name(struct spi_device *spi)
  401. {
  402. struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
  403. if (adev) {
  404. dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
  405. return;
  406. }
  407. dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
  408. spi->chip_select);
  409. }
  410. static int spi_dev_check(struct device *dev, void *data)
  411. {
  412. struct spi_device *spi = to_spi_device(dev);
  413. struct spi_device *new_spi = data;
  414. if (spi->master == new_spi->master &&
  415. spi->chip_select == new_spi->chip_select)
  416. return -EBUSY;
  417. return 0;
  418. }
  419. /**
  420. * spi_add_device - Add spi_device allocated with spi_alloc_device
  421. * @spi: spi_device to register
  422. *
  423. * Companion function to spi_alloc_device. Devices allocated with
  424. * spi_alloc_device can be added onto the spi bus with this function.
  425. *
  426. * Return: 0 on success; negative errno on failure
  427. */
  428. int spi_add_device(struct spi_device *spi)
  429. {
  430. static DEFINE_MUTEX(spi_add_lock);
  431. struct spi_master *master = spi->master;
  432. struct device *dev = master->dev.parent;
  433. int status;
  434. /* Chipselects are numbered 0..max; validate. */
  435. if (spi->chip_select >= master->num_chipselect) {
  436. dev_err(dev, "cs%d >= max %d\n",
  437. spi->chip_select,
  438. master->num_chipselect);
  439. return -EINVAL;
  440. }
  441. /* Set the bus ID string */
  442. spi_dev_set_name(spi);
  443. /* We need to make sure there's no other device with this
  444. * chipselect **BEFORE** we call setup(), else we'll trash
  445. * its configuration. Lock against concurrent add() calls.
  446. */
  447. mutex_lock(&spi_add_lock);
  448. status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
  449. if (status) {
  450. dev_err(dev, "chipselect %d already in use\n",
  451. spi->chip_select);
  452. goto done;
  453. }
  454. if (master->cs_gpios)
  455. spi->cs_gpio = master->cs_gpios[spi->chip_select];
  456. /* Drivers may modify this initial i/o setup, but will
  457. * normally rely on the device being setup. Devices
  458. * using SPI_CS_HIGH can't coexist well otherwise...
  459. */
  460. status = spi_setup(spi);
  461. if (status < 0) {
  462. dev_err(dev, "can't setup %s, status %d\n",
  463. dev_name(&spi->dev), status);
  464. goto done;
  465. }
  466. /* Device may be bound to an active driver when this returns */
  467. status = device_add(&spi->dev);
  468. if (status < 0)
  469. dev_err(dev, "can't add %s, status %d\n",
  470. dev_name(&spi->dev), status);
  471. else
  472. dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
  473. done:
  474. mutex_unlock(&spi_add_lock);
  475. return status;
  476. }
  477. EXPORT_SYMBOL_GPL(spi_add_device);
  478. /**
  479. * spi_new_device - instantiate one new SPI device
  480. * @master: Controller to which device is connected
  481. * @chip: Describes the SPI device
  482. * Context: can sleep
  483. *
  484. * On typical mainboards, this is purely internal; and it's not needed
  485. * after board init creates the hard-wired devices. Some development
  486. * platforms may not be able to use spi_register_board_info though, and
  487. * this is exported so that for example a USB or parport based adapter
  488. * driver could add devices (which it would learn about out-of-band).
  489. *
  490. * Return: the new device, or NULL.
  491. */
  492. struct spi_device *spi_new_device(struct spi_master *master,
  493. struct spi_board_info *chip)
  494. {
  495. struct spi_device *proxy;
  496. int status;
  497. /* NOTE: caller did any chip->bus_num checks necessary.
  498. *
  499. * Also, unless we change the return value convention to use
  500. * error-or-pointer (not NULL-or-pointer), troubleshootability
  501. * suggests syslogged diagnostics are best here (ugh).
  502. */
  503. proxy = spi_alloc_device(master);
  504. if (!proxy)
  505. return NULL;
  506. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  507. proxy->chip_select = chip->chip_select;
  508. proxy->max_speed_hz = chip->max_speed_hz;
  509. proxy->mode = chip->mode;
  510. proxy->irq = chip->irq;
  511. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  512. proxy->dev.platform_data = (void *) chip->platform_data;
  513. proxy->controller_data = chip->controller_data;
  514. proxy->controller_state = NULL;
  515. status = spi_add_device(proxy);
  516. if (status < 0) {
  517. spi_dev_put(proxy);
  518. return NULL;
  519. }
  520. return proxy;
  521. }
  522. EXPORT_SYMBOL_GPL(spi_new_device);
  523. /**
  524. * spi_unregister_device - unregister a single SPI device
  525. * @spi: spi_device to unregister
  526. *
  527. * Start making the passed SPI device vanish. Normally this would be handled
  528. * by spi_unregister_master().
  529. */
  530. void spi_unregister_device(struct spi_device *spi)
  531. {
  532. if (!spi)
  533. return;
  534. if (spi->dev.of_node)
  535. of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
  536. device_unregister(&spi->dev);
  537. }
  538. EXPORT_SYMBOL_GPL(spi_unregister_device);
  539. static void spi_match_master_to_boardinfo(struct spi_master *master,
  540. struct spi_board_info *bi)
  541. {
  542. struct spi_device *dev;
  543. if (master->bus_num != bi->bus_num)
  544. return;
  545. dev = spi_new_device(master, bi);
  546. if (!dev)
  547. dev_err(master->dev.parent, "can't create new device for %s\n",
  548. bi->modalias);
  549. }
  550. /**
  551. * spi_register_board_info - register SPI devices for a given board
  552. * @info: array of chip descriptors
  553. * @n: how many descriptors are provided
  554. * Context: can sleep
  555. *
  556. * Board-specific early init code calls this (probably during arch_initcall)
  557. * with segments of the SPI device table. Any device nodes are created later,
  558. * after the relevant parent SPI controller (bus_num) is defined. We keep
  559. * this table of devices forever, so that reloading a controller driver will
  560. * not make Linux forget about these hard-wired devices.
  561. *
  562. * Other code can also call this, e.g. a particular add-on board might provide
  563. * SPI devices through its expansion connector, so code initializing that board
  564. * would naturally declare its SPI devices.
  565. *
  566. * The board info passed can safely be __initdata ... but be careful of
  567. * any embedded pointers (platform_data, etc), they're copied as-is.
  568. *
  569. * Return: zero on success, else a negative error code.
  570. */
  571. int spi_register_board_info(struct spi_board_info const *info, unsigned n)
  572. {
  573. struct boardinfo *bi;
  574. int i;
  575. if (!n)
  576. return -EINVAL;
  577. bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
  578. if (!bi)
  579. return -ENOMEM;
  580. for (i = 0; i < n; i++, bi++, info++) {
  581. struct spi_master *master;
  582. memcpy(&bi->board_info, info, sizeof(*info));
  583. mutex_lock(&board_lock);
  584. list_add_tail(&bi->list, &board_list);
  585. list_for_each_entry(master, &spi_master_list, list)
  586. spi_match_master_to_boardinfo(master, &bi->board_info);
  587. mutex_unlock(&board_lock);
  588. }
  589. return 0;
  590. }
  591. /*-------------------------------------------------------------------------*/
  592. static void spi_set_cs(struct spi_device *spi, bool enable)
  593. {
  594. if (spi->mode & SPI_CS_HIGH)
  595. enable = !enable;
  596. if (gpio_is_valid(spi->cs_gpio))
  597. gpio_set_value(spi->cs_gpio, !enable);
  598. else if (spi->master->set_cs)
  599. spi->master->set_cs(spi, !enable);
  600. }
  601. #ifdef CONFIG_HAS_DMA
  602. static int spi_map_buf(struct spi_master *master, struct device *dev,
  603. struct sg_table *sgt, void *buf, size_t len,
  604. enum dma_data_direction dir)
  605. {
  606. const bool vmalloced_buf = is_vmalloc_addr(buf);
  607. unsigned int max_seg_size = dma_get_max_seg_size(dev);
  608. int desc_len;
  609. int sgs;
  610. struct page *vm_page;
  611. void *sg_buf;
  612. size_t min;
  613. int i, ret;
  614. if (vmalloced_buf) {
  615. desc_len = min_t(int, max_seg_size, PAGE_SIZE);
  616. sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
  617. } else {
  618. desc_len = min_t(int, max_seg_size, master->max_dma_len);
  619. sgs = DIV_ROUND_UP(len, desc_len);
  620. }
  621. ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
  622. if (ret != 0)
  623. return ret;
  624. for (i = 0; i < sgs; i++) {
  625. if (vmalloced_buf) {
  626. min = min_t(size_t,
  627. len, desc_len - offset_in_page(buf));
  628. vm_page = vmalloc_to_page(buf);
  629. if (!vm_page) {
  630. sg_free_table(sgt);
  631. return -ENOMEM;
  632. }
  633. sg_set_page(&sgt->sgl[i], vm_page,
  634. min, offset_in_page(buf));
  635. } else {
  636. min = min_t(size_t, len, desc_len);
  637. sg_buf = buf;
  638. sg_set_buf(&sgt->sgl[i], sg_buf, min);
  639. }
  640. buf += min;
  641. len -= min;
  642. }
  643. ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
  644. if (!ret)
  645. ret = -ENOMEM;
  646. if (ret < 0) {
  647. sg_free_table(sgt);
  648. return ret;
  649. }
  650. sgt->nents = ret;
  651. return 0;
  652. }
  653. static void spi_unmap_buf(struct spi_master *master, struct device *dev,
  654. struct sg_table *sgt, enum dma_data_direction dir)
  655. {
  656. if (sgt->orig_nents) {
  657. dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
  658. sg_free_table(sgt);
  659. }
  660. }
  661. static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
  662. {
  663. struct device *tx_dev, *rx_dev;
  664. struct spi_transfer *xfer;
  665. int ret;
  666. if (!master->can_dma)
  667. return 0;
  668. if (master->dma_tx)
  669. tx_dev = master->dma_tx->device->dev;
  670. else
  671. tx_dev = &master->dev;
  672. if (master->dma_rx)
  673. rx_dev = master->dma_rx->device->dev;
  674. else
  675. rx_dev = &master->dev;
  676. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  677. if (!master->can_dma(master, msg->spi, xfer))
  678. continue;
  679. if (xfer->tx_buf != NULL) {
  680. ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
  681. (void *)xfer->tx_buf, xfer->len,
  682. DMA_TO_DEVICE);
  683. if (ret != 0)
  684. return ret;
  685. }
  686. if (xfer->rx_buf != NULL) {
  687. ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
  688. xfer->rx_buf, xfer->len,
  689. DMA_FROM_DEVICE);
  690. if (ret != 0) {
  691. spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
  692. DMA_TO_DEVICE);
  693. return ret;
  694. }
  695. }
  696. }
  697. master->cur_msg_mapped = true;
  698. return 0;
  699. }
  700. static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
  701. {
  702. struct spi_transfer *xfer;
  703. struct device *tx_dev, *rx_dev;
  704. if (!master->cur_msg_mapped || !master->can_dma)
  705. return 0;
  706. if (master->dma_tx)
  707. tx_dev = master->dma_tx->device->dev;
  708. else
  709. tx_dev = &master->dev;
  710. if (master->dma_rx)
  711. rx_dev = master->dma_rx->device->dev;
  712. else
  713. rx_dev = &master->dev;
  714. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  715. if (!master->can_dma(master, msg->spi, xfer))
  716. continue;
  717. spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
  718. spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
  719. }
  720. return 0;
  721. }
  722. #else /* !CONFIG_HAS_DMA */
  723. static inline int __spi_map_msg(struct spi_master *master,
  724. struct spi_message *msg)
  725. {
  726. return 0;
  727. }
  728. static inline int __spi_unmap_msg(struct spi_master *master,
  729. struct spi_message *msg)
  730. {
  731. return 0;
  732. }
  733. #endif /* !CONFIG_HAS_DMA */
  734. static inline int spi_unmap_msg(struct spi_master *master,
  735. struct spi_message *msg)
  736. {
  737. struct spi_transfer *xfer;
  738. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  739. /*
  740. * Restore the original value of tx_buf or rx_buf if they are
  741. * NULL.
  742. */
  743. if (xfer->tx_buf == master->dummy_tx)
  744. xfer->tx_buf = NULL;
  745. if (xfer->rx_buf == master->dummy_rx)
  746. xfer->rx_buf = NULL;
  747. }
  748. return __spi_unmap_msg(master, msg);
  749. }
  750. static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
  751. {
  752. struct spi_transfer *xfer;
  753. void *tmp;
  754. unsigned int max_tx, max_rx;
  755. if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
  756. max_tx = 0;
  757. max_rx = 0;
  758. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  759. if ((master->flags & SPI_MASTER_MUST_TX) &&
  760. !xfer->tx_buf)
  761. max_tx = max(xfer->len, max_tx);
  762. if ((master->flags & SPI_MASTER_MUST_RX) &&
  763. !xfer->rx_buf)
  764. max_rx = max(xfer->len, max_rx);
  765. }
  766. if (max_tx) {
  767. tmp = krealloc(master->dummy_tx, max_tx,
  768. GFP_KERNEL | GFP_DMA);
  769. if (!tmp)
  770. return -ENOMEM;
  771. master->dummy_tx = tmp;
  772. memset(tmp, 0, max_tx);
  773. }
  774. if (max_rx) {
  775. tmp = krealloc(master->dummy_rx, max_rx,
  776. GFP_KERNEL | GFP_DMA);
  777. if (!tmp)
  778. return -ENOMEM;
  779. master->dummy_rx = tmp;
  780. }
  781. if (max_tx || max_rx) {
  782. list_for_each_entry(xfer, &msg->transfers,
  783. transfer_list) {
  784. if (!xfer->tx_buf)
  785. xfer->tx_buf = master->dummy_tx;
  786. if (!xfer->rx_buf)
  787. xfer->rx_buf = master->dummy_rx;
  788. }
  789. }
  790. }
  791. return __spi_map_msg(master, msg);
  792. }
  793. /*
  794. * spi_transfer_one_message - Default implementation of transfer_one_message()
  795. *
  796. * This is a standard implementation of transfer_one_message() for
  797. * drivers which impelment a transfer_one() operation. It provides
  798. * standard handling of delays and chip select management.
  799. */
  800. static int spi_transfer_one_message(struct spi_master *master,
  801. struct spi_message *msg)
  802. {
  803. struct spi_transfer *xfer;
  804. bool keep_cs = false;
  805. int ret = 0;
  806. unsigned long ms = 1;
  807. struct spi_statistics *statm = &master->statistics;
  808. struct spi_statistics *stats = &msg->spi->statistics;
  809. spi_set_cs(msg->spi, true);
  810. SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
  811. SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
  812. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  813. trace_spi_transfer_start(msg, xfer);
  814. spi_statistics_add_transfer_stats(statm, xfer, master);
  815. spi_statistics_add_transfer_stats(stats, xfer, master);
  816. if (xfer->tx_buf || xfer->rx_buf) {
  817. reinit_completion(&master->xfer_completion);
  818. ret = master->transfer_one(master, msg->spi, xfer);
  819. if (ret < 0) {
  820. SPI_STATISTICS_INCREMENT_FIELD(statm,
  821. errors);
  822. SPI_STATISTICS_INCREMENT_FIELD(stats,
  823. errors);
  824. dev_err(&msg->spi->dev,
  825. "SPI transfer failed: %d\n", ret);
  826. goto out;
  827. }
  828. if (ret > 0) {
  829. ret = 0;
  830. ms = xfer->len * 8 * 1000 / xfer->speed_hz;
  831. ms += ms + 100; /* some tolerance */
  832. ms = wait_for_completion_timeout(&master->xfer_completion,
  833. msecs_to_jiffies(ms));
  834. }
  835. if (ms == 0) {
  836. SPI_STATISTICS_INCREMENT_FIELD(statm,
  837. timedout);
  838. SPI_STATISTICS_INCREMENT_FIELD(stats,
  839. timedout);
  840. dev_err(&msg->spi->dev,
  841. "SPI transfer timed out\n");
  842. msg->status = -ETIMEDOUT;
  843. }
  844. } else {
  845. if (xfer->len)
  846. dev_err(&msg->spi->dev,
  847. "Bufferless transfer has length %u\n",
  848. xfer->len);
  849. }
  850. trace_spi_transfer_stop(msg, xfer);
  851. if (msg->status != -EINPROGRESS)
  852. goto out;
  853. if (xfer->delay_usecs)
  854. udelay(xfer->delay_usecs);
  855. if (xfer->cs_change) {
  856. if (list_is_last(&xfer->transfer_list,
  857. &msg->transfers)) {
  858. keep_cs = true;
  859. } else {
  860. spi_set_cs(msg->spi, false);
  861. udelay(10);
  862. spi_set_cs(msg->spi, true);
  863. }
  864. }
  865. msg->actual_length += xfer->len;
  866. }
  867. out:
  868. if (ret != 0 || !keep_cs)
  869. spi_set_cs(msg->spi, false);
  870. if (msg->status == -EINPROGRESS)
  871. msg->status = ret;
  872. if (msg->status && master->handle_err)
  873. master->handle_err(master, msg);
  874. spi_res_release(master, msg);
  875. spi_finalize_current_message(master);
  876. return ret;
  877. }
  878. /**
  879. * spi_finalize_current_transfer - report completion of a transfer
  880. * @master: the master reporting completion
  881. *
  882. * Called by SPI drivers using the core transfer_one_message()
  883. * implementation to notify it that the current interrupt driven
  884. * transfer has finished and the next one may be scheduled.
  885. */
  886. void spi_finalize_current_transfer(struct spi_master *master)
  887. {
  888. complete(&master->xfer_completion);
  889. }
  890. EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
  891. /**
  892. * __spi_pump_messages - function which processes spi message queue
  893. * @master: master to process queue for
  894. * @in_kthread: true if we are in the context of the message pump thread
  895. * @bus_locked: true if the bus mutex is held when calling this function
  896. *
  897. * This function checks if there is any spi message in the queue that
  898. * needs processing and if so call out to the driver to initialize hardware
  899. * and transfer each message.
  900. *
  901. * Note that it is called both from the kthread itself and also from
  902. * inside spi_sync(); the queue extraction handling at the top of the
  903. * function should deal with this safely.
  904. */
  905. static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
  906. bool bus_locked)
  907. {
  908. unsigned long flags;
  909. bool was_busy = false;
  910. int ret;
  911. /* Lock queue */
  912. spin_lock_irqsave(&master->queue_lock, flags);
  913. /* Make sure we are not already running a message */
  914. if (master->cur_msg) {
  915. spin_unlock_irqrestore(&master->queue_lock, flags);
  916. return;
  917. }
  918. /* If another context is idling the device then defer */
  919. if (master->idling) {
  920. queue_kthread_work(&master->kworker, &master->pump_messages);
  921. spin_unlock_irqrestore(&master->queue_lock, flags);
  922. return;
  923. }
  924. /* Check if the queue is idle */
  925. if (list_empty(&master->queue) || !master->running) {
  926. if (!master->busy) {
  927. spin_unlock_irqrestore(&master->queue_lock, flags);
  928. return;
  929. }
  930. /* Only do teardown in the thread */
  931. if (!in_kthread) {
  932. queue_kthread_work(&master->kworker,
  933. &master->pump_messages);
  934. spin_unlock_irqrestore(&master->queue_lock, flags);
  935. return;
  936. }
  937. master->busy = false;
  938. master->idling = true;
  939. spin_unlock_irqrestore(&master->queue_lock, flags);
  940. kfree(master->dummy_rx);
  941. master->dummy_rx = NULL;
  942. kfree(master->dummy_tx);
  943. master->dummy_tx = NULL;
  944. if (master->unprepare_transfer_hardware &&
  945. master->unprepare_transfer_hardware(master))
  946. dev_err(&master->dev,
  947. "failed to unprepare transfer hardware\n");
  948. if (master->auto_runtime_pm) {
  949. pm_runtime_mark_last_busy(master->dev.parent);
  950. pm_runtime_put_autosuspend(master->dev.parent);
  951. }
  952. trace_spi_master_idle(master);
  953. spin_lock_irqsave(&master->queue_lock, flags);
  954. master->idling = false;
  955. spin_unlock_irqrestore(&master->queue_lock, flags);
  956. return;
  957. }
  958. /* Extract head of queue */
  959. master->cur_msg =
  960. list_first_entry(&master->queue, struct spi_message, queue);
  961. list_del_init(&master->cur_msg->queue);
  962. if (master->busy)
  963. was_busy = true;
  964. else
  965. master->busy = true;
  966. spin_unlock_irqrestore(&master->queue_lock, flags);
  967. if (!was_busy && master->auto_runtime_pm) {
  968. ret = pm_runtime_get_sync(master->dev.parent);
  969. if (ret < 0) {
  970. dev_err(&master->dev, "Failed to power device: %d\n",
  971. ret);
  972. return;
  973. }
  974. }
  975. if (!was_busy)
  976. trace_spi_master_busy(master);
  977. if (!was_busy && master->prepare_transfer_hardware) {
  978. ret = master->prepare_transfer_hardware(master);
  979. if (ret) {
  980. dev_err(&master->dev,
  981. "failed to prepare transfer hardware\n");
  982. if (master->auto_runtime_pm)
  983. pm_runtime_put(master->dev.parent);
  984. return;
  985. }
  986. }
  987. if (!bus_locked)
  988. mutex_lock(&master->bus_lock_mutex);
  989. trace_spi_message_start(master->cur_msg);
  990. if (master->prepare_message) {
  991. ret = master->prepare_message(master, master->cur_msg);
  992. if (ret) {
  993. dev_err(&master->dev,
  994. "failed to prepare message: %d\n", ret);
  995. master->cur_msg->status = ret;
  996. spi_finalize_current_message(master);
  997. goto out;
  998. }
  999. master->cur_msg_prepared = true;
  1000. }
  1001. ret = spi_map_msg(master, master->cur_msg);
  1002. if (ret) {
  1003. master->cur_msg->status = ret;
  1004. spi_finalize_current_message(master);
  1005. goto out;
  1006. }
  1007. ret = master->transfer_one_message(master, master->cur_msg);
  1008. if (ret) {
  1009. dev_err(&master->dev,
  1010. "failed to transfer one message from queue\n");
  1011. goto out;
  1012. }
  1013. out:
  1014. if (!bus_locked)
  1015. mutex_unlock(&master->bus_lock_mutex);
  1016. /* Prod the scheduler in case transfer_one() was busy waiting */
  1017. if (!ret)
  1018. cond_resched();
  1019. }
  1020. /**
  1021. * spi_pump_messages - kthread work function which processes spi message queue
  1022. * @work: pointer to kthread work struct contained in the master struct
  1023. */
  1024. static void spi_pump_messages(struct kthread_work *work)
  1025. {
  1026. struct spi_master *master =
  1027. container_of(work, struct spi_master, pump_messages);
  1028. __spi_pump_messages(master, true, false);
  1029. }
  1030. static int spi_init_queue(struct spi_master *master)
  1031. {
  1032. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1033. master->running = false;
  1034. master->busy = false;
  1035. init_kthread_worker(&master->kworker);
  1036. master->kworker_task = kthread_run(kthread_worker_fn,
  1037. &master->kworker, "%s",
  1038. dev_name(&master->dev));
  1039. if (IS_ERR(master->kworker_task)) {
  1040. dev_err(&master->dev, "failed to create message pump task\n");
  1041. return PTR_ERR(master->kworker_task);
  1042. }
  1043. init_kthread_work(&master->pump_messages, spi_pump_messages);
  1044. /*
  1045. * Master config will indicate if this controller should run the
  1046. * message pump with high (realtime) priority to reduce the transfer
  1047. * latency on the bus by minimising the delay between a transfer
  1048. * request and the scheduling of the message pump thread. Without this
  1049. * setting the message pump thread will remain at default priority.
  1050. */
  1051. if (master->rt) {
  1052. dev_info(&master->dev,
  1053. "will run message pump with realtime priority\n");
  1054. sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
  1055. }
  1056. return 0;
  1057. }
  1058. /**
  1059. * spi_get_next_queued_message() - called by driver to check for queued
  1060. * messages
  1061. * @master: the master to check for queued messages
  1062. *
  1063. * If there are more messages in the queue, the next message is returned from
  1064. * this call.
  1065. *
  1066. * Return: the next message in the queue, else NULL if the queue is empty.
  1067. */
  1068. struct spi_message *spi_get_next_queued_message(struct spi_master *master)
  1069. {
  1070. struct spi_message *next;
  1071. unsigned long flags;
  1072. /* get a pointer to the next message, if any */
  1073. spin_lock_irqsave(&master->queue_lock, flags);
  1074. next = list_first_entry_or_null(&master->queue, struct spi_message,
  1075. queue);
  1076. spin_unlock_irqrestore(&master->queue_lock, flags);
  1077. return next;
  1078. }
  1079. EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
  1080. /**
  1081. * spi_finalize_current_message() - the current message is complete
  1082. * @master: the master to return the message to
  1083. *
  1084. * Called by the driver to notify the core that the message in the front of the
  1085. * queue is complete and can be removed from the queue.
  1086. */
  1087. void spi_finalize_current_message(struct spi_master *master)
  1088. {
  1089. struct spi_message *mesg;
  1090. unsigned long flags;
  1091. int ret;
  1092. spin_lock_irqsave(&master->queue_lock, flags);
  1093. mesg = master->cur_msg;
  1094. spin_unlock_irqrestore(&master->queue_lock, flags);
  1095. spi_unmap_msg(master, mesg);
  1096. if (master->cur_msg_prepared && master->unprepare_message) {
  1097. ret = master->unprepare_message(master, mesg);
  1098. if (ret) {
  1099. dev_err(&master->dev,
  1100. "failed to unprepare message: %d\n", ret);
  1101. }
  1102. }
  1103. spin_lock_irqsave(&master->queue_lock, flags);
  1104. master->cur_msg = NULL;
  1105. master->cur_msg_prepared = false;
  1106. queue_kthread_work(&master->kworker, &master->pump_messages);
  1107. spin_unlock_irqrestore(&master->queue_lock, flags);
  1108. trace_spi_message_done(mesg);
  1109. mesg->state = NULL;
  1110. if (mesg->complete)
  1111. mesg->complete(mesg->context);
  1112. }
  1113. EXPORT_SYMBOL_GPL(spi_finalize_current_message);
  1114. static int spi_start_queue(struct spi_master *master)
  1115. {
  1116. unsigned long flags;
  1117. spin_lock_irqsave(&master->queue_lock, flags);
  1118. if (master->running || master->busy) {
  1119. spin_unlock_irqrestore(&master->queue_lock, flags);
  1120. return -EBUSY;
  1121. }
  1122. master->running = true;
  1123. master->cur_msg = NULL;
  1124. spin_unlock_irqrestore(&master->queue_lock, flags);
  1125. queue_kthread_work(&master->kworker, &master->pump_messages);
  1126. return 0;
  1127. }
  1128. static int spi_stop_queue(struct spi_master *master)
  1129. {
  1130. unsigned long flags;
  1131. unsigned limit = 500;
  1132. int ret = 0;
  1133. spin_lock_irqsave(&master->queue_lock, flags);
  1134. /*
  1135. * This is a bit lame, but is optimized for the common execution path.
  1136. * A wait_queue on the master->busy could be used, but then the common
  1137. * execution path (pump_messages) would be required to call wake_up or
  1138. * friends on every SPI message. Do this instead.
  1139. */
  1140. while ((!list_empty(&master->queue) || master->busy) && limit--) {
  1141. spin_unlock_irqrestore(&master->queue_lock, flags);
  1142. usleep_range(10000, 11000);
  1143. spin_lock_irqsave(&master->queue_lock, flags);
  1144. }
  1145. if (!list_empty(&master->queue) || master->busy)
  1146. ret = -EBUSY;
  1147. else
  1148. master->running = false;
  1149. spin_unlock_irqrestore(&master->queue_lock, flags);
  1150. if (ret) {
  1151. dev_warn(&master->dev,
  1152. "could not stop message queue\n");
  1153. return ret;
  1154. }
  1155. return ret;
  1156. }
  1157. static int spi_destroy_queue(struct spi_master *master)
  1158. {
  1159. int ret;
  1160. ret = spi_stop_queue(master);
  1161. /*
  1162. * flush_kthread_worker will block until all work is done.
  1163. * If the reason that stop_queue timed out is that the work will never
  1164. * finish, then it does no good to call flush/stop thread, so
  1165. * return anyway.
  1166. */
  1167. if (ret) {
  1168. dev_err(&master->dev, "problem destroying queue\n");
  1169. return ret;
  1170. }
  1171. flush_kthread_worker(&master->kworker);
  1172. kthread_stop(master->kworker_task);
  1173. return 0;
  1174. }
  1175. static int __spi_queued_transfer(struct spi_device *spi,
  1176. struct spi_message *msg,
  1177. bool need_pump)
  1178. {
  1179. struct spi_master *master = spi->master;
  1180. unsigned long flags;
  1181. spin_lock_irqsave(&master->queue_lock, flags);
  1182. if (!master->running) {
  1183. spin_unlock_irqrestore(&master->queue_lock, flags);
  1184. return -ESHUTDOWN;
  1185. }
  1186. msg->actual_length = 0;
  1187. msg->status = -EINPROGRESS;
  1188. list_add_tail(&msg->queue, &master->queue);
  1189. if (!master->busy && need_pump)
  1190. queue_kthread_work(&master->kworker, &master->pump_messages);
  1191. spin_unlock_irqrestore(&master->queue_lock, flags);
  1192. return 0;
  1193. }
  1194. /**
  1195. * spi_queued_transfer - transfer function for queued transfers
  1196. * @spi: spi device which is requesting transfer
  1197. * @msg: spi message which is to handled is queued to driver queue
  1198. *
  1199. * Return: zero on success, else a negative error code.
  1200. */
  1201. static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
  1202. {
  1203. return __spi_queued_transfer(spi, msg, true);
  1204. }
  1205. static int spi_master_initialize_queue(struct spi_master *master)
  1206. {
  1207. int ret;
  1208. master->transfer = spi_queued_transfer;
  1209. if (!master->transfer_one_message)
  1210. master->transfer_one_message = spi_transfer_one_message;
  1211. /* Initialize and start queue */
  1212. ret = spi_init_queue(master);
  1213. if (ret) {
  1214. dev_err(&master->dev, "problem initializing queue\n");
  1215. goto err_init_queue;
  1216. }
  1217. master->queued = true;
  1218. ret = spi_start_queue(master);
  1219. if (ret) {
  1220. dev_err(&master->dev, "problem starting queue\n");
  1221. goto err_start_queue;
  1222. }
  1223. return 0;
  1224. err_start_queue:
  1225. spi_destroy_queue(master);
  1226. err_init_queue:
  1227. return ret;
  1228. }
  1229. /*-------------------------------------------------------------------------*/
  1230. #if defined(CONFIG_OF)
  1231. static struct spi_device *
  1232. of_register_spi_device(struct spi_master *master, struct device_node *nc)
  1233. {
  1234. struct spi_device *spi;
  1235. int rc;
  1236. u32 value;
  1237. /* Alloc an spi_device */
  1238. spi = spi_alloc_device(master);
  1239. if (!spi) {
  1240. dev_err(&master->dev, "spi_device alloc error for %s\n",
  1241. nc->full_name);
  1242. rc = -ENOMEM;
  1243. goto err_out;
  1244. }
  1245. /* Select device driver */
  1246. rc = of_modalias_node(nc, spi->modalias,
  1247. sizeof(spi->modalias));
  1248. if (rc < 0) {
  1249. dev_err(&master->dev, "cannot find modalias for %s\n",
  1250. nc->full_name);
  1251. goto err_out;
  1252. }
  1253. /* Device address */
  1254. rc = of_property_read_u32(nc, "reg", &value);
  1255. if (rc) {
  1256. dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
  1257. nc->full_name, rc);
  1258. goto err_out;
  1259. }
  1260. spi->chip_select = value;
  1261. /* Mode (clock phase/polarity/etc.) */
  1262. if (of_find_property(nc, "spi-cpha", NULL))
  1263. spi->mode |= SPI_CPHA;
  1264. if (of_find_property(nc, "spi-cpol", NULL))
  1265. spi->mode |= SPI_CPOL;
  1266. if (of_find_property(nc, "spi-cs-high", NULL))
  1267. spi->mode |= SPI_CS_HIGH;
  1268. if (of_find_property(nc, "spi-3wire", NULL))
  1269. spi->mode |= SPI_3WIRE;
  1270. if (of_find_property(nc, "spi-lsb-first", NULL))
  1271. spi->mode |= SPI_LSB_FIRST;
  1272. /* Device DUAL/QUAD mode */
  1273. if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
  1274. switch (value) {
  1275. case 1:
  1276. break;
  1277. case 2:
  1278. spi->mode |= SPI_TX_DUAL;
  1279. break;
  1280. case 4:
  1281. spi->mode |= SPI_TX_QUAD;
  1282. break;
  1283. default:
  1284. dev_warn(&master->dev,
  1285. "spi-tx-bus-width %d not supported\n",
  1286. value);
  1287. break;
  1288. }
  1289. }
  1290. if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
  1291. switch (value) {
  1292. case 1:
  1293. break;
  1294. case 2:
  1295. spi->mode |= SPI_RX_DUAL;
  1296. break;
  1297. case 4:
  1298. spi->mode |= SPI_RX_QUAD;
  1299. break;
  1300. default:
  1301. dev_warn(&master->dev,
  1302. "spi-rx-bus-width %d not supported\n",
  1303. value);
  1304. break;
  1305. }
  1306. }
  1307. /* Device speed */
  1308. rc = of_property_read_u32(nc, "spi-max-frequency", &value);
  1309. if (rc) {
  1310. dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
  1311. nc->full_name, rc);
  1312. goto err_out;
  1313. }
  1314. spi->max_speed_hz = value;
  1315. /* Store a pointer to the node in the device structure */
  1316. of_node_get(nc);
  1317. spi->dev.of_node = nc;
  1318. /* Register the new device */
  1319. rc = spi_add_device(spi);
  1320. if (rc) {
  1321. dev_err(&master->dev, "spi_device register error %s\n",
  1322. nc->full_name);
  1323. goto err_out;
  1324. }
  1325. return spi;
  1326. err_out:
  1327. spi_dev_put(spi);
  1328. return ERR_PTR(rc);
  1329. }
  1330. /**
  1331. * of_register_spi_devices() - Register child devices onto the SPI bus
  1332. * @master: Pointer to spi_master device
  1333. *
  1334. * Registers an spi_device for each child node of master node which has a 'reg'
  1335. * property.
  1336. */
  1337. static void of_register_spi_devices(struct spi_master *master)
  1338. {
  1339. struct spi_device *spi;
  1340. struct device_node *nc;
  1341. if (!master->dev.of_node)
  1342. return;
  1343. for_each_available_child_of_node(master->dev.of_node, nc) {
  1344. if (of_node_test_and_set_flag(nc, OF_POPULATED))
  1345. continue;
  1346. spi = of_register_spi_device(master, nc);
  1347. if (IS_ERR(spi))
  1348. dev_warn(&master->dev, "Failed to create SPI device for %s\n",
  1349. nc->full_name);
  1350. }
  1351. }
  1352. #else
  1353. static void of_register_spi_devices(struct spi_master *master) { }
  1354. #endif
  1355. #ifdef CONFIG_ACPI
  1356. static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
  1357. {
  1358. struct spi_device *spi = data;
  1359. struct spi_master *master = spi->master;
  1360. if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
  1361. struct acpi_resource_spi_serialbus *sb;
  1362. sb = &ares->data.spi_serial_bus;
  1363. if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
  1364. /*
  1365. * ACPI DeviceSelection numbering is handled by the
  1366. * host controller driver in Windows and can vary
  1367. * from driver to driver. In Linux we always expect
  1368. * 0 .. max - 1 so we need to ask the driver to
  1369. * translate between the two schemes.
  1370. */
  1371. if (master->fw_translate_cs) {
  1372. int cs = master->fw_translate_cs(master,
  1373. sb->device_selection);
  1374. if (cs < 0)
  1375. return cs;
  1376. spi->chip_select = cs;
  1377. } else {
  1378. spi->chip_select = sb->device_selection;
  1379. }
  1380. spi->max_speed_hz = sb->connection_speed;
  1381. if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
  1382. spi->mode |= SPI_CPHA;
  1383. if (sb->clock_polarity == ACPI_SPI_START_HIGH)
  1384. spi->mode |= SPI_CPOL;
  1385. if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
  1386. spi->mode |= SPI_CS_HIGH;
  1387. }
  1388. } else if (spi->irq < 0) {
  1389. struct resource r;
  1390. if (acpi_dev_resource_interrupt(ares, 0, &r))
  1391. spi->irq = r.start;
  1392. }
  1393. /* Always tell the ACPI core to skip this resource */
  1394. return 1;
  1395. }
  1396. static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
  1397. void *data, void **return_value)
  1398. {
  1399. struct spi_master *master = data;
  1400. struct list_head resource_list;
  1401. struct acpi_device *adev;
  1402. struct spi_device *spi;
  1403. int ret;
  1404. if (acpi_bus_get_device(handle, &adev))
  1405. return AE_OK;
  1406. if (acpi_bus_get_status(adev) || !adev->status.present)
  1407. return AE_OK;
  1408. spi = spi_alloc_device(master);
  1409. if (!spi) {
  1410. dev_err(&master->dev, "failed to allocate SPI device for %s\n",
  1411. dev_name(&adev->dev));
  1412. return AE_NO_MEMORY;
  1413. }
  1414. ACPI_COMPANION_SET(&spi->dev, adev);
  1415. spi->irq = -1;
  1416. INIT_LIST_HEAD(&resource_list);
  1417. ret = acpi_dev_get_resources(adev, &resource_list,
  1418. acpi_spi_add_resource, spi);
  1419. acpi_dev_free_resource_list(&resource_list);
  1420. if (ret < 0 || !spi->max_speed_hz) {
  1421. spi_dev_put(spi);
  1422. return AE_OK;
  1423. }
  1424. if (spi->irq < 0)
  1425. spi->irq = acpi_dev_gpio_irq_get(adev, 0);
  1426. adev->power.flags.ignore_parent = true;
  1427. strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
  1428. if (spi_add_device(spi)) {
  1429. adev->power.flags.ignore_parent = false;
  1430. dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
  1431. dev_name(&adev->dev));
  1432. spi_dev_put(spi);
  1433. }
  1434. return AE_OK;
  1435. }
  1436. static void acpi_register_spi_devices(struct spi_master *master)
  1437. {
  1438. acpi_status status;
  1439. acpi_handle handle;
  1440. handle = ACPI_HANDLE(master->dev.parent);
  1441. if (!handle)
  1442. return;
  1443. status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
  1444. acpi_spi_add_device, NULL,
  1445. master, NULL);
  1446. if (ACPI_FAILURE(status))
  1447. dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
  1448. }
  1449. #else
  1450. static inline void acpi_register_spi_devices(struct spi_master *master) {}
  1451. #endif /* CONFIG_ACPI */
  1452. static void spi_master_release(struct device *dev)
  1453. {
  1454. struct spi_master *master;
  1455. master = container_of(dev, struct spi_master, dev);
  1456. kfree(master);
  1457. }
  1458. static struct class spi_master_class = {
  1459. .name = "spi_master",
  1460. .owner = THIS_MODULE,
  1461. .dev_release = spi_master_release,
  1462. .dev_groups = spi_master_groups,
  1463. };
  1464. /**
  1465. * spi_alloc_master - allocate SPI master controller
  1466. * @dev: the controller, possibly using the platform_bus
  1467. * @size: how much zeroed driver-private data to allocate; the pointer to this
  1468. * memory is in the driver_data field of the returned device,
  1469. * accessible with spi_master_get_devdata().
  1470. * Context: can sleep
  1471. *
  1472. * This call is used only by SPI master controller drivers, which are the
  1473. * only ones directly touching chip registers. It's how they allocate
  1474. * an spi_master structure, prior to calling spi_register_master().
  1475. *
  1476. * This must be called from context that can sleep.
  1477. *
  1478. * The caller is responsible for assigning the bus number and initializing
  1479. * the master's methods before calling spi_register_master(); and (after errors
  1480. * adding the device) calling spi_master_put() to prevent a memory leak.
  1481. *
  1482. * Return: the SPI master structure on success, else NULL.
  1483. */
  1484. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  1485. {
  1486. struct spi_master *master;
  1487. if (!dev)
  1488. return NULL;
  1489. master = kzalloc(size + sizeof(*master), GFP_KERNEL);
  1490. if (!master)
  1491. return NULL;
  1492. device_initialize(&master->dev);
  1493. master->bus_num = -1;
  1494. master->num_chipselect = 1;
  1495. master->dev.class = &spi_master_class;
  1496. master->dev.parent = dev;
  1497. spi_master_set_devdata(master, &master[1]);
  1498. return master;
  1499. }
  1500. EXPORT_SYMBOL_GPL(spi_alloc_master);
  1501. #ifdef CONFIG_OF
  1502. static int of_spi_register_master(struct spi_master *master)
  1503. {
  1504. int nb, i, *cs;
  1505. struct device_node *np = master->dev.of_node;
  1506. if (!np)
  1507. return 0;
  1508. nb = of_gpio_named_count(np, "cs-gpios");
  1509. master->num_chipselect = max_t(int, nb, master->num_chipselect);
  1510. /* Return error only for an incorrectly formed cs-gpios property */
  1511. if (nb == 0 || nb == -ENOENT)
  1512. return 0;
  1513. else if (nb < 0)
  1514. return nb;
  1515. cs = devm_kzalloc(&master->dev,
  1516. sizeof(int) * master->num_chipselect,
  1517. GFP_KERNEL);
  1518. master->cs_gpios = cs;
  1519. if (!master->cs_gpios)
  1520. return -ENOMEM;
  1521. for (i = 0; i < master->num_chipselect; i++)
  1522. cs[i] = -ENOENT;
  1523. for (i = 0; i < nb; i++)
  1524. cs[i] = of_get_named_gpio(np, "cs-gpios", i);
  1525. return 0;
  1526. }
  1527. #else
  1528. static int of_spi_register_master(struct spi_master *master)
  1529. {
  1530. return 0;
  1531. }
  1532. #endif
  1533. /**
  1534. * spi_register_master - register SPI master controller
  1535. * @master: initialized master, originally from spi_alloc_master()
  1536. * Context: can sleep
  1537. *
  1538. * SPI master controllers connect to their drivers using some non-SPI bus,
  1539. * such as the platform bus. The final stage of probe() in that code
  1540. * includes calling spi_register_master() to hook up to this SPI bus glue.
  1541. *
  1542. * SPI controllers use board specific (often SOC specific) bus numbers,
  1543. * and board-specific addressing for SPI devices combines those numbers
  1544. * with chip select numbers. Since SPI does not directly support dynamic
  1545. * device identification, boards need configuration tables telling which
  1546. * chip is at which address.
  1547. *
  1548. * This must be called from context that can sleep. It returns zero on
  1549. * success, else a negative error code (dropping the master's refcount).
  1550. * After a successful return, the caller is responsible for calling
  1551. * spi_unregister_master().
  1552. *
  1553. * Return: zero on success, else a negative error code.
  1554. */
  1555. int spi_register_master(struct spi_master *master)
  1556. {
  1557. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  1558. struct device *dev = master->dev.parent;
  1559. struct boardinfo *bi;
  1560. int status = -ENODEV;
  1561. int dynamic = 0;
  1562. if (!dev)
  1563. return -ENODEV;
  1564. status = of_spi_register_master(master);
  1565. if (status)
  1566. return status;
  1567. /* even if it's just one always-selected device, there must
  1568. * be at least one chipselect
  1569. */
  1570. if (master->num_chipselect == 0)
  1571. return -EINVAL;
  1572. if ((master->bus_num < 0) && master->dev.of_node)
  1573. master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
  1574. /* convention: dynamically assigned bus IDs count down from the max */
  1575. if (master->bus_num < 0) {
  1576. /* FIXME switch to an IDR based scheme, something like
  1577. * I2C now uses, so we can't run out of "dynamic" IDs
  1578. */
  1579. master->bus_num = atomic_dec_return(&dyn_bus_id);
  1580. dynamic = 1;
  1581. }
  1582. INIT_LIST_HEAD(&master->queue);
  1583. spin_lock_init(&master->queue_lock);
  1584. spin_lock_init(&master->bus_lock_spinlock);
  1585. mutex_init(&master->bus_lock_mutex);
  1586. master->bus_lock_flag = 0;
  1587. init_completion(&master->xfer_completion);
  1588. if (!master->max_dma_len)
  1589. master->max_dma_len = INT_MAX;
  1590. /* register the device, then userspace will see it.
  1591. * registration fails if the bus ID is in use.
  1592. */
  1593. dev_set_name(&master->dev, "spi%u", master->bus_num);
  1594. status = device_add(&master->dev);
  1595. if (status < 0)
  1596. goto done;
  1597. dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
  1598. dynamic ? " (dynamic)" : "");
  1599. /* If we're using a queued driver, start the queue */
  1600. if (master->transfer)
  1601. dev_info(dev, "master is unqueued, this is deprecated\n");
  1602. else {
  1603. status = spi_master_initialize_queue(master);
  1604. if (status) {
  1605. device_del(&master->dev);
  1606. goto done;
  1607. }
  1608. }
  1609. /* add statistics */
  1610. spin_lock_init(&master->statistics.lock);
  1611. mutex_lock(&board_lock);
  1612. list_add_tail(&master->list, &spi_master_list);
  1613. list_for_each_entry(bi, &board_list, list)
  1614. spi_match_master_to_boardinfo(master, &bi->board_info);
  1615. mutex_unlock(&board_lock);
  1616. /* Register devices from the device tree and ACPI */
  1617. of_register_spi_devices(master);
  1618. acpi_register_spi_devices(master);
  1619. done:
  1620. return status;
  1621. }
  1622. EXPORT_SYMBOL_GPL(spi_register_master);
  1623. static void devm_spi_unregister(struct device *dev, void *res)
  1624. {
  1625. spi_unregister_master(*(struct spi_master **)res);
  1626. }
  1627. /**
  1628. * dev_spi_register_master - register managed SPI master controller
  1629. * @dev: device managing SPI master
  1630. * @master: initialized master, originally from spi_alloc_master()
  1631. * Context: can sleep
  1632. *
  1633. * Register a SPI device as with spi_register_master() which will
  1634. * automatically be unregister
  1635. *
  1636. * Return: zero on success, else a negative error code.
  1637. */
  1638. int devm_spi_register_master(struct device *dev, struct spi_master *master)
  1639. {
  1640. struct spi_master **ptr;
  1641. int ret;
  1642. ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
  1643. if (!ptr)
  1644. return -ENOMEM;
  1645. ret = spi_register_master(master);
  1646. if (!ret) {
  1647. *ptr = master;
  1648. devres_add(dev, ptr);
  1649. } else {
  1650. devres_free(ptr);
  1651. }
  1652. return ret;
  1653. }
  1654. EXPORT_SYMBOL_GPL(devm_spi_register_master);
  1655. static int __unregister(struct device *dev, void *null)
  1656. {
  1657. spi_unregister_device(to_spi_device(dev));
  1658. return 0;
  1659. }
  1660. /**
  1661. * spi_unregister_master - unregister SPI master controller
  1662. * @master: the master being unregistered
  1663. * Context: can sleep
  1664. *
  1665. * This call is used only by SPI master controller drivers, which are the
  1666. * only ones directly touching chip registers.
  1667. *
  1668. * This must be called from context that can sleep.
  1669. */
  1670. void spi_unregister_master(struct spi_master *master)
  1671. {
  1672. int dummy;
  1673. if (master->queued) {
  1674. if (spi_destroy_queue(master))
  1675. dev_err(&master->dev, "queue remove failed\n");
  1676. }
  1677. mutex_lock(&board_lock);
  1678. list_del(&master->list);
  1679. mutex_unlock(&board_lock);
  1680. dummy = device_for_each_child(&master->dev, NULL, __unregister);
  1681. device_unregister(&master->dev);
  1682. }
  1683. EXPORT_SYMBOL_GPL(spi_unregister_master);
  1684. int spi_master_suspend(struct spi_master *master)
  1685. {
  1686. int ret;
  1687. /* Basically no-ops for non-queued masters */
  1688. if (!master->queued)
  1689. return 0;
  1690. ret = spi_stop_queue(master);
  1691. if (ret)
  1692. dev_err(&master->dev, "queue stop failed\n");
  1693. return ret;
  1694. }
  1695. EXPORT_SYMBOL_GPL(spi_master_suspend);
  1696. int spi_master_resume(struct spi_master *master)
  1697. {
  1698. int ret;
  1699. if (!master->queued)
  1700. return 0;
  1701. ret = spi_start_queue(master);
  1702. if (ret)
  1703. dev_err(&master->dev, "queue restart failed\n");
  1704. return ret;
  1705. }
  1706. EXPORT_SYMBOL_GPL(spi_master_resume);
  1707. static int __spi_master_match(struct device *dev, const void *data)
  1708. {
  1709. struct spi_master *m;
  1710. const u16 *bus_num = data;
  1711. m = container_of(dev, struct spi_master, dev);
  1712. return m->bus_num == *bus_num;
  1713. }
  1714. /**
  1715. * spi_busnum_to_master - look up master associated with bus_num
  1716. * @bus_num: the master's bus number
  1717. * Context: can sleep
  1718. *
  1719. * This call may be used with devices that are registered after
  1720. * arch init time. It returns a refcounted pointer to the relevant
  1721. * spi_master (which the caller must release), or NULL if there is
  1722. * no such master registered.
  1723. *
  1724. * Return: the SPI master structure on success, else NULL.
  1725. */
  1726. struct spi_master *spi_busnum_to_master(u16 bus_num)
  1727. {
  1728. struct device *dev;
  1729. struct spi_master *master = NULL;
  1730. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  1731. __spi_master_match);
  1732. if (dev)
  1733. master = container_of(dev, struct spi_master, dev);
  1734. /* reference got in class_find_device */
  1735. return master;
  1736. }
  1737. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  1738. /*-------------------------------------------------------------------------*/
  1739. /* Core methods for SPI resource management */
  1740. /**
  1741. * spi_res_alloc - allocate a spi resource that is life-cycle managed
  1742. * during the processing of a spi_message while using
  1743. * spi_transfer_one
  1744. * @spi: the spi device for which we allocate memory
  1745. * @release: the release code to execute for this resource
  1746. * @size: size to alloc and return
  1747. * @gfp: GFP allocation flags
  1748. *
  1749. * Return: the pointer to the allocated data
  1750. *
  1751. * This may get enhanced in the future to allocate from a memory pool
  1752. * of the @spi_device or @spi_master to avoid repeated allocations.
  1753. */
  1754. void *spi_res_alloc(struct spi_device *spi,
  1755. spi_res_release_t release,
  1756. size_t size, gfp_t gfp)
  1757. {
  1758. struct spi_res *sres;
  1759. sres = kzalloc(sizeof(*sres) + size, gfp);
  1760. if (!sres)
  1761. return NULL;
  1762. INIT_LIST_HEAD(&sres->entry);
  1763. sres->release = release;
  1764. return sres->data;
  1765. }
  1766. EXPORT_SYMBOL_GPL(spi_res_alloc);
  1767. /**
  1768. * spi_res_free - free an spi resource
  1769. * @res: pointer to the custom data of a resource
  1770. *
  1771. */
  1772. void spi_res_free(void *res)
  1773. {
  1774. struct spi_res *sres = container_of(res, struct spi_res, data);
  1775. if (!res)
  1776. return;
  1777. WARN_ON(!list_empty(&sres->entry));
  1778. kfree(sres);
  1779. }
  1780. EXPORT_SYMBOL_GPL(spi_res_free);
  1781. /**
  1782. * spi_res_add - add a spi_res to the spi_message
  1783. * @message: the spi message
  1784. * @res: the spi_resource
  1785. */
  1786. void spi_res_add(struct spi_message *message, void *res)
  1787. {
  1788. struct spi_res *sres = container_of(res, struct spi_res, data);
  1789. WARN_ON(!list_empty(&sres->entry));
  1790. list_add_tail(&sres->entry, &message->resources);
  1791. }
  1792. EXPORT_SYMBOL_GPL(spi_res_add);
  1793. /**
  1794. * spi_res_release - release all spi resources for this message
  1795. * @master: the @spi_master
  1796. * @message: the @spi_message
  1797. */
  1798. void spi_res_release(struct spi_master *master,
  1799. struct spi_message *message)
  1800. {
  1801. struct spi_res *res;
  1802. while (!list_empty(&message->resources)) {
  1803. res = list_last_entry(&message->resources,
  1804. struct spi_res, entry);
  1805. if (res->release)
  1806. res->release(master, message, res->data);
  1807. list_del(&res->entry);
  1808. kfree(res);
  1809. }
  1810. }
  1811. EXPORT_SYMBOL_GPL(spi_res_release);
  1812. /*-------------------------------------------------------------------------*/
  1813. /* Core methods for spi_message alterations */
  1814. static void __spi_replace_transfers_release(struct spi_master *master,
  1815. struct spi_message *msg,
  1816. void *res)
  1817. {
  1818. struct spi_replaced_transfers *rxfer = res;
  1819. size_t i;
  1820. /* call extra callback if requested */
  1821. if (rxfer->release)
  1822. rxfer->release(master, msg, res);
  1823. /* insert replaced transfers back into the message */
  1824. list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
  1825. /* remove the formerly inserted entries */
  1826. for (i = 0; i < rxfer->inserted; i++)
  1827. list_del(&rxfer->inserted_transfers[i].transfer_list);
  1828. }
  1829. /**
  1830. * spi_replace_transfers - replace transfers with several transfers
  1831. * and register change with spi_message.resources
  1832. * @msg: the spi_message we work upon
  1833. * @xfer_first: the first spi_transfer we want to replace
  1834. * @remove: number of transfers to remove
  1835. * @insert: the number of transfers we want to insert instead
  1836. * @release: extra release code necessary in some circumstances
  1837. * @extradatasize: extra data to allocate (with alignment guarantees
  1838. * of struct @spi_transfer)
  1839. * @gfp: gfp flags
  1840. *
  1841. * Returns: pointer to @spi_replaced_transfers,
  1842. * PTR_ERR(...) in case of errors.
  1843. */
  1844. struct spi_replaced_transfers *spi_replace_transfers(
  1845. struct spi_message *msg,
  1846. struct spi_transfer *xfer_first,
  1847. size_t remove,
  1848. size_t insert,
  1849. spi_replaced_release_t release,
  1850. size_t extradatasize,
  1851. gfp_t gfp)
  1852. {
  1853. struct spi_replaced_transfers *rxfer;
  1854. struct spi_transfer *xfer;
  1855. size_t i;
  1856. /* allocate the structure using spi_res */
  1857. rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
  1858. insert * sizeof(struct spi_transfer)
  1859. + sizeof(struct spi_replaced_transfers)
  1860. + extradatasize,
  1861. gfp);
  1862. if (!rxfer)
  1863. return ERR_PTR(-ENOMEM);
  1864. /* the release code to invoke before running the generic release */
  1865. rxfer->release = release;
  1866. /* assign extradata */
  1867. if (extradatasize)
  1868. rxfer->extradata =
  1869. &rxfer->inserted_transfers[insert];
  1870. /* init the replaced_transfers list */
  1871. INIT_LIST_HEAD(&rxfer->replaced_transfers);
  1872. /* assign the list_entry after which we should reinsert
  1873. * the @replaced_transfers - it may be spi_message.messages!
  1874. */
  1875. rxfer->replaced_after = xfer_first->transfer_list.prev;
  1876. /* remove the requested number of transfers */
  1877. for (i = 0; i < remove; i++) {
  1878. /* if the entry after replaced_after it is msg->transfers
  1879. * then we have been requested to remove more transfers
  1880. * than are in the list
  1881. */
  1882. if (rxfer->replaced_after->next == &msg->transfers) {
  1883. dev_err(&msg->spi->dev,
  1884. "requested to remove more spi_transfers than are available\n");
  1885. /* insert replaced transfers back into the message */
  1886. list_splice(&rxfer->replaced_transfers,
  1887. rxfer->replaced_after);
  1888. /* free the spi_replace_transfer structure */
  1889. spi_res_free(rxfer);
  1890. /* and return with an error */
  1891. return ERR_PTR(-EINVAL);
  1892. }
  1893. /* remove the entry after replaced_after from list of
  1894. * transfers and add it to list of replaced_transfers
  1895. */
  1896. list_move_tail(rxfer->replaced_after->next,
  1897. &rxfer->replaced_transfers);
  1898. }
  1899. /* create copy of the given xfer with identical settings
  1900. * based on the first transfer to get removed
  1901. */
  1902. for (i = 0; i < insert; i++) {
  1903. /* we need to run in reverse order */
  1904. xfer = &rxfer->inserted_transfers[insert - 1 - i];
  1905. /* copy all spi_transfer data */
  1906. memcpy(xfer, xfer_first, sizeof(*xfer));
  1907. /* add to list */
  1908. list_add(&xfer->transfer_list, rxfer->replaced_after);
  1909. /* clear cs_change and delay_usecs for all but the last */
  1910. if (i) {
  1911. xfer->cs_change = false;
  1912. xfer->delay_usecs = 0;
  1913. }
  1914. }
  1915. /* set up inserted */
  1916. rxfer->inserted = insert;
  1917. /* and register it with spi_res/spi_message */
  1918. spi_res_add(msg, rxfer);
  1919. return rxfer;
  1920. }
  1921. EXPORT_SYMBOL_GPL(spi_replace_transfers);
  1922. static int __spi_split_transfer_maxsize(struct spi_master *master,
  1923. struct spi_message *msg,
  1924. struct spi_transfer **xferp,
  1925. size_t maxsize,
  1926. gfp_t gfp)
  1927. {
  1928. struct spi_transfer *xfer = *xferp, *xfers;
  1929. struct spi_replaced_transfers *srt;
  1930. size_t offset;
  1931. size_t count, i;
  1932. /* warn once about this fact that we are splitting a transfer */
  1933. dev_warn_once(&msg->spi->dev,
  1934. "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
  1935. xfer->len, maxsize);
  1936. /* calculate how many we have to replace */
  1937. count = DIV_ROUND_UP(xfer->len, maxsize);
  1938. /* create replacement */
  1939. srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
  1940. if (IS_ERR(srt))
  1941. return PTR_ERR(srt);
  1942. xfers = srt->inserted_transfers;
  1943. /* now handle each of those newly inserted spi_transfers
  1944. * note that the replacements spi_transfers all are preset
  1945. * to the same values as *xferp, so tx_buf, rx_buf and len
  1946. * are all identical (as well as most others)
  1947. * so we just have to fix up len and the pointers.
  1948. *
  1949. * this also includes support for the depreciated
  1950. * spi_message.is_dma_mapped interface
  1951. */
  1952. /* the first transfer just needs the length modified, so we
  1953. * run it outside the loop
  1954. */
  1955. xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
  1956. /* all the others need rx_buf/tx_buf also set */
  1957. for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
  1958. /* update rx_buf, tx_buf and dma */
  1959. if (xfers[i].rx_buf)
  1960. xfers[i].rx_buf += offset;
  1961. if (xfers[i].rx_dma)
  1962. xfers[i].rx_dma += offset;
  1963. if (xfers[i].tx_buf)
  1964. xfers[i].tx_buf += offset;
  1965. if (xfers[i].tx_dma)
  1966. xfers[i].tx_dma += offset;
  1967. /* update length */
  1968. xfers[i].len = min(maxsize, xfers[i].len - offset);
  1969. }
  1970. /* we set up xferp to the last entry we have inserted,
  1971. * so that we skip those already split transfers
  1972. */
  1973. *xferp = &xfers[count - 1];
  1974. /* increment statistics counters */
  1975. SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
  1976. transfers_split_maxsize);
  1977. SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
  1978. transfers_split_maxsize);
  1979. return 0;
  1980. }
  1981. /**
  1982. * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
  1983. * when an individual transfer exceeds a
  1984. * certain size
  1985. * @master: the @spi_master for this transfer
  1986. * @msg: the @spi_message to transform
  1987. * @maxsize: the maximum when to apply this
  1988. * @gfp: GFP allocation flags
  1989. *
  1990. * Return: status of transformation
  1991. */
  1992. int spi_split_transfers_maxsize(struct spi_master *master,
  1993. struct spi_message *msg,
  1994. size_t maxsize,
  1995. gfp_t gfp)
  1996. {
  1997. struct spi_transfer *xfer;
  1998. int ret;
  1999. /* iterate over the transfer_list,
  2000. * but note that xfer is advanced to the last transfer inserted
  2001. * to avoid checking sizes again unnecessarily (also xfer does
  2002. * potentiall belong to a different list by the time the
  2003. * replacement has happened
  2004. */
  2005. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  2006. if (xfer->len > maxsize) {
  2007. ret = __spi_split_transfer_maxsize(
  2008. master, msg, &xfer, maxsize, gfp);
  2009. if (ret)
  2010. return ret;
  2011. }
  2012. }
  2013. return 0;
  2014. }
  2015. EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
  2016. /*-------------------------------------------------------------------------*/
  2017. /* Core methods for SPI master protocol drivers. Some of the
  2018. * other core methods are currently defined as inline functions.
  2019. */
  2020. static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
  2021. {
  2022. if (master->bits_per_word_mask) {
  2023. /* Only 32 bits fit in the mask */
  2024. if (bits_per_word > 32)
  2025. return -EINVAL;
  2026. if (!(master->bits_per_word_mask &
  2027. SPI_BPW_MASK(bits_per_word)))
  2028. return -EINVAL;
  2029. }
  2030. return 0;
  2031. }
  2032. /**
  2033. * spi_setup - setup SPI mode and clock rate
  2034. * @spi: the device whose settings are being modified
  2035. * Context: can sleep, and no requests are queued to the device
  2036. *
  2037. * SPI protocol drivers may need to update the transfer mode if the
  2038. * device doesn't work with its default. They may likewise need
  2039. * to update clock rates or word sizes from initial values. This function
  2040. * changes those settings, and must be called from a context that can sleep.
  2041. * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  2042. * effect the next time the device is selected and data is transferred to
  2043. * or from it. When this function returns, the spi device is deselected.
  2044. *
  2045. * Note that this call will fail if the protocol driver specifies an option
  2046. * that the underlying controller or its driver does not support. For
  2047. * example, not all hardware supports wire transfers using nine bit words,
  2048. * LSB-first wire encoding, or active-high chipselects.
  2049. *
  2050. * Return: zero on success, else a negative error code.
  2051. */
  2052. int spi_setup(struct spi_device *spi)
  2053. {
  2054. unsigned bad_bits, ugly_bits;
  2055. int status;
  2056. /* check mode to prevent that DUAL and QUAD set at the same time
  2057. */
  2058. if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
  2059. ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
  2060. dev_err(&spi->dev,
  2061. "setup: can not select dual and quad at the same time\n");
  2062. return -EINVAL;
  2063. }
  2064. /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
  2065. */
  2066. if ((spi->mode & SPI_3WIRE) && (spi->mode &
  2067. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
  2068. return -EINVAL;
  2069. /* help drivers fail *cleanly* when they need options
  2070. * that aren't supported with their current master
  2071. */
  2072. bad_bits = spi->mode & ~spi->master->mode_bits;
  2073. ugly_bits = bad_bits &
  2074. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
  2075. if (ugly_bits) {
  2076. dev_warn(&spi->dev,
  2077. "setup: ignoring unsupported mode bits %x\n",
  2078. ugly_bits);
  2079. spi->mode &= ~ugly_bits;
  2080. bad_bits &= ~ugly_bits;
  2081. }
  2082. if (bad_bits) {
  2083. dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
  2084. bad_bits);
  2085. return -EINVAL;
  2086. }
  2087. if (!spi->bits_per_word)
  2088. spi->bits_per_word = 8;
  2089. status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
  2090. if (status)
  2091. return status;
  2092. if (!spi->max_speed_hz)
  2093. spi->max_speed_hz = spi->master->max_speed_hz;
  2094. if (spi->master->setup)
  2095. status = spi->master->setup(spi);
  2096. spi_set_cs(spi, false);
  2097. dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
  2098. (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
  2099. (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
  2100. (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
  2101. (spi->mode & SPI_3WIRE) ? "3wire, " : "",
  2102. (spi->mode & SPI_LOOP) ? "loopback, " : "",
  2103. spi->bits_per_word, spi->max_speed_hz,
  2104. status);
  2105. return status;
  2106. }
  2107. EXPORT_SYMBOL_GPL(spi_setup);
  2108. static int __spi_validate(struct spi_device *spi, struct spi_message *message)
  2109. {
  2110. struct spi_master *master = spi->master;
  2111. struct spi_transfer *xfer;
  2112. int w_size;
  2113. if (list_empty(&message->transfers))
  2114. return -EINVAL;
  2115. /* Half-duplex links include original MicroWire, and ones with
  2116. * only one data pin like SPI_3WIRE (switches direction) or where
  2117. * either MOSI or MISO is missing. They can also be caused by
  2118. * software limitations.
  2119. */
  2120. if ((master->flags & SPI_MASTER_HALF_DUPLEX)
  2121. || (spi->mode & SPI_3WIRE)) {
  2122. unsigned flags = master->flags;
  2123. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  2124. if (xfer->rx_buf && xfer->tx_buf)
  2125. return -EINVAL;
  2126. if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
  2127. return -EINVAL;
  2128. if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
  2129. return -EINVAL;
  2130. }
  2131. }
  2132. /**
  2133. * Set transfer bits_per_word and max speed as spi device default if
  2134. * it is not set for this transfer.
  2135. * Set transfer tx_nbits and rx_nbits as single transfer default
  2136. * (SPI_NBITS_SINGLE) if it is not set for this transfer.
  2137. */
  2138. message->frame_length = 0;
  2139. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  2140. message->frame_length += xfer->len;
  2141. if (!xfer->bits_per_word)
  2142. xfer->bits_per_word = spi->bits_per_word;
  2143. if (!xfer->speed_hz)
  2144. xfer->speed_hz = spi->max_speed_hz;
  2145. if (!xfer->speed_hz)
  2146. xfer->speed_hz = master->max_speed_hz;
  2147. if (master->max_speed_hz &&
  2148. xfer->speed_hz > master->max_speed_hz)
  2149. xfer->speed_hz = master->max_speed_hz;
  2150. if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
  2151. return -EINVAL;
  2152. /*
  2153. * SPI transfer length should be multiple of SPI word size
  2154. * where SPI word size should be power-of-two multiple
  2155. */
  2156. if (xfer->bits_per_word <= 8)
  2157. w_size = 1;
  2158. else if (xfer->bits_per_word <= 16)
  2159. w_size = 2;
  2160. else
  2161. w_size = 4;
  2162. /* No partial transfers accepted */
  2163. if (xfer->len % w_size)
  2164. return -EINVAL;
  2165. if (xfer->speed_hz && master->min_speed_hz &&
  2166. xfer->speed_hz < master->min_speed_hz)
  2167. return -EINVAL;
  2168. if (xfer->tx_buf && !xfer->tx_nbits)
  2169. xfer->tx_nbits = SPI_NBITS_SINGLE;
  2170. if (xfer->rx_buf && !xfer->rx_nbits)
  2171. xfer->rx_nbits = SPI_NBITS_SINGLE;
  2172. /* check transfer tx/rx_nbits:
  2173. * 1. check the value matches one of single, dual and quad
  2174. * 2. check tx/rx_nbits match the mode in spi_device
  2175. */
  2176. if (xfer->tx_buf) {
  2177. if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
  2178. xfer->tx_nbits != SPI_NBITS_DUAL &&
  2179. xfer->tx_nbits != SPI_NBITS_QUAD)
  2180. return -EINVAL;
  2181. if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
  2182. !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
  2183. return -EINVAL;
  2184. if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
  2185. !(spi->mode & SPI_TX_QUAD))
  2186. return -EINVAL;
  2187. }
  2188. /* check transfer rx_nbits */
  2189. if (xfer->rx_buf) {
  2190. if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
  2191. xfer->rx_nbits != SPI_NBITS_DUAL &&
  2192. xfer->rx_nbits != SPI_NBITS_QUAD)
  2193. return -EINVAL;
  2194. if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
  2195. !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
  2196. return -EINVAL;
  2197. if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
  2198. !(spi->mode & SPI_RX_QUAD))
  2199. return -EINVAL;
  2200. }
  2201. }
  2202. message->status = -EINPROGRESS;
  2203. return 0;
  2204. }
  2205. static int __spi_async(struct spi_device *spi, struct spi_message *message)
  2206. {
  2207. struct spi_master *master = spi->master;
  2208. message->spi = spi;
  2209. SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
  2210. SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
  2211. trace_spi_message_submit(message);
  2212. return master->transfer(spi, message);
  2213. }
  2214. /**
  2215. * spi_async - asynchronous SPI transfer
  2216. * @spi: device with which data will be exchanged
  2217. * @message: describes the data transfers, including completion callback
  2218. * Context: any (irqs may be blocked, etc)
  2219. *
  2220. * This call may be used in_irq and other contexts which can't sleep,
  2221. * as well as from task contexts which can sleep.
  2222. *
  2223. * The completion callback is invoked in a context which can't sleep.
  2224. * Before that invocation, the value of message->status is undefined.
  2225. * When the callback is issued, message->status holds either zero (to
  2226. * indicate complete success) or a negative error code. After that
  2227. * callback returns, the driver which issued the transfer request may
  2228. * deallocate the associated memory; it's no longer in use by any SPI
  2229. * core or controller driver code.
  2230. *
  2231. * Note that although all messages to a spi_device are handled in
  2232. * FIFO order, messages may go to different devices in other orders.
  2233. * Some device might be higher priority, or have various "hard" access
  2234. * time requirements, for example.
  2235. *
  2236. * On detection of any fault during the transfer, processing of
  2237. * the entire message is aborted, and the device is deselected.
  2238. * Until returning from the associated message completion callback,
  2239. * no other spi_message queued to that device will be processed.
  2240. * (This rule applies equally to all the synchronous transfer calls,
  2241. * which are wrappers around this core asynchronous primitive.)
  2242. *
  2243. * Return: zero on success, else a negative error code.
  2244. */
  2245. int spi_async(struct spi_device *spi, struct spi_message *message)
  2246. {
  2247. struct spi_master *master = spi->master;
  2248. int ret;
  2249. unsigned long flags;
  2250. ret = __spi_validate(spi, message);
  2251. if (ret != 0)
  2252. return ret;
  2253. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  2254. if (master->bus_lock_flag)
  2255. ret = -EBUSY;
  2256. else
  2257. ret = __spi_async(spi, message);
  2258. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  2259. return ret;
  2260. }
  2261. EXPORT_SYMBOL_GPL(spi_async);
  2262. /**
  2263. * spi_async_locked - version of spi_async with exclusive bus usage
  2264. * @spi: device with which data will be exchanged
  2265. * @message: describes the data transfers, including completion callback
  2266. * Context: any (irqs may be blocked, etc)
  2267. *
  2268. * This call may be used in_irq and other contexts which can't sleep,
  2269. * as well as from task contexts which can sleep.
  2270. *
  2271. * The completion callback is invoked in a context which can't sleep.
  2272. * Before that invocation, the value of message->status is undefined.
  2273. * When the callback is issued, message->status holds either zero (to
  2274. * indicate complete success) or a negative error code. After that
  2275. * callback returns, the driver which issued the transfer request may
  2276. * deallocate the associated memory; it's no longer in use by any SPI
  2277. * core or controller driver code.
  2278. *
  2279. * Note that although all messages to a spi_device are handled in
  2280. * FIFO order, messages may go to different devices in other orders.
  2281. * Some device might be higher priority, or have various "hard" access
  2282. * time requirements, for example.
  2283. *
  2284. * On detection of any fault during the transfer, processing of
  2285. * the entire message is aborted, and the device is deselected.
  2286. * Until returning from the associated message completion callback,
  2287. * no other spi_message queued to that device will be processed.
  2288. * (This rule applies equally to all the synchronous transfer calls,
  2289. * which are wrappers around this core asynchronous primitive.)
  2290. *
  2291. * Return: zero on success, else a negative error code.
  2292. */
  2293. int spi_async_locked(struct spi_device *spi, struct spi_message *message)
  2294. {
  2295. struct spi_master *master = spi->master;
  2296. int ret;
  2297. unsigned long flags;
  2298. ret = __spi_validate(spi, message);
  2299. if (ret != 0)
  2300. return ret;
  2301. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  2302. ret = __spi_async(spi, message);
  2303. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  2304. return ret;
  2305. }
  2306. EXPORT_SYMBOL_GPL(spi_async_locked);
  2307. int spi_flash_read(struct spi_device *spi,
  2308. struct spi_flash_read_message *msg)
  2309. {
  2310. struct spi_master *master = spi->master;
  2311. int ret;
  2312. if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
  2313. msg->addr_nbits == SPI_NBITS_DUAL) &&
  2314. !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
  2315. return -EINVAL;
  2316. if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
  2317. msg->addr_nbits == SPI_NBITS_QUAD) &&
  2318. !(spi->mode & SPI_TX_QUAD))
  2319. return -EINVAL;
  2320. if (msg->data_nbits == SPI_NBITS_DUAL &&
  2321. !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
  2322. return -EINVAL;
  2323. if (msg->data_nbits == SPI_NBITS_QUAD &&
  2324. !(spi->mode & SPI_RX_QUAD))
  2325. return -EINVAL;
  2326. if (master->auto_runtime_pm) {
  2327. ret = pm_runtime_get_sync(master->dev.parent);
  2328. if (ret < 0) {
  2329. dev_err(&master->dev, "Failed to power device: %d\n",
  2330. ret);
  2331. return ret;
  2332. }
  2333. }
  2334. mutex_lock(&master->bus_lock_mutex);
  2335. ret = master->spi_flash_read(spi, msg);
  2336. mutex_unlock(&master->bus_lock_mutex);
  2337. if (master->auto_runtime_pm)
  2338. pm_runtime_put(master->dev.parent);
  2339. return ret;
  2340. }
  2341. EXPORT_SYMBOL_GPL(spi_flash_read);
  2342. /*-------------------------------------------------------------------------*/
  2343. /* Utility methods for SPI master protocol drivers, layered on
  2344. * top of the core. Some other utility methods are defined as
  2345. * inline functions.
  2346. */
  2347. static void spi_complete(void *arg)
  2348. {
  2349. complete(arg);
  2350. }
  2351. static int __spi_sync(struct spi_device *spi, struct spi_message *message,
  2352. int bus_locked)
  2353. {
  2354. DECLARE_COMPLETION_ONSTACK(done);
  2355. int status;
  2356. struct spi_master *master = spi->master;
  2357. unsigned long flags;
  2358. status = __spi_validate(spi, message);
  2359. if (status != 0)
  2360. return status;
  2361. message->complete = spi_complete;
  2362. message->context = &done;
  2363. message->spi = spi;
  2364. SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
  2365. SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
  2366. if (!bus_locked)
  2367. mutex_lock(&master->bus_lock_mutex);
  2368. /* If we're not using the legacy transfer method then we will
  2369. * try to transfer in the calling context so special case.
  2370. * This code would be less tricky if we could remove the
  2371. * support for driver implemented message queues.
  2372. */
  2373. if (master->transfer == spi_queued_transfer) {
  2374. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  2375. trace_spi_message_submit(message);
  2376. status = __spi_queued_transfer(spi, message, false);
  2377. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  2378. } else {
  2379. status = spi_async_locked(spi, message);
  2380. }
  2381. if (!bus_locked)
  2382. mutex_unlock(&master->bus_lock_mutex);
  2383. if (status == 0) {
  2384. /* Push out the messages in the calling context if we
  2385. * can.
  2386. */
  2387. if (master->transfer == spi_queued_transfer) {
  2388. SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
  2389. spi_sync_immediate);
  2390. SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
  2391. spi_sync_immediate);
  2392. __spi_pump_messages(master, false, bus_locked);
  2393. }
  2394. wait_for_completion(&done);
  2395. status = message->status;
  2396. }
  2397. message->context = NULL;
  2398. return status;
  2399. }
  2400. /**
  2401. * spi_sync - blocking/synchronous SPI data transfers
  2402. * @spi: device with which data will be exchanged
  2403. * @message: describes the data transfers
  2404. * Context: can sleep
  2405. *
  2406. * This call may only be used from a context that may sleep. The sleep
  2407. * is non-interruptible, and has no timeout. Low-overhead controller
  2408. * drivers may DMA directly into and out of the message buffers.
  2409. *
  2410. * Note that the SPI device's chip select is active during the message,
  2411. * and then is normally disabled between messages. Drivers for some
  2412. * frequently-used devices may want to minimize costs of selecting a chip,
  2413. * by leaving it selected in anticipation that the next message will go
  2414. * to the same chip. (That may increase power usage.)
  2415. *
  2416. * Also, the caller is guaranteeing that the memory associated with the
  2417. * message will not be freed before this call returns.
  2418. *
  2419. * Return: zero on success, else a negative error code.
  2420. */
  2421. int spi_sync(struct spi_device *spi, struct spi_message *message)
  2422. {
  2423. return __spi_sync(spi, message, 0);
  2424. }
  2425. EXPORT_SYMBOL_GPL(spi_sync);
  2426. /**
  2427. * spi_sync_locked - version of spi_sync with exclusive bus usage
  2428. * @spi: device with which data will be exchanged
  2429. * @message: describes the data transfers
  2430. * Context: can sleep
  2431. *
  2432. * This call may only be used from a context that may sleep. The sleep
  2433. * is non-interruptible, and has no timeout. Low-overhead controller
  2434. * drivers may DMA directly into and out of the message buffers.
  2435. *
  2436. * This call should be used by drivers that require exclusive access to the
  2437. * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
  2438. * be released by a spi_bus_unlock call when the exclusive access is over.
  2439. *
  2440. * Return: zero on success, else a negative error code.
  2441. */
  2442. int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
  2443. {
  2444. return __spi_sync(spi, message, 1);
  2445. }
  2446. EXPORT_SYMBOL_GPL(spi_sync_locked);
  2447. /**
  2448. * spi_bus_lock - obtain a lock for exclusive SPI bus usage
  2449. * @master: SPI bus master that should be locked for exclusive bus access
  2450. * Context: can sleep
  2451. *
  2452. * This call may only be used from a context that may sleep. The sleep
  2453. * is non-interruptible, and has no timeout.
  2454. *
  2455. * This call should be used by drivers that require exclusive access to the
  2456. * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
  2457. * exclusive access is over. Data transfer must be done by spi_sync_locked
  2458. * and spi_async_locked calls when the SPI bus lock is held.
  2459. *
  2460. * Return: always zero.
  2461. */
  2462. int spi_bus_lock(struct spi_master *master)
  2463. {
  2464. unsigned long flags;
  2465. mutex_lock(&master->bus_lock_mutex);
  2466. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  2467. master->bus_lock_flag = 1;
  2468. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  2469. /* mutex remains locked until spi_bus_unlock is called */
  2470. return 0;
  2471. }
  2472. EXPORT_SYMBOL_GPL(spi_bus_lock);
  2473. /**
  2474. * spi_bus_unlock - release the lock for exclusive SPI bus usage
  2475. * @master: SPI bus master that was locked for exclusive bus access
  2476. * Context: can sleep
  2477. *
  2478. * This call may only be used from a context that may sleep. The sleep
  2479. * is non-interruptible, and has no timeout.
  2480. *
  2481. * This call releases an SPI bus lock previously obtained by an spi_bus_lock
  2482. * call.
  2483. *
  2484. * Return: always zero.
  2485. */
  2486. int spi_bus_unlock(struct spi_master *master)
  2487. {
  2488. master->bus_lock_flag = 0;
  2489. mutex_unlock(&master->bus_lock_mutex);
  2490. return 0;
  2491. }
  2492. EXPORT_SYMBOL_GPL(spi_bus_unlock);
  2493. /* portable code must never pass more than 32 bytes */
  2494. #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
  2495. static u8 *buf;
  2496. /**
  2497. * spi_write_then_read - SPI synchronous write followed by read
  2498. * @spi: device with which data will be exchanged
  2499. * @txbuf: data to be written (need not be dma-safe)
  2500. * @n_tx: size of txbuf, in bytes
  2501. * @rxbuf: buffer into which data will be read (need not be dma-safe)
  2502. * @n_rx: size of rxbuf, in bytes
  2503. * Context: can sleep
  2504. *
  2505. * This performs a half duplex MicroWire style transaction with the
  2506. * device, sending txbuf and then reading rxbuf. The return value
  2507. * is zero for success, else a negative errno status code.
  2508. * This call may only be used from a context that may sleep.
  2509. *
  2510. * Parameters to this routine are always copied using a small buffer;
  2511. * portable code should never use this for more than 32 bytes.
  2512. * Performance-sensitive or bulk transfer code should instead use
  2513. * spi_{async,sync}() calls with dma-safe buffers.
  2514. *
  2515. * Return: zero on success, else a negative error code.
  2516. */
  2517. int spi_write_then_read(struct spi_device *spi,
  2518. const void *txbuf, unsigned n_tx,
  2519. void *rxbuf, unsigned n_rx)
  2520. {
  2521. static DEFINE_MUTEX(lock);
  2522. int status;
  2523. struct spi_message message;
  2524. struct spi_transfer x[2];
  2525. u8 *local_buf;
  2526. /* Use preallocated DMA-safe buffer if we can. We can't avoid
  2527. * copying here, (as a pure convenience thing), but we can
  2528. * keep heap costs out of the hot path unless someone else is
  2529. * using the pre-allocated buffer or the transfer is too large.
  2530. */
  2531. if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
  2532. local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
  2533. GFP_KERNEL | GFP_DMA);
  2534. if (!local_buf)
  2535. return -ENOMEM;
  2536. } else {
  2537. local_buf = buf;
  2538. }
  2539. spi_message_init(&message);
  2540. memset(x, 0, sizeof(x));
  2541. if (n_tx) {
  2542. x[0].len = n_tx;
  2543. spi_message_add_tail(&x[0], &message);
  2544. }
  2545. if (n_rx) {
  2546. x[1].len = n_rx;
  2547. spi_message_add_tail(&x[1], &message);
  2548. }
  2549. memcpy(local_buf, txbuf, n_tx);
  2550. x[0].tx_buf = local_buf;
  2551. x[1].rx_buf = local_buf + n_tx;
  2552. /* do the i/o */
  2553. status = spi_sync(spi, &message);
  2554. if (status == 0)
  2555. memcpy(rxbuf, x[1].rx_buf, n_rx);
  2556. if (x[0].tx_buf == buf)
  2557. mutex_unlock(&lock);
  2558. else
  2559. kfree(local_buf);
  2560. return status;
  2561. }
  2562. EXPORT_SYMBOL_GPL(spi_write_then_read);
  2563. /*-------------------------------------------------------------------------*/
  2564. #if IS_ENABLED(CONFIG_OF_DYNAMIC)
  2565. static int __spi_of_device_match(struct device *dev, void *data)
  2566. {
  2567. return dev->of_node == data;
  2568. }
  2569. /* must call put_device() when done with returned spi_device device */
  2570. static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
  2571. {
  2572. struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
  2573. __spi_of_device_match);
  2574. return dev ? to_spi_device(dev) : NULL;
  2575. }
  2576. static int __spi_of_master_match(struct device *dev, const void *data)
  2577. {
  2578. return dev->of_node == data;
  2579. }
  2580. /* the spi masters are not using spi_bus, so we find it with another way */
  2581. static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
  2582. {
  2583. struct device *dev;
  2584. dev = class_find_device(&spi_master_class, NULL, node,
  2585. __spi_of_master_match);
  2586. if (!dev)
  2587. return NULL;
  2588. /* reference got in class_find_device */
  2589. return container_of(dev, struct spi_master, dev);
  2590. }
  2591. static int of_spi_notify(struct notifier_block *nb, unsigned long action,
  2592. void *arg)
  2593. {
  2594. struct of_reconfig_data *rd = arg;
  2595. struct spi_master *master;
  2596. struct spi_device *spi;
  2597. switch (of_reconfig_get_state_change(action, arg)) {
  2598. case OF_RECONFIG_CHANGE_ADD:
  2599. master = of_find_spi_master_by_node(rd->dn->parent);
  2600. if (master == NULL)
  2601. return NOTIFY_OK; /* not for us */
  2602. if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
  2603. put_device(&master->dev);
  2604. return NOTIFY_OK;
  2605. }
  2606. spi = of_register_spi_device(master, rd->dn);
  2607. put_device(&master->dev);
  2608. if (IS_ERR(spi)) {
  2609. pr_err("%s: failed to create for '%s'\n",
  2610. __func__, rd->dn->full_name);
  2611. return notifier_from_errno(PTR_ERR(spi));
  2612. }
  2613. break;
  2614. case OF_RECONFIG_CHANGE_REMOVE:
  2615. /* already depopulated? */
  2616. if (!of_node_check_flag(rd->dn, OF_POPULATED))
  2617. return NOTIFY_OK;
  2618. /* find our device by node */
  2619. spi = of_find_spi_device_by_node(rd->dn);
  2620. if (spi == NULL)
  2621. return NOTIFY_OK; /* no? not meant for us */
  2622. /* unregister takes one ref away */
  2623. spi_unregister_device(spi);
  2624. /* and put the reference of the find */
  2625. put_device(&spi->dev);
  2626. break;
  2627. }
  2628. return NOTIFY_OK;
  2629. }
  2630. static struct notifier_block spi_of_notifier = {
  2631. .notifier_call = of_spi_notify,
  2632. };
  2633. #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
  2634. extern struct notifier_block spi_of_notifier;
  2635. #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
  2636. static int __init spi_init(void)
  2637. {
  2638. int status;
  2639. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  2640. if (!buf) {
  2641. status = -ENOMEM;
  2642. goto err0;
  2643. }
  2644. status = bus_register(&spi_bus_type);
  2645. if (status < 0)
  2646. goto err1;
  2647. status = class_register(&spi_master_class);
  2648. if (status < 0)
  2649. goto err2;
  2650. if (IS_ENABLED(CONFIG_OF_DYNAMIC))
  2651. WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
  2652. return 0;
  2653. err2:
  2654. bus_unregister(&spi_bus_type);
  2655. err1:
  2656. kfree(buf);
  2657. buf = NULL;
  2658. err0:
  2659. return status;
  2660. }
  2661. /* board_info is normally registered in arch_initcall(),
  2662. * but even essential drivers wait till later
  2663. *
  2664. * REVISIT only boardinfo really needs static linking. the rest (device and
  2665. * driver registration) _could_ be dynamically linked (modular) ... costs
  2666. * include needing to have boardinfo data structures be much more public.
  2667. */
  2668. postcore_initcall(spi_init);