core.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883
  1. /*
  2. * Core driver for the pin control subsystem
  3. *
  4. * Copyright (C) 2011-2012 ST-Ericsson SA
  5. * Written on behalf of Linaro for ST-Ericsson
  6. * Based on bits of regulator core, gpio core and clk core
  7. *
  8. * Author: Linus Walleij <linus.walleij@linaro.org>
  9. *
  10. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11. *
  12. * License terms: GNU General Public License (GPL) version 2
  13. */
  14. #define pr_fmt(fmt) "pinctrl core: " fmt
  15. #include <linux/kernel.h>
  16. #include <linux/kref.h>
  17. #include <linux/export.h>
  18. #include <linux/init.h>
  19. #include <linux/device.h>
  20. #include <linux/slab.h>
  21. #include <linux/err.h>
  22. #include <linux/list.h>
  23. #include <linux/sysfs.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/pinctrl/consumer.h>
  27. #include <linux/pinctrl/pinctrl.h>
  28. #include <linux/pinctrl/machine.h>
  29. #ifdef CONFIG_GPIOLIB
  30. #include <asm-generic/gpio.h>
  31. #endif
  32. #include "core.h"
  33. #include "devicetree.h"
  34. #include "pinmux.h"
  35. #include "pinconf.h"
  36. static bool pinctrl_dummy_state;
  37. /* Mutex taken to protect pinctrl_list */
  38. static DEFINE_MUTEX(pinctrl_list_mutex);
  39. /* Mutex taken to protect pinctrl_maps */
  40. DEFINE_MUTEX(pinctrl_maps_mutex);
  41. /* Mutex taken to protect pinctrldev_list */
  42. static DEFINE_MUTEX(pinctrldev_list_mutex);
  43. /* Global list of pin control devices (struct pinctrl_dev) */
  44. static LIST_HEAD(pinctrldev_list);
  45. /* List of pin controller handles (struct pinctrl) */
  46. static LIST_HEAD(pinctrl_list);
  47. /* List of pinctrl maps (struct pinctrl_maps) */
  48. LIST_HEAD(pinctrl_maps);
  49. /**
  50. * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  51. *
  52. * Usually this function is called by platforms without pinctrl driver support
  53. * but run with some shared drivers using pinctrl APIs.
  54. * After calling this function, the pinctrl core will return successfully
  55. * with creating a dummy state for the driver to keep going smoothly.
  56. */
  57. void pinctrl_provide_dummies(void)
  58. {
  59. pinctrl_dummy_state = true;
  60. }
  61. const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  62. {
  63. /* We're not allowed to register devices without name */
  64. return pctldev->desc->name;
  65. }
  66. EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  67. const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  68. {
  69. return dev_name(pctldev->dev);
  70. }
  71. EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  72. void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  73. {
  74. return pctldev->driver_data;
  75. }
  76. EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  77. /**
  78. * get_pinctrl_dev_from_devname() - look up pin controller device
  79. * @devname: the name of a device instance, as returned by dev_name()
  80. *
  81. * Looks up a pin control device matching a certain device name or pure device
  82. * pointer, the pure device pointer will take precedence.
  83. */
  84. struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
  85. {
  86. struct pinctrl_dev *pctldev = NULL;
  87. if (!devname)
  88. return NULL;
  89. mutex_lock(&pinctrldev_list_mutex);
  90. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  91. if (!strcmp(dev_name(pctldev->dev), devname)) {
  92. /* Matched on device name */
  93. mutex_unlock(&pinctrldev_list_mutex);
  94. return pctldev;
  95. }
  96. }
  97. mutex_unlock(&pinctrldev_list_mutex);
  98. return NULL;
  99. }
  100. struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
  101. {
  102. struct pinctrl_dev *pctldev;
  103. mutex_lock(&pinctrldev_list_mutex);
  104. list_for_each_entry(pctldev, &pinctrldev_list, node)
  105. if (pctldev->dev->of_node == np) {
  106. mutex_unlock(&pinctrldev_list_mutex);
  107. return pctldev;
  108. }
  109. mutex_unlock(&pinctrldev_list_mutex);
  110. return NULL;
  111. }
  112. /**
  113. * pin_get_from_name() - look up a pin number from a name
  114. * @pctldev: the pin control device to lookup the pin on
  115. * @name: the name of the pin to look up
  116. */
  117. int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
  118. {
  119. unsigned i, pin;
  120. /* The pin number can be retrived from the pin controller descriptor */
  121. for (i = 0; i < pctldev->desc->npins; i++) {
  122. struct pin_desc *desc;
  123. pin = pctldev->desc->pins[i].number;
  124. desc = pin_desc_get(pctldev, pin);
  125. /* Pin space may be sparse */
  126. if (desc && !strcmp(name, desc->name))
  127. return pin;
  128. }
  129. return -EINVAL;
  130. }
  131. /**
  132. * pin_get_name_from_id() - look up a pin name from a pin id
  133. * @pctldev: the pin control device to lookup the pin on
  134. * @name: the name of the pin to look up
  135. */
  136. const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
  137. {
  138. const struct pin_desc *desc;
  139. desc = pin_desc_get(pctldev, pin);
  140. if (desc == NULL) {
  141. dev_err(pctldev->dev, "failed to get pin(%d) name\n",
  142. pin);
  143. return NULL;
  144. }
  145. return desc->name;
  146. }
  147. /**
  148. * pin_is_valid() - check if pin exists on controller
  149. * @pctldev: the pin control device to check the pin on
  150. * @pin: pin to check, use the local pin controller index number
  151. *
  152. * This tells us whether a certain pin exist on a certain pin controller or
  153. * not. Pin lists may be sparse, so some pins may not exist.
  154. */
  155. bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
  156. {
  157. struct pin_desc *pindesc;
  158. if (pin < 0)
  159. return false;
  160. mutex_lock(&pctldev->mutex);
  161. pindesc = pin_desc_get(pctldev, pin);
  162. mutex_unlock(&pctldev->mutex);
  163. return pindesc != NULL;
  164. }
  165. EXPORT_SYMBOL_GPL(pin_is_valid);
  166. /* Deletes a range of pin descriptors */
  167. static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
  168. const struct pinctrl_pin_desc *pins,
  169. unsigned num_pins)
  170. {
  171. int i;
  172. for (i = 0; i < num_pins; i++) {
  173. struct pin_desc *pindesc;
  174. pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
  175. pins[i].number);
  176. if (pindesc != NULL) {
  177. radix_tree_delete(&pctldev->pin_desc_tree,
  178. pins[i].number);
  179. if (pindesc->dynamic_name)
  180. kfree(pindesc->name);
  181. }
  182. kfree(pindesc);
  183. }
  184. }
  185. static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
  186. unsigned number, const char *name)
  187. {
  188. struct pin_desc *pindesc;
  189. pindesc = pin_desc_get(pctldev, number);
  190. if (pindesc != NULL) {
  191. dev_err(pctldev->dev, "pin %d already registered\n", number);
  192. return -EINVAL;
  193. }
  194. pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
  195. if (pindesc == NULL) {
  196. dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
  197. return -ENOMEM;
  198. }
  199. /* Set owner */
  200. pindesc->pctldev = pctldev;
  201. /* Copy basic pin info */
  202. if (name) {
  203. pindesc->name = name;
  204. } else {
  205. pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
  206. if (pindesc->name == NULL) {
  207. kfree(pindesc);
  208. return -ENOMEM;
  209. }
  210. pindesc->dynamic_name = true;
  211. }
  212. radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
  213. pr_debug("registered pin %d (%s) on %s\n",
  214. number, pindesc->name, pctldev->desc->name);
  215. return 0;
  216. }
  217. static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
  218. struct pinctrl_pin_desc const *pins,
  219. unsigned num_descs)
  220. {
  221. unsigned i;
  222. int ret = 0;
  223. for (i = 0; i < num_descs; i++) {
  224. ret = pinctrl_register_one_pin(pctldev,
  225. pins[i].number, pins[i].name);
  226. if (ret)
  227. return ret;
  228. }
  229. return 0;
  230. }
  231. /**
  232. * gpio_to_pin() - GPIO range GPIO number to pin number translation
  233. * @range: GPIO range used for the translation
  234. * @gpio: gpio pin to translate to a pin number
  235. *
  236. * Finds the pin number for a given GPIO using the specified GPIO range
  237. * as a base for translation. The distinction between linear GPIO ranges
  238. * and pin list based GPIO ranges is managed correctly by this function.
  239. *
  240. * This function assumes the gpio is part of the specified GPIO range, use
  241. * only after making sure this is the case (e.g. by calling it on the
  242. * result of successful pinctrl_get_device_gpio_range calls)!
  243. */
  244. static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
  245. unsigned int gpio)
  246. {
  247. unsigned int offset = gpio - range->base;
  248. if (range->pins)
  249. return range->pins[offset];
  250. else
  251. return range->pin_base + offset;
  252. }
  253. /**
  254. * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
  255. * @pctldev: pin controller device to check
  256. * @gpio: gpio pin to check taken from the global GPIO pin space
  257. *
  258. * Tries to match a GPIO pin number to the ranges handled by a certain pin
  259. * controller, return the range or NULL
  260. */
  261. static struct pinctrl_gpio_range *
  262. pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
  263. {
  264. struct pinctrl_gpio_range *range = NULL;
  265. mutex_lock(&pctldev->mutex);
  266. /* Loop over the ranges */
  267. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  268. /* Check if we're in the valid range */
  269. if (gpio >= range->base &&
  270. gpio < range->base + range->npins) {
  271. mutex_unlock(&pctldev->mutex);
  272. return range;
  273. }
  274. }
  275. mutex_unlock(&pctldev->mutex);
  276. return NULL;
  277. }
  278. /**
  279. * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
  280. * the same GPIO chip are in range
  281. * @gpio: gpio pin to check taken from the global GPIO pin space
  282. *
  283. * This function is complement of pinctrl_match_gpio_range(). If the return
  284. * value of pinctrl_match_gpio_range() is NULL, this function could be used
  285. * to check whether pinctrl device is ready or not. Maybe some GPIO pins
  286. * of the same GPIO chip don't have back-end pinctrl interface.
  287. * If the return value is true, it means that pinctrl device is ready & the
  288. * certain GPIO pin doesn't have back-end pinctrl device. If the return value
  289. * is false, it means that pinctrl device may not be ready.
  290. */
  291. #ifdef CONFIG_GPIOLIB
  292. static bool pinctrl_ready_for_gpio_range(unsigned gpio)
  293. {
  294. struct pinctrl_dev *pctldev;
  295. struct pinctrl_gpio_range *range = NULL;
  296. struct gpio_chip *chip = gpio_to_chip(gpio);
  297. if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
  298. return false;
  299. mutex_lock(&pinctrldev_list_mutex);
  300. /* Loop over the pin controllers */
  301. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  302. /* Loop over the ranges */
  303. mutex_lock(&pctldev->mutex);
  304. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  305. /* Check if any gpio range overlapped with gpio chip */
  306. if (range->base + range->npins - 1 < chip->base ||
  307. range->base > chip->base + chip->ngpio - 1)
  308. continue;
  309. mutex_unlock(&pctldev->mutex);
  310. mutex_unlock(&pinctrldev_list_mutex);
  311. return true;
  312. }
  313. mutex_unlock(&pctldev->mutex);
  314. }
  315. mutex_unlock(&pinctrldev_list_mutex);
  316. return false;
  317. }
  318. #else
  319. static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
  320. #endif
  321. /**
  322. * pinctrl_get_device_gpio_range() - find device for GPIO range
  323. * @gpio: the pin to locate the pin controller for
  324. * @outdev: the pin control device if found
  325. * @outrange: the GPIO range if found
  326. *
  327. * Find the pin controller handling a certain GPIO pin from the pinspace of
  328. * the GPIO subsystem, return the device and the matching GPIO range. Returns
  329. * -EPROBE_DEFER if the GPIO range could not be found in any device since it
  330. * may still have not been registered.
  331. */
  332. static int pinctrl_get_device_gpio_range(unsigned gpio,
  333. struct pinctrl_dev **outdev,
  334. struct pinctrl_gpio_range **outrange)
  335. {
  336. struct pinctrl_dev *pctldev = NULL;
  337. mutex_lock(&pinctrldev_list_mutex);
  338. /* Loop over the pin controllers */
  339. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  340. struct pinctrl_gpio_range *range;
  341. range = pinctrl_match_gpio_range(pctldev, gpio);
  342. if (range != NULL) {
  343. *outdev = pctldev;
  344. *outrange = range;
  345. mutex_unlock(&pinctrldev_list_mutex);
  346. return 0;
  347. }
  348. }
  349. mutex_unlock(&pinctrldev_list_mutex);
  350. return -EPROBE_DEFER;
  351. }
  352. /**
  353. * pinctrl_add_gpio_range() - register a GPIO range for a controller
  354. * @pctldev: pin controller device to add the range to
  355. * @range: the GPIO range to add
  356. *
  357. * This adds a range of GPIOs to be handled by a certain pin controller. Call
  358. * this to register handled ranges after registering your pin controller.
  359. */
  360. void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
  361. struct pinctrl_gpio_range *range)
  362. {
  363. mutex_lock(&pctldev->mutex);
  364. list_add_tail(&range->node, &pctldev->gpio_ranges);
  365. mutex_unlock(&pctldev->mutex);
  366. }
  367. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
  368. void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
  369. struct pinctrl_gpio_range *ranges,
  370. unsigned nranges)
  371. {
  372. int i;
  373. for (i = 0; i < nranges; i++)
  374. pinctrl_add_gpio_range(pctldev, &ranges[i]);
  375. }
  376. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
  377. struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
  378. struct pinctrl_gpio_range *range)
  379. {
  380. struct pinctrl_dev *pctldev;
  381. pctldev = get_pinctrl_dev_from_devname(devname);
  382. /*
  383. * If we can't find this device, let's assume that is because
  384. * it has not probed yet, so the driver trying to register this
  385. * range need to defer probing.
  386. */
  387. if (!pctldev) {
  388. return ERR_PTR(-EPROBE_DEFER);
  389. }
  390. pinctrl_add_gpio_range(pctldev, range);
  391. return pctldev;
  392. }
  393. EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
  394. int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
  395. const unsigned **pins, unsigned *num_pins)
  396. {
  397. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  398. int gs;
  399. if (!pctlops->get_group_pins)
  400. return -EINVAL;
  401. gs = pinctrl_get_group_selector(pctldev, pin_group);
  402. if (gs < 0)
  403. return gs;
  404. return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
  405. }
  406. EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
  407. struct pinctrl_gpio_range *
  408. pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
  409. unsigned int pin)
  410. {
  411. struct pinctrl_gpio_range *range;
  412. /* Loop over the ranges */
  413. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  414. /* Check if we're in the valid range */
  415. if (range->pins) {
  416. int a;
  417. for (a = 0; a < range->npins; a++) {
  418. if (range->pins[a] == pin)
  419. return range;
  420. }
  421. } else if (pin >= range->pin_base &&
  422. pin < range->pin_base + range->npins)
  423. return range;
  424. }
  425. return NULL;
  426. }
  427. EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
  428. /**
  429. * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
  430. * @pctldev: the pin controller device to look in
  431. * @pin: a controller-local number to find the range for
  432. */
  433. struct pinctrl_gpio_range *
  434. pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
  435. unsigned int pin)
  436. {
  437. struct pinctrl_gpio_range *range;
  438. mutex_lock(&pctldev->mutex);
  439. range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
  440. mutex_unlock(&pctldev->mutex);
  441. return range;
  442. }
  443. EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
  444. /**
  445. * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
  446. * @pctldev: pin controller device to remove the range from
  447. * @range: the GPIO range to remove
  448. */
  449. void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
  450. struct pinctrl_gpio_range *range)
  451. {
  452. mutex_lock(&pctldev->mutex);
  453. list_del(&range->node);
  454. mutex_unlock(&pctldev->mutex);
  455. }
  456. EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
  457. /**
  458. * pinctrl_get_group_selector() - returns the group selector for a group
  459. * @pctldev: the pin controller handling the group
  460. * @pin_group: the pin group to look up
  461. */
  462. int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
  463. const char *pin_group)
  464. {
  465. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  466. unsigned ngroups = pctlops->get_groups_count(pctldev);
  467. unsigned group_selector = 0;
  468. while (group_selector < ngroups) {
  469. const char *gname = pctlops->get_group_name(pctldev,
  470. group_selector);
  471. if (!strcmp(gname, pin_group)) {
  472. dev_dbg(pctldev->dev,
  473. "found group selector %u for %s\n",
  474. group_selector,
  475. pin_group);
  476. return group_selector;
  477. }
  478. group_selector++;
  479. }
  480. dev_err(pctldev->dev, "does not have pin group %s\n",
  481. pin_group);
  482. return -EINVAL;
  483. }
  484. /**
  485. * pinctrl_request_gpio() - request a single pin to be used as GPIO
  486. * @gpio: the GPIO pin number from the GPIO subsystem number space
  487. *
  488. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  489. * as part of their gpio_request() semantics, platforms and individual drivers
  490. * shall *NOT* request GPIO pins to be muxed in.
  491. */
  492. int pinctrl_request_gpio(unsigned gpio)
  493. {
  494. struct pinctrl_dev *pctldev;
  495. struct pinctrl_gpio_range *range;
  496. int ret;
  497. int pin;
  498. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  499. if (ret) {
  500. if (pinctrl_ready_for_gpio_range(gpio))
  501. ret = 0;
  502. return ret;
  503. }
  504. mutex_lock(&pctldev->mutex);
  505. /* Convert to the pin controllers number space */
  506. pin = gpio_to_pin(range, gpio);
  507. ret = pinmux_request_gpio(pctldev, range, pin, gpio);
  508. mutex_unlock(&pctldev->mutex);
  509. return ret;
  510. }
  511. EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
  512. /**
  513. * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
  514. * @gpio: the GPIO pin number from the GPIO subsystem number space
  515. *
  516. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  517. * as part of their gpio_free() semantics, platforms and individual drivers
  518. * shall *NOT* request GPIO pins to be muxed out.
  519. */
  520. void pinctrl_free_gpio(unsigned gpio)
  521. {
  522. struct pinctrl_dev *pctldev;
  523. struct pinctrl_gpio_range *range;
  524. int ret;
  525. int pin;
  526. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  527. if (ret) {
  528. return;
  529. }
  530. mutex_lock(&pctldev->mutex);
  531. /* Convert to the pin controllers number space */
  532. pin = gpio_to_pin(range, gpio);
  533. pinmux_free_gpio(pctldev, pin, range);
  534. mutex_unlock(&pctldev->mutex);
  535. }
  536. EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
  537. static int pinctrl_gpio_direction(unsigned gpio, bool input)
  538. {
  539. struct pinctrl_dev *pctldev;
  540. struct pinctrl_gpio_range *range;
  541. int ret;
  542. int pin;
  543. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  544. if (ret) {
  545. return ret;
  546. }
  547. mutex_lock(&pctldev->mutex);
  548. /* Convert to the pin controllers number space */
  549. pin = gpio_to_pin(range, gpio);
  550. ret = pinmux_gpio_direction(pctldev, range, pin, input);
  551. mutex_unlock(&pctldev->mutex);
  552. return ret;
  553. }
  554. /**
  555. * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
  556. * @gpio: the GPIO pin number from the GPIO subsystem number space
  557. *
  558. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  559. * as part of their gpio_direction_input() semantics, platforms and individual
  560. * drivers shall *NOT* touch pin control GPIO calls.
  561. */
  562. int pinctrl_gpio_direction_input(unsigned gpio)
  563. {
  564. return pinctrl_gpio_direction(gpio, true);
  565. }
  566. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
  567. /**
  568. * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
  569. * @gpio: the GPIO pin number from the GPIO subsystem number space
  570. *
  571. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  572. * as part of their gpio_direction_output() semantics, platforms and individual
  573. * drivers shall *NOT* touch pin control GPIO calls.
  574. */
  575. int pinctrl_gpio_direction_output(unsigned gpio)
  576. {
  577. return pinctrl_gpio_direction(gpio, false);
  578. }
  579. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
  580. static struct pinctrl_state *find_state(struct pinctrl *p,
  581. const char *name)
  582. {
  583. struct pinctrl_state *state;
  584. list_for_each_entry(state, &p->states, node)
  585. if (!strcmp(state->name, name))
  586. return state;
  587. return NULL;
  588. }
  589. static struct pinctrl_state *create_state(struct pinctrl *p,
  590. const char *name)
  591. {
  592. struct pinctrl_state *state;
  593. state = kzalloc(sizeof(*state), GFP_KERNEL);
  594. if (state == NULL) {
  595. dev_err(p->dev,
  596. "failed to alloc struct pinctrl_state\n");
  597. return ERR_PTR(-ENOMEM);
  598. }
  599. state->name = name;
  600. INIT_LIST_HEAD(&state->settings);
  601. list_add_tail(&state->node, &p->states);
  602. return state;
  603. }
  604. static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
  605. {
  606. struct pinctrl_state *state;
  607. struct pinctrl_setting *setting;
  608. int ret;
  609. state = find_state(p, map->name);
  610. if (!state)
  611. state = create_state(p, map->name);
  612. if (IS_ERR(state))
  613. return PTR_ERR(state);
  614. if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
  615. return 0;
  616. setting = kzalloc(sizeof(*setting), GFP_KERNEL);
  617. if (setting == NULL) {
  618. dev_err(p->dev,
  619. "failed to alloc struct pinctrl_setting\n");
  620. return -ENOMEM;
  621. }
  622. setting->type = map->type;
  623. setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
  624. if (setting->pctldev == NULL) {
  625. kfree(setting);
  626. /* Do not defer probing of hogs (circular loop) */
  627. if (!strcmp(map->ctrl_dev_name, map->dev_name))
  628. return -ENODEV;
  629. /*
  630. * OK let us guess that the driver is not there yet, and
  631. * let's defer obtaining this pinctrl handle to later...
  632. */
  633. dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
  634. map->ctrl_dev_name);
  635. return -EPROBE_DEFER;
  636. }
  637. setting->dev_name = map->dev_name;
  638. switch (map->type) {
  639. case PIN_MAP_TYPE_MUX_GROUP:
  640. ret = pinmux_map_to_setting(map, setting);
  641. break;
  642. case PIN_MAP_TYPE_CONFIGS_PIN:
  643. case PIN_MAP_TYPE_CONFIGS_GROUP:
  644. ret = pinconf_map_to_setting(map, setting);
  645. break;
  646. default:
  647. ret = -EINVAL;
  648. break;
  649. }
  650. if (ret < 0) {
  651. kfree(setting);
  652. return ret;
  653. }
  654. list_add_tail(&setting->node, &state->settings);
  655. return 0;
  656. }
  657. static struct pinctrl *find_pinctrl(struct device *dev)
  658. {
  659. struct pinctrl *p;
  660. mutex_lock(&pinctrl_list_mutex);
  661. list_for_each_entry(p, &pinctrl_list, node)
  662. if (p->dev == dev) {
  663. mutex_unlock(&pinctrl_list_mutex);
  664. return p;
  665. }
  666. mutex_unlock(&pinctrl_list_mutex);
  667. return NULL;
  668. }
  669. static void pinctrl_free(struct pinctrl *p, bool inlist);
  670. static struct pinctrl *create_pinctrl(struct device *dev)
  671. {
  672. struct pinctrl *p;
  673. const char *devname;
  674. struct pinctrl_maps *maps_node;
  675. int i;
  676. struct pinctrl_map const *map;
  677. int ret;
  678. /*
  679. * create the state cookie holder struct pinctrl for each
  680. * mapping, this is what consumers will get when requesting
  681. * a pin control handle with pinctrl_get()
  682. */
  683. p = kzalloc(sizeof(*p), GFP_KERNEL);
  684. if (p == NULL) {
  685. dev_err(dev, "failed to alloc struct pinctrl\n");
  686. return ERR_PTR(-ENOMEM);
  687. }
  688. p->dev = dev;
  689. INIT_LIST_HEAD(&p->states);
  690. INIT_LIST_HEAD(&p->dt_maps);
  691. ret = pinctrl_dt_to_map(p);
  692. if (ret < 0) {
  693. kfree(p);
  694. return ERR_PTR(ret);
  695. }
  696. devname = dev_name(dev);
  697. mutex_lock(&pinctrl_maps_mutex);
  698. /* Iterate over the pin control maps to locate the right ones */
  699. for_each_maps(maps_node, i, map) {
  700. /* Map must be for this device */
  701. if (strcmp(map->dev_name, devname))
  702. continue;
  703. ret = add_setting(p, map);
  704. /*
  705. * At this point the adding of a setting may:
  706. *
  707. * - Defer, if the pinctrl device is not yet available
  708. * - Fail, if the pinctrl device is not yet available,
  709. * AND the setting is a hog. We cannot defer that, since
  710. * the hog will kick in immediately after the device
  711. * is registered.
  712. *
  713. * If the error returned was not -EPROBE_DEFER then we
  714. * accumulate the errors to see if we end up with
  715. * an -EPROBE_DEFER later, as that is the worst case.
  716. */
  717. if (ret == -EPROBE_DEFER) {
  718. pinctrl_free(p, false);
  719. mutex_unlock(&pinctrl_maps_mutex);
  720. return ERR_PTR(ret);
  721. }
  722. }
  723. mutex_unlock(&pinctrl_maps_mutex);
  724. if (ret < 0) {
  725. /* If some other error than deferral occured, return here */
  726. pinctrl_free(p, false);
  727. return ERR_PTR(ret);
  728. }
  729. kref_init(&p->users);
  730. /* Add the pinctrl handle to the global list */
  731. mutex_lock(&pinctrl_list_mutex);
  732. list_add_tail(&p->node, &pinctrl_list);
  733. mutex_unlock(&pinctrl_list_mutex);
  734. return p;
  735. }
  736. /**
  737. * pinctrl_get() - retrieves the pinctrl handle for a device
  738. * @dev: the device to obtain the handle for
  739. */
  740. struct pinctrl *pinctrl_get(struct device *dev)
  741. {
  742. struct pinctrl *p;
  743. if (WARN_ON(!dev))
  744. return ERR_PTR(-EINVAL);
  745. /*
  746. * See if somebody else (such as the device core) has already
  747. * obtained a handle to the pinctrl for this device. In that case,
  748. * return another pointer to it.
  749. */
  750. p = find_pinctrl(dev);
  751. if (p != NULL) {
  752. dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
  753. kref_get(&p->users);
  754. return p;
  755. }
  756. return create_pinctrl(dev);
  757. }
  758. EXPORT_SYMBOL_GPL(pinctrl_get);
  759. static void pinctrl_free_setting(bool disable_setting,
  760. struct pinctrl_setting *setting)
  761. {
  762. switch (setting->type) {
  763. case PIN_MAP_TYPE_MUX_GROUP:
  764. if (disable_setting)
  765. pinmux_disable_setting(setting);
  766. pinmux_free_setting(setting);
  767. break;
  768. case PIN_MAP_TYPE_CONFIGS_PIN:
  769. case PIN_MAP_TYPE_CONFIGS_GROUP:
  770. pinconf_free_setting(setting);
  771. break;
  772. default:
  773. break;
  774. }
  775. }
  776. static void pinctrl_free(struct pinctrl *p, bool inlist)
  777. {
  778. struct pinctrl_state *state, *n1;
  779. struct pinctrl_setting *setting, *n2;
  780. mutex_lock(&pinctrl_list_mutex);
  781. list_for_each_entry_safe(state, n1, &p->states, node) {
  782. list_for_each_entry_safe(setting, n2, &state->settings, node) {
  783. pinctrl_free_setting(state == p->state, setting);
  784. list_del(&setting->node);
  785. kfree(setting);
  786. }
  787. list_del(&state->node);
  788. kfree(state);
  789. }
  790. pinctrl_dt_free_maps(p);
  791. if (inlist)
  792. list_del(&p->node);
  793. kfree(p);
  794. mutex_unlock(&pinctrl_list_mutex);
  795. }
  796. /**
  797. * pinctrl_release() - release the pinctrl handle
  798. * @kref: the kref in the pinctrl being released
  799. */
  800. static void pinctrl_release(struct kref *kref)
  801. {
  802. struct pinctrl *p = container_of(kref, struct pinctrl, users);
  803. pinctrl_free(p, true);
  804. }
  805. /**
  806. * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
  807. * @p: the pinctrl handle to release
  808. */
  809. void pinctrl_put(struct pinctrl *p)
  810. {
  811. kref_put(&p->users, pinctrl_release);
  812. }
  813. EXPORT_SYMBOL_GPL(pinctrl_put);
  814. /**
  815. * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
  816. * @p: the pinctrl handle to retrieve the state from
  817. * @name: the state name to retrieve
  818. */
  819. struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
  820. const char *name)
  821. {
  822. struct pinctrl_state *state;
  823. state = find_state(p, name);
  824. if (!state) {
  825. if (pinctrl_dummy_state) {
  826. /* create dummy state */
  827. dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
  828. name);
  829. state = create_state(p, name);
  830. } else
  831. state = ERR_PTR(-ENODEV);
  832. }
  833. return state;
  834. }
  835. EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
  836. /**
  837. * pinctrl_select_state() - select/activate/program a pinctrl state to HW
  838. * @p: the pinctrl handle for the device that requests configuration
  839. * @state: the state handle to select/activate/program
  840. */
  841. int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
  842. {
  843. struct pinctrl_setting *setting, *setting2;
  844. struct pinctrl_state *old_state = p->state;
  845. int ret;
  846. if (p->state == state)
  847. return 0;
  848. if (p->state) {
  849. /*
  850. * For each pinmux setting in the old state, forget SW's record
  851. * of mux owner for that pingroup. Any pingroups which are
  852. * still owned by the new state will be re-acquired by the call
  853. * to pinmux_enable_setting() in the loop below.
  854. */
  855. list_for_each_entry(setting, &p->state->settings, node) {
  856. if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
  857. continue;
  858. pinmux_disable_setting(setting);
  859. }
  860. }
  861. p->state = NULL;
  862. /* Apply all the settings for the new state */
  863. list_for_each_entry(setting, &state->settings, node) {
  864. switch (setting->type) {
  865. case PIN_MAP_TYPE_MUX_GROUP:
  866. ret = pinmux_enable_setting(setting);
  867. break;
  868. case PIN_MAP_TYPE_CONFIGS_PIN:
  869. case PIN_MAP_TYPE_CONFIGS_GROUP:
  870. ret = pinconf_apply_setting(setting);
  871. break;
  872. default:
  873. ret = -EINVAL;
  874. break;
  875. }
  876. if (ret < 0) {
  877. goto unapply_new_state;
  878. }
  879. }
  880. p->state = state;
  881. return 0;
  882. unapply_new_state:
  883. dev_err(p->dev, "Error applying setting, reverse things back\n");
  884. list_for_each_entry(setting2, &state->settings, node) {
  885. if (&setting2->node == &setting->node)
  886. break;
  887. /*
  888. * All we can do here is pinmux_disable_setting.
  889. * That means that some pins are muxed differently now
  890. * than they were before applying the setting (We can't
  891. * "unmux a pin"!), but it's not a big deal since the pins
  892. * are free to be muxed by another apply_setting.
  893. */
  894. if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
  895. pinmux_disable_setting(setting2);
  896. }
  897. /* There's no infinite recursive loop here because p->state is NULL */
  898. if (old_state)
  899. pinctrl_select_state(p, old_state);
  900. return ret;
  901. }
  902. EXPORT_SYMBOL_GPL(pinctrl_select_state);
  903. static void devm_pinctrl_release(struct device *dev, void *res)
  904. {
  905. pinctrl_put(*(struct pinctrl **)res);
  906. }
  907. /**
  908. * struct devm_pinctrl_get() - Resource managed pinctrl_get()
  909. * @dev: the device to obtain the handle for
  910. *
  911. * If there is a need to explicitly destroy the returned struct pinctrl,
  912. * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
  913. */
  914. struct pinctrl *devm_pinctrl_get(struct device *dev)
  915. {
  916. struct pinctrl **ptr, *p;
  917. ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
  918. if (!ptr)
  919. return ERR_PTR(-ENOMEM);
  920. p = pinctrl_get(dev);
  921. if (!IS_ERR(p)) {
  922. *ptr = p;
  923. devres_add(dev, ptr);
  924. } else {
  925. devres_free(ptr);
  926. }
  927. return p;
  928. }
  929. EXPORT_SYMBOL_GPL(devm_pinctrl_get);
  930. static int devm_pinctrl_match(struct device *dev, void *res, void *data)
  931. {
  932. struct pinctrl **p = res;
  933. return *p == data;
  934. }
  935. /**
  936. * devm_pinctrl_put() - Resource managed pinctrl_put()
  937. * @p: the pinctrl handle to release
  938. *
  939. * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
  940. * this function will not need to be called and the resource management
  941. * code will ensure that the resource is freed.
  942. */
  943. void devm_pinctrl_put(struct pinctrl *p)
  944. {
  945. WARN_ON(devres_release(p->dev, devm_pinctrl_release,
  946. devm_pinctrl_match, p));
  947. }
  948. EXPORT_SYMBOL_GPL(devm_pinctrl_put);
  949. int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
  950. bool dup)
  951. {
  952. int i, ret;
  953. struct pinctrl_maps *maps_node;
  954. pr_debug("add %u pinctrl maps\n", num_maps);
  955. /* First sanity check the new mapping */
  956. for (i = 0; i < num_maps; i++) {
  957. if (!maps[i].dev_name) {
  958. pr_err("failed to register map %s (%d): no device given\n",
  959. maps[i].name, i);
  960. return -EINVAL;
  961. }
  962. if (!maps[i].name) {
  963. pr_err("failed to register map %d: no map name given\n",
  964. i);
  965. return -EINVAL;
  966. }
  967. if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
  968. !maps[i].ctrl_dev_name) {
  969. pr_err("failed to register map %s (%d): no pin control device given\n",
  970. maps[i].name, i);
  971. return -EINVAL;
  972. }
  973. switch (maps[i].type) {
  974. case PIN_MAP_TYPE_DUMMY_STATE:
  975. break;
  976. case PIN_MAP_TYPE_MUX_GROUP:
  977. ret = pinmux_validate_map(&maps[i], i);
  978. if (ret < 0)
  979. return ret;
  980. break;
  981. case PIN_MAP_TYPE_CONFIGS_PIN:
  982. case PIN_MAP_TYPE_CONFIGS_GROUP:
  983. ret = pinconf_validate_map(&maps[i], i);
  984. if (ret < 0)
  985. return ret;
  986. break;
  987. default:
  988. pr_err("failed to register map %s (%d): invalid type given\n",
  989. maps[i].name, i);
  990. return -EINVAL;
  991. }
  992. }
  993. maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
  994. if (!maps_node) {
  995. pr_err("failed to alloc struct pinctrl_maps\n");
  996. return -ENOMEM;
  997. }
  998. maps_node->num_maps = num_maps;
  999. if (dup) {
  1000. maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
  1001. GFP_KERNEL);
  1002. if (!maps_node->maps) {
  1003. pr_err("failed to duplicate mapping table\n");
  1004. kfree(maps_node);
  1005. return -ENOMEM;
  1006. }
  1007. } else {
  1008. maps_node->maps = maps;
  1009. }
  1010. mutex_lock(&pinctrl_maps_mutex);
  1011. list_add_tail(&maps_node->node, &pinctrl_maps);
  1012. mutex_unlock(&pinctrl_maps_mutex);
  1013. return 0;
  1014. }
  1015. /**
  1016. * pinctrl_register_mappings() - register a set of pin controller mappings
  1017. * @maps: the pincontrol mappings table to register. This should probably be
  1018. * marked with __initdata so it can be discarded after boot. This
  1019. * function will perform a shallow copy for the mapping entries.
  1020. * @num_maps: the number of maps in the mapping table
  1021. */
  1022. int pinctrl_register_mappings(struct pinctrl_map const *maps,
  1023. unsigned num_maps)
  1024. {
  1025. return pinctrl_register_map(maps, num_maps, true);
  1026. }
  1027. void pinctrl_unregister_map(struct pinctrl_map const *map)
  1028. {
  1029. struct pinctrl_maps *maps_node;
  1030. mutex_lock(&pinctrl_maps_mutex);
  1031. list_for_each_entry(maps_node, &pinctrl_maps, node) {
  1032. if (maps_node->maps == map) {
  1033. list_del(&maps_node->node);
  1034. kfree(maps_node);
  1035. mutex_unlock(&pinctrl_maps_mutex);
  1036. return;
  1037. }
  1038. }
  1039. mutex_unlock(&pinctrl_maps_mutex);
  1040. }
  1041. /**
  1042. * pinctrl_force_sleep() - turn a given controller device into sleep state
  1043. * @pctldev: pin controller device
  1044. */
  1045. int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
  1046. {
  1047. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
  1048. return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
  1049. return 0;
  1050. }
  1051. EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
  1052. /**
  1053. * pinctrl_force_default() - turn a given controller device into default state
  1054. * @pctldev: pin controller device
  1055. */
  1056. int pinctrl_force_default(struct pinctrl_dev *pctldev)
  1057. {
  1058. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
  1059. return pinctrl_select_state(pctldev->p, pctldev->hog_default);
  1060. return 0;
  1061. }
  1062. EXPORT_SYMBOL_GPL(pinctrl_force_default);
  1063. /**
  1064. * pinctrl_init_done() - tell pinctrl probe is done
  1065. *
  1066. * We'll use this time to switch the pins from "init" to "default" unless the
  1067. * driver selected some other state.
  1068. *
  1069. * @dev: device to that's done probing
  1070. */
  1071. int pinctrl_init_done(struct device *dev)
  1072. {
  1073. struct dev_pin_info *pins = dev->pins;
  1074. int ret;
  1075. if (!pins)
  1076. return 0;
  1077. if (IS_ERR(pins->init_state))
  1078. return 0; /* No such state */
  1079. if (pins->p->state != pins->init_state)
  1080. return 0; /* Not at init anyway */
  1081. if (IS_ERR(pins->default_state))
  1082. return 0; /* No default state */
  1083. ret = pinctrl_select_state(pins->p, pins->default_state);
  1084. if (ret)
  1085. dev_err(dev, "failed to activate default pinctrl state\n");
  1086. return ret;
  1087. }
  1088. #ifdef CONFIG_PM
  1089. /**
  1090. * pinctrl_pm_select_state() - select pinctrl state for PM
  1091. * @dev: device to select default state for
  1092. * @state: state to set
  1093. */
  1094. static int pinctrl_pm_select_state(struct device *dev,
  1095. struct pinctrl_state *state)
  1096. {
  1097. struct dev_pin_info *pins = dev->pins;
  1098. int ret;
  1099. if (IS_ERR(state))
  1100. return 0; /* No such state */
  1101. ret = pinctrl_select_state(pins->p, state);
  1102. if (ret)
  1103. dev_err(dev, "failed to activate pinctrl state %s\n",
  1104. state->name);
  1105. return ret;
  1106. }
  1107. /**
  1108. * pinctrl_pm_select_default_state() - select default pinctrl state for PM
  1109. * @dev: device to select default state for
  1110. */
  1111. int pinctrl_pm_select_default_state(struct device *dev)
  1112. {
  1113. if (!dev->pins)
  1114. return 0;
  1115. return pinctrl_pm_select_state(dev, dev->pins->default_state);
  1116. }
  1117. EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
  1118. /**
  1119. * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
  1120. * @dev: device to select sleep state for
  1121. */
  1122. int pinctrl_pm_select_sleep_state(struct device *dev)
  1123. {
  1124. if (!dev->pins)
  1125. return 0;
  1126. return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
  1127. }
  1128. EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
  1129. /**
  1130. * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
  1131. * @dev: device to select idle state for
  1132. */
  1133. int pinctrl_pm_select_idle_state(struct device *dev)
  1134. {
  1135. if (!dev->pins)
  1136. return 0;
  1137. return pinctrl_pm_select_state(dev, dev->pins->idle_state);
  1138. }
  1139. EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
  1140. #endif
  1141. #ifdef CONFIG_DEBUG_FS
  1142. static int pinctrl_pins_show(struct seq_file *s, void *what)
  1143. {
  1144. struct pinctrl_dev *pctldev = s->private;
  1145. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1146. unsigned i, pin;
  1147. seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
  1148. mutex_lock(&pctldev->mutex);
  1149. /* The pin number can be retrived from the pin controller descriptor */
  1150. for (i = 0; i < pctldev->desc->npins; i++) {
  1151. struct pin_desc *desc;
  1152. pin = pctldev->desc->pins[i].number;
  1153. desc = pin_desc_get(pctldev, pin);
  1154. /* Pin space may be sparse */
  1155. if (desc == NULL)
  1156. continue;
  1157. seq_printf(s, "pin %d (%s) ", pin,
  1158. desc->name ? desc->name : "unnamed");
  1159. /* Driver-specific info per pin */
  1160. if (ops->pin_dbg_show)
  1161. ops->pin_dbg_show(pctldev, s, pin);
  1162. seq_puts(s, "\n");
  1163. }
  1164. mutex_unlock(&pctldev->mutex);
  1165. return 0;
  1166. }
  1167. static int pinctrl_groups_show(struct seq_file *s, void *what)
  1168. {
  1169. struct pinctrl_dev *pctldev = s->private;
  1170. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1171. unsigned ngroups, selector = 0;
  1172. mutex_lock(&pctldev->mutex);
  1173. ngroups = ops->get_groups_count(pctldev);
  1174. seq_puts(s, "registered pin groups:\n");
  1175. while (selector < ngroups) {
  1176. const unsigned *pins = NULL;
  1177. unsigned num_pins = 0;
  1178. const char *gname = ops->get_group_name(pctldev, selector);
  1179. const char *pname;
  1180. int ret = 0;
  1181. int i;
  1182. if (ops->get_group_pins)
  1183. ret = ops->get_group_pins(pctldev, selector,
  1184. &pins, &num_pins);
  1185. if (ret)
  1186. seq_printf(s, "%s [ERROR GETTING PINS]\n",
  1187. gname);
  1188. else {
  1189. seq_printf(s, "group: %s\n", gname);
  1190. for (i = 0; i < num_pins; i++) {
  1191. pname = pin_get_name(pctldev, pins[i]);
  1192. if (WARN_ON(!pname)) {
  1193. mutex_unlock(&pctldev->mutex);
  1194. return -EINVAL;
  1195. }
  1196. seq_printf(s, "pin %d (%s)\n", pins[i], pname);
  1197. }
  1198. seq_puts(s, "\n");
  1199. }
  1200. selector++;
  1201. }
  1202. mutex_unlock(&pctldev->mutex);
  1203. return 0;
  1204. }
  1205. static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
  1206. {
  1207. struct pinctrl_dev *pctldev = s->private;
  1208. struct pinctrl_gpio_range *range = NULL;
  1209. seq_puts(s, "GPIO ranges handled:\n");
  1210. mutex_lock(&pctldev->mutex);
  1211. /* Loop over the ranges */
  1212. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  1213. if (range->pins) {
  1214. int a;
  1215. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
  1216. range->id, range->name,
  1217. range->base, (range->base + range->npins - 1));
  1218. for (a = 0; a < range->npins - 1; a++)
  1219. seq_printf(s, "%u, ", range->pins[a]);
  1220. seq_printf(s, "%u}\n", range->pins[a]);
  1221. }
  1222. else
  1223. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
  1224. range->id, range->name,
  1225. range->base, (range->base + range->npins - 1),
  1226. range->pin_base,
  1227. (range->pin_base + range->npins - 1));
  1228. }
  1229. mutex_unlock(&pctldev->mutex);
  1230. return 0;
  1231. }
  1232. static int pinctrl_devices_show(struct seq_file *s, void *what)
  1233. {
  1234. struct pinctrl_dev *pctldev;
  1235. seq_puts(s, "name [pinmux] [pinconf]\n");
  1236. mutex_lock(&pinctrldev_list_mutex);
  1237. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  1238. seq_printf(s, "%s ", pctldev->desc->name);
  1239. if (pctldev->desc->pmxops)
  1240. seq_puts(s, "yes ");
  1241. else
  1242. seq_puts(s, "no ");
  1243. if (pctldev->desc->confops)
  1244. seq_puts(s, "yes");
  1245. else
  1246. seq_puts(s, "no");
  1247. seq_puts(s, "\n");
  1248. }
  1249. mutex_unlock(&pinctrldev_list_mutex);
  1250. return 0;
  1251. }
  1252. static inline const char *map_type(enum pinctrl_map_type type)
  1253. {
  1254. static const char * const names[] = {
  1255. "INVALID",
  1256. "DUMMY_STATE",
  1257. "MUX_GROUP",
  1258. "CONFIGS_PIN",
  1259. "CONFIGS_GROUP",
  1260. };
  1261. if (type >= ARRAY_SIZE(names))
  1262. return "UNKNOWN";
  1263. return names[type];
  1264. }
  1265. static int pinctrl_maps_show(struct seq_file *s, void *what)
  1266. {
  1267. struct pinctrl_maps *maps_node;
  1268. int i;
  1269. struct pinctrl_map const *map;
  1270. seq_puts(s, "Pinctrl maps:\n");
  1271. mutex_lock(&pinctrl_maps_mutex);
  1272. for_each_maps(maps_node, i, map) {
  1273. seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
  1274. map->dev_name, map->name, map_type(map->type),
  1275. map->type);
  1276. if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
  1277. seq_printf(s, "controlling device %s\n",
  1278. map->ctrl_dev_name);
  1279. switch (map->type) {
  1280. case PIN_MAP_TYPE_MUX_GROUP:
  1281. pinmux_show_map(s, map);
  1282. break;
  1283. case PIN_MAP_TYPE_CONFIGS_PIN:
  1284. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1285. pinconf_show_map(s, map);
  1286. break;
  1287. default:
  1288. break;
  1289. }
  1290. seq_printf(s, "\n");
  1291. }
  1292. mutex_unlock(&pinctrl_maps_mutex);
  1293. return 0;
  1294. }
  1295. static int pinctrl_show(struct seq_file *s, void *what)
  1296. {
  1297. struct pinctrl *p;
  1298. struct pinctrl_state *state;
  1299. struct pinctrl_setting *setting;
  1300. seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
  1301. mutex_lock(&pinctrl_list_mutex);
  1302. list_for_each_entry(p, &pinctrl_list, node) {
  1303. seq_printf(s, "device: %s current state: %s\n",
  1304. dev_name(p->dev),
  1305. p->state ? p->state->name : "none");
  1306. list_for_each_entry(state, &p->states, node) {
  1307. seq_printf(s, " state: %s\n", state->name);
  1308. list_for_each_entry(setting, &state->settings, node) {
  1309. struct pinctrl_dev *pctldev = setting->pctldev;
  1310. seq_printf(s, " type: %s controller %s ",
  1311. map_type(setting->type),
  1312. pinctrl_dev_get_name(pctldev));
  1313. switch (setting->type) {
  1314. case PIN_MAP_TYPE_MUX_GROUP:
  1315. pinmux_show_setting(s, setting);
  1316. break;
  1317. case PIN_MAP_TYPE_CONFIGS_PIN:
  1318. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1319. pinconf_show_setting(s, setting);
  1320. break;
  1321. default:
  1322. break;
  1323. }
  1324. }
  1325. }
  1326. }
  1327. mutex_unlock(&pinctrl_list_mutex);
  1328. return 0;
  1329. }
  1330. static int pinctrl_pins_open(struct inode *inode, struct file *file)
  1331. {
  1332. return single_open(file, pinctrl_pins_show, inode->i_private);
  1333. }
  1334. static int pinctrl_groups_open(struct inode *inode, struct file *file)
  1335. {
  1336. return single_open(file, pinctrl_groups_show, inode->i_private);
  1337. }
  1338. static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
  1339. {
  1340. return single_open(file, pinctrl_gpioranges_show, inode->i_private);
  1341. }
  1342. static int pinctrl_devices_open(struct inode *inode, struct file *file)
  1343. {
  1344. return single_open(file, pinctrl_devices_show, NULL);
  1345. }
  1346. static int pinctrl_maps_open(struct inode *inode, struct file *file)
  1347. {
  1348. return single_open(file, pinctrl_maps_show, NULL);
  1349. }
  1350. static int pinctrl_open(struct inode *inode, struct file *file)
  1351. {
  1352. return single_open(file, pinctrl_show, NULL);
  1353. }
  1354. static const struct file_operations pinctrl_pins_ops = {
  1355. .open = pinctrl_pins_open,
  1356. .read = seq_read,
  1357. .llseek = seq_lseek,
  1358. .release = single_release,
  1359. };
  1360. static const struct file_operations pinctrl_groups_ops = {
  1361. .open = pinctrl_groups_open,
  1362. .read = seq_read,
  1363. .llseek = seq_lseek,
  1364. .release = single_release,
  1365. };
  1366. static const struct file_operations pinctrl_gpioranges_ops = {
  1367. .open = pinctrl_gpioranges_open,
  1368. .read = seq_read,
  1369. .llseek = seq_lseek,
  1370. .release = single_release,
  1371. };
  1372. static const struct file_operations pinctrl_devices_ops = {
  1373. .open = pinctrl_devices_open,
  1374. .read = seq_read,
  1375. .llseek = seq_lseek,
  1376. .release = single_release,
  1377. };
  1378. static const struct file_operations pinctrl_maps_ops = {
  1379. .open = pinctrl_maps_open,
  1380. .read = seq_read,
  1381. .llseek = seq_lseek,
  1382. .release = single_release,
  1383. };
  1384. static const struct file_operations pinctrl_ops = {
  1385. .open = pinctrl_open,
  1386. .read = seq_read,
  1387. .llseek = seq_lseek,
  1388. .release = single_release,
  1389. };
  1390. static struct dentry *debugfs_root;
  1391. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1392. {
  1393. struct dentry *device_root;
  1394. device_root = debugfs_create_dir(dev_name(pctldev->dev),
  1395. debugfs_root);
  1396. pctldev->device_root = device_root;
  1397. if (IS_ERR(device_root) || !device_root) {
  1398. pr_warn("failed to create debugfs directory for %s\n",
  1399. dev_name(pctldev->dev));
  1400. return;
  1401. }
  1402. debugfs_create_file("pins", S_IFREG | S_IRUGO,
  1403. device_root, pctldev, &pinctrl_pins_ops);
  1404. debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
  1405. device_root, pctldev, &pinctrl_groups_ops);
  1406. debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
  1407. device_root, pctldev, &pinctrl_gpioranges_ops);
  1408. if (pctldev->desc->pmxops)
  1409. pinmux_init_device_debugfs(device_root, pctldev);
  1410. if (pctldev->desc->confops)
  1411. pinconf_init_device_debugfs(device_root, pctldev);
  1412. }
  1413. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1414. {
  1415. debugfs_remove_recursive(pctldev->device_root);
  1416. }
  1417. static void pinctrl_init_debugfs(void)
  1418. {
  1419. debugfs_root = debugfs_create_dir("pinctrl", NULL);
  1420. if (IS_ERR(debugfs_root) || !debugfs_root) {
  1421. pr_warn("failed to create debugfs directory\n");
  1422. debugfs_root = NULL;
  1423. return;
  1424. }
  1425. debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
  1426. debugfs_root, NULL, &pinctrl_devices_ops);
  1427. debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
  1428. debugfs_root, NULL, &pinctrl_maps_ops);
  1429. debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
  1430. debugfs_root, NULL, &pinctrl_ops);
  1431. }
  1432. #else /* CONFIG_DEBUG_FS */
  1433. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1434. {
  1435. }
  1436. static void pinctrl_init_debugfs(void)
  1437. {
  1438. }
  1439. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1440. {
  1441. }
  1442. #endif
  1443. static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
  1444. {
  1445. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1446. if (!ops ||
  1447. !ops->get_groups_count ||
  1448. !ops->get_group_name)
  1449. return -EINVAL;
  1450. if (ops->dt_node_to_map && !ops->dt_free_map)
  1451. return -EINVAL;
  1452. return 0;
  1453. }
  1454. /**
  1455. * pinctrl_register() - register a pin controller device
  1456. * @pctldesc: descriptor for this pin controller
  1457. * @dev: parent device for this pin controller
  1458. * @driver_data: private pin controller data for this pin controller
  1459. */
  1460. struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
  1461. struct device *dev, void *driver_data)
  1462. {
  1463. struct pinctrl_dev *pctldev;
  1464. int ret;
  1465. if (!pctldesc)
  1466. return ERR_PTR(-EINVAL);
  1467. if (!pctldesc->name)
  1468. return ERR_PTR(-EINVAL);
  1469. pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
  1470. if (pctldev == NULL) {
  1471. dev_err(dev, "failed to alloc struct pinctrl_dev\n");
  1472. return ERR_PTR(-ENOMEM);
  1473. }
  1474. /* Initialize pin control device struct */
  1475. pctldev->owner = pctldesc->owner;
  1476. pctldev->desc = pctldesc;
  1477. pctldev->driver_data = driver_data;
  1478. INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
  1479. INIT_LIST_HEAD(&pctldev->gpio_ranges);
  1480. pctldev->dev = dev;
  1481. mutex_init(&pctldev->mutex);
  1482. /* check core ops for sanity */
  1483. ret = pinctrl_check_ops(pctldev);
  1484. if (ret) {
  1485. dev_err(dev, "pinctrl ops lacks necessary functions\n");
  1486. goto out_err;
  1487. }
  1488. /* If we're implementing pinmuxing, check the ops for sanity */
  1489. if (pctldesc->pmxops) {
  1490. ret = pinmux_check_ops(pctldev);
  1491. if (ret)
  1492. goto out_err;
  1493. }
  1494. /* If we're implementing pinconfig, check the ops for sanity */
  1495. if (pctldesc->confops) {
  1496. ret = pinconf_check_ops(pctldev);
  1497. if (ret)
  1498. goto out_err;
  1499. }
  1500. /* Register all the pins */
  1501. dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
  1502. ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
  1503. if (ret) {
  1504. dev_err(dev, "error during pin registration\n");
  1505. pinctrl_free_pindescs(pctldev, pctldesc->pins,
  1506. pctldesc->npins);
  1507. goto out_err;
  1508. }
  1509. mutex_lock(&pinctrldev_list_mutex);
  1510. list_add_tail(&pctldev->node, &pinctrldev_list);
  1511. mutex_unlock(&pinctrldev_list_mutex);
  1512. pctldev->p = pinctrl_get(pctldev->dev);
  1513. if (!IS_ERR(pctldev->p)) {
  1514. pctldev->hog_default =
  1515. pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
  1516. if (IS_ERR(pctldev->hog_default)) {
  1517. dev_dbg(dev, "failed to lookup the default state\n");
  1518. } else {
  1519. if (pinctrl_select_state(pctldev->p,
  1520. pctldev->hog_default))
  1521. dev_err(dev,
  1522. "failed to select default state\n");
  1523. }
  1524. pctldev->hog_sleep =
  1525. pinctrl_lookup_state(pctldev->p,
  1526. PINCTRL_STATE_SLEEP);
  1527. if (IS_ERR(pctldev->hog_sleep))
  1528. dev_dbg(dev, "failed to lookup the sleep state\n");
  1529. }
  1530. pinctrl_init_device_debugfs(pctldev);
  1531. return pctldev;
  1532. out_err:
  1533. mutex_destroy(&pctldev->mutex);
  1534. kfree(pctldev);
  1535. return ERR_PTR(ret);
  1536. }
  1537. EXPORT_SYMBOL_GPL(pinctrl_register);
  1538. /**
  1539. * pinctrl_unregister() - unregister pinmux
  1540. * @pctldev: pin controller to unregister
  1541. *
  1542. * Called by pinmux drivers to unregister a pinmux.
  1543. */
  1544. void pinctrl_unregister(struct pinctrl_dev *pctldev)
  1545. {
  1546. struct pinctrl_gpio_range *range, *n;
  1547. if (pctldev == NULL)
  1548. return;
  1549. mutex_lock(&pctldev->mutex);
  1550. pinctrl_remove_device_debugfs(pctldev);
  1551. mutex_unlock(&pctldev->mutex);
  1552. if (!IS_ERR(pctldev->p))
  1553. pinctrl_put(pctldev->p);
  1554. mutex_lock(&pinctrldev_list_mutex);
  1555. mutex_lock(&pctldev->mutex);
  1556. /* TODO: check that no pinmuxes are still active? */
  1557. list_del(&pctldev->node);
  1558. /* Destroy descriptor tree */
  1559. pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
  1560. pctldev->desc->npins);
  1561. /* remove gpio ranges map */
  1562. list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
  1563. list_del(&range->node);
  1564. mutex_unlock(&pctldev->mutex);
  1565. mutex_destroy(&pctldev->mutex);
  1566. kfree(pctldev);
  1567. mutex_unlock(&pinctrldev_list_mutex);
  1568. }
  1569. EXPORT_SYMBOL_GPL(pinctrl_unregister);
  1570. static int __init pinctrl_init(void)
  1571. {
  1572. pr_info("initialized pinctrl subsystem\n");
  1573. pinctrl_init_debugfs();
  1574. return 0;
  1575. }
  1576. /* init early since many drivers really need to initialized pinmux early */
  1577. core_initcall(pinctrl_init);