of_reserved_mem.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. /*
  2. * Device tree based initialization code for reserved memory.
  3. *
  4. * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  5. * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com
  7. * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  8. * Author: Josh Cartwright <joshc@codeaurora.org>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License or (at your optional) any later version of the license.
  14. */
  15. #include <linux/err.h>
  16. #include <linux/of.h>
  17. #include <linux/of_fdt.h>
  18. #include <linux/of_platform.h>
  19. #include <linux/mm.h>
  20. #include <linux/sizes.h>
  21. #include <linux/of_reserved_mem.h>
  22. #include <linux/sort.h>
  23. #define MAX_RESERVED_REGIONS 16
  24. static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
  25. static int reserved_mem_count;
  26. #if defined(CONFIG_HAVE_MEMBLOCK)
  27. #include <linux/memblock.h>
  28. int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  29. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  30. phys_addr_t *res_base)
  31. {
  32. phys_addr_t base;
  33. /*
  34. * We use __memblock_alloc_base() because memblock_alloc_base()
  35. * panic()s on allocation failure.
  36. */
  37. end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
  38. base = __memblock_alloc_base(size, align, end);
  39. if (!base)
  40. return -ENOMEM;
  41. /*
  42. * Check if the allocated region fits in to start..end window
  43. */
  44. if (base < start) {
  45. memblock_free(base, size);
  46. return -ENOMEM;
  47. }
  48. *res_base = base;
  49. if (nomap)
  50. return memblock_remove(base, size);
  51. return 0;
  52. }
  53. #else
  54. int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  55. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  56. phys_addr_t *res_base)
  57. {
  58. pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
  59. size, nomap ? " (nomap)" : "");
  60. return -ENOSYS;
  61. }
  62. #endif
  63. /**
  64. * res_mem_save_node() - save fdt node for second pass initialization
  65. */
  66. void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
  67. phys_addr_t base, phys_addr_t size)
  68. {
  69. struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
  70. if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
  71. pr_err("Reserved memory: not enough space all defined regions.\n");
  72. return;
  73. }
  74. rmem->fdt_node = node;
  75. rmem->name = uname;
  76. rmem->base = base;
  77. rmem->size = size;
  78. reserved_mem_count++;
  79. return;
  80. }
  81. /**
  82. * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
  83. * and 'alloc-ranges' properties
  84. */
  85. static int __init __reserved_mem_alloc_size(unsigned long node,
  86. const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
  87. {
  88. int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  89. phys_addr_t start = 0, end = 0;
  90. phys_addr_t base = 0, align = 0, size;
  91. int len;
  92. const __be32 *prop;
  93. int nomap;
  94. int ret;
  95. prop = of_get_flat_dt_prop(node, "size", &len);
  96. if (!prop)
  97. return -EINVAL;
  98. if (len != dt_root_size_cells * sizeof(__be32)) {
  99. pr_err("Reserved memory: invalid size property in '%s' node.\n",
  100. uname);
  101. return -EINVAL;
  102. }
  103. size = dt_mem_next_cell(dt_root_size_cells, &prop);
  104. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  105. prop = of_get_flat_dt_prop(node, "alignment", &len);
  106. if (prop) {
  107. if (len != dt_root_addr_cells * sizeof(__be32)) {
  108. pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
  109. uname);
  110. return -EINVAL;
  111. }
  112. align = dt_mem_next_cell(dt_root_addr_cells, &prop);
  113. }
  114. /* Need adjust the alignment to satisfy the CMA requirement */
  115. if (IS_ENABLED(CONFIG_CMA) && of_flat_dt_is_compatible(node, "shared-dma-pool"))
  116. align = max(align, (phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
  117. prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
  118. if (prop) {
  119. if (len % t_len != 0) {
  120. pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
  121. uname);
  122. return -EINVAL;
  123. }
  124. base = 0;
  125. while (len > 0) {
  126. start = dt_mem_next_cell(dt_root_addr_cells, &prop);
  127. end = start + dt_mem_next_cell(dt_root_size_cells,
  128. &prop);
  129. ret = early_init_dt_alloc_reserved_memory_arch(size,
  130. align, start, end, nomap, &base);
  131. if (ret == 0) {
  132. pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
  133. uname, &base,
  134. (unsigned long)size / SZ_1M);
  135. break;
  136. }
  137. len -= t_len;
  138. }
  139. } else {
  140. ret = early_init_dt_alloc_reserved_memory_arch(size, align,
  141. 0, 0, nomap, &base);
  142. if (ret == 0)
  143. pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
  144. uname, &base, (unsigned long)size / SZ_1M);
  145. }
  146. if (base == 0) {
  147. pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
  148. uname);
  149. return -ENOMEM;
  150. }
  151. *res_base = base;
  152. *res_size = size;
  153. return 0;
  154. }
  155. static const struct of_device_id __rmem_of_table_sentinel
  156. __used __section(__reservedmem_of_table_end);
  157. /**
  158. * res_mem_init_node() - call region specific reserved memory init code
  159. */
  160. static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
  161. {
  162. extern const struct of_device_id __reservedmem_of_table[];
  163. const struct of_device_id *i;
  164. for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
  165. reservedmem_of_init_fn initfn = i->data;
  166. const char *compat = i->compatible;
  167. if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
  168. continue;
  169. if (initfn(rmem) == 0) {
  170. pr_info("Reserved memory: initialized node %s, compatible id %s\n",
  171. rmem->name, compat);
  172. return 0;
  173. }
  174. }
  175. return -ENOENT;
  176. }
  177. static int __init __rmem_cmp(const void *a, const void *b)
  178. {
  179. const struct reserved_mem *ra = a, *rb = b;
  180. if (ra->base < rb->base)
  181. return -1;
  182. if (ra->base > rb->base)
  183. return 1;
  184. return 0;
  185. }
  186. static void __init __rmem_check_for_overlap(void)
  187. {
  188. int i;
  189. if (reserved_mem_count < 2)
  190. return;
  191. sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
  192. __rmem_cmp, NULL);
  193. for (i = 0; i < reserved_mem_count - 1; i++) {
  194. struct reserved_mem *this, *next;
  195. this = &reserved_mem[i];
  196. next = &reserved_mem[i + 1];
  197. if (!(this->base && next->base))
  198. continue;
  199. if (this->base + this->size > next->base) {
  200. phys_addr_t this_end, next_end;
  201. this_end = this->base + this->size;
  202. next_end = next->base + next->size;
  203. pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
  204. this->name, &this->base, &this_end,
  205. next->name, &next->base, &next_end);
  206. }
  207. }
  208. }
  209. /**
  210. * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
  211. */
  212. void __init fdt_init_reserved_mem(void)
  213. {
  214. int i;
  215. /* check for overlapping reserved regions */
  216. __rmem_check_for_overlap();
  217. for (i = 0; i < reserved_mem_count; i++) {
  218. struct reserved_mem *rmem = &reserved_mem[i];
  219. unsigned long node = rmem->fdt_node;
  220. int len;
  221. const __be32 *prop;
  222. int err = 0;
  223. prop = of_get_flat_dt_prop(node, "phandle", &len);
  224. if (!prop)
  225. prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
  226. if (prop)
  227. rmem->phandle = of_read_number(prop, len/4);
  228. if (rmem->size == 0)
  229. err = __reserved_mem_alloc_size(node, rmem->name,
  230. &rmem->base, &rmem->size);
  231. if (err == 0)
  232. __reserved_mem_init_node(rmem);
  233. }
  234. }
  235. static inline struct reserved_mem *__find_rmem(struct device_node *node)
  236. {
  237. unsigned int i;
  238. if (!node->phandle)
  239. return NULL;
  240. for (i = 0; i < reserved_mem_count; i++)
  241. if (reserved_mem[i].phandle == node->phandle)
  242. return &reserved_mem[i];
  243. return NULL;
  244. }
  245. /**
  246. * of_reserved_mem_device_init() - assign reserved memory region to given device
  247. *
  248. * This function assign memory region pointed by "memory-region" device tree
  249. * property to the given device.
  250. */
  251. int of_reserved_mem_device_init(struct device *dev)
  252. {
  253. struct reserved_mem *rmem;
  254. struct device_node *np;
  255. int ret;
  256. np = of_parse_phandle(dev->of_node, "memory-region", 0);
  257. if (!np)
  258. return -ENODEV;
  259. rmem = __find_rmem(np);
  260. of_node_put(np);
  261. if (!rmem || !rmem->ops || !rmem->ops->device_init)
  262. return -EINVAL;
  263. ret = rmem->ops->device_init(rmem, dev);
  264. if (ret == 0)
  265. dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
  266. return ret;
  267. }
  268. EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
  269. /**
  270. * of_reserved_mem_device_release() - release reserved memory device structures
  271. *
  272. * This function releases structures allocated for memory region handling for
  273. * the given device.
  274. */
  275. void of_reserved_mem_device_release(struct device *dev)
  276. {
  277. struct reserved_mem *rmem;
  278. struct device_node *np;
  279. np = of_parse_phandle(dev->of_node, "memory-region", 0);
  280. if (!np)
  281. return;
  282. rmem = __find_rmem(np);
  283. of_node_put(np);
  284. if (!rmem || !rmem->ops || !rmem->ops->device_release)
  285. return;
  286. rmem->ops->device_release(rmem, dev);
  287. }
  288. EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);