mrf24j40.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396
  1. /*
  2. * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2012 Alan Ott <alan@signal11.us>
  5. * Signal 11 Software
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. */
  17. #include <linux/spi/spi.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/module.h>
  20. #include <linux/regmap.h>
  21. #include <linux/ieee802154.h>
  22. #include <linux/irq.h>
  23. #include <net/cfg802154.h>
  24. #include <net/mac802154.h>
  25. /* MRF24J40 Short Address Registers */
  26. #define REG_RXMCR 0x00 /* Receive MAC control */
  27. #define BIT_PROMI BIT(0)
  28. #define BIT_ERRPKT BIT(1)
  29. #define BIT_NOACKRSP BIT(5)
  30. #define BIT_PANCOORD BIT(3)
  31. #define REG_PANIDL 0x01 /* PAN ID (low) */
  32. #define REG_PANIDH 0x02 /* PAN ID (high) */
  33. #define REG_SADRL 0x03 /* Short address (low) */
  34. #define REG_SADRH 0x04 /* Short address (high) */
  35. #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
  36. #define REG_EADR1 0x06
  37. #define REG_EADR2 0x07
  38. #define REG_EADR3 0x08
  39. #define REG_EADR4 0x09
  40. #define REG_EADR5 0x0A
  41. #define REG_EADR6 0x0B
  42. #define REG_EADR7 0x0C
  43. #define REG_RXFLUSH 0x0D
  44. #define REG_ORDER 0x10
  45. #define REG_TXMCR 0x11 /* Transmit MAC control */
  46. #define TXMCR_MIN_BE_SHIFT 3
  47. #define TXMCR_MIN_BE_MASK 0x18
  48. #define TXMCR_CSMA_RETRIES_SHIFT 0
  49. #define TXMCR_CSMA_RETRIES_MASK 0x07
  50. #define REG_ACKTMOUT 0x12
  51. #define REG_ESLOTG1 0x13
  52. #define REG_SYMTICKL 0x14
  53. #define REG_SYMTICKH 0x15
  54. #define REG_PACON0 0x16 /* Power Amplifier Control */
  55. #define REG_PACON1 0x17 /* Power Amplifier Control */
  56. #define REG_PACON2 0x18 /* Power Amplifier Control */
  57. #define REG_TXBCON0 0x1A
  58. #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
  59. #define BIT_TXNTRIG BIT(0)
  60. #define BIT_TXNACKREQ BIT(2)
  61. #define REG_TXG1CON 0x1C
  62. #define REG_TXG2CON 0x1D
  63. #define REG_ESLOTG23 0x1E
  64. #define REG_ESLOTG45 0x1F
  65. #define REG_ESLOTG67 0x20
  66. #define REG_TXPEND 0x21
  67. #define REG_WAKECON 0x22
  68. #define REG_FROMOFFSET 0x23
  69. #define REG_TXSTAT 0x24 /* TX MAC Status Register */
  70. #define REG_TXBCON1 0x25
  71. #define REG_GATECLK 0x26
  72. #define REG_TXTIME 0x27
  73. #define REG_HSYMTMRL 0x28
  74. #define REG_HSYMTMRH 0x29
  75. #define REG_SOFTRST 0x2A /* Soft Reset */
  76. #define REG_SECCON0 0x2C
  77. #define REG_SECCON1 0x2D
  78. #define REG_TXSTBL 0x2E /* TX Stabilization */
  79. #define REG_RXSR 0x30
  80. #define REG_INTSTAT 0x31 /* Interrupt Status */
  81. #define BIT_TXNIF BIT(0)
  82. #define BIT_RXIF BIT(3)
  83. #define REG_INTCON 0x32 /* Interrupt Control */
  84. #define BIT_TXNIE BIT(0)
  85. #define BIT_RXIE BIT(3)
  86. #define REG_GPIO 0x33 /* GPIO */
  87. #define REG_TRISGPIO 0x34 /* GPIO direction */
  88. #define REG_SLPACK 0x35
  89. #define REG_RFCTL 0x36 /* RF Control Mode Register */
  90. #define BIT_RFRST BIT(2)
  91. #define REG_SECCR2 0x37
  92. #define REG_BBREG0 0x38
  93. #define REG_BBREG1 0x39 /* Baseband Registers */
  94. #define BIT_RXDECINV BIT(2)
  95. #define REG_BBREG2 0x3A /* */
  96. #define BBREG2_CCA_MODE_SHIFT 6
  97. #define BBREG2_CCA_MODE_MASK 0xc0
  98. #define REG_BBREG3 0x3B
  99. #define REG_BBREG4 0x3C
  100. #define REG_BBREG6 0x3E /* */
  101. #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
  102. /* MRF24J40 Long Address Registers */
  103. #define REG_RFCON0 0x200 /* RF Control Registers */
  104. #define RFCON0_CH_SHIFT 4
  105. #define RFCON0_CH_MASK 0xf0
  106. #define RFOPT_RECOMMEND 3
  107. #define REG_RFCON1 0x201
  108. #define REG_RFCON2 0x202
  109. #define REG_RFCON3 0x203
  110. #define TXPWRL_MASK 0xc0
  111. #define TXPWRL_SHIFT 6
  112. #define TXPWRL_30 0x3
  113. #define TXPWRL_20 0x2
  114. #define TXPWRL_10 0x1
  115. #define TXPWRL_0 0x0
  116. #define TXPWRS_MASK 0x38
  117. #define TXPWRS_SHIFT 3
  118. #define TXPWRS_6_3 0x7
  119. #define TXPWRS_4_9 0x6
  120. #define TXPWRS_3_7 0x5
  121. #define TXPWRS_2_8 0x4
  122. #define TXPWRS_1_9 0x3
  123. #define TXPWRS_1_2 0x2
  124. #define TXPWRS_0_5 0x1
  125. #define TXPWRS_0 0x0
  126. #define REG_RFCON5 0x205
  127. #define REG_RFCON6 0x206
  128. #define REG_RFCON7 0x207
  129. #define REG_RFCON8 0x208
  130. #define REG_SLPCAL0 0x209
  131. #define REG_SLPCAL1 0x20A
  132. #define REG_SLPCAL2 0x20B
  133. #define REG_RFSTATE 0x20F
  134. #define REG_RSSI 0x210
  135. #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
  136. #define BIT_INTEDGE BIT(1)
  137. #define REG_SLPCON1 0x220
  138. #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
  139. #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
  140. #define REG_REMCNTL 0x224
  141. #define REG_REMCNTH 0x225
  142. #define REG_MAINCNT0 0x226
  143. #define REG_MAINCNT1 0x227
  144. #define REG_MAINCNT2 0x228
  145. #define REG_MAINCNT3 0x229
  146. #define REG_TESTMODE 0x22F /* Test mode */
  147. #define REG_ASSOEAR0 0x230
  148. #define REG_ASSOEAR1 0x231
  149. #define REG_ASSOEAR2 0x232
  150. #define REG_ASSOEAR3 0x233
  151. #define REG_ASSOEAR4 0x234
  152. #define REG_ASSOEAR5 0x235
  153. #define REG_ASSOEAR6 0x236
  154. #define REG_ASSOEAR7 0x237
  155. #define REG_ASSOSAR0 0x238
  156. #define REG_ASSOSAR1 0x239
  157. #define REG_UNONCE0 0x240
  158. #define REG_UNONCE1 0x241
  159. #define REG_UNONCE2 0x242
  160. #define REG_UNONCE3 0x243
  161. #define REG_UNONCE4 0x244
  162. #define REG_UNONCE5 0x245
  163. #define REG_UNONCE6 0x246
  164. #define REG_UNONCE7 0x247
  165. #define REG_UNONCE8 0x248
  166. #define REG_UNONCE9 0x249
  167. #define REG_UNONCE10 0x24A
  168. #define REG_UNONCE11 0x24B
  169. #define REG_UNONCE12 0x24C
  170. #define REG_RX_FIFO 0x300 /* Receive FIFO */
  171. /* Device configuration: Only channels 11-26 on page 0 are supported. */
  172. #define MRF24J40_CHAN_MIN 11
  173. #define MRF24J40_CHAN_MAX 26
  174. #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
  175. - ((u32)1 << MRF24J40_CHAN_MIN))
  176. #define TX_FIFO_SIZE 128 /* From datasheet */
  177. #define RX_FIFO_SIZE 144 /* From datasheet */
  178. #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
  179. enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
  180. /* Device Private Data */
  181. struct mrf24j40 {
  182. struct spi_device *spi;
  183. struct ieee802154_hw *hw;
  184. struct regmap *regmap_short;
  185. struct regmap *regmap_long;
  186. /* for writing txfifo */
  187. struct spi_message tx_msg;
  188. u8 tx_hdr_buf[2];
  189. struct spi_transfer tx_hdr_trx;
  190. u8 tx_len_buf[2];
  191. struct spi_transfer tx_len_trx;
  192. struct spi_transfer tx_buf_trx;
  193. struct sk_buff *tx_skb;
  194. /* post transmit message to send frame out */
  195. struct spi_message tx_post_msg;
  196. u8 tx_post_buf[2];
  197. struct spi_transfer tx_post_trx;
  198. /* for protect/unprotect/read length rxfifo */
  199. struct spi_message rx_msg;
  200. u8 rx_buf[3];
  201. struct spi_transfer rx_trx;
  202. /* receive handling */
  203. struct spi_message rx_buf_msg;
  204. u8 rx_addr_buf[2];
  205. struct spi_transfer rx_addr_trx;
  206. u8 rx_lqi_buf[2];
  207. struct spi_transfer rx_lqi_trx;
  208. u8 rx_fifo_buf[RX_FIFO_SIZE];
  209. struct spi_transfer rx_fifo_buf_trx;
  210. /* isr handling for reading intstat */
  211. struct spi_message irq_msg;
  212. u8 irq_buf[2];
  213. struct spi_transfer irq_trx;
  214. };
  215. /* regmap information for short address register access */
  216. #define MRF24J40_SHORT_WRITE 0x01
  217. #define MRF24J40_SHORT_READ 0x00
  218. #define MRF24J40_SHORT_NUMREGS 0x3F
  219. /* regmap information for long address register access */
  220. #define MRF24J40_LONG_ACCESS 0x80
  221. #define MRF24J40_LONG_NUMREGS 0x38F
  222. /* Read/Write SPI Commands for Short and Long Address registers. */
  223. #define MRF24J40_READSHORT(reg) ((reg) << 1)
  224. #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
  225. #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
  226. #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  227. /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
  228. #define MAX_SPI_SPEED_HZ 10000000
  229. #define printdev(X) (&X->spi->dev)
  230. static bool
  231. mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
  232. {
  233. switch (reg) {
  234. case REG_RXMCR:
  235. case REG_PANIDL:
  236. case REG_PANIDH:
  237. case REG_SADRL:
  238. case REG_SADRH:
  239. case REG_EADR0:
  240. case REG_EADR1:
  241. case REG_EADR2:
  242. case REG_EADR3:
  243. case REG_EADR4:
  244. case REG_EADR5:
  245. case REG_EADR6:
  246. case REG_EADR7:
  247. case REG_RXFLUSH:
  248. case REG_ORDER:
  249. case REG_TXMCR:
  250. case REG_ACKTMOUT:
  251. case REG_ESLOTG1:
  252. case REG_SYMTICKL:
  253. case REG_SYMTICKH:
  254. case REG_PACON0:
  255. case REG_PACON1:
  256. case REG_PACON2:
  257. case REG_TXBCON0:
  258. case REG_TXNCON:
  259. case REG_TXG1CON:
  260. case REG_TXG2CON:
  261. case REG_ESLOTG23:
  262. case REG_ESLOTG45:
  263. case REG_ESLOTG67:
  264. case REG_TXPEND:
  265. case REG_WAKECON:
  266. case REG_FROMOFFSET:
  267. case REG_TXBCON1:
  268. case REG_GATECLK:
  269. case REG_TXTIME:
  270. case REG_HSYMTMRL:
  271. case REG_HSYMTMRH:
  272. case REG_SOFTRST:
  273. case REG_SECCON0:
  274. case REG_SECCON1:
  275. case REG_TXSTBL:
  276. case REG_RXSR:
  277. case REG_INTCON:
  278. case REG_TRISGPIO:
  279. case REG_GPIO:
  280. case REG_RFCTL:
  281. case REG_SECCR2:
  282. case REG_SLPACK:
  283. case REG_BBREG0:
  284. case REG_BBREG1:
  285. case REG_BBREG2:
  286. case REG_BBREG3:
  287. case REG_BBREG4:
  288. case REG_BBREG6:
  289. case REG_CCAEDTH:
  290. return true;
  291. default:
  292. return false;
  293. }
  294. }
  295. static bool
  296. mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
  297. {
  298. bool rc;
  299. /* all writeable are also readable */
  300. rc = mrf24j40_short_reg_writeable(dev, reg);
  301. if (rc)
  302. return rc;
  303. /* readonly regs */
  304. switch (reg) {
  305. case REG_TXSTAT:
  306. case REG_INTSTAT:
  307. return true;
  308. default:
  309. return false;
  310. }
  311. }
  312. static bool
  313. mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
  314. {
  315. /* can be changed during runtime */
  316. switch (reg) {
  317. case REG_TXSTAT:
  318. case REG_INTSTAT:
  319. case REG_RXFLUSH:
  320. case REG_TXNCON:
  321. case REG_SOFTRST:
  322. case REG_RFCTL:
  323. case REG_TXBCON0:
  324. case REG_TXG1CON:
  325. case REG_TXG2CON:
  326. case REG_TXBCON1:
  327. case REG_SECCON0:
  328. case REG_RXSR:
  329. case REG_SLPACK:
  330. case REG_SECCR2:
  331. case REG_BBREG6:
  332. /* use them in spi_async and regmap so it's volatile */
  333. case REG_BBREG1:
  334. return true;
  335. default:
  336. return false;
  337. }
  338. }
  339. static bool
  340. mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
  341. {
  342. /* don't clear irq line on read */
  343. switch (reg) {
  344. case REG_INTSTAT:
  345. return true;
  346. default:
  347. return false;
  348. }
  349. }
  350. static const struct regmap_config mrf24j40_short_regmap = {
  351. .name = "mrf24j40_short",
  352. .reg_bits = 7,
  353. .val_bits = 8,
  354. .pad_bits = 1,
  355. .write_flag_mask = MRF24J40_SHORT_WRITE,
  356. .read_flag_mask = MRF24J40_SHORT_READ,
  357. .cache_type = REGCACHE_RBTREE,
  358. .max_register = MRF24J40_SHORT_NUMREGS,
  359. .writeable_reg = mrf24j40_short_reg_writeable,
  360. .readable_reg = mrf24j40_short_reg_readable,
  361. .volatile_reg = mrf24j40_short_reg_volatile,
  362. .precious_reg = mrf24j40_short_reg_precious,
  363. };
  364. static bool
  365. mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
  366. {
  367. switch (reg) {
  368. case REG_RFCON0:
  369. case REG_RFCON1:
  370. case REG_RFCON2:
  371. case REG_RFCON3:
  372. case REG_RFCON5:
  373. case REG_RFCON6:
  374. case REG_RFCON7:
  375. case REG_RFCON8:
  376. case REG_SLPCAL2:
  377. case REG_SLPCON0:
  378. case REG_SLPCON1:
  379. case REG_WAKETIMEL:
  380. case REG_WAKETIMEH:
  381. case REG_REMCNTL:
  382. case REG_REMCNTH:
  383. case REG_MAINCNT0:
  384. case REG_MAINCNT1:
  385. case REG_MAINCNT2:
  386. case REG_MAINCNT3:
  387. case REG_TESTMODE:
  388. case REG_ASSOEAR0:
  389. case REG_ASSOEAR1:
  390. case REG_ASSOEAR2:
  391. case REG_ASSOEAR3:
  392. case REG_ASSOEAR4:
  393. case REG_ASSOEAR5:
  394. case REG_ASSOEAR6:
  395. case REG_ASSOEAR7:
  396. case REG_ASSOSAR0:
  397. case REG_ASSOSAR1:
  398. case REG_UNONCE0:
  399. case REG_UNONCE1:
  400. case REG_UNONCE2:
  401. case REG_UNONCE3:
  402. case REG_UNONCE4:
  403. case REG_UNONCE5:
  404. case REG_UNONCE6:
  405. case REG_UNONCE7:
  406. case REG_UNONCE8:
  407. case REG_UNONCE9:
  408. case REG_UNONCE10:
  409. case REG_UNONCE11:
  410. case REG_UNONCE12:
  411. return true;
  412. default:
  413. return false;
  414. }
  415. }
  416. static bool
  417. mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
  418. {
  419. bool rc;
  420. /* all writeable are also readable */
  421. rc = mrf24j40_long_reg_writeable(dev, reg);
  422. if (rc)
  423. return rc;
  424. /* readonly regs */
  425. switch (reg) {
  426. case REG_SLPCAL0:
  427. case REG_SLPCAL1:
  428. case REG_RFSTATE:
  429. case REG_RSSI:
  430. return true;
  431. default:
  432. return false;
  433. }
  434. }
  435. static bool
  436. mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
  437. {
  438. /* can be changed during runtime */
  439. switch (reg) {
  440. case REG_SLPCAL0:
  441. case REG_SLPCAL1:
  442. case REG_SLPCAL2:
  443. case REG_RFSTATE:
  444. case REG_RSSI:
  445. case REG_MAINCNT3:
  446. return true;
  447. default:
  448. return false;
  449. }
  450. }
  451. static const struct regmap_config mrf24j40_long_regmap = {
  452. .name = "mrf24j40_long",
  453. .reg_bits = 11,
  454. .val_bits = 8,
  455. .pad_bits = 5,
  456. .write_flag_mask = MRF24J40_LONG_ACCESS,
  457. .read_flag_mask = MRF24J40_LONG_ACCESS,
  458. .cache_type = REGCACHE_RBTREE,
  459. .max_register = MRF24J40_LONG_NUMREGS,
  460. .writeable_reg = mrf24j40_long_reg_writeable,
  461. .readable_reg = mrf24j40_long_reg_readable,
  462. .volatile_reg = mrf24j40_long_reg_volatile,
  463. };
  464. static int mrf24j40_long_regmap_write(void *context, const void *data,
  465. size_t count)
  466. {
  467. struct spi_device *spi = context;
  468. u8 buf[3];
  469. if (count > 3)
  470. return -EINVAL;
  471. /* regmap supports read/write mask only in frist byte
  472. * long write access need to set the 12th bit, so we
  473. * make special handling for write.
  474. */
  475. memcpy(buf, data, count);
  476. buf[1] |= (1 << 4);
  477. return spi_write(spi, buf, count);
  478. }
  479. static int
  480. mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
  481. void *val, size_t val_size)
  482. {
  483. struct spi_device *spi = context;
  484. return spi_write_then_read(spi, reg, reg_size, val, val_size);
  485. }
  486. static const struct regmap_bus mrf24j40_long_regmap_bus = {
  487. .write = mrf24j40_long_regmap_write,
  488. .read = mrf24j40_long_regmap_read,
  489. .reg_format_endian_default = REGMAP_ENDIAN_BIG,
  490. .val_format_endian_default = REGMAP_ENDIAN_BIG,
  491. };
  492. static void write_tx_buf_complete(void *context)
  493. {
  494. struct mrf24j40 *devrec = context;
  495. __le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
  496. u8 val = BIT_TXNTRIG;
  497. int ret;
  498. if (ieee802154_is_ackreq(fc))
  499. val |= BIT_TXNACKREQ;
  500. devrec->tx_post_msg.complete = NULL;
  501. devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
  502. devrec->tx_post_buf[1] = val;
  503. ret = spi_async(devrec->spi, &devrec->tx_post_msg);
  504. if (ret)
  505. dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
  506. }
  507. /* This function relies on an undocumented write method. Once a write command
  508. and address is set, as many bytes of data as desired can be clocked into
  509. the device. The datasheet only shows setting one byte at a time. */
  510. static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
  511. const u8 *data, size_t length)
  512. {
  513. u16 cmd;
  514. int ret;
  515. /* Range check the length. 2 bytes are used for the length fields.*/
  516. if (length > TX_FIFO_SIZE-2) {
  517. dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
  518. length = TX_FIFO_SIZE-2;
  519. }
  520. cmd = MRF24J40_WRITELONG(reg);
  521. devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
  522. devrec->tx_hdr_buf[1] = cmd & 0xff;
  523. devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
  524. devrec->tx_len_buf[1] = length; /* Total length */
  525. devrec->tx_buf_trx.tx_buf = data;
  526. devrec->tx_buf_trx.len = length;
  527. ret = spi_async(devrec->spi, &devrec->tx_msg);
  528. if (ret)
  529. dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
  530. return ret;
  531. }
  532. static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
  533. {
  534. struct mrf24j40 *devrec = hw->priv;
  535. dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
  536. devrec->tx_skb = skb;
  537. return write_tx_buf(devrec, 0x000, skb->data, skb->len);
  538. }
  539. static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
  540. {
  541. /* TODO: */
  542. pr_warn("mrf24j40: ed not implemented\n");
  543. *level = 0;
  544. return 0;
  545. }
  546. static int mrf24j40_start(struct ieee802154_hw *hw)
  547. {
  548. struct mrf24j40 *devrec = hw->priv;
  549. dev_dbg(printdev(devrec), "start\n");
  550. /* Clear TXNIE and RXIE. Enable interrupts */
  551. return regmap_update_bits(devrec->regmap_short, REG_INTCON,
  552. BIT_TXNIE | BIT_RXIE, 0);
  553. }
  554. static void mrf24j40_stop(struct ieee802154_hw *hw)
  555. {
  556. struct mrf24j40 *devrec = hw->priv;
  557. dev_dbg(printdev(devrec), "stop\n");
  558. /* Set TXNIE and RXIE. Disable Interrupts */
  559. regmap_update_bits(devrec->regmap_short, REG_INTCON,
  560. BIT_TXNIE | BIT_TXNIE, BIT_TXNIE | BIT_TXNIE);
  561. }
  562. static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
  563. {
  564. struct mrf24j40 *devrec = hw->priv;
  565. u8 val;
  566. int ret;
  567. dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
  568. WARN_ON(page != 0);
  569. WARN_ON(channel < MRF24J40_CHAN_MIN);
  570. WARN_ON(channel > MRF24J40_CHAN_MAX);
  571. /* Set Channel TODO */
  572. val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
  573. ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
  574. RFCON0_CH_MASK, val);
  575. if (ret)
  576. return ret;
  577. /* RF Reset */
  578. ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
  579. BIT_RFRST);
  580. if (ret)
  581. return ret;
  582. ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
  583. if (!ret)
  584. udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
  585. return ret;
  586. }
  587. static int mrf24j40_filter(struct ieee802154_hw *hw,
  588. struct ieee802154_hw_addr_filt *filt,
  589. unsigned long changed)
  590. {
  591. struct mrf24j40 *devrec = hw->priv;
  592. dev_dbg(printdev(devrec), "filter\n");
  593. if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
  594. /* Short Addr */
  595. u8 addrh, addrl;
  596. addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
  597. addrl = le16_to_cpu(filt->short_addr) & 0xff;
  598. regmap_write(devrec->regmap_short, REG_SADRH, addrh);
  599. regmap_write(devrec->regmap_short, REG_SADRL, addrl);
  600. dev_dbg(printdev(devrec),
  601. "Set short addr to %04hx\n", filt->short_addr);
  602. }
  603. if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
  604. /* Device Address */
  605. u8 i, addr[8];
  606. memcpy(addr, &filt->ieee_addr, 8);
  607. for (i = 0; i < 8; i++)
  608. regmap_write(devrec->regmap_short, REG_EADR0 + i,
  609. addr[i]);
  610. #ifdef DEBUG
  611. pr_debug("Set long addr to: ");
  612. for (i = 0; i < 8; i++)
  613. pr_debug("%02hhx ", addr[7 - i]);
  614. pr_debug("\n");
  615. #endif
  616. }
  617. if (changed & IEEE802154_AFILT_PANID_CHANGED) {
  618. /* PAN ID */
  619. u8 panidl, panidh;
  620. panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
  621. panidl = le16_to_cpu(filt->pan_id) & 0xff;
  622. regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
  623. regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
  624. dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
  625. }
  626. if (changed & IEEE802154_AFILT_PANC_CHANGED) {
  627. /* Pan Coordinator */
  628. u8 val;
  629. int ret;
  630. if (filt->pan_coord)
  631. val = BIT_PANCOORD;
  632. else
  633. val = 0;
  634. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
  635. BIT_PANCOORD, val);
  636. if (ret)
  637. return ret;
  638. /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
  639. * REG_ORDER is maintained as default (no beacon/superframe).
  640. */
  641. dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
  642. filt->pan_coord ? "on" : "off");
  643. }
  644. return 0;
  645. }
  646. static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
  647. {
  648. int ret;
  649. /* Turn back on reception of packets off the air. */
  650. devrec->rx_msg.complete = NULL;
  651. devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
  652. devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
  653. ret = spi_async(devrec->spi, &devrec->rx_msg);
  654. if (ret)
  655. dev_err(printdev(devrec), "failed to unlock rx buffer\n");
  656. }
  657. static void mrf24j40_handle_rx_read_buf_complete(void *context)
  658. {
  659. struct mrf24j40 *devrec = context;
  660. u8 len = devrec->rx_buf[2];
  661. u8 rx_local_buf[RX_FIFO_SIZE];
  662. struct sk_buff *skb;
  663. memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
  664. mrf24j40_handle_rx_read_buf_unlock(devrec);
  665. skb = dev_alloc_skb(IEEE802154_MTU);
  666. if (!skb) {
  667. dev_err(printdev(devrec), "failed to allocate skb\n");
  668. return;
  669. }
  670. memcpy(skb_put(skb, len), rx_local_buf, len);
  671. ieee802154_rx_irqsafe(devrec->hw, skb, 0);
  672. #ifdef DEBUG
  673. print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
  674. rx_local_buf, len, 0);
  675. pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
  676. devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
  677. #endif
  678. }
  679. static void mrf24j40_handle_rx_read_buf(void *context)
  680. {
  681. struct mrf24j40 *devrec = context;
  682. u16 cmd;
  683. int ret;
  684. /* if length is invalid read the full MTU */
  685. if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
  686. devrec->rx_buf[2] = IEEE802154_MTU;
  687. cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
  688. devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
  689. devrec->rx_addr_buf[1] = cmd & 0xff;
  690. devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
  691. ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
  692. if (ret) {
  693. dev_err(printdev(devrec), "failed to read rx buffer\n");
  694. mrf24j40_handle_rx_read_buf_unlock(devrec);
  695. }
  696. }
  697. static void mrf24j40_handle_rx_read_len(void *context)
  698. {
  699. struct mrf24j40 *devrec = context;
  700. u16 cmd;
  701. int ret;
  702. /* read the length of received frame */
  703. devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
  704. devrec->rx_trx.len = 3;
  705. cmd = MRF24J40_READLONG(REG_RX_FIFO);
  706. devrec->rx_buf[0] = cmd >> 8 & 0xff;
  707. devrec->rx_buf[1] = cmd & 0xff;
  708. ret = spi_async(devrec->spi, &devrec->rx_msg);
  709. if (ret) {
  710. dev_err(printdev(devrec), "failed to read rx buffer length\n");
  711. mrf24j40_handle_rx_read_buf_unlock(devrec);
  712. }
  713. }
  714. static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
  715. {
  716. /* Turn off reception of packets off the air. This prevents the
  717. * device from overwriting the buffer while we're reading it.
  718. */
  719. devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
  720. devrec->rx_trx.len = 2;
  721. devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
  722. devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
  723. return spi_async(devrec->spi, &devrec->rx_msg);
  724. }
  725. static int
  726. mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
  727. u8 retries)
  728. {
  729. struct mrf24j40 *devrec = hw->priv;
  730. u8 val;
  731. /* min_be */
  732. val = min_be << TXMCR_MIN_BE_SHIFT;
  733. /* csma backoffs */
  734. val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
  735. return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
  736. TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
  737. val);
  738. }
  739. static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
  740. const struct wpan_phy_cca *cca)
  741. {
  742. struct mrf24j40 *devrec = hw->priv;
  743. u8 val;
  744. /* mapping 802.15.4 to driver spec */
  745. switch (cca->mode) {
  746. case NL802154_CCA_ENERGY:
  747. val = 2;
  748. break;
  749. case NL802154_CCA_CARRIER:
  750. val = 1;
  751. break;
  752. case NL802154_CCA_ENERGY_CARRIER:
  753. switch (cca->opt) {
  754. case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
  755. val = 3;
  756. break;
  757. default:
  758. return -EINVAL;
  759. }
  760. break;
  761. default:
  762. return -EINVAL;
  763. }
  764. return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
  765. BBREG2_CCA_MODE_MASK,
  766. val << BBREG2_CCA_MODE_SHIFT);
  767. }
  768. /* array for representing ed levels */
  769. static const s32 mrf24j40_ed_levels[] = {
  770. -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
  771. -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
  772. -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
  773. -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
  774. -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
  775. -4000, -3900, -3800, -3700, -3600, -3500
  776. };
  777. /* map ed levels to register value */
  778. static const s32 mrf24j40_ed_levels_map[][2] = {
  779. { -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
  780. { -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
  781. { -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
  782. { -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
  783. { -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
  784. { -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
  785. { -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
  786. { -6100, 133 }, { -6000, 138 }, { -5900, 143 }, { -5800, 148 },
  787. { -5700, 153 }, { -5600, 159 }, { -5500, 165 }, { -5400, 170 },
  788. { -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
  789. { -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
  790. { -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
  791. { -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
  792. { -3700, 253 }, { -3600, 254 }, { -3500, 255 },
  793. };
  794. static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
  795. {
  796. struct mrf24j40 *devrec = hw->priv;
  797. int i;
  798. for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
  799. if (mrf24j40_ed_levels_map[i][0] == mbm)
  800. return regmap_write(devrec->regmap_short, REG_CCAEDTH,
  801. mrf24j40_ed_levels_map[i][1]);
  802. }
  803. return -EINVAL;
  804. }
  805. static const s32 mrf24j40ma_powers[] = {
  806. 0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
  807. -1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
  808. -2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
  809. };
  810. static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
  811. {
  812. struct mrf24j40 *devrec = hw->priv;
  813. s32 small_scale;
  814. u8 val;
  815. if (0 >= mbm && mbm > -1000) {
  816. val = TXPWRL_0 << TXPWRL_SHIFT;
  817. small_scale = mbm;
  818. } else if (-1000 >= mbm && mbm > -2000) {
  819. val = TXPWRL_10 << TXPWRL_SHIFT;
  820. small_scale = mbm + 1000;
  821. } else if (-2000 >= mbm && mbm > -3000) {
  822. val = TXPWRL_20 << TXPWRL_SHIFT;
  823. small_scale = mbm + 2000;
  824. } else if (-3000 >= mbm && mbm > -4000) {
  825. val = TXPWRL_30 << TXPWRL_SHIFT;
  826. small_scale = mbm + 3000;
  827. } else {
  828. return -EINVAL;
  829. }
  830. switch (small_scale) {
  831. case 0:
  832. val |= (TXPWRS_0 << TXPWRS_SHIFT);
  833. break;
  834. case -50:
  835. val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
  836. break;
  837. case -120:
  838. val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
  839. break;
  840. case -190:
  841. val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
  842. break;
  843. case -280:
  844. val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
  845. break;
  846. case -370:
  847. val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
  848. break;
  849. case -490:
  850. val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
  851. break;
  852. case -630:
  853. val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
  854. break;
  855. default:
  856. return -EINVAL;
  857. }
  858. return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
  859. TXPWRL_MASK | TXPWRS_MASK, val);
  860. }
  861. static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
  862. {
  863. struct mrf24j40 *devrec = hw->priv;
  864. int ret;
  865. if (on) {
  866. /* set PROMI, ERRPKT and NOACKRSP */
  867. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
  868. BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
  869. BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
  870. } else {
  871. /* clear PROMI, ERRPKT and NOACKRSP */
  872. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
  873. BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
  874. 0);
  875. }
  876. return ret;
  877. }
  878. static const struct ieee802154_ops mrf24j40_ops = {
  879. .owner = THIS_MODULE,
  880. .xmit_async = mrf24j40_tx,
  881. .ed = mrf24j40_ed,
  882. .start = mrf24j40_start,
  883. .stop = mrf24j40_stop,
  884. .set_channel = mrf24j40_set_channel,
  885. .set_hw_addr_filt = mrf24j40_filter,
  886. .set_csma_params = mrf24j40_csma_params,
  887. .set_cca_mode = mrf24j40_set_cca_mode,
  888. .set_cca_ed_level = mrf24j40_set_cca_ed_level,
  889. .set_txpower = mrf24j40_set_txpower,
  890. .set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
  891. };
  892. static void mrf24j40_intstat_complete(void *context)
  893. {
  894. struct mrf24j40 *devrec = context;
  895. u8 intstat = devrec->irq_buf[1];
  896. enable_irq(devrec->spi->irq);
  897. /* Check for TX complete */
  898. if (intstat & BIT_TXNIF)
  899. ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
  900. /* Check for Rx */
  901. if (intstat & BIT_RXIF)
  902. mrf24j40_handle_rx(devrec);
  903. }
  904. static irqreturn_t mrf24j40_isr(int irq, void *data)
  905. {
  906. struct mrf24j40 *devrec = data;
  907. int ret;
  908. disable_irq_nosync(irq);
  909. devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
  910. /* Read the interrupt status */
  911. ret = spi_async(devrec->spi, &devrec->irq_msg);
  912. if (ret) {
  913. enable_irq(irq);
  914. return IRQ_NONE;
  915. }
  916. return IRQ_HANDLED;
  917. }
  918. static int mrf24j40_hw_init(struct mrf24j40 *devrec)
  919. {
  920. u32 irq_type;
  921. int ret;
  922. /* Initialize the device.
  923. From datasheet section 3.2: Initialization. */
  924. ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
  925. if (ret)
  926. goto err_ret;
  927. ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
  928. if (ret)
  929. goto err_ret;
  930. ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
  931. if (ret)
  932. goto err_ret;
  933. ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
  934. if (ret)
  935. goto err_ret;
  936. ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
  937. if (ret)
  938. goto err_ret;
  939. ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
  940. if (ret)
  941. goto err_ret;
  942. ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
  943. if (ret)
  944. goto err_ret;
  945. ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
  946. if (ret)
  947. goto err_ret;
  948. ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
  949. if (ret)
  950. goto err_ret;
  951. ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
  952. if (ret)
  953. goto err_ret;
  954. ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
  955. if (ret)
  956. goto err_ret;
  957. ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
  958. if (ret)
  959. goto err_ret;
  960. ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
  961. if (ret)
  962. goto err_ret;
  963. ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
  964. if (ret)
  965. goto err_ret;
  966. ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
  967. if (ret)
  968. goto err_ret;
  969. udelay(192);
  970. /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
  971. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
  972. if (ret)
  973. goto err_ret;
  974. if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
  975. /* Enable external amplifier.
  976. * From MRF24J40MC datasheet section 1.3: Operation.
  977. */
  978. regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
  979. 0x07);
  980. /* Set GPIO3 as output. */
  981. regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
  982. 0x08);
  983. /* Set GPIO3 HIGH to enable U5 voltage regulator */
  984. regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
  985. /* Reduce TX pwr to meet FCC requirements.
  986. * From MRF24J40MC datasheet section 3.1.1
  987. */
  988. regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
  989. }
  990. irq_type = irq_get_trigger_type(devrec->spi->irq);
  991. if (irq_type == IRQ_TYPE_EDGE_RISING ||
  992. irq_type == IRQ_TYPE_EDGE_FALLING)
  993. dev_warn(&devrec->spi->dev,
  994. "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
  995. switch (irq_type) {
  996. case IRQ_TYPE_EDGE_RISING:
  997. case IRQ_TYPE_LEVEL_HIGH:
  998. /* set interrupt polarity to rising */
  999. ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
  1000. BIT_INTEDGE, BIT_INTEDGE);
  1001. if (ret)
  1002. goto err_ret;
  1003. break;
  1004. default:
  1005. /* default is falling edge */
  1006. break;
  1007. }
  1008. return 0;
  1009. err_ret:
  1010. return ret;
  1011. }
  1012. static void
  1013. mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
  1014. {
  1015. spi_message_init(&devrec->tx_msg);
  1016. devrec->tx_msg.context = devrec;
  1017. devrec->tx_msg.complete = write_tx_buf_complete;
  1018. devrec->tx_hdr_trx.len = 2;
  1019. devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
  1020. spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
  1021. devrec->tx_len_trx.len = 2;
  1022. devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
  1023. spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
  1024. spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
  1025. spi_message_init(&devrec->tx_post_msg);
  1026. devrec->tx_post_msg.context = devrec;
  1027. devrec->tx_post_trx.len = 2;
  1028. devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
  1029. spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
  1030. }
  1031. static void
  1032. mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
  1033. {
  1034. spi_message_init(&devrec->rx_msg);
  1035. devrec->rx_msg.context = devrec;
  1036. devrec->rx_trx.len = 2;
  1037. devrec->rx_trx.tx_buf = devrec->rx_buf;
  1038. devrec->rx_trx.rx_buf = devrec->rx_buf;
  1039. spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
  1040. spi_message_init(&devrec->rx_buf_msg);
  1041. devrec->rx_buf_msg.context = devrec;
  1042. devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
  1043. devrec->rx_addr_trx.len = 2;
  1044. devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
  1045. spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
  1046. devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
  1047. spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
  1048. devrec->rx_lqi_trx.len = 2;
  1049. devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
  1050. spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
  1051. }
  1052. static void
  1053. mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
  1054. {
  1055. spi_message_init(&devrec->irq_msg);
  1056. devrec->irq_msg.context = devrec;
  1057. devrec->irq_msg.complete = mrf24j40_intstat_complete;
  1058. devrec->irq_trx.len = 2;
  1059. devrec->irq_trx.tx_buf = devrec->irq_buf;
  1060. devrec->irq_trx.rx_buf = devrec->irq_buf;
  1061. spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
  1062. }
  1063. static void mrf24j40_phy_setup(struct mrf24j40 *devrec)
  1064. {
  1065. ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
  1066. devrec->hw->phy->current_channel = 11;
  1067. /* mrf24j40 supports max_minbe 0 - 3 */
  1068. devrec->hw->phy->supported.max_minbe = 3;
  1069. /* datasheet doesn't say anything about max_be, but we have min_be
  1070. * So we assume the max_be default.
  1071. */
  1072. devrec->hw->phy->supported.min_maxbe = 5;
  1073. devrec->hw->phy->supported.max_maxbe = 5;
  1074. devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
  1075. devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
  1076. BIT(NL802154_CCA_CARRIER) |
  1077. BIT(NL802154_CCA_ENERGY_CARRIER);
  1078. devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
  1079. devrec->hw->phy->cca_ed_level = -6900;
  1080. devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
  1081. devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
  1082. switch (spi_get_device_id(devrec->spi)->driver_data) {
  1083. case MRF24J40:
  1084. case MRF24J40MA:
  1085. devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
  1086. devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
  1087. devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
  1088. break;
  1089. default:
  1090. break;
  1091. }
  1092. }
  1093. static int mrf24j40_probe(struct spi_device *spi)
  1094. {
  1095. int ret = -ENOMEM, irq_type;
  1096. struct ieee802154_hw *hw;
  1097. struct mrf24j40 *devrec;
  1098. dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
  1099. /* Register with the 802154 subsystem */
  1100. hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
  1101. if (!hw)
  1102. goto err_ret;
  1103. devrec = hw->priv;
  1104. devrec->spi = spi;
  1105. spi_set_drvdata(spi, devrec);
  1106. devrec->hw = hw;
  1107. devrec->hw->parent = &spi->dev;
  1108. devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
  1109. devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
  1110. IEEE802154_HW_CSMA_PARAMS |
  1111. IEEE802154_HW_PROMISCUOUS;
  1112. devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
  1113. WPAN_PHY_FLAG_CCA_ED_LEVEL;
  1114. mrf24j40_setup_tx_spi_messages(devrec);
  1115. mrf24j40_setup_rx_spi_messages(devrec);
  1116. mrf24j40_setup_irq_spi_messages(devrec);
  1117. devrec->regmap_short = devm_regmap_init_spi(spi,
  1118. &mrf24j40_short_regmap);
  1119. if (IS_ERR(devrec->regmap_short)) {
  1120. ret = PTR_ERR(devrec->regmap_short);
  1121. dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
  1122. ret);
  1123. goto err_register_device;
  1124. }
  1125. devrec->regmap_long = devm_regmap_init(&spi->dev,
  1126. &mrf24j40_long_regmap_bus,
  1127. spi, &mrf24j40_long_regmap);
  1128. if (IS_ERR(devrec->regmap_long)) {
  1129. ret = PTR_ERR(devrec->regmap_long);
  1130. dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
  1131. ret);
  1132. goto err_register_device;
  1133. }
  1134. if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
  1135. dev_warn(&spi->dev, "spi clock above possible maximum: %d",
  1136. MAX_SPI_SPEED_HZ);
  1137. return -EINVAL;
  1138. }
  1139. ret = mrf24j40_hw_init(devrec);
  1140. if (ret)
  1141. goto err_register_device;
  1142. mrf24j40_phy_setup(devrec);
  1143. /* request IRQF_TRIGGER_LOW as fallback default */
  1144. irq_type = irq_get_trigger_type(spi->irq);
  1145. if (!irq_type)
  1146. irq_type = IRQF_TRIGGER_LOW;
  1147. ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
  1148. irq_type, dev_name(&spi->dev), devrec);
  1149. if (ret) {
  1150. dev_err(printdev(devrec), "Unable to get IRQ");
  1151. goto err_register_device;
  1152. }
  1153. dev_dbg(printdev(devrec), "registered mrf24j40\n");
  1154. ret = ieee802154_register_hw(devrec->hw);
  1155. if (ret)
  1156. goto err_register_device;
  1157. return 0;
  1158. err_register_device:
  1159. ieee802154_free_hw(devrec->hw);
  1160. err_ret:
  1161. return ret;
  1162. }
  1163. static int mrf24j40_remove(struct spi_device *spi)
  1164. {
  1165. struct mrf24j40 *devrec = spi_get_drvdata(spi);
  1166. dev_dbg(printdev(devrec), "remove\n");
  1167. ieee802154_unregister_hw(devrec->hw);
  1168. ieee802154_free_hw(devrec->hw);
  1169. /* TODO: Will ieee802154_free_device() wait until ->xmit() is
  1170. * complete? */
  1171. return 0;
  1172. }
  1173. static const struct of_device_id mrf24j40_of_match[] = {
  1174. { .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
  1175. { .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
  1176. { .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
  1177. { },
  1178. };
  1179. MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
  1180. static const struct spi_device_id mrf24j40_ids[] = {
  1181. { "mrf24j40", MRF24J40 },
  1182. { "mrf24j40ma", MRF24J40MA },
  1183. { "mrf24j40mc", MRF24J40MC },
  1184. { },
  1185. };
  1186. MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
  1187. static struct spi_driver mrf24j40_driver = {
  1188. .driver = {
  1189. .of_match_table = of_match_ptr(mrf24j40_of_match),
  1190. .name = "mrf24j40",
  1191. },
  1192. .id_table = mrf24j40_ids,
  1193. .probe = mrf24j40_probe,
  1194. .remove = mrf24j40_remove,
  1195. };
  1196. module_spi_driver(mrf24j40_driver);
  1197. MODULE_LICENSE("GPL");
  1198. MODULE_AUTHOR("Alan Ott");
  1199. MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");