i40e_txrx.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198
  1. /*******************************************************************************
  2. *
  3. * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
  4. * Copyright(c) 2013 - 2016 Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. * Contact Information:
  22. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24. *
  25. ******************************************************************************/
  26. #include <linux/prefetch.h>
  27. #include <net/busy_poll.h>
  28. #include "i40evf.h"
  29. #include "i40e_prototype.h"
  30. static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31. u32 td_tag)
  32. {
  33. return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34. ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
  35. ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36. ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37. ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
  38. }
  39. #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  40. /**
  41. * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  42. * @ring: the ring that owns the buffer
  43. * @tx_buffer: the buffer to free
  44. **/
  45. static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  46. struct i40e_tx_buffer *tx_buffer)
  47. {
  48. if (tx_buffer->skb) {
  49. dev_kfree_skb_any(tx_buffer->skb);
  50. if (dma_unmap_len(tx_buffer, len))
  51. dma_unmap_single(ring->dev,
  52. dma_unmap_addr(tx_buffer, dma),
  53. dma_unmap_len(tx_buffer, len),
  54. DMA_TO_DEVICE);
  55. } else if (dma_unmap_len(tx_buffer, len)) {
  56. dma_unmap_page(ring->dev,
  57. dma_unmap_addr(tx_buffer, dma),
  58. dma_unmap_len(tx_buffer, len),
  59. DMA_TO_DEVICE);
  60. }
  61. if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  62. kfree(tx_buffer->raw_buf);
  63. tx_buffer->next_to_watch = NULL;
  64. tx_buffer->skb = NULL;
  65. dma_unmap_len_set(tx_buffer, len, 0);
  66. /* tx_buffer must be completely set up in the transmit path */
  67. }
  68. /**
  69. * i40evf_clean_tx_ring - Free any empty Tx buffers
  70. * @tx_ring: ring to be cleaned
  71. **/
  72. void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
  73. {
  74. unsigned long bi_size;
  75. u16 i;
  76. /* ring already cleared, nothing to do */
  77. if (!tx_ring->tx_bi)
  78. return;
  79. /* Free all the Tx ring sk_buffs */
  80. for (i = 0; i < tx_ring->count; i++)
  81. i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  82. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  83. memset(tx_ring->tx_bi, 0, bi_size);
  84. /* Zero out the descriptor ring */
  85. memset(tx_ring->desc, 0, tx_ring->size);
  86. tx_ring->next_to_use = 0;
  87. tx_ring->next_to_clean = 0;
  88. if (!tx_ring->netdev)
  89. return;
  90. /* cleanup Tx queue statistics */
  91. netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
  92. tx_ring->queue_index));
  93. }
  94. /**
  95. * i40evf_free_tx_resources - Free Tx resources per queue
  96. * @tx_ring: Tx descriptor ring for a specific queue
  97. *
  98. * Free all transmit software resources
  99. **/
  100. void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
  101. {
  102. i40evf_clean_tx_ring(tx_ring);
  103. kfree(tx_ring->tx_bi);
  104. tx_ring->tx_bi = NULL;
  105. if (tx_ring->desc) {
  106. dma_free_coherent(tx_ring->dev, tx_ring->size,
  107. tx_ring->desc, tx_ring->dma);
  108. tx_ring->desc = NULL;
  109. }
  110. }
  111. /**
  112. * i40evf_get_tx_pending - how many Tx descriptors not processed
  113. * @tx_ring: the ring of descriptors
  114. * @in_sw: is tx_pending being checked in SW or HW
  115. *
  116. * Since there is no access to the ring head register
  117. * in XL710, we need to use our local copies
  118. **/
  119. u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
  120. {
  121. u32 head, tail;
  122. if (!in_sw)
  123. head = i40e_get_head(ring);
  124. else
  125. head = ring->next_to_clean;
  126. tail = readl(ring->tail);
  127. if (head != tail)
  128. return (head < tail) ?
  129. tail - head : (tail + ring->count - head);
  130. return 0;
  131. }
  132. #define WB_STRIDE 0x3
  133. /**
  134. * i40e_clean_tx_irq - Reclaim resources after transmit completes
  135. * @tx_ring: tx ring to clean
  136. * @budget: how many cleans we're allowed
  137. *
  138. * Returns true if there's any budget left (e.g. the clean is finished)
  139. **/
  140. static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
  141. {
  142. u16 i = tx_ring->next_to_clean;
  143. struct i40e_tx_buffer *tx_buf;
  144. struct i40e_tx_desc *tx_head;
  145. struct i40e_tx_desc *tx_desc;
  146. unsigned int total_packets = 0;
  147. unsigned int total_bytes = 0;
  148. tx_buf = &tx_ring->tx_bi[i];
  149. tx_desc = I40E_TX_DESC(tx_ring, i);
  150. i -= tx_ring->count;
  151. tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
  152. do {
  153. struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
  154. /* if next_to_watch is not set then there is no work pending */
  155. if (!eop_desc)
  156. break;
  157. /* prevent any other reads prior to eop_desc */
  158. read_barrier_depends();
  159. /* we have caught up to head, no work left to do */
  160. if (tx_head == tx_desc)
  161. break;
  162. /* clear next_to_watch to prevent false hangs */
  163. tx_buf->next_to_watch = NULL;
  164. /* update the statistics for this packet */
  165. total_bytes += tx_buf->bytecount;
  166. total_packets += tx_buf->gso_segs;
  167. /* free the skb */
  168. dev_kfree_skb_any(tx_buf->skb);
  169. /* unmap skb header data */
  170. dma_unmap_single(tx_ring->dev,
  171. dma_unmap_addr(tx_buf, dma),
  172. dma_unmap_len(tx_buf, len),
  173. DMA_TO_DEVICE);
  174. /* clear tx_buffer data */
  175. tx_buf->skb = NULL;
  176. dma_unmap_len_set(tx_buf, len, 0);
  177. /* unmap remaining buffers */
  178. while (tx_desc != eop_desc) {
  179. tx_buf++;
  180. tx_desc++;
  181. i++;
  182. if (unlikely(!i)) {
  183. i -= tx_ring->count;
  184. tx_buf = tx_ring->tx_bi;
  185. tx_desc = I40E_TX_DESC(tx_ring, 0);
  186. }
  187. /* unmap any remaining paged data */
  188. if (dma_unmap_len(tx_buf, len)) {
  189. dma_unmap_page(tx_ring->dev,
  190. dma_unmap_addr(tx_buf, dma),
  191. dma_unmap_len(tx_buf, len),
  192. DMA_TO_DEVICE);
  193. dma_unmap_len_set(tx_buf, len, 0);
  194. }
  195. }
  196. /* move us one more past the eop_desc for start of next pkt */
  197. tx_buf++;
  198. tx_desc++;
  199. i++;
  200. if (unlikely(!i)) {
  201. i -= tx_ring->count;
  202. tx_buf = tx_ring->tx_bi;
  203. tx_desc = I40E_TX_DESC(tx_ring, 0);
  204. }
  205. prefetch(tx_desc);
  206. /* update budget accounting */
  207. budget--;
  208. } while (likely(budget));
  209. i += tx_ring->count;
  210. tx_ring->next_to_clean = i;
  211. u64_stats_update_begin(&tx_ring->syncp);
  212. tx_ring->stats.bytes += total_bytes;
  213. tx_ring->stats.packets += total_packets;
  214. u64_stats_update_end(&tx_ring->syncp);
  215. tx_ring->q_vector->tx.total_bytes += total_bytes;
  216. tx_ring->q_vector->tx.total_packets += total_packets;
  217. if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
  218. unsigned int j = 0;
  219. /* check to see if there are < 4 descriptors
  220. * waiting to be written back, then kick the hardware to force
  221. * them to be written back in case we stay in NAPI.
  222. * In this mode on X722 we do not enable Interrupt.
  223. */
  224. j = i40evf_get_tx_pending(tx_ring, false);
  225. if (budget &&
  226. ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
  227. !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
  228. (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
  229. tx_ring->arm_wb = true;
  230. }
  231. netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
  232. tx_ring->queue_index),
  233. total_packets, total_bytes);
  234. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  235. if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
  236. (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  237. /* Make sure that anybody stopping the queue after this
  238. * sees the new next_to_clean.
  239. */
  240. smp_mb();
  241. if (__netif_subqueue_stopped(tx_ring->netdev,
  242. tx_ring->queue_index) &&
  243. !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
  244. netif_wake_subqueue(tx_ring->netdev,
  245. tx_ring->queue_index);
  246. ++tx_ring->tx_stats.restart_queue;
  247. }
  248. }
  249. return !!budget;
  250. }
  251. /**
  252. * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
  253. * @vsi: the VSI we care about
  254. * @q_vector: the vector on which to enable writeback
  255. *
  256. **/
  257. static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
  258. struct i40e_q_vector *q_vector)
  259. {
  260. u16 flags = q_vector->tx.ring[0].flags;
  261. u32 val;
  262. if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
  263. return;
  264. if (q_vector->arm_wb_state)
  265. return;
  266. val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
  267. I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
  268. wr32(&vsi->back->hw,
  269. I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
  270. vsi->base_vector - 1), val);
  271. q_vector->arm_wb_state = true;
  272. }
  273. /**
  274. * i40evf_force_wb - Issue SW Interrupt so HW does a wb
  275. * @vsi: the VSI we care about
  276. * @q_vector: the vector on which to force writeback
  277. *
  278. **/
  279. void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
  280. {
  281. u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  282. I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
  283. I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
  284. I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
  285. /* allow 00 to be written to the index */;
  286. wr32(&vsi->back->hw,
  287. I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
  288. val);
  289. }
  290. /**
  291. * i40e_set_new_dynamic_itr - Find new ITR level
  292. * @rc: structure containing ring performance data
  293. *
  294. * Returns true if ITR changed, false if not
  295. *
  296. * Stores a new ITR value based on packets and byte counts during
  297. * the last interrupt. The advantage of per interrupt computation
  298. * is faster updates and more accurate ITR for the current traffic
  299. * pattern. Constants in this function were computed based on
  300. * theoretical maximum wire speed and thresholds were set based on
  301. * testing data as well as attempting to minimize response time
  302. * while increasing bulk throughput.
  303. **/
  304. static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
  305. {
  306. enum i40e_latency_range new_latency_range = rc->latency_range;
  307. struct i40e_q_vector *qv = rc->ring->q_vector;
  308. u32 new_itr = rc->itr;
  309. int bytes_per_int;
  310. int usecs;
  311. if (rc->total_packets == 0 || !rc->itr)
  312. return false;
  313. /* simple throttlerate management
  314. * 0-10MB/s lowest (50000 ints/s)
  315. * 10-20MB/s low (20000 ints/s)
  316. * 20-1249MB/s bulk (18000 ints/s)
  317. * > 40000 Rx packets per second (8000 ints/s)
  318. *
  319. * The math works out because the divisor is in 10^(-6) which
  320. * turns the bytes/us input value into MB/s values, but
  321. * make sure to use usecs, as the register values written
  322. * are in 2 usec increments in the ITR registers, and make sure
  323. * to use the smoothed values that the countdown timer gives us.
  324. */
  325. usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
  326. bytes_per_int = rc->total_bytes / usecs;
  327. switch (new_latency_range) {
  328. case I40E_LOWEST_LATENCY:
  329. if (bytes_per_int > 10)
  330. new_latency_range = I40E_LOW_LATENCY;
  331. break;
  332. case I40E_LOW_LATENCY:
  333. if (bytes_per_int > 20)
  334. new_latency_range = I40E_BULK_LATENCY;
  335. else if (bytes_per_int <= 10)
  336. new_latency_range = I40E_LOWEST_LATENCY;
  337. break;
  338. case I40E_BULK_LATENCY:
  339. case I40E_ULTRA_LATENCY:
  340. default:
  341. if (bytes_per_int <= 20)
  342. new_latency_range = I40E_LOW_LATENCY;
  343. break;
  344. }
  345. /* this is to adjust RX more aggressively when streaming small
  346. * packets. The value of 40000 was picked as it is just beyond
  347. * what the hardware can receive per second if in low latency
  348. * mode.
  349. */
  350. #define RX_ULTRA_PACKET_RATE 40000
  351. if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
  352. (&qv->rx == rc))
  353. new_latency_range = I40E_ULTRA_LATENCY;
  354. rc->latency_range = new_latency_range;
  355. switch (new_latency_range) {
  356. case I40E_LOWEST_LATENCY:
  357. new_itr = I40E_ITR_50K;
  358. break;
  359. case I40E_LOW_LATENCY:
  360. new_itr = I40E_ITR_20K;
  361. break;
  362. case I40E_BULK_LATENCY:
  363. new_itr = I40E_ITR_18K;
  364. break;
  365. case I40E_ULTRA_LATENCY:
  366. new_itr = I40E_ITR_8K;
  367. break;
  368. default:
  369. break;
  370. }
  371. rc->total_bytes = 0;
  372. rc->total_packets = 0;
  373. if (new_itr != rc->itr) {
  374. rc->itr = new_itr;
  375. return true;
  376. }
  377. return false;
  378. }
  379. /**
  380. * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
  381. * @tx_ring: the tx ring to set up
  382. *
  383. * Return 0 on success, negative on error
  384. **/
  385. int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
  386. {
  387. struct device *dev = tx_ring->dev;
  388. int bi_size;
  389. if (!dev)
  390. return -ENOMEM;
  391. /* warn if we are about to overwrite the pointer */
  392. WARN_ON(tx_ring->tx_bi);
  393. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  394. tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
  395. if (!tx_ring->tx_bi)
  396. goto err;
  397. /* round up to nearest 4K */
  398. tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
  399. /* add u32 for head writeback, align after this takes care of
  400. * guaranteeing this is at least one cache line in size
  401. */
  402. tx_ring->size += sizeof(u32);
  403. tx_ring->size = ALIGN(tx_ring->size, 4096);
  404. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  405. &tx_ring->dma, GFP_KERNEL);
  406. if (!tx_ring->desc) {
  407. dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
  408. tx_ring->size);
  409. goto err;
  410. }
  411. tx_ring->next_to_use = 0;
  412. tx_ring->next_to_clean = 0;
  413. return 0;
  414. err:
  415. kfree(tx_ring->tx_bi);
  416. tx_ring->tx_bi = NULL;
  417. return -ENOMEM;
  418. }
  419. /**
  420. * i40evf_clean_rx_ring - Free Rx buffers
  421. * @rx_ring: ring to be cleaned
  422. **/
  423. void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
  424. {
  425. struct device *dev = rx_ring->dev;
  426. struct i40e_rx_buffer *rx_bi;
  427. unsigned long bi_size;
  428. u16 i;
  429. /* ring already cleared, nothing to do */
  430. if (!rx_ring->rx_bi)
  431. return;
  432. if (ring_is_ps_enabled(rx_ring)) {
  433. int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
  434. rx_bi = &rx_ring->rx_bi[0];
  435. if (rx_bi->hdr_buf) {
  436. dma_free_coherent(dev,
  437. bufsz,
  438. rx_bi->hdr_buf,
  439. rx_bi->dma);
  440. for (i = 0; i < rx_ring->count; i++) {
  441. rx_bi = &rx_ring->rx_bi[i];
  442. rx_bi->dma = 0;
  443. rx_bi->hdr_buf = NULL;
  444. }
  445. }
  446. }
  447. /* Free all the Rx ring sk_buffs */
  448. for (i = 0; i < rx_ring->count; i++) {
  449. rx_bi = &rx_ring->rx_bi[i];
  450. if (rx_bi->dma) {
  451. dma_unmap_single(dev,
  452. rx_bi->dma,
  453. rx_ring->rx_buf_len,
  454. DMA_FROM_DEVICE);
  455. rx_bi->dma = 0;
  456. }
  457. if (rx_bi->skb) {
  458. dev_kfree_skb(rx_bi->skb);
  459. rx_bi->skb = NULL;
  460. }
  461. if (rx_bi->page) {
  462. if (rx_bi->page_dma) {
  463. dma_unmap_page(dev,
  464. rx_bi->page_dma,
  465. PAGE_SIZE,
  466. DMA_FROM_DEVICE);
  467. rx_bi->page_dma = 0;
  468. }
  469. __free_page(rx_bi->page);
  470. rx_bi->page = NULL;
  471. rx_bi->page_offset = 0;
  472. }
  473. }
  474. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  475. memset(rx_ring->rx_bi, 0, bi_size);
  476. /* Zero out the descriptor ring */
  477. memset(rx_ring->desc, 0, rx_ring->size);
  478. rx_ring->next_to_clean = 0;
  479. rx_ring->next_to_use = 0;
  480. }
  481. /**
  482. * i40evf_free_rx_resources - Free Rx resources
  483. * @rx_ring: ring to clean the resources from
  484. *
  485. * Free all receive software resources
  486. **/
  487. void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
  488. {
  489. i40evf_clean_rx_ring(rx_ring);
  490. kfree(rx_ring->rx_bi);
  491. rx_ring->rx_bi = NULL;
  492. if (rx_ring->desc) {
  493. dma_free_coherent(rx_ring->dev, rx_ring->size,
  494. rx_ring->desc, rx_ring->dma);
  495. rx_ring->desc = NULL;
  496. }
  497. }
  498. /**
  499. * i40evf_alloc_rx_headers - allocate rx header buffers
  500. * @rx_ring: ring to alloc buffers
  501. *
  502. * Allocate rx header buffers for the entire ring. As these are static,
  503. * this is only called when setting up a new ring.
  504. **/
  505. void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
  506. {
  507. struct device *dev = rx_ring->dev;
  508. struct i40e_rx_buffer *rx_bi;
  509. dma_addr_t dma;
  510. void *buffer;
  511. int buf_size;
  512. int i;
  513. if (rx_ring->rx_bi[0].hdr_buf)
  514. return;
  515. /* Make sure the buffers don't cross cache line boundaries. */
  516. buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
  517. buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
  518. &dma, GFP_KERNEL);
  519. if (!buffer)
  520. return;
  521. for (i = 0; i < rx_ring->count; i++) {
  522. rx_bi = &rx_ring->rx_bi[i];
  523. rx_bi->dma = dma + (i * buf_size);
  524. rx_bi->hdr_buf = buffer + (i * buf_size);
  525. }
  526. }
  527. /**
  528. * i40evf_setup_rx_descriptors - Allocate Rx descriptors
  529. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  530. *
  531. * Returns 0 on success, negative on failure
  532. **/
  533. int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
  534. {
  535. struct device *dev = rx_ring->dev;
  536. int bi_size;
  537. /* warn if we are about to overwrite the pointer */
  538. WARN_ON(rx_ring->rx_bi);
  539. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  540. rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
  541. if (!rx_ring->rx_bi)
  542. goto err;
  543. u64_stats_init(&rx_ring->syncp);
  544. /* Round up to nearest 4K */
  545. rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
  546. ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
  547. : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
  548. rx_ring->size = ALIGN(rx_ring->size, 4096);
  549. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  550. &rx_ring->dma, GFP_KERNEL);
  551. if (!rx_ring->desc) {
  552. dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
  553. rx_ring->size);
  554. goto err;
  555. }
  556. rx_ring->next_to_clean = 0;
  557. rx_ring->next_to_use = 0;
  558. return 0;
  559. err:
  560. kfree(rx_ring->rx_bi);
  561. rx_ring->rx_bi = NULL;
  562. return -ENOMEM;
  563. }
  564. /**
  565. * i40e_release_rx_desc - Store the new tail and head values
  566. * @rx_ring: ring to bump
  567. * @val: new head index
  568. **/
  569. static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
  570. {
  571. rx_ring->next_to_use = val;
  572. /* Force memory writes to complete before letting h/w
  573. * know there are new descriptors to fetch. (Only
  574. * applicable for weak-ordered memory model archs,
  575. * such as IA-64).
  576. */
  577. wmb();
  578. writel(val, rx_ring->tail);
  579. }
  580. /**
  581. * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  582. * @rx_ring: ring to place buffers on
  583. * @cleaned_count: number of buffers to replace
  584. *
  585. * Returns true if any errors on allocation
  586. **/
  587. bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
  588. {
  589. u16 i = rx_ring->next_to_use;
  590. union i40e_rx_desc *rx_desc;
  591. struct i40e_rx_buffer *bi;
  592. const int current_node = numa_node_id();
  593. /* do nothing if no valid netdev defined */
  594. if (!rx_ring->netdev || !cleaned_count)
  595. return false;
  596. while (cleaned_count--) {
  597. rx_desc = I40E_RX_DESC(rx_ring, i);
  598. bi = &rx_ring->rx_bi[i];
  599. if (bi->skb) /* desc is in use */
  600. goto no_buffers;
  601. /* If we've been moved to a different NUMA node, release the
  602. * page so we can get a new one on the current node.
  603. */
  604. if (bi->page && page_to_nid(bi->page) != current_node) {
  605. dma_unmap_page(rx_ring->dev,
  606. bi->page_dma,
  607. PAGE_SIZE,
  608. DMA_FROM_DEVICE);
  609. __free_page(bi->page);
  610. bi->page = NULL;
  611. bi->page_dma = 0;
  612. rx_ring->rx_stats.realloc_count++;
  613. } else if (bi->page) {
  614. rx_ring->rx_stats.page_reuse_count++;
  615. }
  616. if (!bi->page) {
  617. bi->page = alloc_page(GFP_ATOMIC);
  618. if (!bi->page) {
  619. rx_ring->rx_stats.alloc_page_failed++;
  620. goto no_buffers;
  621. }
  622. bi->page_dma = dma_map_page(rx_ring->dev,
  623. bi->page,
  624. 0,
  625. PAGE_SIZE,
  626. DMA_FROM_DEVICE);
  627. if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
  628. rx_ring->rx_stats.alloc_page_failed++;
  629. __free_page(bi->page);
  630. bi->page = NULL;
  631. bi->page_dma = 0;
  632. bi->page_offset = 0;
  633. goto no_buffers;
  634. }
  635. bi->page_offset = 0;
  636. }
  637. /* Refresh the desc even if buffer_addrs didn't change
  638. * because each write-back erases this info.
  639. */
  640. rx_desc->read.pkt_addr =
  641. cpu_to_le64(bi->page_dma + bi->page_offset);
  642. rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
  643. i++;
  644. if (i == rx_ring->count)
  645. i = 0;
  646. }
  647. if (rx_ring->next_to_use != i)
  648. i40e_release_rx_desc(rx_ring, i);
  649. return false;
  650. no_buffers:
  651. if (rx_ring->next_to_use != i)
  652. i40e_release_rx_desc(rx_ring, i);
  653. /* make sure to come back via polling to try again after
  654. * allocation failure
  655. */
  656. return true;
  657. }
  658. /**
  659. * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
  660. * @rx_ring: ring to place buffers on
  661. * @cleaned_count: number of buffers to replace
  662. *
  663. * Returns true if any errors on allocation
  664. **/
  665. bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
  666. {
  667. u16 i = rx_ring->next_to_use;
  668. union i40e_rx_desc *rx_desc;
  669. struct i40e_rx_buffer *bi;
  670. struct sk_buff *skb;
  671. /* do nothing if no valid netdev defined */
  672. if (!rx_ring->netdev || !cleaned_count)
  673. return false;
  674. while (cleaned_count--) {
  675. rx_desc = I40E_RX_DESC(rx_ring, i);
  676. bi = &rx_ring->rx_bi[i];
  677. skb = bi->skb;
  678. if (!skb) {
  679. skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
  680. rx_ring->rx_buf_len,
  681. GFP_ATOMIC |
  682. __GFP_NOWARN);
  683. if (!skb) {
  684. rx_ring->rx_stats.alloc_buff_failed++;
  685. goto no_buffers;
  686. }
  687. /* initialize queue mapping */
  688. skb_record_rx_queue(skb, rx_ring->queue_index);
  689. bi->skb = skb;
  690. }
  691. if (!bi->dma) {
  692. bi->dma = dma_map_single(rx_ring->dev,
  693. skb->data,
  694. rx_ring->rx_buf_len,
  695. DMA_FROM_DEVICE);
  696. if (dma_mapping_error(rx_ring->dev, bi->dma)) {
  697. rx_ring->rx_stats.alloc_buff_failed++;
  698. bi->dma = 0;
  699. dev_kfree_skb(bi->skb);
  700. bi->skb = NULL;
  701. goto no_buffers;
  702. }
  703. }
  704. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
  705. rx_desc->read.hdr_addr = 0;
  706. i++;
  707. if (i == rx_ring->count)
  708. i = 0;
  709. }
  710. if (rx_ring->next_to_use != i)
  711. i40e_release_rx_desc(rx_ring, i);
  712. return false;
  713. no_buffers:
  714. if (rx_ring->next_to_use != i)
  715. i40e_release_rx_desc(rx_ring, i);
  716. /* make sure to come back via polling to try again after
  717. * allocation failure
  718. */
  719. return true;
  720. }
  721. /**
  722. * i40e_receive_skb - Send a completed packet up the stack
  723. * @rx_ring: rx ring in play
  724. * @skb: packet to send up
  725. * @vlan_tag: vlan tag for packet
  726. **/
  727. static void i40e_receive_skb(struct i40e_ring *rx_ring,
  728. struct sk_buff *skb, u16 vlan_tag)
  729. {
  730. struct i40e_q_vector *q_vector = rx_ring->q_vector;
  731. if (vlan_tag & VLAN_VID_MASK)
  732. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  733. napi_gro_receive(&q_vector->napi, skb);
  734. }
  735. /**
  736. * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
  737. * @vsi: the VSI we care about
  738. * @skb: skb currently being received and modified
  739. * @rx_status: status value of last descriptor in packet
  740. * @rx_error: error value of last descriptor in packet
  741. * @rx_ptype: ptype value of last descriptor in packet
  742. **/
  743. static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
  744. struct sk_buff *skb,
  745. u32 rx_status,
  746. u32 rx_error,
  747. u16 rx_ptype)
  748. {
  749. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
  750. bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
  751. skb->ip_summed = CHECKSUM_NONE;
  752. /* Rx csum enabled and ip headers found? */
  753. if (!(vsi->netdev->features & NETIF_F_RXCSUM))
  754. return;
  755. /* did the hardware decode the packet and checksum? */
  756. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
  757. return;
  758. /* both known and outer_ip must be set for the below code to work */
  759. if (!(decoded.known && decoded.outer_ip))
  760. return;
  761. ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
  762. (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
  763. ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
  764. (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
  765. if (ipv4 &&
  766. (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
  767. BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
  768. goto checksum_fail;
  769. /* likely incorrect csum if alternate IP extension headers found */
  770. if (ipv6 &&
  771. rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
  772. /* don't increment checksum err here, non-fatal err */
  773. return;
  774. /* there was some L4 error, count error and punt packet to the stack */
  775. if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
  776. goto checksum_fail;
  777. /* handle packets that were not able to be checksummed due
  778. * to arrival speed, in this case the stack can compute
  779. * the csum.
  780. */
  781. if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
  782. return;
  783. /* The hardware supported by this driver does not validate outer
  784. * checksums for tunneled VXLAN or GENEVE frames. I don't agree
  785. * with it but the specification states that you "MAY validate", it
  786. * doesn't make it a hard requirement so if we have validated the
  787. * inner checksum report CHECKSUM_UNNECESSARY.
  788. */
  789. ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
  790. (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
  791. ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
  792. (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
  793. skb->ip_summed = CHECKSUM_UNNECESSARY;
  794. skb->csum_level = ipv4_tunnel || ipv6_tunnel;
  795. return;
  796. checksum_fail:
  797. vsi->back->hw_csum_rx_error++;
  798. }
  799. /**
  800. * i40e_ptype_to_htype - get a hash type
  801. * @ptype: the ptype value from the descriptor
  802. *
  803. * Returns a hash type to be used by skb_set_hash
  804. **/
  805. static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
  806. {
  807. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
  808. if (!decoded.known)
  809. return PKT_HASH_TYPE_NONE;
  810. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  811. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
  812. return PKT_HASH_TYPE_L4;
  813. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  814. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
  815. return PKT_HASH_TYPE_L3;
  816. else
  817. return PKT_HASH_TYPE_L2;
  818. }
  819. /**
  820. * i40e_rx_hash - set the hash value in the skb
  821. * @ring: descriptor ring
  822. * @rx_desc: specific descriptor
  823. **/
  824. static inline void i40e_rx_hash(struct i40e_ring *ring,
  825. union i40e_rx_desc *rx_desc,
  826. struct sk_buff *skb,
  827. u8 rx_ptype)
  828. {
  829. u32 hash;
  830. const __le64 rss_mask =
  831. cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
  832. I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
  833. if (ring->netdev->features & NETIF_F_RXHASH)
  834. return;
  835. if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
  836. hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
  837. skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
  838. }
  839. }
  840. /**
  841. * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
  842. * @rx_ring: rx ring to clean
  843. * @budget: how many cleans we're allowed
  844. *
  845. * Returns true if there's any budget left (e.g. the clean is finished)
  846. **/
  847. static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
  848. {
  849. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  850. u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
  851. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  852. struct i40e_vsi *vsi = rx_ring->vsi;
  853. u16 i = rx_ring->next_to_clean;
  854. union i40e_rx_desc *rx_desc;
  855. u32 rx_error, rx_status;
  856. bool failure = false;
  857. u8 rx_ptype;
  858. u64 qword;
  859. u32 copysize;
  860. do {
  861. struct i40e_rx_buffer *rx_bi;
  862. struct sk_buff *skb;
  863. u16 vlan_tag;
  864. /* return some buffers to hardware, one at a time is too slow */
  865. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  866. failure = failure ||
  867. i40evf_alloc_rx_buffers_ps(rx_ring,
  868. cleaned_count);
  869. cleaned_count = 0;
  870. }
  871. i = rx_ring->next_to_clean;
  872. rx_desc = I40E_RX_DESC(rx_ring, i);
  873. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  874. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  875. I40E_RXD_QW1_STATUS_SHIFT;
  876. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  877. break;
  878. /* This memory barrier is needed to keep us from reading
  879. * any other fields out of the rx_desc until we know the
  880. * DD bit is set.
  881. */
  882. dma_rmb();
  883. /* sync header buffer for reading */
  884. dma_sync_single_range_for_cpu(rx_ring->dev,
  885. rx_ring->rx_bi[0].dma,
  886. i * rx_ring->rx_hdr_len,
  887. rx_ring->rx_hdr_len,
  888. DMA_FROM_DEVICE);
  889. rx_bi = &rx_ring->rx_bi[i];
  890. skb = rx_bi->skb;
  891. if (likely(!skb)) {
  892. skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
  893. rx_ring->rx_hdr_len,
  894. GFP_ATOMIC |
  895. __GFP_NOWARN);
  896. if (!skb) {
  897. rx_ring->rx_stats.alloc_buff_failed++;
  898. failure = true;
  899. break;
  900. }
  901. /* initialize queue mapping */
  902. skb_record_rx_queue(skb, rx_ring->queue_index);
  903. /* we are reusing so sync this buffer for CPU use */
  904. dma_sync_single_range_for_cpu(rx_ring->dev,
  905. rx_ring->rx_bi[0].dma,
  906. i * rx_ring->rx_hdr_len,
  907. rx_ring->rx_hdr_len,
  908. DMA_FROM_DEVICE);
  909. }
  910. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  911. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  912. rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
  913. I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
  914. rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
  915. I40E_RXD_QW1_LENGTH_SPH_SHIFT;
  916. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  917. I40E_RXD_QW1_ERROR_SHIFT;
  918. rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  919. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  920. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  921. I40E_RXD_QW1_PTYPE_SHIFT;
  922. /* sync half-page for reading */
  923. dma_sync_single_range_for_cpu(rx_ring->dev,
  924. rx_bi->page_dma,
  925. rx_bi->page_offset,
  926. PAGE_SIZE / 2,
  927. DMA_FROM_DEVICE);
  928. prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
  929. rx_bi->skb = NULL;
  930. cleaned_count++;
  931. copysize = 0;
  932. if (rx_hbo || rx_sph) {
  933. int len;
  934. if (rx_hbo)
  935. len = I40E_RX_HDR_SIZE;
  936. else
  937. len = rx_header_len;
  938. memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
  939. } else if (skb->len == 0) {
  940. int len;
  941. unsigned char *va = page_address(rx_bi->page) +
  942. rx_bi->page_offset;
  943. len = min(rx_packet_len, rx_ring->rx_hdr_len);
  944. memcpy(__skb_put(skb, len), va, len);
  945. copysize = len;
  946. rx_packet_len -= len;
  947. }
  948. /* Get the rest of the data if this was a header split */
  949. if (rx_packet_len) {
  950. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
  951. rx_bi->page,
  952. rx_bi->page_offset + copysize,
  953. rx_packet_len, I40E_RXBUFFER_2048);
  954. /* If the page count is more than 2, then both halves
  955. * of the page are used and we need to free it. Do it
  956. * here instead of in the alloc code. Otherwise one
  957. * of the half-pages might be released between now and
  958. * then, and we wouldn't know which one to use.
  959. * Don't call get_page and free_page since those are
  960. * both expensive atomic operations that just change
  961. * the refcount in opposite directions. Just give the
  962. * page to the stack; he can have our refcount.
  963. */
  964. if (page_count(rx_bi->page) > 2) {
  965. dma_unmap_page(rx_ring->dev,
  966. rx_bi->page_dma,
  967. PAGE_SIZE,
  968. DMA_FROM_DEVICE);
  969. rx_bi->page = NULL;
  970. rx_bi->page_dma = 0;
  971. rx_ring->rx_stats.realloc_count++;
  972. } else {
  973. get_page(rx_bi->page);
  974. /* switch to the other half-page here; the
  975. * allocation code programs the right addr
  976. * into HW. If we haven't used this half-page,
  977. * the address won't be changed, and HW can
  978. * just use it next time through.
  979. */
  980. rx_bi->page_offset ^= PAGE_SIZE / 2;
  981. }
  982. }
  983. I40E_RX_INCREMENT(rx_ring, i);
  984. if (unlikely(
  985. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  986. struct i40e_rx_buffer *next_buffer;
  987. next_buffer = &rx_ring->rx_bi[i];
  988. next_buffer->skb = skb;
  989. rx_ring->rx_stats.non_eop_descs++;
  990. continue;
  991. }
  992. /* ERR_MASK will only have valid bits if EOP set */
  993. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  994. dev_kfree_skb_any(skb);
  995. continue;
  996. }
  997. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  998. /* probably a little skewed due to removing CRC */
  999. total_rx_bytes += skb->len;
  1000. total_rx_packets++;
  1001. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1002. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  1003. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  1004. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  1005. : 0;
  1006. #ifdef I40E_FCOE
  1007. if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
  1008. dev_kfree_skb_any(skb);
  1009. continue;
  1010. }
  1011. #endif
  1012. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1013. rx_desc->wb.qword1.status_error_len = 0;
  1014. } while (likely(total_rx_packets < budget));
  1015. u64_stats_update_begin(&rx_ring->syncp);
  1016. rx_ring->stats.packets += total_rx_packets;
  1017. rx_ring->stats.bytes += total_rx_bytes;
  1018. u64_stats_update_end(&rx_ring->syncp);
  1019. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1020. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1021. return failure ? budget : total_rx_packets;
  1022. }
  1023. /**
  1024. * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
  1025. * @rx_ring: rx ring to clean
  1026. * @budget: how many cleans we're allowed
  1027. *
  1028. * Returns number of packets cleaned
  1029. **/
  1030. static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
  1031. {
  1032. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  1033. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  1034. struct i40e_vsi *vsi = rx_ring->vsi;
  1035. union i40e_rx_desc *rx_desc;
  1036. u32 rx_error, rx_status;
  1037. u16 rx_packet_len;
  1038. bool failure = false;
  1039. u8 rx_ptype;
  1040. u64 qword;
  1041. u16 i;
  1042. do {
  1043. struct i40e_rx_buffer *rx_bi;
  1044. struct sk_buff *skb;
  1045. u16 vlan_tag;
  1046. /* return some buffers to hardware, one at a time is too slow */
  1047. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  1048. failure = failure ||
  1049. i40evf_alloc_rx_buffers_1buf(rx_ring,
  1050. cleaned_count);
  1051. cleaned_count = 0;
  1052. }
  1053. i = rx_ring->next_to_clean;
  1054. rx_desc = I40E_RX_DESC(rx_ring, i);
  1055. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  1056. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  1057. I40E_RXD_QW1_STATUS_SHIFT;
  1058. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  1059. break;
  1060. /* This memory barrier is needed to keep us from reading
  1061. * any other fields out of the rx_desc until we know the
  1062. * DD bit is set.
  1063. */
  1064. dma_rmb();
  1065. rx_bi = &rx_ring->rx_bi[i];
  1066. skb = rx_bi->skb;
  1067. prefetch(skb->data);
  1068. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  1069. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  1070. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  1071. I40E_RXD_QW1_ERROR_SHIFT;
  1072. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  1073. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  1074. I40E_RXD_QW1_PTYPE_SHIFT;
  1075. rx_bi->skb = NULL;
  1076. cleaned_count++;
  1077. /* Get the header and possibly the whole packet
  1078. * If this is an skb from previous receive dma will be 0
  1079. */
  1080. skb_put(skb, rx_packet_len);
  1081. dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
  1082. DMA_FROM_DEVICE);
  1083. rx_bi->dma = 0;
  1084. I40E_RX_INCREMENT(rx_ring, i);
  1085. if (unlikely(
  1086. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  1087. rx_ring->rx_stats.non_eop_descs++;
  1088. continue;
  1089. }
  1090. /* ERR_MASK will only have valid bits if EOP set */
  1091. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  1092. dev_kfree_skb_any(skb);
  1093. continue;
  1094. }
  1095. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  1096. /* probably a little skewed due to removing CRC */
  1097. total_rx_bytes += skb->len;
  1098. total_rx_packets++;
  1099. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1100. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  1101. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  1102. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  1103. : 0;
  1104. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1105. rx_desc->wb.qword1.status_error_len = 0;
  1106. } while (likely(total_rx_packets < budget));
  1107. u64_stats_update_begin(&rx_ring->syncp);
  1108. rx_ring->stats.packets += total_rx_packets;
  1109. rx_ring->stats.bytes += total_rx_bytes;
  1110. u64_stats_update_end(&rx_ring->syncp);
  1111. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1112. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1113. return failure ? budget : total_rx_packets;
  1114. }
  1115. static u32 i40e_buildreg_itr(const int type, const u16 itr)
  1116. {
  1117. u32 val;
  1118. val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  1119. /* Don't clear PBA because that can cause lost interrupts that
  1120. * came in while we were cleaning/polling
  1121. */
  1122. (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
  1123. (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
  1124. return val;
  1125. }
  1126. /* a small macro to shorten up some long lines */
  1127. #define INTREG I40E_VFINT_DYN_CTLN1
  1128. /**
  1129. * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
  1130. * @vsi: the VSI we care about
  1131. * @q_vector: q_vector for which itr is being updated and interrupt enabled
  1132. *
  1133. **/
  1134. static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
  1135. struct i40e_q_vector *q_vector)
  1136. {
  1137. struct i40e_hw *hw = &vsi->back->hw;
  1138. bool rx = false, tx = false;
  1139. u32 rxval, txval;
  1140. int vector;
  1141. vector = (q_vector->v_idx + vsi->base_vector);
  1142. /* avoid dynamic calculation if in countdown mode OR if
  1143. * all dynamic is disabled
  1144. */
  1145. rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
  1146. if (q_vector->itr_countdown > 0 ||
  1147. (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
  1148. !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
  1149. goto enable_int;
  1150. }
  1151. if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
  1152. rx = i40e_set_new_dynamic_itr(&q_vector->rx);
  1153. rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
  1154. }
  1155. if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
  1156. tx = i40e_set_new_dynamic_itr(&q_vector->tx);
  1157. txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
  1158. }
  1159. if (rx || tx) {
  1160. /* get the higher of the two ITR adjustments and
  1161. * use the same value for both ITR registers
  1162. * when in adaptive mode (Rx and/or Tx)
  1163. */
  1164. u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
  1165. q_vector->tx.itr = q_vector->rx.itr = itr;
  1166. txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
  1167. tx = true;
  1168. rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
  1169. rx = true;
  1170. }
  1171. /* only need to enable the interrupt once, but need
  1172. * to possibly update both ITR values
  1173. */
  1174. if (rx) {
  1175. /* set the INTENA_MSK_MASK so that this first write
  1176. * won't actually enable the interrupt, instead just
  1177. * updating the ITR (it's bit 31 PF and VF)
  1178. */
  1179. rxval |= BIT(31);
  1180. /* don't check _DOWN because interrupt isn't being enabled */
  1181. wr32(hw, INTREG(vector - 1), rxval);
  1182. }
  1183. enable_int:
  1184. if (!test_bit(__I40E_DOWN, &vsi->state))
  1185. wr32(hw, INTREG(vector - 1), txval);
  1186. if (q_vector->itr_countdown)
  1187. q_vector->itr_countdown--;
  1188. else
  1189. q_vector->itr_countdown = ITR_COUNTDOWN_START;
  1190. }
  1191. /**
  1192. * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
  1193. * @napi: napi struct with our devices info in it
  1194. * @budget: amount of work driver is allowed to do this pass, in packets
  1195. *
  1196. * This function will clean all queues associated with a q_vector.
  1197. *
  1198. * Returns the amount of work done
  1199. **/
  1200. int i40evf_napi_poll(struct napi_struct *napi, int budget)
  1201. {
  1202. struct i40e_q_vector *q_vector =
  1203. container_of(napi, struct i40e_q_vector, napi);
  1204. struct i40e_vsi *vsi = q_vector->vsi;
  1205. struct i40e_ring *ring;
  1206. bool clean_complete = true;
  1207. bool arm_wb = false;
  1208. int budget_per_ring;
  1209. int work_done = 0;
  1210. if (test_bit(__I40E_DOWN, &vsi->state)) {
  1211. napi_complete(napi);
  1212. return 0;
  1213. }
  1214. /* Since the actual Tx work is minimal, we can give the Tx a larger
  1215. * budget and be more aggressive about cleaning up the Tx descriptors.
  1216. */
  1217. i40e_for_each_ring(ring, q_vector->tx) {
  1218. clean_complete = clean_complete &&
  1219. i40e_clean_tx_irq(ring, vsi->work_limit);
  1220. arm_wb = arm_wb || ring->arm_wb;
  1221. ring->arm_wb = false;
  1222. }
  1223. /* Handle case where we are called by netpoll with a budget of 0 */
  1224. if (budget <= 0)
  1225. goto tx_only;
  1226. /* We attempt to distribute budget to each Rx queue fairly, but don't
  1227. * allow the budget to go below 1 because that would exit polling early.
  1228. */
  1229. budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
  1230. i40e_for_each_ring(ring, q_vector->rx) {
  1231. int cleaned;
  1232. if (ring_is_ps_enabled(ring))
  1233. cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
  1234. else
  1235. cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
  1236. work_done += cleaned;
  1237. /* if we didn't clean as many as budgeted, we must be done */
  1238. clean_complete = clean_complete && (budget_per_ring > cleaned);
  1239. }
  1240. /* If work not completed, return budget and polling will return */
  1241. if (!clean_complete) {
  1242. tx_only:
  1243. if (arm_wb) {
  1244. q_vector->tx.ring[0].tx_stats.tx_force_wb++;
  1245. i40e_enable_wb_on_itr(vsi, q_vector);
  1246. }
  1247. return budget;
  1248. }
  1249. if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
  1250. q_vector->arm_wb_state = false;
  1251. /* Work is done so exit the polling mode and re-enable the interrupt */
  1252. napi_complete_done(napi, work_done);
  1253. i40e_update_enable_itr(vsi, q_vector);
  1254. return 0;
  1255. }
  1256. /**
  1257. * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
  1258. * @skb: send buffer
  1259. * @tx_ring: ring to send buffer on
  1260. * @flags: the tx flags to be set
  1261. *
  1262. * Checks the skb and set up correspondingly several generic transmit flags
  1263. * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
  1264. *
  1265. * Returns error code indicate the frame should be dropped upon error and the
  1266. * otherwise returns 0 to indicate the flags has been set properly.
  1267. **/
  1268. static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
  1269. struct i40e_ring *tx_ring,
  1270. u32 *flags)
  1271. {
  1272. __be16 protocol = skb->protocol;
  1273. u32 tx_flags = 0;
  1274. if (protocol == htons(ETH_P_8021Q) &&
  1275. !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
  1276. /* When HW VLAN acceleration is turned off by the user the
  1277. * stack sets the protocol to 8021q so that the driver
  1278. * can take any steps required to support the SW only
  1279. * VLAN handling. In our case the driver doesn't need
  1280. * to take any further steps so just set the protocol
  1281. * to the encapsulated ethertype.
  1282. */
  1283. skb->protocol = vlan_get_protocol(skb);
  1284. goto out;
  1285. }
  1286. /* if we have a HW VLAN tag being added, default to the HW one */
  1287. if (skb_vlan_tag_present(skb)) {
  1288. tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
  1289. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1290. /* else if it is a SW VLAN, check the next protocol and store the tag */
  1291. } else if (protocol == htons(ETH_P_8021Q)) {
  1292. struct vlan_hdr *vhdr, _vhdr;
  1293. vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
  1294. if (!vhdr)
  1295. return -EINVAL;
  1296. protocol = vhdr->h_vlan_encapsulated_proto;
  1297. tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
  1298. tx_flags |= I40E_TX_FLAGS_SW_VLAN;
  1299. }
  1300. out:
  1301. *flags = tx_flags;
  1302. return 0;
  1303. }
  1304. /**
  1305. * i40e_tso - set up the tso context descriptor
  1306. * @tx_ring: ptr to the ring to send
  1307. * @skb: ptr to the skb we're sending
  1308. * @hdr_len: ptr to the size of the packet header
  1309. * @cd_type_cmd_tso_mss: Quad Word 1
  1310. *
  1311. * Returns 0 if no TSO can happen, 1 if tso is going, or error
  1312. **/
  1313. static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1314. u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
  1315. {
  1316. u64 cd_cmd, cd_tso_len, cd_mss;
  1317. union {
  1318. struct iphdr *v4;
  1319. struct ipv6hdr *v6;
  1320. unsigned char *hdr;
  1321. } ip;
  1322. union {
  1323. struct tcphdr *tcp;
  1324. struct udphdr *udp;
  1325. unsigned char *hdr;
  1326. } l4;
  1327. u32 paylen, l4_offset;
  1328. int err;
  1329. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1330. return 0;
  1331. if (!skb_is_gso(skb))
  1332. return 0;
  1333. err = skb_cow_head(skb, 0);
  1334. if (err < 0)
  1335. return err;
  1336. ip.hdr = skb_network_header(skb);
  1337. l4.hdr = skb_transport_header(skb);
  1338. /* initialize outer IP header fields */
  1339. if (ip.v4->version == 4) {
  1340. ip.v4->tot_len = 0;
  1341. ip.v4->check = 0;
  1342. } else {
  1343. ip.v6->payload_len = 0;
  1344. }
  1345. if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
  1346. SKB_GSO_UDP_TUNNEL_CSUM)) {
  1347. if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
  1348. /* determine offset of outer transport header */
  1349. l4_offset = l4.hdr - skb->data;
  1350. /* remove payload length from outer checksum */
  1351. paylen = (__force u16)l4.udp->check;
  1352. paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
  1353. l4.udp->check = ~csum_fold((__force __wsum)paylen);
  1354. }
  1355. /* reset pointers to inner headers */
  1356. ip.hdr = skb_inner_network_header(skb);
  1357. l4.hdr = skb_inner_transport_header(skb);
  1358. /* initialize inner IP header fields */
  1359. if (ip.v4->version == 4) {
  1360. ip.v4->tot_len = 0;
  1361. ip.v4->check = 0;
  1362. } else {
  1363. ip.v6->payload_len = 0;
  1364. }
  1365. }
  1366. /* determine offset of inner transport header */
  1367. l4_offset = l4.hdr - skb->data;
  1368. /* remove payload length from inner checksum */
  1369. paylen = (__force u16)l4.tcp->check;
  1370. paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
  1371. l4.tcp->check = ~csum_fold((__force __wsum)paylen);
  1372. /* compute length of segmentation header */
  1373. *hdr_len = (l4.tcp->doff * 4) + l4_offset;
  1374. /* find the field values */
  1375. cd_cmd = I40E_TX_CTX_DESC_TSO;
  1376. cd_tso_len = skb->len - *hdr_len;
  1377. cd_mss = skb_shinfo(skb)->gso_size;
  1378. *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
  1379. (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
  1380. (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
  1381. return 1;
  1382. }
  1383. /**
  1384. * i40e_tx_enable_csum - Enable Tx checksum offloads
  1385. * @skb: send buffer
  1386. * @tx_flags: pointer to Tx flags currently set
  1387. * @td_cmd: Tx descriptor command bits to set
  1388. * @td_offset: Tx descriptor header offsets to set
  1389. * @tx_ring: Tx descriptor ring
  1390. * @cd_tunneling: ptr to context desc bits
  1391. **/
  1392. static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
  1393. u32 *td_cmd, u32 *td_offset,
  1394. struct i40e_ring *tx_ring,
  1395. u32 *cd_tunneling)
  1396. {
  1397. union {
  1398. struct iphdr *v4;
  1399. struct ipv6hdr *v6;
  1400. unsigned char *hdr;
  1401. } ip;
  1402. union {
  1403. struct tcphdr *tcp;
  1404. struct udphdr *udp;
  1405. unsigned char *hdr;
  1406. } l4;
  1407. unsigned char *exthdr;
  1408. u32 offset, cmd = 0, tunnel = 0;
  1409. __be16 frag_off;
  1410. u8 l4_proto = 0;
  1411. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1412. return 0;
  1413. ip.hdr = skb_network_header(skb);
  1414. l4.hdr = skb_transport_header(skb);
  1415. /* compute outer L2 header size */
  1416. offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
  1417. if (skb->encapsulation) {
  1418. /* define outer network header type */
  1419. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1420. tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
  1421. I40E_TX_CTX_EXT_IP_IPV4 :
  1422. I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  1423. l4_proto = ip.v4->protocol;
  1424. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1425. tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
  1426. exthdr = ip.hdr + sizeof(*ip.v6);
  1427. l4_proto = ip.v6->nexthdr;
  1428. if (l4.hdr != exthdr)
  1429. ipv6_skip_exthdr(skb, exthdr - skb->data,
  1430. &l4_proto, &frag_off);
  1431. }
  1432. /* compute outer L3 header size */
  1433. tunnel |= ((l4.hdr - ip.hdr) / 4) <<
  1434. I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
  1435. /* switch IP header pointer from outer to inner header */
  1436. ip.hdr = skb_inner_network_header(skb);
  1437. /* define outer transport */
  1438. switch (l4_proto) {
  1439. case IPPROTO_UDP:
  1440. tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
  1441. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1442. break;
  1443. case IPPROTO_GRE:
  1444. tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
  1445. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1446. break;
  1447. default:
  1448. if (*tx_flags & I40E_TX_FLAGS_TSO)
  1449. return -1;
  1450. skb_checksum_help(skb);
  1451. return 0;
  1452. }
  1453. /* compute tunnel header size */
  1454. tunnel |= ((ip.hdr - l4.hdr) / 2) <<
  1455. I40E_TXD_CTX_QW0_NATLEN_SHIFT;
  1456. /* indicate if we need to offload outer UDP header */
  1457. if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
  1458. (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
  1459. tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
  1460. /* record tunnel offload values */
  1461. *cd_tunneling |= tunnel;
  1462. /* switch L4 header pointer from outer to inner */
  1463. l4.hdr = skb_inner_transport_header(skb);
  1464. l4_proto = 0;
  1465. /* reset type as we transition from outer to inner headers */
  1466. *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
  1467. if (ip.v4->version == 4)
  1468. *tx_flags |= I40E_TX_FLAGS_IPV4;
  1469. if (ip.v6->version == 6)
  1470. *tx_flags |= I40E_TX_FLAGS_IPV6;
  1471. }
  1472. /* Enable IP checksum offloads */
  1473. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1474. l4_proto = ip.v4->protocol;
  1475. /* the stack computes the IP header already, the only time we
  1476. * need the hardware to recompute it is in the case of TSO.
  1477. */
  1478. cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
  1479. I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
  1480. I40E_TX_DESC_CMD_IIPT_IPV4;
  1481. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1482. cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
  1483. exthdr = ip.hdr + sizeof(*ip.v6);
  1484. l4_proto = ip.v6->nexthdr;
  1485. if (l4.hdr != exthdr)
  1486. ipv6_skip_exthdr(skb, exthdr - skb->data,
  1487. &l4_proto, &frag_off);
  1488. }
  1489. /* compute inner L3 header size */
  1490. offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  1491. /* Enable L4 checksum offloads */
  1492. switch (l4_proto) {
  1493. case IPPROTO_TCP:
  1494. /* enable checksum offloads */
  1495. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
  1496. offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1497. break;
  1498. case IPPROTO_SCTP:
  1499. /* enable SCTP checksum offload */
  1500. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
  1501. offset |= (sizeof(struct sctphdr) >> 2) <<
  1502. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1503. break;
  1504. case IPPROTO_UDP:
  1505. /* enable UDP checksum offload */
  1506. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
  1507. offset |= (sizeof(struct udphdr) >> 2) <<
  1508. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1509. break;
  1510. default:
  1511. if (*tx_flags & I40E_TX_FLAGS_TSO)
  1512. return -1;
  1513. skb_checksum_help(skb);
  1514. return 0;
  1515. }
  1516. *td_cmd |= cmd;
  1517. *td_offset |= offset;
  1518. return 1;
  1519. }
  1520. /**
  1521. * i40e_create_tx_ctx Build the Tx context descriptor
  1522. * @tx_ring: ring to create the descriptor on
  1523. * @cd_type_cmd_tso_mss: Quad Word 1
  1524. * @cd_tunneling: Quad Word 0 - bits 0-31
  1525. * @cd_l2tag2: Quad Word 0 - bits 32-63
  1526. **/
  1527. static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
  1528. const u64 cd_type_cmd_tso_mss,
  1529. const u32 cd_tunneling, const u32 cd_l2tag2)
  1530. {
  1531. struct i40e_tx_context_desc *context_desc;
  1532. int i = tx_ring->next_to_use;
  1533. if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
  1534. !cd_tunneling && !cd_l2tag2)
  1535. return;
  1536. /* grab the next descriptor */
  1537. context_desc = I40E_TX_CTXTDESC(tx_ring, i);
  1538. i++;
  1539. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  1540. /* cpu_to_le32 and assign to struct fields */
  1541. context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
  1542. context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
  1543. context_desc->rsvd = cpu_to_le16(0);
  1544. context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
  1545. }
  1546. /**
  1547. * __i40evf_chk_linearize - Check if there are more than 8 fragments per packet
  1548. * @skb: send buffer
  1549. *
  1550. * Note: Our HW can't scatter-gather more than 8 fragments to build
  1551. * a packet on the wire and so we need to figure out the cases where we
  1552. * need to linearize the skb.
  1553. **/
  1554. bool __i40evf_chk_linearize(struct sk_buff *skb)
  1555. {
  1556. const struct skb_frag_struct *frag, *stale;
  1557. int gso_size, nr_frags, sum;
  1558. /* check to see if TSO is enabled, if so we may get a repreive */
  1559. gso_size = skb_shinfo(skb)->gso_size;
  1560. if (unlikely(!gso_size))
  1561. return true;
  1562. /* no need to check if number of frags is less than 8 */
  1563. nr_frags = skb_shinfo(skb)->nr_frags;
  1564. if (nr_frags < I40E_MAX_BUFFER_TXD)
  1565. return false;
  1566. /* We need to walk through the list and validate that each group
  1567. * of 6 fragments totals at least gso_size. However we don't need
  1568. * to perform such validation on the first or last 6 since the first
  1569. * 6 cannot inherit any data from a descriptor before them, and the
  1570. * last 6 cannot inherit any data from a descriptor after them.
  1571. */
  1572. nr_frags -= I40E_MAX_BUFFER_TXD - 1;
  1573. frag = &skb_shinfo(skb)->frags[0];
  1574. /* Initialize size to the negative value of gso_size minus 1. We
  1575. * use this as the worst case scenerio in which the frag ahead
  1576. * of us only provides one byte which is why we are limited to 6
  1577. * descriptors for a single transmit as the header and previous
  1578. * fragment are already consuming 2 descriptors.
  1579. */
  1580. sum = 1 - gso_size;
  1581. /* Add size of frags 1 through 5 to create our initial sum */
  1582. sum += skb_frag_size(++frag);
  1583. sum += skb_frag_size(++frag);
  1584. sum += skb_frag_size(++frag);
  1585. sum += skb_frag_size(++frag);
  1586. sum += skb_frag_size(++frag);
  1587. /* Walk through fragments adding latest fragment, testing it, and
  1588. * then removing stale fragments from the sum.
  1589. */
  1590. stale = &skb_shinfo(skb)->frags[0];
  1591. for (;;) {
  1592. sum += skb_frag_size(++frag);
  1593. /* if sum is negative we failed to make sufficient progress */
  1594. if (sum < 0)
  1595. return true;
  1596. /* use pre-decrement to avoid processing last fragment */
  1597. if (!--nr_frags)
  1598. break;
  1599. sum -= skb_frag_size(++stale);
  1600. }
  1601. return false;
  1602. }
  1603. /**
  1604. * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
  1605. * @tx_ring: the ring to be checked
  1606. * @size: the size buffer we want to assure is available
  1607. *
  1608. * Returns -EBUSY if a stop is needed, else 0
  1609. **/
  1610. int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  1611. {
  1612. netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1613. /* Memory barrier before checking head and tail */
  1614. smp_mb();
  1615. /* Check again in a case another CPU has just made room available. */
  1616. if (likely(I40E_DESC_UNUSED(tx_ring) < size))
  1617. return -EBUSY;
  1618. /* A reprieve! - use start_queue because it doesn't call schedule */
  1619. netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1620. ++tx_ring->tx_stats.restart_queue;
  1621. return 0;
  1622. }
  1623. /**
  1624. * i40evf_tx_map - Build the Tx descriptor
  1625. * @tx_ring: ring to send buffer on
  1626. * @skb: send buffer
  1627. * @first: first buffer info buffer to use
  1628. * @tx_flags: collected send information
  1629. * @hdr_len: size of the packet header
  1630. * @td_cmd: the command field in the descriptor
  1631. * @td_offset: offset for checksum or crc
  1632. **/
  1633. static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1634. struct i40e_tx_buffer *first, u32 tx_flags,
  1635. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  1636. {
  1637. unsigned int data_len = skb->data_len;
  1638. unsigned int size = skb_headlen(skb);
  1639. struct skb_frag_struct *frag;
  1640. struct i40e_tx_buffer *tx_bi;
  1641. struct i40e_tx_desc *tx_desc;
  1642. u16 i = tx_ring->next_to_use;
  1643. u32 td_tag = 0;
  1644. dma_addr_t dma;
  1645. u16 gso_segs;
  1646. u16 desc_count = 0;
  1647. bool tail_bump = true;
  1648. bool do_rs = false;
  1649. if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
  1650. td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
  1651. td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
  1652. I40E_TX_FLAGS_VLAN_SHIFT;
  1653. }
  1654. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
  1655. gso_segs = skb_shinfo(skb)->gso_segs;
  1656. else
  1657. gso_segs = 1;
  1658. /* multiply data chunks by size of headers */
  1659. first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
  1660. first->gso_segs = gso_segs;
  1661. first->skb = skb;
  1662. first->tx_flags = tx_flags;
  1663. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  1664. tx_desc = I40E_TX_DESC(tx_ring, i);
  1665. tx_bi = first;
  1666. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  1667. if (dma_mapping_error(tx_ring->dev, dma))
  1668. goto dma_error;
  1669. /* record length, and DMA address */
  1670. dma_unmap_len_set(tx_bi, len, size);
  1671. dma_unmap_addr_set(tx_bi, dma, dma);
  1672. tx_desc->buffer_addr = cpu_to_le64(dma);
  1673. while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
  1674. tx_desc->cmd_type_offset_bsz =
  1675. build_ctob(td_cmd, td_offset,
  1676. I40E_MAX_DATA_PER_TXD, td_tag);
  1677. tx_desc++;
  1678. i++;
  1679. desc_count++;
  1680. if (i == tx_ring->count) {
  1681. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1682. i = 0;
  1683. }
  1684. dma += I40E_MAX_DATA_PER_TXD;
  1685. size -= I40E_MAX_DATA_PER_TXD;
  1686. tx_desc->buffer_addr = cpu_to_le64(dma);
  1687. }
  1688. if (likely(!data_len))
  1689. break;
  1690. tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
  1691. size, td_tag);
  1692. tx_desc++;
  1693. i++;
  1694. desc_count++;
  1695. if (i == tx_ring->count) {
  1696. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1697. i = 0;
  1698. }
  1699. size = skb_frag_size(frag);
  1700. data_len -= size;
  1701. dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
  1702. DMA_TO_DEVICE);
  1703. tx_bi = &tx_ring->tx_bi[i];
  1704. }
  1705. /* set next_to_watch value indicating a packet is present */
  1706. first->next_to_watch = tx_desc;
  1707. i++;
  1708. if (i == tx_ring->count)
  1709. i = 0;
  1710. tx_ring->next_to_use = i;
  1711. netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
  1712. tx_ring->queue_index),
  1713. first->bytecount);
  1714. i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
  1715. /* Algorithm to optimize tail and RS bit setting:
  1716. * if xmit_more is supported
  1717. * if xmit_more is true
  1718. * do not update tail and do not mark RS bit.
  1719. * if xmit_more is false and last xmit_more was false
  1720. * if every packet spanned less than 4 desc
  1721. * then set RS bit on 4th packet and update tail
  1722. * on every packet
  1723. * else
  1724. * update tail and set RS bit on every packet.
  1725. * if xmit_more is false and last_xmit_more was true
  1726. * update tail and set RS bit.
  1727. *
  1728. * Optimization: wmb to be issued only in case of tail update.
  1729. * Also optimize the Descriptor WB path for RS bit with the same
  1730. * algorithm.
  1731. *
  1732. * Note: If there are less than 4 packets
  1733. * pending and interrupts were disabled the service task will
  1734. * trigger a force WB.
  1735. */
  1736. if (skb->xmit_more &&
  1737. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1738. tx_ring->queue_index))) {
  1739. tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  1740. tail_bump = false;
  1741. } else if (!skb->xmit_more &&
  1742. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1743. tx_ring->queue_index)) &&
  1744. (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
  1745. (tx_ring->packet_stride < WB_STRIDE) &&
  1746. (desc_count < WB_STRIDE)) {
  1747. tx_ring->packet_stride++;
  1748. } else {
  1749. tx_ring->packet_stride = 0;
  1750. tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  1751. do_rs = true;
  1752. }
  1753. if (do_rs)
  1754. tx_ring->packet_stride = 0;
  1755. tx_desc->cmd_type_offset_bsz =
  1756. build_ctob(td_cmd, td_offset, size, td_tag) |
  1757. cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
  1758. I40E_TX_DESC_CMD_EOP) <<
  1759. I40E_TXD_QW1_CMD_SHIFT);
  1760. /* notify HW of packet */
  1761. if (!tail_bump)
  1762. prefetchw(tx_desc + 1);
  1763. if (tail_bump) {
  1764. /* Force memory writes to complete before letting h/w
  1765. * know there are new descriptors to fetch. (Only
  1766. * applicable for weak-ordered memory model archs,
  1767. * such as IA-64).
  1768. */
  1769. wmb();
  1770. writel(i, tx_ring->tail);
  1771. }
  1772. return;
  1773. dma_error:
  1774. dev_info(tx_ring->dev, "TX DMA map failed\n");
  1775. /* clear dma mappings for failed tx_bi map */
  1776. for (;;) {
  1777. tx_bi = &tx_ring->tx_bi[i];
  1778. i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
  1779. if (tx_bi == first)
  1780. break;
  1781. if (i == 0)
  1782. i = tx_ring->count;
  1783. i--;
  1784. }
  1785. tx_ring->next_to_use = i;
  1786. }
  1787. /**
  1788. * i40e_xmit_frame_ring - Sends buffer on Tx ring
  1789. * @skb: send buffer
  1790. * @tx_ring: ring to send buffer on
  1791. *
  1792. * Returns NETDEV_TX_OK if sent, else an error code
  1793. **/
  1794. static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
  1795. struct i40e_ring *tx_ring)
  1796. {
  1797. u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
  1798. u32 cd_tunneling = 0, cd_l2tag2 = 0;
  1799. struct i40e_tx_buffer *first;
  1800. u32 td_offset = 0;
  1801. u32 tx_flags = 0;
  1802. __be16 protocol;
  1803. u32 td_cmd = 0;
  1804. u8 hdr_len = 0;
  1805. int tso, count;
  1806. /* prefetch the data, we'll need it later */
  1807. prefetch(skb->data);
  1808. count = i40e_xmit_descriptor_count(skb);
  1809. if (i40e_chk_linearize(skb, count)) {
  1810. if (__skb_linearize(skb))
  1811. goto out_drop;
  1812. count = TXD_USE_COUNT(skb->len);
  1813. tx_ring->tx_stats.tx_linearize++;
  1814. }
  1815. /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
  1816. * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
  1817. * + 4 desc gap to avoid the cache line where head is,
  1818. * + 1 desc for context descriptor,
  1819. * otherwise try next time
  1820. */
  1821. if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
  1822. tx_ring->tx_stats.tx_busy++;
  1823. return NETDEV_TX_BUSY;
  1824. }
  1825. /* prepare the xmit flags */
  1826. if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
  1827. goto out_drop;
  1828. /* obtain protocol of skb */
  1829. protocol = vlan_get_protocol(skb);
  1830. /* record the location of the first descriptor for this packet */
  1831. first = &tx_ring->tx_bi[tx_ring->next_to_use];
  1832. /* setup IPv4/IPv6 offloads */
  1833. if (protocol == htons(ETH_P_IP))
  1834. tx_flags |= I40E_TX_FLAGS_IPV4;
  1835. else if (protocol == htons(ETH_P_IPV6))
  1836. tx_flags |= I40E_TX_FLAGS_IPV6;
  1837. tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
  1838. if (tso < 0)
  1839. goto out_drop;
  1840. else if (tso)
  1841. tx_flags |= I40E_TX_FLAGS_TSO;
  1842. /* Always offload the checksum, since it's in the data descriptor */
  1843. tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
  1844. tx_ring, &cd_tunneling);
  1845. if (tso < 0)
  1846. goto out_drop;
  1847. skb_tx_timestamp(skb);
  1848. /* always enable CRC insertion offload */
  1849. td_cmd |= I40E_TX_DESC_CMD_ICRC;
  1850. i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
  1851. cd_tunneling, cd_l2tag2);
  1852. i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
  1853. td_cmd, td_offset);
  1854. return NETDEV_TX_OK;
  1855. out_drop:
  1856. dev_kfree_skb_any(skb);
  1857. return NETDEV_TX_OK;
  1858. }
  1859. /**
  1860. * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
  1861. * @skb: send buffer
  1862. * @netdev: network interface device structure
  1863. *
  1864. * Returns NETDEV_TX_OK if sent, else an error code
  1865. **/
  1866. netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1867. {
  1868. struct i40evf_adapter *adapter = netdev_priv(netdev);
  1869. struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
  1870. /* hardware can't handle really short frames, hardware padding works
  1871. * beyond this point
  1872. */
  1873. if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
  1874. if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
  1875. return NETDEV_TX_OK;
  1876. skb->len = I40E_MIN_TX_LEN;
  1877. skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
  1878. }
  1879. return i40e_xmit_frame_ring(skb, tx_ring);
  1880. }