bmc150-accel-core.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751
  1. /*
  2. * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
  3. * - BMC150
  4. * - BMI055
  5. * - BMA255
  6. * - BMA250E
  7. * - BMA222E
  8. * - BMA280
  9. *
  10. * Copyright (c) 2014, Intel Corporation.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms and conditions of the GNU General Public License,
  14. * version 2, as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope it will be useful, but WITHOUT
  17. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  19. * more details.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/i2c.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <linux/pm.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/iio/iio.h>
  30. #include <linux/iio/sysfs.h>
  31. #include <linux/iio/buffer.h>
  32. #include <linux/iio/events.h>
  33. #include <linux/iio/trigger.h>
  34. #include <linux/iio/trigger_consumer.h>
  35. #include <linux/iio/triggered_buffer.h>
  36. #include <linux/regmap.h>
  37. #include "bmc150-accel.h"
  38. #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
  39. #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
  40. #define BMC150_ACCEL_REG_CHIP_ID 0x00
  41. #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
  42. #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
  43. #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
  44. #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
  45. #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
  46. #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
  47. #define BMC150_ACCEL_REG_PMU_LPW 0x11
  48. #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
  49. #define BMC150_ACCEL_PMU_MODE_SHIFT 5
  50. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
  51. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
  52. #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
  53. #define BMC150_ACCEL_DEF_RANGE_2G 0x03
  54. #define BMC150_ACCEL_DEF_RANGE_4G 0x05
  55. #define BMC150_ACCEL_DEF_RANGE_8G 0x08
  56. #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
  57. /* Default BW: 125Hz */
  58. #define BMC150_ACCEL_REG_PMU_BW 0x10
  59. #define BMC150_ACCEL_DEF_BW 125
  60. #define BMC150_ACCEL_REG_INT_MAP_0 0x19
  61. #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
  62. #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
  63. #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
  64. #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
  65. #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
  66. #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
  67. #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
  68. #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  69. #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
  70. #define BMC150_ACCEL_REG_INT_EN_0 0x16
  71. #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
  72. #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
  73. #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
  74. #define BMC150_ACCEL_REG_INT_EN_1 0x17
  75. #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
  76. #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
  77. #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
  78. #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
  79. #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
  80. #define BMC150_ACCEL_REG_INT_5 0x27
  81. #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
  82. #define BMC150_ACCEL_REG_INT_6 0x28
  83. #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
  84. /* Slope duration in terms of number of samples */
  85. #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
  86. /* in terms of multiples of g's/LSB, based on range */
  87. #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
  88. #define BMC150_ACCEL_REG_XOUT_L 0x02
  89. #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
  90. /* Sleep Duration values */
  91. #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
  92. #define BMC150_ACCEL_SLEEP_1_MS 0x06
  93. #define BMC150_ACCEL_SLEEP_2_MS 0x07
  94. #define BMC150_ACCEL_SLEEP_4_MS 0x08
  95. #define BMC150_ACCEL_SLEEP_6_MS 0x09
  96. #define BMC150_ACCEL_SLEEP_10_MS 0x0A
  97. #define BMC150_ACCEL_SLEEP_25_MS 0x0B
  98. #define BMC150_ACCEL_SLEEP_50_MS 0x0C
  99. #define BMC150_ACCEL_SLEEP_100_MS 0x0D
  100. #define BMC150_ACCEL_SLEEP_500_MS 0x0E
  101. #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
  102. #define BMC150_ACCEL_REG_TEMP 0x08
  103. #define BMC150_ACCEL_TEMP_CENTER_VAL 24
  104. #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
  105. #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
  106. #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
  107. #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
  108. #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
  109. #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
  110. #define BMC150_ACCEL_FIFO_LENGTH 32
  111. enum bmc150_accel_axis {
  112. AXIS_X,
  113. AXIS_Y,
  114. AXIS_Z,
  115. AXIS_MAX,
  116. };
  117. enum bmc150_power_modes {
  118. BMC150_ACCEL_SLEEP_MODE_NORMAL,
  119. BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
  120. BMC150_ACCEL_SLEEP_MODE_LPM,
  121. BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
  122. };
  123. struct bmc150_scale_info {
  124. int scale;
  125. u8 reg_range;
  126. };
  127. struct bmc150_accel_chip_info {
  128. const char *name;
  129. u8 chip_id;
  130. const struct iio_chan_spec *channels;
  131. int num_channels;
  132. const struct bmc150_scale_info scale_table[4];
  133. };
  134. struct bmc150_accel_interrupt {
  135. const struct bmc150_accel_interrupt_info *info;
  136. atomic_t users;
  137. };
  138. struct bmc150_accel_trigger {
  139. struct bmc150_accel_data *data;
  140. struct iio_trigger *indio_trig;
  141. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  142. int intr;
  143. bool enabled;
  144. };
  145. enum bmc150_accel_interrupt_id {
  146. BMC150_ACCEL_INT_DATA_READY,
  147. BMC150_ACCEL_INT_ANY_MOTION,
  148. BMC150_ACCEL_INT_WATERMARK,
  149. BMC150_ACCEL_INTERRUPTS,
  150. };
  151. enum bmc150_accel_trigger_id {
  152. BMC150_ACCEL_TRIGGER_DATA_READY,
  153. BMC150_ACCEL_TRIGGER_ANY_MOTION,
  154. BMC150_ACCEL_TRIGGERS,
  155. };
  156. struct bmc150_accel_data {
  157. struct regmap *regmap;
  158. struct device *dev;
  159. int irq;
  160. struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
  161. atomic_t active_intr;
  162. struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
  163. struct mutex mutex;
  164. u8 fifo_mode, watermark;
  165. s16 buffer[8];
  166. u8 bw_bits;
  167. u32 slope_dur;
  168. u32 slope_thres;
  169. u32 range;
  170. int ev_enable_state;
  171. int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
  172. const struct bmc150_accel_chip_info *chip_info;
  173. };
  174. static const struct {
  175. int val;
  176. int val2;
  177. u8 bw_bits;
  178. } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
  179. {31, 260000, 0x09},
  180. {62, 500000, 0x0A},
  181. {125, 0, 0x0B},
  182. {250, 0, 0x0C},
  183. {500, 0, 0x0D},
  184. {1000, 0, 0x0E},
  185. {2000, 0, 0x0F} };
  186. static const struct {
  187. int bw_bits;
  188. int msec;
  189. } bmc150_accel_sample_upd_time[] = { {0x08, 64},
  190. {0x09, 32},
  191. {0x0A, 16},
  192. {0x0B, 8},
  193. {0x0C, 4},
  194. {0x0D, 2},
  195. {0x0E, 1},
  196. {0x0F, 1} };
  197. static const struct {
  198. int sleep_dur;
  199. u8 reg_value;
  200. } bmc150_accel_sleep_value_table[] = { {0, 0},
  201. {500, BMC150_ACCEL_SLEEP_500_MICRO},
  202. {1000, BMC150_ACCEL_SLEEP_1_MS},
  203. {2000, BMC150_ACCEL_SLEEP_2_MS},
  204. {4000, BMC150_ACCEL_SLEEP_4_MS},
  205. {6000, BMC150_ACCEL_SLEEP_6_MS},
  206. {10000, BMC150_ACCEL_SLEEP_10_MS},
  207. {25000, BMC150_ACCEL_SLEEP_25_MS},
  208. {50000, BMC150_ACCEL_SLEEP_50_MS},
  209. {100000, BMC150_ACCEL_SLEEP_100_MS},
  210. {500000, BMC150_ACCEL_SLEEP_500_MS},
  211. {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
  212. const struct regmap_config bmc150_regmap_conf = {
  213. .reg_bits = 8,
  214. .val_bits = 8,
  215. .max_register = 0x3f,
  216. };
  217. EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
  218. static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
  219. enum bmc150_power_modes mode,
  220. int dur_us)
  221. {
  222. int i;
  223. int ret;
  224. u8 lpw_bits;
  225. int dur_val = -1;
  226. if (dur_us > 0) {
  227. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
  228. ++i) {
  229. if (bmc150_accel_sleep_value_table[i].sleep_dur ==
  230. dur_us)
  231. dur_val =
  232. bmc150_accel_sleep_value_table[i].reg_value;
  233. }
  234. } else {
  235. dur_val = 0;
  236. }
  237. if (dur_val < 0)
  238. return -EINVAL;
  239. lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
  240. lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
  241. dev_dbg(data->dev, "Set Mode bits %x\n", lpw_bits);
  242. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
  243. if (ret < 0) {
  244. dev_err(data->dev, "Error writing reg_pmu_lpw\n");
  245. return ret;
  246. }
  247. return 0;
  248. }
  249. static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
  250. int val2)
  251. {
  252. int i;
  253. int ret;
  254. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  255. if (bmc150_accel_samp_freq_table[i].val == val &&
  256. bmc150_accel_samp_freq_table[i].val2 == val2) {
  257. ret = regmap_write(data->regmap,
  258. BMC150_ACCEL_REG_PMU_BW,
  259. bmc150_accel_samp_freq_table[i].bw_bits);
  260. if (ret < 0)
  261. return ret;
  262. data->bw_bits =
  263. bmc150_accel_samp_freq_table[i].bw_bits;
  264. return 0;
  265. }
  266. }
  267. return -EINVAL;
  268. }
  269. static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
  270. {
  271. int ret;
  272. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
  273. data->slope_thres);
  274. if (ret < 0) {
  275. dev_err(data->dev, "Error writing reg_int_6\n");
  276. return ret;
  277. }
  278. ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
  279. BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
  280. if (ret < 0) {
  281. dev_err(data->dev, "Error updating reg_int_5\n");
  282. return ret;
  283. }
  284. dev_dbg(data->dev, "%s: %x %x\n", __func__, data->slope_thres,
  285. data->slope_dur);
  286. return ret;
  287. }
  288. static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
  289. bool state)
  290. {
  291. if (state)
  292. return bmc150_accel_update_slope(t->data);
  293. return 0;
  294. }
  295. static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
  296. int *val2)
  297. {
  298. int i;
  299. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  300. if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
  301. *val = bmc150_accel_samp_freq_table[i].val;
  302. *val2 = bmc150_accel_samp_freq_table[i].val2;
  303. return IIO_VAL_INT_PLUS_MICRO;
  304. }
  305. }
  306. return -EINVAL;
  307. }
  308. #ifdef CONFIG_PM
  309. static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
  310. {
  311. int i;
  312. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
  313. if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
  314. return bmc150_accel_sample_upd_time[i].msec;
  315. }
  316. return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
  317. }
  318. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  319. {
  320. int ret;
  321. if (on) {
  322. ret = pm_runtime_get_sync(data->dev);
  323. } else {
  324. pm_runtime_mark_last_busy(data->dev);
  325. ret = pm_runtime_put_autosuspend(data->dev);
  326. }
  327. if (ret < 0) {
  328. dev_err(data->dev,
  329. "Failed: bmc150_accel_set_power_state for %d\n", on);
  330. if (on)
  331. pm_runtime_put_noidle(data->dev);
  332. return ret;
  333. }
  334. return 0;
  335. }
  336. #else
  337. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  338. {
  339. return 0;
  340. }
  341. #endif
  342. static const struct bmc150_accel_interrupt_info {
  343. u8 map_reg;
  344. u8 map_bitmask;
  345. u8 en_reg;
  346. u8 en_bitmask;
  347. } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
  348. { /* data ready interrupt */
  349. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  350. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
  351. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  352. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  353. },
  354. { /* motion interrupt */
  355. .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
  356. .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
  357. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  358. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  359. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  360. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  361. },
  362. { /* fifo watermark interrupt */
  363. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  364. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
  365. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  366. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  367. },
  368. };
  369. static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
  370. struct bmc150_accel_data *data)
  371. {
  372. int i;
  373. for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
  374. data->interrupts[i].info = &bmc150_accel_interrupts[i];
  375. }
  376. static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
  377. bool state)
  378. {
  379. struct bmc150_accel_interrupt *intr = &data->interrupts[i];
  380. const struct bmc150_accel_interrupt_info *info = intr->info;
  381. int ret;
  382. if (state) {
  383. if (atomic_inc_return(&intr->users) > 1)
  384. return 0;
  385. } else {
  386. if (atomic_dec_return(&intr->users) > 0)
  387. return 0;
  388. }
  389. /*
  390. * We will expect the enable and disable to do operation in reverse
  391. * order. This will happen here anyway, as our resume operation uses
  392. * sync mode runtime pm calls. The suspend operation will be delayed
  393. * by autosuspend delay.
  394. * So the disable operation will still happen in reverse order of
  395. * enable operation. When runtime pm is disabled the mode is always on,
  396. * so sequence doesn't matter.
  397. */
  398. ret = bmc150_accel_set_power_state(data, state);
  399. if (ret < 0)
  400. return ret;
  401. /* map the interrupt to the appropriate pins */
  402. ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
  403. (state ? info->map_bitmask : 0));
  404. if (ret < 0) {
  405. dev_err(data->dev, "Error updating reg_int_map\n");
  406. goto out_fix_power_state;
  407. }
  408. /* enable/disable the interrupt */
  409. ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
  410. (state ? info->en_bitmask : 0));
  411. if (ret < 0) {
  412. dev_err(data->dev, "Error updating reg_int_en\n");
  413. goto out_fix_power_state;
  414. }
  415. if (state)
  416. atomic_inc(&data->active_intr);
  417. else
  418. atomic_dec(&data->active_intr);
  419. return 0;
  420. out_fix_power_state:
  421. bmc150_accel_set_power_state(data, false);
  422. return ret;
  423. }
  424. static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
  425. {
  426. int ret, i;
  427. for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
  428. if (data->chip_info->scale_table[i].scale == val) {
  429. ret = regmap_write(data->regmap,
  430. BMC150_ACCEL_REG_PMU_RANGE,
  431. data->chip_info->scale_table[i].reg_range);
  432. if (ret < 0) {
  433. dev_err(data->dev,
  434. "Error writing pmu_range\n");
  435. return ret;
  436. }
  437. data->range = data->chip_info->scale_table[i].reg_range;
  438. return 0;
  439. }
  440. }
  441. return -EINVAL;
  442. }
  443. static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
  444. {
  445. int ret;
  446. unsigned int value;
  447. mutex_lock(&data->mutex);
  448. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
  449. if (ret < 0) {
  450. dev_err(data->dev, "Error reading reg_temp\n");
  451. mutex_unlock(&data->mutex);
  452. return ret;
  453. }
  454. *val = sign_extend32(value, 7);
  455. mutex_unlock(&data->mutex);
  456. return IIO_VAL_INT;
  457. }
  458. static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
  459. struct iio_chan_spec const *chan,
  460. int *val)
  461. {
  462. int ret;
  463. int axis = chan->scan_index;
  464. unsigned int raw_val;
  465. mutex_lock(&data->mutex);
  466. ret = bmc150_accel_set_power_state(data, true);
  467. if (ret < 0) {
  468. mutex_unlock(&data->mutex);
  469. return ret;
  470. }
  471. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
  472. &raw_val, 2);
  473. if (ret < 0) {
  474. dev_err(data->dev, "Error reading axis %d\n", axis);
  475. bmc150_accel_set_power_state(data, false);
  476. mutex_unlock(&data->mutex);
  477. return ret;
  478. }
  479. *val = sign_extend32(raw_val >> chan->scan_type.shift,
  480. chan->scan_type.realbits - 1);
  481. ret = bmc150_accel_set_power_state(data, false);
  482. mutex_unlock(&data->mutex);
  483. if (ret < 0)
  484. return ret;
  485. return IIO_VAL_INT;
  486. }
  487. static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
  488. struct iio_chan_spec const *chan,
  489. int *val, int *val2, long mask)
  490. {
  491. struct bmc150_accel_data *data = iio_priv(indio_dev);
  492. int ret;
  493. switch (mask) {
  494. case IIO_CHAN_INFO_RAW:
  495. switch (chan->type) {
  496. case IIO_TEMP:
  497. return bmc150_accel_get_temp(data, val);
  498. case IIO_ACCEL:
  499. if (iio_buffer_enabled(indio_dev))
  500. return -EBUSY;
  501. else
  502. return bmc150_accel_get_axis(data, chan, val);
  503. default:
  504. return -EINVAL;
  505. }
  506. case IIO_CHAN_INFO_OFFSET:
  507. if (chan->type == IIO_TEMP) {
  508. *val = BMC150_ACCEL_TEMP_CENTER_VAL;
  509. return IIO_VAL_INT;
  510. } else {
  511. return -EINVAL;
  512. }
  513. case IIO_CHAN_INFO_SCALE:
  514. *val = 0;
  515. switch (chan->type) {
  516. case IIO_TEMP:
  517. *val2 = 500000;
  518. return IIO_VAL_INT_PLUS_MICRO;
  519. case IIO_ACCEL:
  520. {
  521. int i;
  522. const struct bmc150_scale_info *si;
  523. int st_size = ARRAY_SIZE(data->chip_info->scale_table);
  524. for (i = 0; i < st_size; ++i) {
  525. si = &data->chip_info->scale_table[i];
  526. if (si->reg_range == data->range) {
  527. *val2 = si->scale;
  528. return IIO_VAL_INT_PLUS_MICRO;
  529. }
  530. }
  531. return -EINVAL;
  532. }
  533. default:
  534. return -EINVAL;
  535. }
  536. case IIO_CHAN_INFO_SAMP_FREQ:
  537. mutex_lock(&data->mutex);
  538. ret = bmc150_accel_get_bw(data, val, val2);
  539. mutex_unlock(&data->mutex);
  540. return ret;
  541. default:
  542. return -EINVAL;
  543. }
  544. }
  545. static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
  546. struct iio_chan_spec const *chan,
  547. int val, int val2, long mask)
  548. {
  549. struct bmc150_accel_data *data = iio_priv(indio_dev);
  550. int ret;
  551. switch (mask) {
  552. case IIO_CHAN_INFO_SAMP_FREQ:
  553. mutex_lock(&data->mutex);
  554. ret = bmc150_accel_set_bw(data, val, val2);
  555. mutex_unlock(&data->mutex);
  556. break;
  557. case IIO_CHAN_INFO_SCALE:
  558. if (val)
  559. return -EINVAL;
  560. mutex_lock(&data->mutex);
  561. ret = bmc150_accel_set_scale(data, val2);
  562. mutex_unlock(&data->mutex);
  563. return ret;
  564. default:
  565. ret = -EINVAL;
  566. }
  567. return ret;
  568. }
  569. static int bmc150_accel_read_event(struct iio_dev *indio_dev,
  570. const struct iio_chan_spec *chan,
  571. enum iio_event_type type,
  572. enum iio_event_direction dir,
  573. enum iio_event_info info,
  574. int *val, int *val2)
  575. {
  576. struct bmc150_accel_data *data = iio_priv(indio_dev);
  577. *val2 = 0;
  578. switch (info) {
  579. case IIO_EV_INFO_VALUE:
  580. *val = data->slope_thres;
  581. break;
  582. case IIO_EV_INFO_PERIOD:
  583. *val = data->slope_dur;
  584. break;
  585. default:
  586. return -EINVAL;
  587. }
  588. return IIO_VAL_INT;
  589. }
  590. static int bmc150_accel_write_event(struct iio_dev *indio_dev,
  591. const struct iio_chan_spec *chan,
  592. enum iio_event_type type,
  593. enum iio_event_direction dir,
  594. enum iio_event_info info,
  595. int val, int val2)
  596. {
  597. struct bmc150_accel_data *data = iio_priv(indio_dev);
  598. if (data->ev_enable_state)
  599. return -EBUSY;
  600. switch (info) {
  601. case IIO_EV_INFO_VALUE:
  602. data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
  603. break;
  604. case IIO_EV_INFO_PERIOD:
  605. data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
  606. break;
  607. default:
  608. return -EINVAL;
  609. }
  610. return 0;
  611. }
  612. static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
  613. const struct iio_chan_spec *chan,
  614. enum iio_event_type type,
  615. enum iio_event_direction dir)
  616. {
  617. struct bmc150_accel_data *data = iio_priv(indio_dev);
  618. return data->ev_enable_state;
  619. }
  620. static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
  621. const struct iio_chan_spec *chan,
  622. enum iio_event_type type,
  623. enum iio_event_direction dir,
  624. int state)
  625. {
  626. struct bmc150_accel_data *data = iio_priv(indio_dev);
  627. int ret;
  628. if (state == data->ev_enable_state)
  629. return 0;
  630. mutex_lock(&data->mutex);
  631. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
  632. state);
  633. if (ret < 0) {
  634. mutex_unlock(&data->mutex);
  635. return ret;
  636. }
  637. data->ev_enable_state = state;
  638. mutex_unlock(&data->mutex);
  639. return 0;
  640. }
  641. static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
  642. struct iio_trigger *trig)
  643. {
  644. struct bmc150_accel_data *data = iio_priv(indio_dev);
  645. int i;
  646. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  647. if (data->triggers[i].indio_trig == trig)
  648. return 0;
  649. }
  650. return -EINVAL;
  651. }
  652. static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
  653. struct device_attribute *attr,
  654. char *buf)
  655. {
  656. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  657. struct bmc150_accel_data *data = iio_priv(indio_dev);
  658. int wm;
  659. mutex_lock(&data->mutex);
  660. wm = data->watermark;
  661. mutex_unlock(&data->mutex);
  662. return sprintf(buf, "%d\n", wm);
  663. }
  664. static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
  665. struct device_attribute *attr,
  666. char *buf)
  667. {
  668. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  669. struct bmc150_accel_data *data = iio_priv(indio_dev);
  670. bool state;
  671. mutex_lock(&data->mutex);
  672. state = data->fifo_mode;
  673. mutex_unlock(&data->mutex);
  674. return sprintf(buf, "%d\n", state);
  675. }
  676. static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
  677. static IIO_CONST_ATTR(hwfifo_watermark_max,
  678. __stringify(BMC150_ACCEL_FIFO_LENGTH));
  679. static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
  680. bmc150_accel_get_fifo_state, NULL, 0);
  681. static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
  682. bmc150_accel_get_fifo_watermark, NULL, 0);
  683. static const struct attribute *bmc150_accel_fifo_attributes[] = {
  684. &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
  685. &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
  686. &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
  687. &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
  688. NULL,
  689. };
  690. static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
  691. {
  692. struct bmc150_accel_data *data = iio_priv(indio_dev);
  693. if (val > BMC150_ACCEL_FIFO_LENGTH)
  694. val = BMC150_ACCEL_FIFO_LENGTH;
  695. mutex_lock(&data->mutex);
  696. data->watermark = val;
  697. mutex_unlock(&data->mutex);
  698. return 0;
  699. }
  700. /*
  701. * We must read at least one full frame in one burst, otherwise the rest of the
  702. * frame data is discarded.
  703. */
  704. static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
  705. char *buffer, int samples)
  706. {
  707. int sample_length = 3 * 2;
  708. int ret;
  709. int total_length = samples * sample_length;
  710. int i;
  711. size_t step = regmap_get_raw_read_max(data->regmap);
  712. if (!step || step > total_length)
  713. step = total_length;
  714. else if (step < total_length)
  715. step = sample_length;
  716. /*
  717. * Seems we have a bus with size limitation so we have to execute
  718. * multiple reads
  719. */
  720. for (i = 0; i < total_length; i += step) {
  721. ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
  722. &buffer[i], step);
  723. if (ret)
  724. break;
  725. }
  726. if (ret)
  727. dev_err(data->dev, "Error transferring data from fifo in single steps of %zu\n",
  728. step);
  729. return ret;
  730. }
  731. static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
  732. unsigned samples, bool irq)
  733. {
  734. struct bmc150_accel_data *data = iio_priv(indio_dev);
  735. int ret, i;
  736. u8 count;
  737. u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
  738. int64_t tstamp;
  739. uint64_t sample_period;
  740. unsigned int val;
  741. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
  742. if (ret < 0) {
  743. dev_err(data->dev, "Error reading reg_fifo_status\n");
  744. return ret;
  745. }
  746. count = val & 0x7F;
  747. if (!count)
  748. return 0;
  749. /*
  750. * If we getting called from IRQ handler we know the stored timestamp is
  751. * fairly accurate for the last stored sample. Otherwise, if we are
  752. * called as a result of a read operation from userspace and hence
  753. * before the watermark interrupt was triggered, take a timestamp
  754. * now. We can fall anywhere in between two samples so the error in this
  755. * case is at most one sample period.
  756. */
  757. if (!irq) {
  758. data->old_timestamp = data->timestamp;
  759. data->timestamp = iio_get_time_ns();
  760. }
  761. /*
  762. * Approximate timestamps for each of the sample based on the sampling
  763. * frequency, timestamp for last sample and number of samples.
  764. *
  765. * Note that we can't use the current bandwidth settings to compute the
  766. * sample period because the sample rate varies with the device
  767. * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
  768. * small variation adds when we store a large number of samples and
  769. * creates significant jitter between the last and first samples in
  770. * different batches (e.g. 32ms vs 21ms).
  771. *
  772. * To avoid this issue we compute the actual sample period ourselves
  773. * based on the timestamp delta between the last two flush operations.
  774. */
  775. sample_period = (data->timestamp - data->old_timestamp);
  776. do_div(sample_period, count);
  777. tstamp = data->timestamp - (count - 1) * sample_period;
  778. if (samples && count > samples)
  779. count = samples;
  780. ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
  781. if (ret)
  782. return ret;
  783. /*
  784. * Ideally we want the IIO core to handle the demux when running in fifo
  785. * mode but not when running in triggered buffer mode. Unfortunately
  786. * this does not seem to be possible, so stick with driver demux for
  787. * now.
  788. */
  789. for (i = 0; i < count; i++) {
  790. u16 sample[8];
  791. int j, bit;
  792. j = 0;
  793. for_each_set_bit(bit, indio_dev->active_scan_mask,
  794. indio_dev->masklength)
  795. memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
  796. iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
  797. tstamp += sample_period;
  798. }
  799. return count;
  800. }
  801. static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
  802. {
  803. struct bmc150_accel_data *data = iio_priv(indio_dev);
  804. int ret;
  805. mutex_lock(&data->mutex);
  806. ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
  807. mutex_unlock(&data->mutex);
  808. return ret;
  809. }
  810. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
  811. "15.620000 31.260000 62.50000 125 250 500 1000 2000");
  812. static struct attribute *bmc150_accel_attributes[] = {
  813. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  814. NULL,
  815. };
  816. static const struct attribute_group bmc150_accel_attrs_group = {
  817. .attrs = bmc150_accel_attributes,
  818. };
  819. static const struct iio_event_spec bmc150_accel_event = {
  820. .type = IIO_EV_TYPE_ROC,
  821. .dir = IIO_EV_DIR_EITHER,
  822. .mask_separate = BIT(IIO_EV_INFO_VALUE) |
  823. BIT(IIO_EV_INFO_ENABLE) |
  824. BIT(IIO_EV_INFO_PERIOD)
  825. };
  826. #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
  827. .type = IIO_ACCEL, \
  828. .modified = 1, \
  829. .channel2 = IIO_MOD_##_axis, \
  830. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  831. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  832. BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  833. .scan_index = AXIS_##_axis, \
  834. .scan_type = { \
  835. .sign = 's', \
  836. .realbits = (bits), \
  837. .storagebits = 16, \
  838. .shift = 16 - (bits), \
  839. .endianness = IIO_LE, \
  840. }, \
  841. .event_spec = &bmc150_accel_event, \
  842. .num_event_specs = 1 \
  843. }
  844. #define BMC150_ACCEL_CHANNELS(bits) { \
  845. { \
  846. .type = IIO_TEMP, \
  847. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  848. BIT(IIO_CHAN_INFO_SCALE) | \
  849. BIT(IIO_CHAN_INFO_OFFSET), \
  850. .scan_index = -1, \
  851. }, \
  852. BMC150_ACCEL_CHANNEL(X, bits), \
  853. BMC150_ACCEL_CHANNEL(Y, bits), \
  854. BMC150_ACCEL_CHANNEL(Z, bits), \
  855. IIO_CHAN_SOFT_TIMESTAMP(3), \
  856. }
  857. static const struct iio_chan_spec bma222e_accel_channels[] =
  858. BMC150_ACCEL_CHANNELS(8);
  859. static const struct iio_chan_spec bma250e_accel_channels[] =
  860. BMC150_ACCEL_CHANNELS(10);
  861. static const struct iio_chan_spec bmc150_accel_channels[] =
  862. BMC150_ACCEL_CHANNELS(12);
  863. static const struct iio_chan_spec bma280_accel_channels[] =
  864. BMC150_ACCEL_CHANNELS(14);
  865. static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
  866. [bmc150] = {
  867. .name = "BMC150A",
  868. .chip_id = 0xFA,
  869. .channels = bmc150_accel_channels,
  870. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  871. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  872. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  873. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  874. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  875. },
  876. [bmi055] = {
  877. .name = "BMI055A",
  878. .chip_id = 0xFA,
  879. .channels = bmc150_accel_channels,
  880. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  881. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  882. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  883. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  884. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  885. },
  886. [bma255] = {
  887. .name = "BMA0255",
  888. .chip_id = 0xFA,
  889. .channels = bmc150_accel_channels,
  890. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  891. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  892. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  893. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  894. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  895. },
  896. [bma250e] = {
  897. .name = "BMA250E",
  898. .chip_id = 0xF9,
  899. .channels = bma250e_accel_channels,
  900. .num_channels = ARRAY_SIZE(bma250e_accel_channels),
  901. .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
  902. {76590, BMC150_ACCEL_DEF_RANGE_4G},
  903. {153277, BMC150_ACCEL_DEF_RANGE_8G},
  904. {306457, BMC150_ACCEL_DEF_RANGE_16G} },
  905. },
  906. [bma222e] = {
  907. .name = "BMA222E",
  908. .chip_id = 0xF8,
  909. .channels = bma222e_accel_channels,
  910. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  911. .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
  912. {306457, BMC150_ACCEL_DEF_RANGE_4G},
  913. {612915, BMC150_ACCEL_DEF_RANGE_8G},
  914. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  915. },
  916. [bma280] = {
  917. .name = "BMA0280",
  918. .chip_id = 0xFB,
  919. .channels = bma280_accel_channels,
  920. .num_channels = ARRAY_SIZE(bma280_accel_channels),
  921. .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
  922. {4785, BMC150_ACCEL_DEF_RANGE_4G},
  923. {9581, BMC150_ACCEL_DEF_RANGE_8G},
  924. {19152, BMC150_ACCEL_DEF_RANGE_16G} },
  925. },
  926. };
  927. static const struct iio_info bmc150_accel_info = {
  928. .attrs = &bmc150_accel_attrs_group,
  929. .read_raw = bmc150_accel_read_raw,
  930. .write_raw = bmc150_accel_write_raw,
  931. .read_event_value = bmc150_accel_read_event,
  932. .write_event_value = bmc150_accel_write_event,
  933. .write_event_config = bmc150_accel_write_event_config,
  934. .read_event_config = bmc150_accel_read_event_config,
  935. .driver_module = THIS_MODULE,
  936. };
  937. static const struct iio_info bmc150_accel_info_fifo = {
  938. .attrs = &bmc150_accel_attrs_group,
  939. .read_raw = bmc150_accel_read_raw,
  940. .write_raw = bmc150_accel_write_raw,
  941. .read_event_value = bmc150_accel_read_event,
  942. .write_event_value = bmc150_accel_write_event,
  943. .write_event_config = bmc150_accel_write_event_config,
  944. .read_event_config = bmc150_accel_read_event_config,
  945. .validate_trigger = bmc150_accel_validate_trigger,
  946. .hwfifo_set_watermark = bmc150_accel_set_watermark,
  947. .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
  948. .driver_module = THIS_MODULE,
  949. };
  950. static const unsigned long bmc150_accel_scan_masks[] = {
  951. BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
  952. 0};
  953. static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
  954. {
  955. struct iio_poll_func *pf = p;
  956. struct iio_dev *indio_dev = pf->indio_dev;
  957. struct bmc150_accel_data *data = iio_priv(indio_dev);
  958. int ret;
  959. mutex_lock(&data->mutex);
  960. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
  961. data->buffer, AXIS_MAX * 2);
  962. mutex_unlock(&data->mutex);
  963. if (ret < 0)
  964. goto err_read;
  965. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  966. pf->timestamp);
  967. err_read:
  968. iio_trigger_notify_done(indio_dev->trig);
  969. return IRQ_HANDLED;
  970. }
  971. static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
  972. {
  973. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  974. struct bmc150_accel_data *data = t->data;
  975. int ret;
  976. /* new data interrupts don't need ack */
  977. if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
  978. return 0;
  979. mutex_lock(&data->mutex);
  980. /* clear any latched interrupt */
  981. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  982. BMC150_ACCEL_INT_MODE_LATCH_INT |
  983. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  984. mutex_unlock(&data->mutex);
  985. if (ret < 0) {
  986. dev_err(data->dev,
  987. "Error writing reg_int_rst_latch\n");
  988. return ret;
  989. }
  990. return 0;
  991. }
  992. static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
  993. bool state)
  994. {
  995. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  996. struct bmc150_accel_data *data = t->data;
  997. int ret;
  998. mutex_lock(&data->mutex);
  999. if (t->enabled == state) {
  1000. mutex_unlock(&data->mutex);
  1001. return 0;
  1002. }
  1003. if (t->setup) {
  1004. ret = t->setup(t, state);
  1005. if (ret < 0) {
  1006. mutex_unlock(&data->mutex);
  1007. return ret;
  1008. }
  1009. }
  1010. ret = bmc150_accel_set_interrupt(data, t->intr, state);
  1011. if (ret < 0) {
  1012. mutex_unlock(&data->mutex);
  1013. return ret;
  1014. }
  1015. t->enabled = state;
  1016. mutex_unlock(&data->mutex);
  1017. return ret;
  1018. }
  1019. static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
  1020. .set_trigger_state = bmc150_accel_trigger_set_state,
  1021. .try_reenable = bmc150_accel_trig_try_reen,
  1022. .owner = THIS_MODULE,
  1023. };
  1024. static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
  1025. {
  1026. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1027. int dir;
  1028. int ret;
  1029. unsigned int val;
  1030. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
  1031. if (ret < 0) {
  1032. dev_err(data->dev, "Error reading reg_int_status_2\n");
  1033. return ret;
  1034. }
  1035. if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
  1036. dir = IIO_EV_DIR_FALLING;
  1037. else
  1038. dir = IIO_EV_DIR_RISING;
  1039. if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
  1040. iio_push_event(indio_dev,
  1041. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1042. 0,
  1043. IIO_MOD_X,
  1044. IIO_EV_TYPE_ROC,
  1045. dir),
  1046. data->timestamp);
  1047. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
  1048. iio_push_event(indio_dev,
  1049. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1050. 0,
  1051. IIO_MOD_Y,
  1052. IIO_EV_TYPE_ROC,
  1053. dir),
  1054. data->timestamp);
  1055. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
  1056. iio_push_event(indio_dev,
  1057. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1058. 0,
  1059. IIO_MOD_Z,
  1060. IIO_EV_TYPE_ROC,
  1061. dir),
  1062. data->timestamp);
  1063. return ret;
  1064. }
  1065. static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
  1066. {
  1067. struct iio_dev *indio_dev = private;
  1068. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1069. bool ack = false;
  1070. int ret;
  1071. mutex_lock(&data->mutex);
  1072. if (data->fifo_mode) {
  1073. ret = __bmc150_accel_fifo_flush(indio_dev,
  1074. BMC150_ACCEL_FIFO_LENGTH, true);
  1075. if (ret > 0)
  1076. ack = true;
  1077. }
  1078. if (data->ev_enable_state) {
  1079. ret = bmc150_accel_handle_roc_event(indio_dev);
  1080. if (ret > 0)
  1081. ack = true;
  1082. }
  1083. if (ack) {
  1084. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1085. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1086. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1087. if (ret)
  1088. dev_err(data->dev, "Error writing reg_int_rst_latch\n");
  1089. ret = IRQ_HANDLED;
  1090. } else {
  1091. ret = IRQ_NONE;
  1092. }
  1093. mutex_unlock(&data->mutex);
  1094. return ret;
  1095. }
  1096. static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
  1097. {
  1098. struct iio_dev *indio_dev = private;
  1099. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1100. bool ack = false;
  1101. int i;
  1102. data->old_timestamp = data->timestamp;
  1103. data->timestamp = iio_get_time_ns();
  1104. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1105. if (data->triggers[i].enabled) {
  1106. iio_trigger_poll(data->triggers[i].indio_trig);
  1107. ack = true;
  1108. break;
  1109. }
  1110. }
  1111. if (data->ev_enable_state || data->fifo_mode)
  1112. return IRQ_WAKE_THREAD;
  1113. if (ack)
  1114. return IRQ_HANDLED;
  1115. return IRQ_NONE;
  1116. }
  1117. static const struct {
  1118. int intr;
  1119. const char *name;
  1120. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  1121. } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
  1122. {
  1123. .intr = 0,
  1124. .name = "%s-dev%d",
  1125. },
  1126. {
  1127. .intr = 1,
  1128. .name = "%s-any-motion-dev%d",
  1129. .setup = bmc150_accel_any_motion_setup,
  1130. },
  1131. };
  1132. static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
  1133. int from)
  1134. {
  1135. int i;
  1136. for (i = from; i >= 0; i--) {
  1137. if (data->triggers[i].indio_trig) {
  1138. iio_trigger_unregister(data->triggers[i].indio_trig);
  1139. data->triggers[i].indio_trig = NULL;
  1140. }
  1141. }
  1142. }
  1143. static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
  1144. struct bmc150_accel_data *data)
  1145. {
  1146. int i, ret;
  1147. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1148. struct bmc150_accel_trigger *t = &data->triggers[i];
  1149. t->indio_trig = devm_iio_trigger_alloc(data->dev,
  1150. bmc150_accel_triggers[i].name,
  1151. indio_dev->name,
  1152. indio_dev->id);
  1153. if (!t->indio_trig) {
  1154. ret = -ENOMEM;
  1155. break;
  1156. }
  1157. t->indio_trig->dev.parent = data->dev;
  1158. t->indio_trig->ops = &bmc150_accel_trigger_ops;
  1159. t->intr = bmc150_accel_triggers[i].intr;
  1160. t->data = data;
  1161. t->setup = bmc150_accel_triggers[i].setup;
  1162. iio_trigger_set_drvdata(t->indio_trig, t);
  1163. ret = iio_trigger_register(t->indio_trig);
  1164. if (ret)
  1165. break;
  1166. }
  1167. if (ret)
  1168. bmc150_accel_unregister_triggers(data, i - 1);
  1169. return ret;
  1170. }
  1171. #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
  1172. #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
  1173. #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
  1174. static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
  1175. {
  1176. u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
  1177. int ret;
  1178. ret = regmap_write(data->regmap, reg, data->fifo_mode);
  1179. if (ret < 0) {
  1180. dev_err(data->dev, "Error writing reg_fifo_config1\n");
  1181. return ret;
  1182. }
  1183. if (!data->fifo_mode)
  1184. return 0;
  1185. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
  1186. data->watermark);
  1187. if (ret < 0)
  1188. dev_err(data->dev, "Error writing reg_fifo_config0\n");
  1189. return ret;
  1190. }
  1191. static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
  1192. {
  1193. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1194. return bmc150_accel_set_power_state(data, true);
  1195. }
  1196. static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
  1197. {
  1198. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1199. int ret = 0;
  1200. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1201. return iio_triggered_buffer_postenable(indio_dev);
  1202. mutex_lock(&data->mutex);
  1203. if (!data->watermark)
  1204. goto out;
  1205. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1206. true);
  1207. if (ret)
  1208. goto out;
  1209. data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
  1210. ret = bmc150_accel_fifo_set_mode(data);
  1211. if (ret) {
  1212. data->fifo_mode = 0;
  1213. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1214. false);
  1215. }
  1216. out:
  1217. mutex_unlock(&data->mutex);
  1218. return ret;
  1219. }
  1220. static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
  1221. {
  1222. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1223. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1224. return iio_triggered_buffer_predisable(indio_dev);
  1225. mutex_lock(&data->mutex);
  1226. if (!data->fifo_mode)
  1227. goto out;
  1228. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
  1229. __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
  1230. data->fifo_mode = 0;
  1231. bmc150_accel_fifo_set_mode(data);
  1232. out:
  1233. mutex_unlock(&data->mutex);
  1234. return 0;
  1235. }
  1236. static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
  1237. {
  1238. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1239. return bmc150_accel_set_power_state(data, false);
  1240. }
  1241. static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
  1242. .preenable = bmc150_accel_buffer_preenable,
  1243. .postenable = bmc150_accel_buffer_postenable,
  1244. .predisable = bmc150_accel_buffer_predisable,
  1245. .postdisable = bmc150_accel_buffer_postdisable,
  1246. };
  1247. static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
  1248. {
  1249. int ret, i;
  1250. unsigned int val;
  1251. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
  1252. if (ret < 0) {
  1253. dev_err(data->dev,
  1254. "Error: Reading chip id\n");
  1255. return ret;
  1256. }
  1257. dev_dbg(data->dev, "Chip Id %x\n", val);
  1258. for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
  1259. if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
  1260. data->chip_info = &bmc150_accel_chip_info_tbl[i];
  1261. break;
  1262. }
  1263. }
  1264. if (!data->chip_info) {
  1265. dev_err(data->dev, "Invalid chip %x\n", val);
  1266. return -ENODEV;
  1267. }
  1268. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1269. if (ret < 0)
  1270. return ret;
  1271. /* Set Bandwidth */
  1272. ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
  1273. if (ret < 0)
  1274. return ret;
  1275. /* Set Default Range */
  1276. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
  1277. BMC150_ACCEL_DEF_RANGE_4G);
  1278. if (ret < 0) {
  1279. dev_err(data->dev,
  1280. "Error writing reg_pmu_range\n");
  1281. return ret;
  1282. }
  1283. data->range = BMC150_ACCEL_DEF_RANGE_4G;
  1284. /* Set default slope duration and thresholds */
  1285. data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
  1286. data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
  1287. ret = bmc150_accel_update_slope(data);
  1288. if (ret < 0)
  1289. return ret;
  1290. /* Set default as latched interrupts */
  1291. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1292. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1293. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1294. if (ret < 0) {
  1295. dev_err(data->dev,
  1296. "Error writing reg_int_rst_latch\n");
  1297. return ret;
  1298. }
  1299. return 0;
  1300. }
  1301. int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
  1302. const char *name, bool block_supported)
  1303. {
  1304. struct bmc150_accel_data *data;
  1305. struct iio_dev *indio_dev;
  1306. int ret;
  1307. indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
  1308. if (!indio_dev)
  1309. return -ENOMEM;
  1310. data = iio_priv(indio_dev);
  1311. dev_set_drvdata(dev, indio_dev);
  1312. data->dev = dev;
  1313. data->irq = irq;
  1314. data->regmap = regmap;
  1315. ret = bmc150_accel_chip_init(data);
  1316. if (ret < 0)
  1317. return ret;
  1318. mutex_init(&data->mutex);
  1319. indio_dev->dev.parent = dev;
  1320. indio_dev->channels = data->chip_info->channels;
  1321. indio_dev->num_channels = data->chip_info->num_channels;
  1322. indio_dev->name = name ? name : data->chip_info->name;
  1323. indio_dev->available_scan_masks = bmc150_accel_scan_masks;
  1324. indio_dev->modes = INDIO_DIRECT_MODE;
  1325. indio_dev->info = &bmc150_accel_info;
  1326. ret = iio_triggered_buffer_setup(indio_dev,
  1327. &iio_pollfunc_store_time,
  1328. bmc150_accel_trigger_handler,
  1329. &bmc150_accel_buffer_ops);
  1330. if (ret < 0) {
  1331. dev_err(data->dev, "Failed: iio triggered buffer setup\n");
  1332. return ret;
  1333. }
  1334. if (data->irq > 0) {
  1335. ret = devm_request_threaded_irq(
  1336. data->dev, data->irq,
  1337. bmc150_accel_irq_handler,
  1338. bmc150_accel_irq_thread_handler,
  1339. IRQF_TRIGGER_RISING,
  1340. BMC150_ACCEL_IRQ_NAME,
  1341. indio_dev);
  1342. if (ret)
  1343. goto err_buffer_cleanup;
  1344. /*
  1345. * Set latched mode interrupt. While certain interrupts are
  1346. * non-latched regardless of this settings (e.g. new data) we
  1347. * want to use latch mode when we can to prevent interrupt
  1348. * flooding.
  1349. */
  1350. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1351. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1352. if (ret < 0) {
  1353. dev_err(data->dev, "Error writing reg_int_rst_latch\n");
  1354. goto err_buffer_cleanup;
  1355. }
  1356. bmc150_accel_interrupts_setup(indio_dev, data);
  1357. ret = bmc150_accel_triggers_setup(indio_dev, data);
  1358. if (ret)
  1359. goto err_buffer_cleanup;
  1360. if (block_supported) {
  1361. indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
  1362. indio_dev->info = &bmc150_accel_info_fifo;
  1363. indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
  1364. }
  1365. }
  1366. ret = pm_runtime_set_active(dev);
  1367. if (ret)
  1368. goto err_trigger_unregister;
  1369. pm_runtime_enable(dev);
  1370. pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
  1371. pm_runtime_use_autosuspend(dev);
  1372. ret = iio_device_register(indio_dev);
  1373. if (ret < 0) {
  1374. dev_err(dev, "Unable to register iio device\n");
  1375. goto err_trigger_unregister;
  1376. }
  1377. return 0;
  1378. err_trigger_unregister:
  1379. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1380. err_buffer_cleanup:
  1381. iio_triggered_buffer_cleanup(indio_dev);
  1382. return ret;
  1383. }
  1384. EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
  1385. int bmc150_accel_core_remove(struct device *dev)
  1386. {
  1387. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1388. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1389. iio_device_unregister(indio_dev);
  1390. pm_runtime_disable(data->dev);
  1391. pm_runtime_set_suspended(data->dev);
  1392. pm_runtime_put_noidle(data->dev);
  1393. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1394. iio_triggered_buffer_cleanup(indio_dev);
  1395. mutex_lock(&data->mutex);
  1396. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
  1397. mutex_unlock(&data->mutex);
  1398. return 0;
  1399. }
  1400. EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
  1401. #ifdef CONFIG_PM_SLEEP
  1402. static int bmc150_accel_suspend(struct device *dev)
  1403. {
  1404. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1405. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1406. mutex_lock(&data->mutex);
  1407. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1408. mutex_unlock(&data->mutex);
  1409. return 0;
  1410. }
  1411. static int bmc150_accel_resume(struct device *dev)
  1412. {
  1413. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1414. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1415. mutex_lock(&data->mutex);
  1416. if (atomic_read(&data->active_intr))
  1417. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1418. bmc150_accel_fifo_set_mode(data);
  1419. mutex_unlock(&data->mutex);
  1420. return 0;
  1421. }
  1422. #endif
  1423. #ifdef CONFIG_PM
  1424. static int bmc150_accel_runtime_suspend(struct device *dev)
  1425. {
  1426. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1427. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1428. int ret;
  1429. dev_dbg(data->dev, __func__);
  1430. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1431. if (ret < 0)
  1432. return -EAGAIN;
  1433. return 0;
  1434. }
  1435. static int bmc150_accel_runtime_resume(struct device *dev)
  1436. {
  1437. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1438. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1439. int ret;
  1440. int sleep_val;
  1441. dev_dbg(data->dev, __func__);
  1442. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1443. if (ret < 0)
  1444. return ret;
  1445. ret = bmc150_accel_fifo_set_mode(data);
  1446. if (ret < 0)
  1447. return ret;
  1448. sleep_val = bmc150_accel_get_startup_times(data);
  1449. if (sleep_val < 20)
  1450. usleep_range(sleep_val * 1000, 20000);
  1451. else
  1452. msleep_interruptible(sleep_val);
  1453. return 0;
  1454. }
  1455. #endif
  1456. const struct dev_pm_ops bmc150_accel_pm_ops = {
  1457. SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
  1458. SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
  1459. bmc150_accel_runtime_resume, NULL)
  1460. };
  1461. EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
  1462. MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
  1463. MODULE_LICENSE("GPL v2");
  1464. MODULE_DESCRIPTION("BMC150 accelerometer driver");