sdma_v3_0.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  53. {
  54. SDMA0_REGISTER_OFFSET,
  55. SDMA1_REGISTER_OFFSET
  56. };
  57. static const u32 golden_settings_tonga_a11[] =
  58. {
  59. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  60. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  61. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  62. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  63. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  64. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  65. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  66. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  69. };
  70. static const u32 tonga_mgcg_cgcg_init[] =
  71. {
  72. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  73. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  74. };
  75. static const u32 golden_settings_fiji_a10[] =
  76. {
  77. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  78. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  79. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  80. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  81. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. };
  86. static const u32 fiji_mgcg_cgcg_init[] =
  87. {
  88. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  89. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  90. };
  91. static const u32 cz_golden_settings_a11[] =
  92. {
  93. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  94. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  95. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  96. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  97. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  98. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  99. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  100. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  101. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  102. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  103. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  104. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  105. };
  106. static const u32 cz_mgcg_cgcg_init[] =
  107. {
  108. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  109. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  110. };
  111. static const u32 stoney_golden_settings_a11[] =
  112. {
  113. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  114. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  115. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  116. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  117. };
  118. static const u32 stoney_mgcg_cgcg_init[] =
  119. {
  120. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  121. };
  122. /*
  123. * sDMA - System DMA
  124. * Starting with CIK, the GPU has new asynchronous
  125. * DMA engines. These engines are used for compute
  126. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  127. * and each one supports 1 ring buffer used for gfx
  128. * and 2 queues used for compute.
  129. *
  130. * The programming model is very similar to the CP
  131. * (ring buffer, IBs, etc.), but sDMA has it's own
  132. * packet format that is different from the PM4 format
  133. * used by the CP. sDMA supports copying data, writing
  134. * embedded data, solid fills, and a number of other
  135. * things. It also has support for tiling/detiling of
  136. * buffers.
  137. */
  138. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  139. {
  140. switch (adev->asic_type) {
  141. case CHIP_FIJI:
  142. amdgpu_program_register_sequence(adev,
  143. fiji_mgcg_cgcg_init,
  144. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  145. amdgpu_program_register_sequence(adev,
  146. golden_settings_fiji_a10,
  147. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  148. break;
  149. case CHIP_TONGA:
  150. amdgpu_program_register_sequence(adev,
  151. tonga_mgcg_cgcg_init,
  152. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  153. amdgpu_program_register_sequence(adev,
  154. golden_settings_tonga_a11,
  155. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  156. break;
  157. case CHIP_CARRIZO:
  158. amdgpu_program_register_sequence(adev,
  159. cz_mgcg_cgcg_init,
  160. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  161. amdgpu_program_register_sequence(adev,
  162. cz_golden_settings_a11,
  163. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  164. break;
  165. case CHIP_STONEY:
  166. amdgpu_program_register_sequence(adev,
  167. stoney_mgcg_cgcg_init,
  168. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  169. amdgpu_program_register_sequence(adev,
  170. stoney_golden_settings_a11,
  171. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  172. break;
  173. default:
  174. break;
  175. }
  176. }
  177. /**
  178. * sdma_v3_0_init_microcode - load ucode images from disk
  179. *
  180. * @adev: amdgpu_device pointer
  181. *
  182. * Use the firmware interface to load the ucode images into
  183. * the driver (not loaded into hw).
  184. * Returns 0 on success, error on failure.
  185. */
  186. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  187. {
  188. const char *chip_name;
  189. char fw_name[30];
  190. int err = 0, i;
  191. struct amdgpu_firmware_info *info = NULL;
  192. const struct common_firmware_header *header = NULL;
  193. const struct sdma_firmware_header_v1_0 *hdr;
  194. DRM_DEBUG("\n");
  195. switch (adev->asic_type) {
  196. case CHIP_TONGA:
  197. chip_name = "tonga";
  198. break;
  199. case CHIP_FIJI:
  200. chip_name = "fiji";
  201. break;
  202. case CHIP_CARRIZO:
  203. chip_name = "carrizo";
  204. break;
  205. case CHIP_STONEY:
  206. chip_name = "stoney";
  207. break;
  208. default: BUG();
  209. }
  210. for (i = 0; i < adev->sdma.num_instances; i++) {
  211. if (i == 0)
  212. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  213. else
  214. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  215. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  216. if (err)
  217. goto out;
  218. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  219. if (err)
  220. goto out;
  221. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  222. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  223. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  224. if (adev->sdma.instance[i].feature_version >= 20)
  225. adev->sdma.instance[i].burst_nop = true;
  226. if (adev->firmware.smu_load) {
  227. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  228. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  229. info->fw = adev->sdma.instance[i].fw;
  230. header = (const struct common_firmware_header *)info->fw->data;
  231. adev->firmware.fw_size +=
  232. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  233. }
  234. }
  235. out:
  236. if (err) {
  237. printk(KERN_ERR
  238. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  239. fw_name);
  240. for (i = 0; i < adev->sdma.num_instances; i++) {
  241. release_firmware(adev->sdma.instance[i].fw);
  242. adev->sdma.instance[i].fw = NULL;
  243. }
  244. }
  245. return err;
  246. }
  247. /**
  248. * sdma_v3_0_ring_get_rptr - get the current read pointer
  249. *
  250. * @ring: amdgpu ring pointer
  251. *
  252. * Get the current rptr from the hardware (VI+).
  253. */
  254. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  255. {
  256. u32 rptr;
  257. /* XXX check if swapping is necessary on BE */
  258. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  259. return rptr;
  260. }
  261. /**
  262. * sdma_v3_0_ring_get_wptr - get the current write pointer
  263. *
  264. * @ring: amdgpu ring pointer
  265. *
  266. * Get the current wptr from the hardware (VI+).
  267. */
  268. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  269. {
  270. struct amdgpu_device *adev = ring->adev;
  271. u32 wptr;
  272. if (ring->use_doorbell) {
  273. /* XXX check if swapping is necessary on BE */
  274. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  275. } else {
  276. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  277. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  278. }
  279. return wptr;
  280. }
  281. /**
  282. * sdma_v3_0_ring_set_wptr - commit the write pointer
  283. *
  284. * @ring: amdgpu ring pointer
  285. *
  286. * Write the wptr back to the hardware (VI+).
  287. */
  288. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  289. {
  290. struct amdgpu_device *adev = ring->adev;
  291. if (ring->use_doorbell) {
  292. /* XXX check if swapping is necessary on BE */
  293. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  294. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  295. } else {
  296. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  297. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  298. }
  299. }
  300. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  301. {
  302. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  303. int i;
  304. for (i = 0; i < count; i++)
  305. if (sdma && sdma->burst_nop && (i == 0))
  306. amdgpu_ring_write(ring, ring->nop |
  307. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  308. else
  309. amdgpu_ring_write(ring, ring->nop);
  310. }
  311. /**
  312. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  313. *
  314. * @ring: amdgpu ring pointer
  315. * @ib: IB object to schedule
  316. *
  317. * Schedule an IB in the DMA ring (VI).
  318. */
  319. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  320. struct amdgpu_ib *ib)
  321. {
  322. u32 vmid = ib->vm_id & 0xf;
  323. u32 next_rptr = ring->wptr + 5;
  324. while ((next_rptr & 7) != 2)
  325. next_rptr++;
  326. next_rptr += 6;
  327. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  328. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  329. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  330. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  331. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  332. amdgpu_ring_write(ring, next_rptr);
  333. /* IB packet must end on a 8 DW boundary */
  334. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  335. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  336. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  337. /* base must be 32 byte aligned */
  338. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  339. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  340. amdgpu_ring_write(ring, ib->length_dw);
  341. amdgpu_ring_write(ring, 0);
  342. amdgpu_ring_write(ring, 0);
  343. }
  344. /**
  345. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  346. *
  347. * @ring: amdgpu ring pointer
  348. *
  349. * Emit an hdp flush packet on the requested DMA ring.
  350. */
  351. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  352. {
  353. u32 ref_and_mask = 0;
  354. if (ring == &ring->adev->sdma.instance[0].ring)
  355. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  356. else
  357. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  358. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  359. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  360. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  361. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  362. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  363. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  364. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  365. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  366. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  367. }
  368. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  369. {
  370. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  371. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  372. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  373. amdgpu_ring_write(ring, 1);
  374. }
  375. /**
  376. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  377. *
  378. * @ring: amdgpu ring pointer
  379. * @fence: amdgpu fence object
  380. *
  381. * Add a DMA fence packet to the ring to write
  382. * the fence seq number and DMA trap packet to generate
  383. * an interrupt if needed (VI).
  384. */
  385. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  386. unsigned flags)
  387. {
  388. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  389. /* write the fence */
  390. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  391. amdgpu_ring_write(ring, lower_32_bits(addr));
  392. amdgpu_ring_write(ring, upper_32_bits(addr));
  393. amdgpu_ring_write(ring, lower_32_bits(seq));
  394. /* optionally write high bits as well */
  395. if (write64bit) {
  396. addr += 4;
  397. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  398. amdgpu_ring_write(ring, lower_32_bits(addr));
  399. amdgpu_ring_write(ring, upper_32_bits(addr));
  400. amdgpu_ring_write(ring, upper_32_bits(seq));
  401. }
  402. /* generate an interrupt */
  403. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  404. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  405. }
  406. /**
  407. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  408. *
  409. * @adev: amdgpu_device pointer
  410. *
  411. * Stop the gfx async dma ring buffers (VI).
  412. */
  413. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  414. {
  415. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  416. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  417. u32 rb_cntl, ib_cntl;
  418. int i;
  419. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  420. (adev->mman.buffer_funcs_ring == sdma1))
  421. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  422. for (i = 0; i < adev->sdma.num_instances; i++) {
  423. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  424. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  425. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  426. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  427. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  428. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  429. }
  430. sdma0->ready = false;
  431. sdma1->ready = false;
  432. }
  433. /**
  434. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  435. *
  436. * @adev: amdgpu_device pointer
  437. *
  438. * Stop the compute async dma queues (VI).
  439. */
  440. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  441. {
  442. /* XXX todo */
  443. }
  444. /**
  445. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  446. *
  447. * @adev: amdgpu_device pointer
  448. * @enable: enable/disable the DMA MEs context switch.
  449. *
  450. * Halt or unhalt the async dma engines context switch (VI).
  451. */
  452. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  453. {
  454. u32 f32_cntl;
  455. int i;
  456. for (i = 0; i < adev->sdma.num_instances; i++) {
  457. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  458. if (enable)
  459. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  460. AUTO_CTXSW_ENABLE, 1);
  461. else
  462. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  463. AUTO_CTXSW_ENABLE, 0);
  464. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  465. }
  466. }
  467. /**
  468. * sdma_v3_0_enable - stop the async dma engines
  469. *
  470. * @adev: amdgpu_device pointer
  471. * @enable: enable/disable the DMA MEs.
  472. *
  473. * Halt or unhalt the async dma engines (VI).
  474. */
  475. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  476. {
  477. u32 f32_cntl;
  478. int i;
  479. if (enable == false) {
  480. sdma_v3_0_gfx_stop(adev);
  481. sdma_v3_0_rlc_stop(adev);
  482. }
  483. for (i = 0; i < adev->sdma.num_instances; i++) {
  484. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  485. if (enable)
  486. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  487. else
  488. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  489. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  490. }
  491. }
  492. /**
  493. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  494. *
  495. * @adev: amdgpu_device pointer
  496. *
  497. * Set up the gfx DMA ring buffers and enable them (VI).
  498. * Returns 0 for success, error for failure.
  499. */
  500. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  501. {
  502. struct amdgpu_ring *ring;
  503. u32 rb_cntl, ib_cntl;
  504. u32 rb_bufsz;
  505. u32 wb_offset;
  506. u32 doorbell;
  507. int i, j, r;
  508. for (i = 0; i < adev->sdma.num_instances; i++) {
  509. ring = &adev->sdma.instance[i].ring;
  510. wb_offset = (ring->rptr_offs * 4);
  511. mutex_lock(&adev->srbm_mutex);
  512. for (j = 0; j < 16; j++) {
  513. vi_srbm_select(adev, 0, 0, 0, j);
  514. /* SDMA GFX */
  515. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  516. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  517. }
  518. vi_srbm_select(adev, 0, 0, 0, 0);
  519. mutex_unlock(&adev->srbm_mutex);
  520. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  521. adev->gfx.config.gb_addr_config & 0x70);
  522. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  523. /* Set ring buffer size in dwords */
  524. rb_bufsz = order_base_2(ring->ring_size / 4);
  525. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  526. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  527. #ifdef __BIG_ENDIAN
  528. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  529. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  530. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  531. #endif
  532. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  533. /* Initialize the ring buffer's read and write pointers */
  534. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  535. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  536. /* set the wb address whether it's enabled or not */
  537. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  538. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  539. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  540. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  541. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  542. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  543. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  544. ring->wptr = 0;
  545. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  546. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  547. if (ring->use_doorbell) {
  548. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  549. OFFSET, ring->doorbell_index);
  550. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  551. } else {
  552. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  553. }
  554. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  555. /* enable DMA RB */
  556. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  557. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  558. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  559. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  560. #ifdef __BIG_ENDIAN
  561. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  562. #endif
  563. /* enable DMA IBs */
  564. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  565. ring->ready = true;
  566. r = amdgpu_ring_test_ring(ring);
  567. if (r) {
  568. ring->ready = false;
  569. return r;
  570. }
  571. if (adev->mman.buffer_funcs_ring == ring)
  572. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  573. }
  574. return 0;
  575. }
  576. /**
  577. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  578. *
  579. * @adev: amdgpu_device pointer
  580. *
  581. * Set up the compute DMA queues and enable them (VI).
  582. * Returns 0 for success, error for failure.
  583. */
  584. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  585. {
  586. /* XXX todo */
  587. return 0;
  588. }
  589. /**
  590. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  591. *
  592. * @adev: amdgpu_device pointer
  593. *
  594. * Loads the sDMA0/1 ucode.
  595. * Returns 0 for success, -EINVAL if the ucode is not available.
  596. */
  597. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  598. {
  599. const struct sdma_firmware_header_v1_0 *hdr;
  600. const __le32 *fw_data;
  601. u32 fw_size;
  602. int i, j;
  603. /* halt the MEs */
  604. sdma_v3_0_enable(adev, false);
  605. for (i = 0; i < adev->sdma.num_instances; i++) {
  606. if (!adev->sdma.instance[i].fw)
  607. return -EINVAL;
  608. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  609. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  610. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  611. fw_data = (const __le32 *)
  612. (adev->sdma.instance[i].fw->data +
  613. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  614. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  615. for (j = 0; j < fw_size; j++)
  616. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  617. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  618. }
  619. return 0;
  620. }
  621. /**
  622. * sdma_v3_0_start - setup and start the async dma engines
  623. *
  624. * @adev: amdgpu_device pointer
  625. *
  626. * Set up the DMA engines and enable them (VI).
  627. * Returns 0 for success, error for failure.
  628. */
  629. static int sdma_v3_0_start(struct amdgpu_device *adev)
  630. {
  631. int r, i;
  632. if (!adev->pp_enabled) {
  633. if (!adev->firmware.smu_load) {
  634. r = sdma_v3_0_load_microcode(adev);
  635. if (r)
  636. return r;
  637. } else {
  638. for (i = 0; i < adev->sdma.num_instances; i++) {
  639. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  640. (i == 0) ?
  641. AMDGPU_UCODE_ID_SDMA0 :
  642. AMDGPU_UCODE_ID_SDMA1);
  643. if (r)
  644. return -EINVAL;
  645. }
  646. }
  647. }
  648. /* unhalt the MEs */
  649. sdma_v3_0_enable(adev, true);
  650. /* enable sdma ring preemption */
  651. sdma_v3_0_ctx_switch_enable(adev, true);
  652. /* start the gfx rings and rlc compute queues */
  653. r = sdma_v3_0_gfx_resume(adev);
  654. if (r)
  655. return r;
  656. r = sdma_v3_0_rlc_resume(adev);
  657. if (r)
  658. return r;
  659. return 0;
  660. }
  661. /**
  662. * sdma_v3_0_ring_test_ring - simple async dma engine test
  663. *
  664. * @ring: amdgpu_ring structure holding ring information
  665. *
  666. * Test the DMA engine by writing using it to write an
  667. * value to memory. (VI).
  668. * Returns 0 for success, error for failure.
  669. */
  670. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  671. {
  672. struct amdgpu_device *adev = ring->adev;
  673. unsigned i;
  674. unsigned index;
  675. int r;
  676. u32 tmp;
  677. u64 gpu_addr;
  678. r = amdgpu_wb_get(adev, &index);
  679. if (r) {
  680. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  681. return r;
  682. }
  683. gpu_addr = adev->wb.gpu_addr + (index * 4);
  684. tmp = 0xCAFEDEAD;
  685. adev->wb.wb[index] = cpu_to_le32(tmp);
  686. r = amdgpu_ring_alloc(ring, 5);
  687. if (r) {
  688. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  689. amdgpu_wb_free(adev, index);
  690. return r;
  691. }
  692. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  693. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  694. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  695. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  696. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  697. amdgpu_ring_write(ring, 0xDEADBEEF);
  698. amdgpu_ring_commit(ring);
  699. for (i = 0; i < adev->usec_timeout; i++) {
  700. tmp = le32_to_cpu(adev->wb.wb[index]);
  701. if (tmp == 0xDEADBEEF)
  702. break;
  703. DRM_UDELAY(1);
  704. }
  705. if (i < adev->usec_timeout) {
  706. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  707. } else {
  708. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  709. ring->idx, tmp);
  710. r = -EINVAL;
  711. }
  712. amdgpu_wb_free(adev, index);
  713. return r;
  714. }
  715. /**
  716. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  717. *
  718. * @ring: amdgpu_ring structure holding ring information
  719. *
  720. * Test a simple IB in the DMA ring (VI).
  721. * Returns 0 on success, error on failure.
  722. */
  723. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  724. {
  725. struct amdgpu_device *adev = ring->adev;
  726. struct amdgpu_ib ib;
  727. struct fence *f = NULL;
  728. unsigned i;
  729. unsigned index;
  730. int r;
  731. u32 tmp = 0;
  732. u64 gpu_addr;
  733. r = amdgpu_wb_get(adev, &index);
  734. if (r) {
  735. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  736. return r;
  737. }
  738. gpu_addr = adev->wb.gpu_addr + (index * 4);
  739. tmp = 0xCAFEDEAD;
  740. adev->wb.wb[index] = cpu_to_le32(tmp);
  741. memset(&ib, 0, sizeof(ib));
  742. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  743. if (r) {
  744. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  745. goto err0;
  746. }
  747. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  748. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  749. ib.ptr[1] = lower_32_bits(gpu_addr);
  750. ib.ptr[2] = upper_32_bits(gpu_addr);
  751. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  752. ib.ptr[4] = 0xDEADBEEF;
  753. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  754. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  755. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  756. ib.length_dw = 8;
  757. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  758. if (r)
  759. goto err1;
  760. r = fence_wait(f, false);
  761. if (r) {
  762. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  763. goto err1;
  764. }
  765. for (i = 0; i < adev->usec_timeout; i++) {
  766. tmp = le32_to_cpu(adev->wb.wb[index]);
  767. if (tmp == 0xDEADBEEF)
  768. break;
  769. DRM_UDELAY(1);
  770. }
  771. if (i < adev->usec_timeout) {
  772. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  773. ring->idx, i);
  774. goto err1;
  775. } else {
  776. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  777. r = -EINVAL;
  778. }
  779. err1:
  780. fence_put(f);
  781. amdgpu_ib_free(adev, &ib, NULL);
  782. fence_put(f);
  783. err0:
  784. amdgpu_wb_free(adev, index);
  785. return r;
  786. }
  787. /**
  788. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  789. *
  790. * @ib: indirect buffer to fill with commands
  791. * @pe: addr of the page entry
  792. * @src: src addr to copy from
  793. * @count: number of page entries to update
  794. *
  795. * Update PTEs by copying them from the GART using sDMA (CIK).
  796. */
  797. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  798. uint64_t pe, uint64_t src,
  799. unsigned count)
  800. {
  801. while (count) {
  802. unsigned bytes = count * 8;
  803. if (bytes > 0x1FFFF8)
  804. bytes = 0x1FFFF8;
  805. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  806. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  807. ib->ptr[ib->length_dw++] = bytes;
  808. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  809. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  810. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  811. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  812. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  813. pe += bytes;
  814. src += bytes;
  815. count -= bytes / 8;
  816. }
  817. }
  818. /**
  819. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  820. *
  821. * @ib: indirect buffer to fill with commands
  822. * @pe: addr of the page entry
  823. * @addr: dst addr to write into pe
  824. * @count: number of page entries to update
  825. * @incr: increase next addr by incr bytes
  826. * @flags: access flags
  827. *
  828. * Update PTEs by writing them manually using sDMA (CIK).
  829. */
  830. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  831. const dma_addr_t *pages_addr, uint64_t pe,
  832. uint64_t addr, unsigned count,
  833. uint32_t incr, uint32_t flags)
  834. {
  835. uint64_t value;
  836. unsigned ndw;
  837. while (count) {
  838. ndw = count * 2;
  839. if (ndw > 0xFFFFE)
  840. ndw = 0xFFFFE;
  841. /* for non-physically contiguous pages (system) */
  842. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  843. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  844. ib->ptr[ib->length_dw++] = pe;
  845. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  846. ib->ptr[ib->length_dw++] = ndw;
  847. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  848. value = amdgpu_vm_map_gart(pages_addr, addr);
  849. addr += incr;
  850. value |= flags;
  851. ib->ptr[ib->length_dw++] = value;
  852. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  853. }
  854. }
  855. }
  856. /**
  857. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  858. *
  859. * @ib: indirect buffer to fill with commands
  860. * @pe: addr of the page entry
  861. * @addr: dst addr to write into pe
  862. * @count: number of page entries to update
  863. * @incr: increase next addr by incr bytes
  864. * @flags: access flags
  865. *
  866. * Update the page tables using sDMA (CIK).
  867. */
  868. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  869. uint64_t pe,
  870. uint64_t addr, unsigned count,
  871. uint32_t incr, uint32_t flags)
  872. {
  873. uint64_t value;
  874. unsigned ndw;
  875. while (count) {
  876. ndw = count;
  877. if (ndw > 0x7FFFF)
  878. ndw = 0x7FFFF;
  879. if (flags & AMDGPU_PTE_VALID)
  880. value = addr;
  881. else
  882. value = 0;
  883. /* for physically contiguous pages (vram) */
  884. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  885. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  886. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  887. ib->ptr[ib->length_dw++] = flags; /* mask */
  888. ib->ptr[ib->length_dw++] = 0;
  889. ib->ptr[ib->length_dw++] = value; /* value */
  890. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  891. ib->ptr[ib->length_dw++] = incr; /* increment size */
  892. ib->ptr[ib->length_dw++] = 0;
  893. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  894. pe += ndw * 8;
  895. addr += ndw * incr;
  896. count -= ndw;
  897. }
  898. }
  899. /**
  900. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  901. *
  902. * @ib: indirect buffer to fill with padding
  903. *
  904. */
  905. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  906. {
  907. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  908. u32 pad_count;
  909. int i;
  910. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  911. for (i = 0; i < pad_count; i++)
  912. if (sdma && sdma->burst_nop && (i == 0))
  913. ib->ptr[ib->length_dw++] =
  914. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  915. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  916. else
  917. ib->ptr[ib->length_dw++] =
  918. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  919. }
  920. /**
  921. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  922. *
  923. * @ring: amdgpu_ring pointer
  924. *
  925. * Make sure all previous operations are completed (CIK).
  926. */
  927. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  928. {
  929. uint32_t seq = ring->fence_drv.sync_seq;
  930. uint64_t addr = ring->fence_drv.gpu_addr;
  931. /* wait for idle */
  932. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  933. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  934. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  935. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  936. amdgpu_ring_write(ring, addr & 0xfffffffc);
  937. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  938. amdgpu_ring_write(ring, seq); /* reference */
  939. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  940. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  941. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  942. }
  943. /**
  944. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  945. *
  946. * @ring: amdgpu_ring pointer
  947. * @vm: amdgpu_vm pointer
  948. *
  949. * Update the page table base and flush the VM TLB
  950. * using sDMA (VI).
  951. */
  952. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  953. unsigned vm_id, uint64_t pd_addr)
  954. {
  955. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  956. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  957. if (vm_id < 8) {
  958. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  959. } else {
  960. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  961. }
  962. amdgpu_ring_write(ring, pd_addr >> 12);
  963. /* flush TLB */
  964. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  965. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  966. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  967. amdgpu_ring_write(ring, 1 << vm_id);
  968. /* wait for flush */
  969. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  970. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  971. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  972. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  973. amdgpu_ring_write(ring, 0);
  974. amdgpu_ring_write(ring, 0); /* reference */
  975. amdgpu_ring_write(ring, 0); /* mask */
  976. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  977. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  978. }
  979. static int sdma_v3_0_early_init(void *handle)
  980. {
  981. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  982. switch (adev->asic_type) {
  983. case CHIP_STONEY:
  984. adev->sdma.num_instances = 1;
  985. break;
  986. default:
  987. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  988. break;
  989. }
  990. sdma_v3_0_set_ring_funcs(adev);
  991. sdma_v3_0_set_buffer_funcs(adev);
  992. sdma_v3_0_set_vm_pte_funcs(adev);
  993. sdma_v3_0_set_irq_funcs(adev);
  994. return 0;
  995. }
  996. static int sdma_v3_0_sw_init(void *handle)
  997. {
  998. struct amdgpu_ring *ring;
  999. int r, i;
  1000. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1001. /* SDMA trap event */
  1002. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1003. if (r)
  1004. return r;
  1005. /* SDMA Privileged inst */
  1006. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1007. if (r)
  1008. return r;
  1009. /* SDMA Privileged inst */
  1010. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1011. if (r)
  1012. return r;
  1013. r = sdma_v3_0_init_microcode(adev);
  1014. if (r) {
  1015. DRM_ERROR("Failed to load sdma firmware!\n");
  1016. return r;
  1017. }
  1018. for (i = 0; i < adev->sdma.num_instances; i++) {
  1019. ring = &adev->sdma.instance[i].ring;
  1020. ring->ring_obj = NULL;
  1021. ring->use_doorbell = true;
  1022. ring->doorbell_index = (i == 0) ?
  1023. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1024. sprintf(ring->name, "sdma%d", i);
  1025. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  1026. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1027. &adev->sdma.trap_irq,
  1028. (i == 0) ?
  1029. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1030. AMDGPU_RING_TYPE_SDMA);
  1031. if (r)
  1032. return r;
  1033. }
  1034. return r;
  1035. }
  1036. static int sdma_v3_0_sw_fini(void *handle)
  1037. {
  1038. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1039. int i;
  1040. for (i = 0; i < adev->sdma.num_instances; i++)
  1041. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1042. return 0;
  1043. }
  1044. static int sdma_v3_0_hw_init(void *handle)
  1045. {
  1046. int r;
  1047. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1048. sdma_v3_0_init_golden_registers(adev);
  1049. r = sdma_v3_0_start(adev);
  1050. if (r)
  1051. return r;
  1052. return r;
  1053. }
  1054. static int sdma_v3_0_hw_fini(void *handle)
  1055. {
  1056. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1057. sdma_v3_0_ctx_switch_enable(adev, false);
  1058. sdma_v3_0_enable(adev, false);
  1059. return 0;
  1060. }
  1061. static int sdma_v3_0_suspend(void *handle)
  1062. {
  1063. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1064. return sdma_v3_0_hw_fini(adev);
  1065. }
  1066. static int sdma_v3_0_resume(void *handle)
  1067. {
  1068. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1069. return sdma_v3_0_hw_init(adev);
  1070. }
  1071. static bool sdma_v3_0_is_idle(void *handle)
  1072. {
  1073. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1074. u32 tmp = RREG32(mmSRBM_STATUS2);
  1075. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1076. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1077. return false;
  1078. return true;
  1079. }
  1080. static int sdma_v3_0_wait_for_idle(void *handle)
  1081. {
  1082. unsigned i;
  1083. u32 tmp;
  1084. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1085. for (i = 0; i < adev->usec_timeout; i++) {
  1086. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1087. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1088. if (!tmp)
  1089. return 0;
  1090. udelay(1);
  1091. }
  1092. return -ETIMEDOUT;
  1093. }
  1094. static void sdma_v3_0_print_status(void *handle)
  1095. {
  1096. int i, j;
  1097. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1098. dev_info(adev->dev, "VI SDMA registers\n");
  1099. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  1100. RREG32(mmSRBM_STATUS2));
  1101. for (i = 0; i < adev->sdma.num_instances; i++) {
  1102. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  1103. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  1104. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  1105. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  1106. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  1107. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  1108. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  1109. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1110. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1111. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1112. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1113. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1114. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1115. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1116. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1117. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1118. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1119. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1120. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1121. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1122. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1123. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1124. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1125. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1126. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1127. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1128. dev_info(adev->dev, " SDMA%d_TILING_CONFIG=0x%08X\n",
  1129. i, RREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i]));
  1130. mutex_lock(&adev->srbm_mutex);
  1131. for (j = 0; j < 16; j++) {
  1132. vi_srbm_select(adev, 0, 0, 0, j);
  1133. dev_info(adev->dev, " VM %d:\n", j);
  1134. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1135. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1136. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1137. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1138. }
  1139. vi_srbm_select(adev, 0, 0, 0, 0);
  1140. mutex_unlock(&adev->srbm_mutex);
  1141. }
  1142. }
  1143. static int sdma_v3_0_soft_reset(void *handle)
  1144. {
  1145. u32 srbm_soft_reset = 0;
  1146. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1147. u32 tmp = RREG32(mmSRBM_STATUS2);
  1148. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1149. /* sdma0 */
  1150. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1151. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1152. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1153. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1154. }
  1155. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1156. /* sdma1 */
  1157. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1158. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1159. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1160. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1161. }
  1162. if (srbm_soft_reset) {
  1163. sdma_v3_0_print_status((void *)adev);
  1164. tmp = RREG32(mmSRBM_SOFT_RESET);
  1165. tmp |= srbm_soft_reset;
  1166. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1167. WREG32(mmSRBM_SOFT_RESET, tmp);
  1168. tmp = RREG32(mmSRBM_SOFT_RESET);
  1169. udelay(50);
  1170. tmp &= ~srbm_soft_reset;
  1171. WREG32(mmSRBM_SOFT_RESET, tmp);
  1172. tmp = RREG32(mmSRBM_SOFT_RESET);
  1173. /* Wait a little for things to settle down */
  1174. udelay(50);
  1175. sdma_v3_0_print_status((void *)adev);
  1176. }
  1177. return 0;
  1178. }
  1179. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1180. struct amdgpu_irq_src *source,
  1181. unsigned type,
  1182. enum amdgpu_interrupt_state state)
  1183. {
  1184. u32 sdma_cntl;
  1185. switch (type) {
  1186. case AMDGPU_SDMA_IRQ_TRAP0:
  1187. switch (state) {
  1188. case AMDGPU_IRQ_STATE_DISABLE:
  1189. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1190. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1191. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1192. break;
  1193. case AMDGPU_IRQ_STATE_ENABLE:
  1194. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1195. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1196. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1197. break;
  1198. default:
  1199. break;
  1200. }
  1201. break;
  1202. case AMDGPU_SDMA_IRQ_TRAP1:
  1203. switch (state) {
  1204. case AMDGPU_IRQ_STATE_DISABLE:
  1205. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1206. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1207. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1208. break;
  1209. case AMDGPU_IRQ_STATE_ENABLE:
  1210. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1211. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1212. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1213. break;
  1214. default:
  1215. break;
  1216. }
  1217. break;
  1218. default:
  1219. break;
  1220. }
  1221. return 0;
  1222. }
  1223. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1224. struct amdgpu_irq_src *source,
  1225. struct amdgpu_iv_entry *entry)
  1226. {
  1227. u8 instance_id, queue_id;
  1228. instance_id = (entry->ring_id & 0x3) >> 0;
  1229. queue_id = (entry->ring_id & 0xc) >> 2;
  1230. DRM_DEBUG("IH: SDMA trap\n");
  1231. switch (instance_id) {
  1232. case 0:
  1233. switch (queue_id) {
  1234. case 0:
  1235. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1236. break;
  1237. case 1:
  1238. /* XXX compute */
  1239. break;
  1240. case 2:
  1241. /* XXX compute */
  1242. break;
  1243. }
  1244. break;
  1245. case 1:
  1246. switch (queue_id) {
  1247. case 0:
  1248. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1249. break;
  1250. case 1:
  1251. /* XXX compute */
  1252. break;
  1253. case 2:
  1254. /* XXX compute */
  1255. break;
  1256. }
  1257. break;
  1258. }
  1259. return 0;
  1260. }
  1261. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1262. struct amdgpu_irq_src *source,
  1263. struct amdgpu_iv_entry *entry)
  1264. {
  1265. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1266. schedule_work(&adev->reset_work);
  1267. return 0;
  1268. }
  1269. static void fiji_update_sdma_medium_grain_clock_gating(
  1270. struct amdgpu_device *adev,
  1271. bool enable)
  1272. {
  1273. uint32_t temp, data;
  1274. if (enable) {
  1275. temp = data = RREG32(mmSDMA0_CLK_CTRL);
  1276. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1277. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1278. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1279. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1280. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1281. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1282. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1283. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1284. if (data != temp)
  1285. WREG32(mmSDMA0_CLK_CTRL, data);
  1286. temp = data = RREG32(mmSDMA1_CLK_CTRL);
  1287. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1288. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1289. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1290. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1291. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1292. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1293. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1294. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1295. if (data != temp)
  1296. WREG32(mmSDMA1_CLK_CTRL, data);
  1297. } else {
  1298. temp = data = RREG32(mmSDMA0_CLK_CTRL);
  1299. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1300. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1301. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1302. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1303. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1304. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1305. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1306. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1307. if (data != temp)
  1308. WREG32(mmSDMA0_CLK_CTRL, data);
  1309. temp = data = RREG32(mmSDMA1_CLK_CTRL);
  1310. data |= SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1311. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1312. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1313. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1314. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1315. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1316. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1317. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1318. if (data != temp)
  1319. WREG32(mmSDMA1_CLK_CTRL, data);
  1320. }
  1321. }
  1322. static void fiji_update_sdma_medium_grain_light_sleep(
  1323. struct amdgpu_device *adev,
  1324. bool enable)
  1325. {
  1326. uint32_t temp, data;
  1327. if (enable) {
  1328. temp = data = RREG32(mmSDMA0_POWER_CNTL);
  1329. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1330. if (temp != data)
  1331. WREG32(mmSDMA0_POWER_CNTL, data);
  1332. temp = data = RREG32(mmSDMA1_POWER_CNTL);
  1333. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1334. if (temp != data)
  1335. WREG32(mmSDMA1_POWER_CNTL, data);
  1336. } else {
  1337. temp = data = RREG32(mmSDMA0_POWER_CNTL);
  1338. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1339. if (temp != data)
  1340. WREG32(mmSDMA0_POWER_CNTL, data);
  1341. temp = data = RREG32(mmSDMA1_POWER_CNTL);
  1342. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1343. if (temp != data)
  1344. WREG32(mmSDMA1_POWER_CNTL, data);
  1345. }
  1346. }
  1347. static int sdma_v3_0_set_clockgating_state(void *handle,
  1348. enum amd_clockgating_state state)
  1349. {
  1350. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1351. switch (adev->asic_type) {
  1352. case CHIP_FIJI:
  1353. fiji_update_sdma_medium_grain_clock_gating(adev,
  1354. state == AMD_CG_STATE_GATE ? true : false);
  1355. fiji_update_sdma_medium_grain_light_sleep(adev,
  1356. state == AMD_CG_STATE_GATE ? true : false);
  1357. break;
  1358. default:
  1359. break;
  1360. }
  1361. return 0;
  1362. }
  1363. static int sdma_v3_0_set_powergating_state(void *handle,
  1364. enum amd_powergating_state state)
  1365. {
  1366. return 0;
  1367. }
  1368. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1369. .early_init = sdma_v3_0_early_init,
  1370. .late_init = NULL,
  1371. .sw_init = sdma_v3_0_sw_init,
  1372. .sw_fini = sdma_v3_0_sw_fini,
  1373. .hw_init = sdma_v3_0_hw_init,
  1374. .hw_fini = sdma_v3_0_hw_fini,
  1375. .suspend = sdma_v3_0_suspend,
  1376. .resume = sdma_v3_0_resume,
  1377. .is_idle = sdma_v3_0_is_idle,
  1378. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1379. .soft_reset = sdma_v3_0_soft_reset,
  1380. .print_status = sdma_v3_0_print_status,
  1381. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1382. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1383. };
  1384. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1385. .get_rptr = sdma_v3_0_ring_get_rptr,
  1386. .get_wptr = sdma_v3_0_ring_get_wptr,
  1387. .set_wptr = sdma_v3_0_ring_set_wptr,
  1388. .parse_cs = NULL,
  1389. .emit_ib = sdma_v3_0_ring_emit_ib,
  1390. .emit_fence = sdma_v3_0_ring_emit_fence,
  1391. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1392. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1393. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1394. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1395. .test_ring = sdma_v3_0_ring_test_ring,
  1396. .test_ib = sdma_v3_0_ring_test_ib,
  1397. .insert_nop = sdma_v3_0_ring_insert_nop,
  1398. .pad_ib = sdma_v3_0_ring_pad_ib,
  1399. };
  1400. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1401. {
  1402. int i;
  1403. for (i = 0; i < adev->sdma.num_instances; i++)
  1404. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1405. }
  1406. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1407. .set = sdma_v3_0_set_trap_irq_state,
  1408. .process = sdma_v3_0_process_trap_irq,
  1409. };
  1410. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1411. .process = sdma_v3_0_process_illegal_inst_irq,
  1412. };
  1413. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1414. {
  1415. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1416. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1417. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1418. }
  1419. /**
  1420. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1421. *
  1422. * @ring: amdgpu_ring structure holding ring information
  1423. * @src_offset: src GPU address
  1424. * @dst_offset: dst GPU address
  1425. * @byte_count: number of bytes to xfer
  1426. *
  1427. * Copy GPU buffers using the DMA engine (VI).
  1428. * Used by the amdgpu ttm implementation to move pages if
  1429. * registered as the asic copy callback.
  1430. */
  1431. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1432. uint64_t src_offset,
  1433. uint64_t dst_offset,
  1434. uint32_t byte_count)
  1435. {
  1436. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1437. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1438. ib->ptr[ib->length_dw++] = byte_count;
  1439. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1440. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1441. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1442. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1443. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1444. }
  1445. /**
  1446. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1447. *
  1448. * @ring: amdgpu_ring structure holding ring information
  1449. * @src_data: value to write to buffer
  1450. * @dst_offset: dst GPU address
  1451. * @byte_count: number of bytes to xfer
  1452. *
  1453. * Fill GPU buffers using the DMA engine (VI).
  1454. */
  1455. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1456. uint32_t src_data,
  1457. uint64_t dst_offset,
  1458. uint32_t byte_count)
  1459. {
  1460. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1461. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1462. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1463. ib->ptr[ib->length_dw++] = src_data;
  1464. ib->ptr[ib->length_dw++] = byte_count;
  1465. }
  1466. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1467. .copy_max_bytes = 0x1fffff,
  1468. .copy_num_dw = 7,
  1469. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1470. .fill_max_bytes = 0x1fffff,
  1471. .fill_num_dw = 5,
  1472. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1473. };
  1474. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1475. {
  1476. if (adev->mman.buffer_funcs == NULL) {
  1477. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1478. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1479. }
  1480. }
  1481. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1482. .copy_pte = sdma_v3_0_vm_copy_pte,
  1483. .write_pte = sdma_v3_0_vm_write_pte,
  1484. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1485. };
  1486. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1487. {
  1488. unsigned i;
  1489. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1490. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1491. for (i = 0; i < adev->sdma.num_instances; i++)
  1492. adev->vm_manager.vm_pte_rings[i] =
  1493. &adev->sdma.instance[i].ring;
  1494. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1495. }
  1496. }