fake_mem.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. /*
  2. * fake_mem.c
  3. *
  4. * Copyright (C) 2015 FUJITSU LIMITED
  5. * Author: Taku Izumi <izumi.taku@jp.fujitsu.com>
  6. *
  7. * This code introduces new boot option named "efi_fake_mem"
  8. * By specifying this parameter, you can add arbitrary attribute to
  9. * specific memory range by updating original (firmware provided) EFI
  10. * memmap.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms and conditions of the GNU General Public License,
  14. * version 2, as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope it will be useful, but WITHOUT
  17. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  19. * more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along with
  22. * this program; if not, see <http://www.gnu.org/licenses/>.
  23. *
  24. * The full GNU General Public License is included in this distribution in
  25. * the file called "COPYING".
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/efi.h>
  29. #include <linux/init.h>
  30. #include <linux/memblock.h>
  31. #include <linux/types.h>
  32. #include <linux/sort.h>
  33. #include <asm/efi.h>
  34. #define EFI_MAX_FAKEMEM CONFIG_EFI_MAX_FAKE_MEM
  35. struct fake_mem {
  36. struct range range;
  37. u64 attribute;
  38. };
  39. static struct fake_mem fake_mems[EFI_MAX_FAKEMEM];
  40. static int nr_fake_mem;
  41. static int __init cmp_fake_mem(const void *x1, const void *x2)
  42. {
  43. const struct fake_mem *m1 = x1;
  44. const struct fake_mem *m2 = x2;
  45. if (m1->range.start < m2->range.start)
  46. return -1;
  47. if (m1->range.start > m2->range.start)
  48. return 1;
  49. return 0;
  50. }
  51. void __init efi_fake_memmap(void)
  52. {
  53. u64 start, end, m_start, m_end, m_attr;
  54. int new_nr_map = memmap.nr_map;
  55. efi_memory_desc_t *md;
  56. phys_addr_t new_memmap_phy;
  57. void *new_memmap;
  58. void *old, *new;
  59. int i;
  60. if (!nr_fake_mem || !efi_enabled(EFI_MEMMAP))
  61. return;
  62. /* count up the number of EFI memory descriptor */
  63. for (old = memmap.map; old < memmap.map_end; old += memmap.desc_size) {
  64. md = old;
  65. start = md->phys_addr;
  66. end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
  67. for (i = 0; i < nr_fake_mem; i++) {
  68. /* modifying range */
  69. m_start = fake_mems[i].range.start;
  70. m_end = fake_mems[i].range.end;
  71. if (m_start <= start) {
  72. /* split into 2 parts */
  73. if (start < m_end && m_end < end)
  74. new_nr_map++;
  75. }
  76. if (start < m_start && m_start < end) {
  77. /* split into 3 parts */
  78. if (m_end < end)
  79. new_nr_map += 2;
  80. /* split into 2 parts */
  81. if (end <= m_end)
  82. new_nr_map++;
  83. }
  84. }
  85. }
  86. /* allocate memory for new EFI memmap */
  87. new_memmap_phy = memblock_alloc(memmap.desc_size * new_nr_map,
  88. PAGE_SIZE);
  89. if (!new_memmap_phy)
  90. return;
  91. /* create new EFI memmap */
  92. new_memmap = early_memremap(new_memmap_phy,
  93. memmap.desc_size * new_nr_map);
  94. if (!new_memmap) {
  95. memblock_free(new_memmap_phy, memmap.desc_size * new_nr_map);
  96. return;
  97. }
  98. for (old = memmap.map, new = new_memmap;
  99. old < memmap.map_end;
  100. old += memmap.desc_size, new += memmap.desc_size) {
  101. /* copy original EFI memory descriptor */
  102. memcpy(new, old, memmap.desc_size);
  103. md = new;
  104. start = md->phys_addr;
  105. end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
  106. for (i = 0; i < nr_fake_mem; i++) {
  107. /* modifying range */
  108. m_start = fake_mems[i].range.start;
  109. m_end = fake_mems[i].range.end;
  110. m_attr = fake_mems[i].attribute;
  111. if (m_start <= start && end <= m_end)
  112. md->attribute |= m_attr;
  113. if (m_start <= start &&
  114. (start < m_end && m_end < end)) {
  115. /* first part */
  116. md->attribute |= m_attr;
  117. md->num_pages = (m_end - md->phys_addr + 1) >>
  118. EFI_PAGE_SHIFT;
  119. /* latter part */
  120. new += memmap.desc_size;
  121. memcpy(new, old, memmap.desc_size);
  122. md = new;
  123. md->phys_addr = m_end + 1;
  124. md->num_pages = (end - md->phys_addr + 1) >>
  125. EFI_PAGE_SHIFT;
  126. }
  127. if ((start < m_start && m_start < end) && m_end < end) {
  128. /* first part */
  129. md->num_pages = (m_start - md->phys_addr) >>
  130. EFI_PAGE_SHIFT;
  131. /* middle part */
  132. new += memmap.desc_size;
  133. memcpy(new, old, memmap.desc_size);
  134. md = new;
  135. md->attribute |= m_attr;
  136. md->phys_addr = m_start;
  137. md->num_pages = (m_end - m_start + 1) >>
  138. EFI_PAGE_SHIFT;
  139. /* last part */
  140. new += memmap.desc_size;
  141. memcpy(new, old, memmap.desc_size);
  142. md = new;
  143. md->phys_addr = m_end + 1;
  144. md->num_pages = (end - m_end) >>
  145. EFI_PAGE_SHIFT;
  146. }
  147. if ((start < m_start && m_start < end) &&
  148. (end <= m_end)) {
  149. /* first part */
  150. md->num_pages = (m_start - md->phys_addr) >>
  151. EFI_PAGE_SHIFT;
  152. /* latter part */
  153. new += memmap.desc_size;
  154. memcpy(new, old, memmap.desc_size);
  155. md = new;
  156. md->phys_addr = m_start;
  157. md->num_pages = (end - md->phys_addr + 1) >>
  158. EFI_PAGE_SHIFT;
  159. md->attribute |= m_attr;
  160. }
  161. }
  162. }
  163. /* swap into new EFI memmap */
  164. efi_unmap_memmap();
  165. memmap.map = new_memmap;
  166. memmap.phys_map = new_memmap_phy;
  167. memmap.nr_map = new_nr_map;
  168. memmap.map_end = memmap.map + memmap.nr_map * memmap.desc_size;
  169. set_bit(EFI_MEMMAP, &efi.flags);
  170. /* print new EFI memmap */
  171. efi_print_memmap();
  172. }
  173. static int __init setup_fake_mem(char *p)
  174. {
  175. u64 start = 0, mem_size = 0, attribute = 0;
  176. int i;
  177. if (!p)
  178. return -EINVAL;
  179. while (*p != '\0') {
  180. mem_size = memparse(p, &p);
  181. if (*p == '@')
  182. start = memparse(p+1, &p);
  183. else
  184. break;
  185. if (*p == ':')
  186. attribute = simple_strtoull(p+1, &p, 0);
  187. else
  188. break;
  189. if (nr_fake_mem >= EFI_MAX_FAKEMEM)
  190. break;
  191. fake_mems[nr_fake_mem].range.start = start;
  192. fake_mems[nr_fake_mem].range.end = start + mem_size - 1;
  193. fake_mems[nr_fake_mem].attribute = attribute;
  194. nr_fake_mem++;
  195. if (*p == ',')
  196. p++;
  197. }
  198. sort(fake_mems, nr_fake_mem, sizeof(struct fake_mem),
  199. cmp_fake_mem, NULL);
  200. for (i = 0; i < nr_fake_mem; i++)
  201. pr_info("efi_fake_mem: add attr=0x%016llx to [mem 0x%016llx-0x%016llx]",
  202. fake_mems[i].attribute, fake_mems[i].range.start,
  203. fake_mems[i].range.end);
  204. return *p == '\0' ? 0 : -EINVAL;
  205. }
  206. early_param("efi_fake_mem", setup_fake_mem);