hash.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394
  1. /*
  2. * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
  3. *
  4. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  5. * Author: Arnaud Ebalard <arno@natisbad.org>
  6. *
  7. * This work is based on an initial version written by
  8. * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published
  12. * by the Free Software Foundation.
  13. */
  14. #include <crypto/md5.h>
  15. #include <crypto/sha.h>
  16. #include "cesa.h"
  17. struct mv_cesa_ahash_dma_iter {
  18. struct mv_cesa_dma_iter base;
  19. struct mv_cesa_sg_dma_iter src;
  20. };
  21. static inline void
  22. mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
  23. struct ahash_request *req)
  24. {
  25. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  26. unsigned int len = req->nbytes + creq->cache_ptr;
  27. if (!creq->last_req)
  28. len &= ~CESA_HASH_BLOCK_SIZE_MSK;
  29. mv_cesa_req_dma_iter_init(&iter->base, len);
  30. mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
  31. iter->src.op_offset = creq->cache_ptr;
  32. }
  33. static inline bool
  34. mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
  35. {
  36. iter->src.op_offset = 0;
  37. return mv_cesa_req_dma_iter_next_op(&iter->base);
  38. }
  39. static inline int
  40. mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
  41. {
  42. req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
  43. &req->cache_dma);
  44. if (!req->cache)
  45. return -ENOMEM;
  46. return 0;
  47. }
  48. static inline void
  49. mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
  50. {
  51. if (!req->cache)
  52. return;
  53. dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
  54. req->cache_dma);
  55. }
  56. static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
  57. gfp_t flags)
  58. {
  59. if (req->padding)
  60. return 0;
  61. req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
  62. &req->padding_dma);
  63. if (!req->padding)
  64. return -ENOMEM;
  65. return 0;
  66. }
  67. static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
  68. {
  69. if (!req->padding)
  70. return;
  71. dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
  72. req->padding_dma);
  73. req->padding = NULL;
  74. }
  75. static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
  76. {
  77. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  78. mv_cesa_ahash_dma_free_padding(&creq->req.dma);
  79. }
  80. static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
  81. {
  82. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  83. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
  84. mv_cesa_ahash_dma_free_cache(&creq->req.dma);
  85. mv_cesa_dma_cleanup(&creq->req.dma.base);
  86. }
  87. static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
  88. {
  89. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  90. if (creq->req.base.type == CESA_DMA_REQ)
  91. mv_cesa_ahash_dma_cleanup(req);
  92. }
  93. static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
  94. {
  95. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  96. if (creq->req.base.type == CESA_DMA_REQ)
  97. mv_cesa_ahash_dma_last_cleanup(req);
  98. }
  99. static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
  100. {
  101. unsigned int index, padlen;
  102. index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
  103. padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
  104. return padlen;
  105. }
  106. static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
  107. {
  108. unsigned int index, padlen;
  109. buf[0] = 0x80;
  110. /* Pad out to 56 mod 64 */
  111. index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
  112. padlen = mv_cesa_ahash_pad_len(creq);
  113. memset(buf + 1, 0, padlen - 1);
  114. if (creq->algo_le) {
  115. __le64 bits = cpu_to_le64(creq->len << 3);
  116. memcpy(buf + padlen, &bits, sizeof(bits));
  117. } else {
  118. __be64 bits = cpu_to_be64(creq->len << 3);
  119. memcpy(buf + padlen, &bits, sizeof(bits));
  120. }
  121. return padlen + 8;
  122. }
  123. static void mv_cesa_ahash_std_step(struct ahash_request *req)
  124. {
  125. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  126. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  127. struct mv_cesa_engine *engine = sreq->base.engine;
  128. struct mv_cesa_op_ctx *op;
  129. unsigned int new_cache_ptr = 0;
  130. u32 frag_mode;
  131. size_t len;
  132. if (creq->cache_ptr)
  133. memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
  134. creq->cache, creq->cache_ptr);
  135. len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
  136. CESA_SA_SRAM_PAYLOAD_SIZE);
  137. if (!creq->last_req) {
  138. new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
  139. len &= ~CESA_HASH_BLOCK_SIZE_MSK;
  140. }
  141. if (len - creq->cache_ptr)
  142. sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
  143. engine->sram +
  144. CESA_SA_DATA_SRAM_OFFSET +
  145. creq->cache_ptr,
  146. len - creq->cache_ptr,
  147. sreq->offset);
  148. op = &creq->op_tmpl;
  149. frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
  150. if (creq->last_req && sreq->offset == req->nbytes &&
  151. creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
  152. if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
  153. frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
  154. else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
  155. frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
  156. }
  157. if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
  158. frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
  159. if (len &&
  160. creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
  161. mv_cesa_set_mac_op_total_len(op, creq->len);
  162. } else {
  163. int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
  164. if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
  165. len &= CESA_HASH_BLOCK_SIZE_MSK;
  166. new_cache_ptr = 64 - trailerlen;
  167. memcpy_fromio(creq->cache,
  168. engine->sram +
  169. CESA_SA_DATA_SRAM_OFFSET + len,
  170. new_cache_ptr);
  171. } else {
  172. len += mv_cesa_ahash_pad_req(creq,
  173. engine->sram + len +
  174. CESA_SA_DATA_SRAM_OFFSET);
  175. }
  176. if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
  177. frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
  178. else
  179. frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
  180. }
  181. }
  182. mv_cesa_set_mac_op_frag_len(op, len);
  183. mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
  184. /* FIXME: only update enc_len field */
  185. memcpy_toio(engine->sram, op, sizeof(*op));
  186. if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
  187. mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
  188. CESA_SA_DESC_CFG_FRAG_MSK);
  189. creq->cache_ptr = new_cache_ptr;
  190. mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
  191. writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
  192. writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
  193. }
  194. static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
  195. {
  196. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  197. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  198. if (sreq->offset < (req->nbytes - creq->cache_ptr))
  199. return -EINPROGRESS;
  200. return 0;
  201. }
  202. static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
  203. {
  204. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  205. struct mv_cesa_tdma_req *dreq = &creq->req.dma.base;
  206. mv_cesa_dma_prepare(dreq, dreq->base.engine);
  207. }
  208. static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
  209. {
  210. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  211. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  212. struct mv_cesa_engine *engine = sreq->base.engine;
  213. sreq->offset = 0;
  214. mv_cesa_adjust_op(engine, &creq->op_tmpl);
  215. memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
  216. }
  217. static void mv_cesa_ahash_step(struct crypto_async_request *req)
  218. {
  219. struct ahash_request *ahashreq = ahash_request_cast(req);
  220. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  221. if (creq->req.base.type == CESA_DMA_REQ)
  222. mv_cesa_dma_step(&creq->req.dma.base);
  223. else
  224. mv_cesa_ahash_std_step(ahashreq);
  225. }
  226. static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
  227. {
  228. struct ahash_request *ahashreq = ahash_request_cast(req);
  229. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  230. struct mv_cesa_engine *engine = creq->req.base.engine;
  231. unsigned int digsize;
  232. int ret, i;
  233. if (creq->req.base.type == CESA_DMA_REQ)
  234. ret = mv_cesa_dma_process(&creq->req.dma.base, status);
  235. else
  236. ret = mv_cesa_ahash_std_process(ahashreq, status);
  237. if (ret == -EINPROGRESS)
  238. return ret;
  239. digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
  240. for (i = 0; i < digsize / 4; i++)
  241. creq->state[i] = readl_relaxed(engine->regs + CESA_IVDIG(i));
  242. if (creq->cache_ptr)
  243. sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
  244. creq->cache,
  245. creq->cache_ptr,
  246. ahashreq->nbytes - creq->cache_ptr);
  247. if (creq->last_req) {
  248. /*
  249. * Hardware's MD5 digest is in little endian format, but
  250. * SHA in big endian format
  251. */
  252. if (creq->algo_le) {
  253. __le32 *result = (void *)ahashreq->result;
  254. for (i = 0; i < digsize / 4; i++)
  255. result[i] = cpu_to_le32(creq->state[i]);
  256. } else {
  257. __be32 *result = (void *)ahashreq->result;
  258. for (i = 0; i < digsize / 4; i++)
  259. result[i] = cpu_to_be32(creq->state[i]);
  260. }
  261. }
  262. return ret;
  263. }
  264. static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
  265. struct mv_cesa_engine *engine)
  266. {
  267. struct ahash_request *ahashreq = ahash_request_cast(req);
  268. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  269. unsigned int digsize;
  270. int i;
  271. creq->req.base.engine = engine;
  272. if (creq->req.base.type == CESA_DMA_REQ)
  273. mv_cesa_ahash_dma_prepare(ahashreq);
  274. else
  275. mv_cesa_ahash_std_prepare(ahashreq);
  276. digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
  277. for (i = 0; i < digsize / 4; i++)
  278. writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
  279. }
  280. static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
  281. {
  282. struct ahash_request *ahashreq = ahash_request_cast(req);
  283. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  284. if (creq->last_req)
  285. mv_cesa_ahash_last_cleanup(ahashreq);
  286. mv_cesa_ahash_cleanup(ahashreq);
  287. }
  288. static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
  289. .step = mv_cesa_ahash_step,
  290. .process = mv_cesa_ahash_process,
  291. .prepare = mv_cesa_ahash_prepare,
  292. .cleanup = mv_cesa_ahash_req_cleanup,
  293. };
  294. static int mv_cesa_ahash_init(struct ahash_request *req,
  295. struct mv_cesa_op_ctx *tmpl, bool algo_le)
  296. {
  297. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  298. memset(creq, 0, sizeof(*creq));
  299. mv_cesa_update_op_cfg(tmpl,
  300. CESA_SA_DESC_CFG_OP_MAC_ONLY |
  301. CESA_SA_DESC_CFG_FIRST_FRAG,
  302. CESA_SA_DESC_CFG_OP_MSK |
  303. CESA_SA_DESC_CFG_FRAG_MSK);
  304. mv_cesa_set_mac_op_total_len(tmpl, 0);
  305. mv_cesa_set_mac_op_frag_len(tmpl, 0);
  306. creq->op_tmpl = *tmpl;
  307. creq->len = 0;
  308. creq->algo_le = algo_le;
  309. return 0;
  310. }
  311. static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
  312. {
  313. struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  314. ctx->base.ops = &mv_cesa_ahash_req_ops;
  315. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  316. sizeof(struct mv_cesa_ahash_req));
  317. return 0;
  318. }
  319. static int mv_cesa_ahash_cache_req(struct ahash_request *req, bool *cached)
  320. {
  321. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  322. if (creq->cache_ptr + req->nbytes < 64 && !creq->last_req) {
  323. *cached = true;
  324. if (!req->nbytes)
  325. return 0;
  326. sg_pcopy_to_buffer(req->src, creq->src_nents,
  327. creq->cache + creq->cache_ptr,
  328. req->nbytes, 0);
  329. creq->cache_ptr += req->nbytes;
  330. }
  331. return 0;
  332. }
  333. static struct mv_cesa_op_ctx *
  334. mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
  335. struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
  336. gfp_t flags)
  337. {
  338. struct mv_cesa_op_ctx *op;
  339. int ret;
  340. op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
  341. if (IS_ERR(op))
  342. return op;
  343. /* Set the operation block fragment length. */
  344. mv_cesa_set_mac_op_frag_len(op, frag_len);
  345. /* Append dummy desc to launch operation */
  346. ret = mv_cesa_dma_add_dummy_launch(chain, flags);
  347. if (ret)
  348. return ERR_PTR(ret);
  349. if (mv_cesa_mac_op_is_first_frag(tmpl))
  350. mv_cesa_update_op_cfg(tmpl,
  351. CESA_SA_DESC_CFG_MID_FRAG,
  352. CESA_SA_DESC_CFG_FRAG_MSK);
  353. return op;
  354. }
  355. static int
  356. mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
  357. struct mv_cesa_ahash_dma_iter *dma_iter,
  358. struct mv_cesa_ahash_req *creq,
  359. gfp_t flags)
  360. {
  361. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  362. int ret;
  363. if (!creq->cache_ptr)
  364. return 0;
  365. ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
  366. if (ret)
  367. return ret;
  368. memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
  369. return mv_cesa_dma_add_data_transfer(chain,
  370. CESA_SA_DATA_SRAM_OFFSET,
  371. ahashdreq->cache_dma,
  372. creq->cache_ptr,
  373. CESA_TDMA_DST_IN_SRAM,
  374. flags);
  375. }
  376. static struct mv_cesa_op_ctx *
  377. mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
  378. struct mv_cesa_ahash_dma_iter *dma_iter,
  379. struct mv_cesa_ahash_req *creq,
  380. unsigned int frag_len, gfp_t flags)
  381. {
  382. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  383. unsigned int len, trailerlen, padoff = 0;
  384. struct mv_cesa_op_ctx *op;
  385. int ret;
  386. /*
  387. * If the transfer is smaller than our maximum length, and we have
  388. * some data outstanding, we can ask the engine to finish the hash.
  389. */
  390. if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
  391. op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
  392. flags);
  393. if (IS_ERR(op))
  394. return op;
  395. mv_cesa_set_mac_op_total_len(op, creq->len);
  396. mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
  397. CESA_SA_DESC_CFG_NOT_FRAG :
  398. CESA_SA_DESC_CFG_LAST_FRAG,
  399. CESA_SA_DESC_CFG_FRAG_MSK);
  400. return op;
  401. }
  402. /*
  403. * The request is longer than the engine can handle, or we have
  404. * no data outstanding. Manually generate the padding, adding it
  405. * as a "mid" fragment.
  406. */
  407. ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
  408. if (ret)
  409. return ERR_PTR(ret);
  410. trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
  411. len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
  412. if (len) {
  413. ret = mv_cesa_dma_add_data_transfer(chain,
  414. CESA_SA_DATA_SRAM_OFFSET +
  415. frag_len,
  416. ahashdreq->padding_dma,
  417. len, CESA_TDMA_DST_IN_SRAM,
  418. flags);
  419. if (ret)
  420. return ERR_PTR(ret);
  421. op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
  422. flags);
  423. if (IS_ERR(op))
  424. return op;
  425. if (len == trailerlen)
  426. return op;
  427. padoff += len;
  428. }
  429. ret = mv_cesa_dma_add_data_transfer(chain,
  430. CESA_SA_DATA_SRAM_OFFSET,
  431. ahashdreq->padding_dma +
  432. padoff,
  433. trailerlen - padoff,
  434. CESA_TDMA_DST_IN_SRAM,
  435. flags);
  436. if (ret)
  437. return ERR_PTR(ret);
  438. return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
  439. flags);
  440. }
  441. static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
  442. {
  443. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  444. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  445. GFP_KERNEL : GFP_ATOMIC;
  446. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  447. struct mv_cesa_tdma_req *dreq = &ahashdreq->base;
  448. struct mv_cesa_ahash_dma_iter iter;
  449. struct mv_cesa_op_ctx *op = NULL;
  450. unsigned int frag_len;
  451. int ret;
  452. dreq->chain.first = NULL;
  453. dreq->chain.last = NULL;
  454. if (creq->src_nents) {
  455. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  456. DMA_TO_DEVICE);
  457. if (!ret) {
  458. ret = -ENOMEM;
  459. goto err;
  460. }
  461. }
  462. mv_cesa_tdma_desc_iter_init(&dreq->chain);
  463. mv_cesa_ahash_req_iter_init(&iter, req);
  464. /*
  465. * Add the cache (left-over data from a previous block) first.
  466. * This will never overflow the SRAM size.
  467. */
  468. ret = mv_cesa_ahash_dma_add_cache(&dreq->chain, &iter, creq, flags);
  469. if (ret)
  470. goto err_free_tdma;
  471. if (iter.src.sg) {
  472. /*
  473. * Add all the new data, inserting an operation block and
  474. * launch command between each full SRAM block-worth of
  475. * data. We intentionally do not add the final op block.
  476. */
  477. while (true) {
  478. ret = mv_cesa_dma_add_op_transfers(&dreq->chain,
  479. &iter.base,
  480. &iter.src, flags);
  481. if (ret)
  482. goto err_free_tdma;
  483. frag_len = iter.base.op_len;
  484. if (!mv_cesa_ahash_req_iter_next_op(&iter))
  485. break;
  486. op = mv_cesa_dma_add_frag(&dreq->chain, &creq->op_tmpl,
  487. frag_len, flags);
  488. if (IS_ERR(op)) {
  489. ret = PTR_ERR(op);
  490. goto err_free_tdma;
  491. }
  492. }
  493. } else {
  494. /* Account for the data that was in the cache. */
  495. frag_len = iter.base.op_len;
  496. }
  497. /*
  498. * At this point, frag_len indicates whether we have any data
  499. * outstanding which needs an operation. Queue up the final
  500. * operation, which depends whether this is the final request.
  501. */
  502. if (creq->last_req)
  503. op = mv_cesa_ahash_dma_last_req(&dreq->chain, &iter, creq,
  504. frag_len, flags);
  505. else if (frag_len)
  506. op = mv_cesa_dma_add_frag(&dreq->chain, &creq->op_tmpl,
  507. frag_len, flags);
  508. if (IS_ERR(op)) {
  509. ret = PTR_ERR(op);
  510. goto err_free_tdma;
  511. }
  512. if (op) {
  513. /* Add dummy desc to wait for crypto operation end */
  514. ret = mv_cesa_dma_add_dummy_end(&dreq->chain, flags);
  515. if (ret)
  516. goto err_free_tdma;
  517. }
  518. if (!creq->last_req)
  519. creq->cache_ptr = req->nbytes + creq->cache_ptr -
  520. iter.base.len;
  521. else
  522. creq->cache_ptr = 0;
  523. return 0;
  524. err_free_tdma:
  525. mv_cesa_dma_cleanup(dreq);
  526. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
  527. err:
  528. mv_cesa_ahash_last_cleanup(req);
  529. return ret;
  530. }
  531. static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
  532. {
  533. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  534. int ret;
  535. if (cesa_dev->caps->has_tdma)
  536. creq->req.base.type = CESA_DMA_REQ;
  537. else
  538. creq->req.base.type = CESA_STD_REQ;
  539. creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
  540. if (creq->src_nents < 0) {
  541. dev_err(cesa_dev->dev, "Invalid number of src SG");
  542. return creq->src_nents;
  543. }
  544. ret = mv_cesa_ahash_cache_req(req, cached);
  545. if (ret)
  546. return ret;
  547. if (*cached)
  548. return 0;
  549. if (creq->req.base.type == CESA_DMA_REQ)
  550. ret = mv_cesa_ahash_dma_req_init(req);
  551. return ret;
  552. }
  553. static int mv_cesa_ahash_update(struct ahash_request *req)
  554. {
  555. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  556. bool cached = false;
  557. int ret;
  558. creq->len += req->nbytes;
  559. ret = mv_cesa_ahash_req_init(req, &cached);
  560. if (ret)
  561. return ret;
  562. if (cached)
  563. return 0;
  564. ret = mv_cesa_queue_req(&req->base);
  565. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  566. mv_cesa_ahash_cleanup(req);
  567. return ret;
  568. }
  569. static int mv_cesa_ahash_final(struct ahash_request *req)
  570. {
  571. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  572. struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
  573. bool cached = false;
  574. int ret;
  575. mv_cesa_set_mac_op_total_len(tmpl, creq->len);
  576. creq->last_req = true;
  577. req->nbytes = 0;
  578. ret = mv_cesa_ahash_req_init(req, &cached);
  579. if (ret)
  580. return ret;
  581. if (cached)
  582. return 0;
  583. ret = mv_cesa_queue_req(&req->base);
  584. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  585. mv_cesa_ahash_cleanup(req);
  586. return ret;
  587. }
  588. static int mv_cesa_ahash_finup(struct ahash_request *req)
  589. {
  590. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  591. struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
  592. bool cached = false;
  593. int ret;
  594. creq->len += req->nbytes;
  595. mv_cesa_set_mac_op_total_len(tmpl, creq->len);
  596. creq->last_req = true;
  597. ret = mv_cesa_ahash_req_init(req, &cached);
  598. if (ret)
  599. return ret;
  600. if (cached)
  601. return 0;
  602. ret = mv_cesa_queue_req(&req->base);
  603. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  604. mv_cesa_ahash_cleanup(req);
  605. return ret;
  606. }
  607. static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
  608. u64 *len, void *cache)
  609. {
  610. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  611. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  612. unsigned int digsize = crypto_ahash_digestsize(ahash);
  613. unsigned int blocksize;
  614. blocksize = crypto_ahash_blocksize(ahash);
  615. *len = creq->len;
  616. memcpy(hash, creq->state, digsize);
  617. memset(cache, 0, blocksize);
  618. if (creq->cache)
  619. memcpy(cache, creq->cache, creq->cache_ptr);
  620. return 0;
  621. }
  622. static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
  623. u64 len, const void *cache)
  624. {
  625. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  626. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  627. unsigned int digsize = crypto_ahash_digestsize(ahash);
  628. unsigned int blocksize;
  629. unsigned int cache_ptr;
  630. int ret;
  631. ret = crypto_ahash_init(req);
  632. if (ret)
  633. return ret;
  634. blocksize = crypto_ahash_blocksize(ahash);
  635. if (len >= blocksize)
  636. mv_cesa_update_op_cfg(&creq->op_tmpl,
  637. CESA_SA_DESC_CFG_MID_FRAG,
  638. CESA_SA_DESC_CFG_FRAG_MSK);
  639. creq->len = len;
  640. memcpy(creq->state, hash, digsize);
  641. creq->cache_ptr = 0;
  642. cache_ptr = do_div(len, blocksize);
  643. if (!cache_ptr)
  644. return 0;
  645. memcpy(creq->cache, cache, cache_ptr);
  646. creq->cache_ptr = cache_ptr;
  647. return 0;
  648. }
  649. static int mv_cesa_md5_init(struct ahash_request *req)
  650. {
  651. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  652. struct mv_cesa_op_ctx tmpl = { };
  653. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
  654. creq->state[0] = MD5_H0;
  655. creq->state[1] = MD5_H1;
  656. creq->state[2] = MD5_H2;
  657. creq->state[3] = MD5_H3;
  658. mv_cesa_ahash_init(req, &tmpl, true);
  659. return 0;
  660. }
  661. static int mv_cesa_md5_export(struct ahash_request *req, void *out)
  662. {
  663. struct md5_state *out_state = out;
  664. return mv_cesa_ahash_export(req, out_state->hash,
  665. &out_state->byte_count, out_state->block);
  666. }
  667. static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
  668. {
  669. const struct md5_state *in_state = in;
  670. return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
  671. in_state->block);
  672. }
  673. static int mv_cesa_md5_digest(struct ahash_request *req)
  674. {
  675. int ret;
  676. ret = mv_cesa_md5_init(req);
  677. if (ret)
  678. return ret;
  679. return mv_cesa_ahash_finup(req);
  680. }
  681. struct ahash_alg mv_md5_alg = {
  682. .init = mv_cesa_md5_init,
  683. .update = mv_cesa_ahash_update,
  684. .final = mv_cesa_ahash_final,
  685. .finup = mv_cesa_ahash_finup,
  686. .digest = mv_cesa_md5_digest,
  687. .export = mv_cesa_md5_export,
  688. .import = mv_cesa_md5_import,
  689. .halg = {
  690. .digestsize = MD5_DIGEST_SIZE,
  691. .statesize = sizeof(struct md5_state),
  692. .base = {
  693. .cra_name = "md5",
  694. .cra_driver_name = "mv-md5",
  695. .cra_priority = 300,
  696. .cra_flags = CRYPTO_ALG_ASYNC |
  697. CRYPTO_ALG_KERN_DRIVER_ONLY,
  698. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  699. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  700. .cra_init = mv_cesa_ahash_cra_init,
  701. .cra_module = THIS_MODULE,
  702. }
  703. }
  704. };
  705. static int mv_cesa_sha1_init(struct ahash_request *req)
  706. {
  707. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  708. struct mv_cesa_op_ctx tmpl = { };
  709. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
  710. creq->state[0] = SHA1_H0;
  711. creq->state[1] = SHA1_H1;
  712. creq->state[2] = SHA1_H2;
  713. creq->state[3] = SHA1_H3;
  714. creq->state[4] = SHA1_H4;
  715. mv_cesa_ahash_init(req, &tmpl, false);
  716. return 0;
  717. }
  718. static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
  719. {
  720. struct sha1_state *out_state = out;
  721. return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
  722. out_state->buffer);
  723. }
  724. static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
  725. {
  726. const struct sha1_state *in_state = in;
  727. return mv_cesa_ahash_import(req, in_state->state, in_state->count,
  728. in_state->buffer);
  729. }
  730. static int mv_cesa_sha1_digest(struct ahash_request *req)
  731. {
  732. int ret;
  733. ret = mv_cesa_sha1_init(req);
  734. if (ret)
  735. return ret;
  736. return mv_cesa_ahash_finup(req);
  737. }
  738. struct ahash_alg mv_sha1_alg = {
  739. .init = mv_cesa_sha1_init,
  740. .update = mv_cesa_ahash_update,
  741. .final = mv_cesa_ahash_final,
  742. .finup = mv_cesa_ahash_finup,
  743. .digest = mv_cesa_sha1_digest,
  744. .export = mv_cesa_sha1_export,
  745. .import = mv_cesa_sha1_import,
  746. .halg = {
  747. .digestsize = SHA1_DIGEST_SIZE,
  748. .statesize = sizeof(struct sha1_state),
  749. .base = {
  750. .cra_name = "sha1",
  751. .cra_driver_name = "mv-sha1",
  752. .cra_priority = 300,
  753. .cra_flags = CRYPTO_ALG_ASYNC |
  754. CRYPTO_ALG_KERN_DRIVER_ONLY,
  755. .cra_blocksize = SHA1_BLOCK_SIZE,
  756. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  757. .cra_init = mv_cesa_ahash_cra_init,
  758. .cra_module = THIS_MODULE,
  759. }
  760. }
  761. };
  762. static int mv_cesa_sha256_init(struct ahash_request *req)
  763. {
  764. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  765. struct mv_cesa_op_ctx tmpl = { };
  766. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
  767. creq->state[0] = SHA256_H0;
  768. creq->state[1] = SHA256_H1;
  769. creq->state[2] = SHA256_H2;
  770. creq->state[3] = SHA256_H3;
  771. creq->state[4] = SHA256_H4;
  772. creq->state[5] = SHA256_H5;
  773. creq->state[6] = SHA256_H6;
  774. creq->state[7] = SHA256_H7;
  775. mv_cesa_ahash_init(req, &tmpl, false);
  776. return 0;
  777. }
  778. static int mv_cesa_sha256_digest(struct ahash_request *req)
  779. {
  780. int ret;
  781. ret = mv_cesa_sha256_init(req);
  782. if (ret)
  783. return ret;
  784. return mv_cesa_ahash_finup(req);
  785. }
  786. static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
  787. {
  788. struct sha256_state *out_state = out;
  789. return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
  790. out_state->buf);
  791. }
  792. static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
  793. {
  794. const struct sha256_state *in_state = in;
  795. return mv_cesa_ahash_import(req, in_state->state, in_state->count,
  796. in_state->buf);
  797. }
  798. struct ahash_alg mv_sha256_alg = {
  799. .init = mv_cesa_sha256_init,
  800. .update = mv_cesa_ahash_update,
  801. .final = mv_cesa_ahash_final,
  802. .finup = mv_cesa_ahash_finup,
  803. .digest = mv_cesa_sha256_digest,
  804. .export = mv_cesa_sha256_export,
  805. .import = mv_cesa_sha256_import,
  806. .halg = {
  807. .digestsize = SHA256_DIGEST_SIZE,
  808. .statesize = sizeof(struct sha256_state),
  809. .base = {
  810. .cra_name = "sha256",
  811. .cra_driver_name = "mv-sha256",
  812. .cra_priority = 300,
  813. .cra_flags = CRYPTO_ALG_ASYNC |
  814. CRYPTO_ALG_KERN_DRIVER_ONLY,
  815. .cra_blocksize = SHA256_BLOCK_SIZE,
  816. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  817. .cra_init = mv_cesa_ahash_cra_init,
  818. .cra_module = THIS_MODULE,
  819. }
  820. }
  821. };
  822. struct mv_cesa_ahash_result {
  823. struct completion completion;
  824. int error;
  825. };
  826. static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
  827. int error)
  828. {
  829. struct mv_cesa_ahash_result *result = req->data;
  830. if (error == -EINPROGRESS)
  831. return;
  832. result->error = error;
  833. complete(&result->completion);
  834. }
  835. static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
  836. void *state, unsigned int blocksize)
  837. {
  838. struct mv_cesa_ahash_result result;
  839. struct scatterlist sg;
  840. int ret;
  841. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  842. mv_cesa_hmac_ahash_complete, &result);
  843. sg_init_one(&sg, pad, blocksize);
  844. ahash_request_set_crypt(req, &sg, pad, blocksize);
  845. init_completion(&result.completion);
  846. ret = crypto_ahash_init(req);
  847. if (ret)
  848. return ret;
  849. ret = crypto_ahash_update(req);
  850. if (ret && ret != -EINPROGRESS)
  851. return ret;
  852. wait_for_completion_interruptible(&result.completion);
  853. if (result.error)
  854. return result.error;
  855. ret = crypto_ahash_export(req, state);
  856. if (ret)
  857. return ret;
  858. return 0;
  859. }
  860. static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
  861. const u8 *key, unsigned int keylen,
  862. u8 *ipad, u8 *opad,
  863. unsigned int blocksize)
  864. {
  865. struct mv_cesa_ahash_result result;
  866. struct scatterlist sg;
  867. int ret;
  868. int i;
  869. if (keylen <= blocksize) {
  870. memcpy(ipad, key, keylen);
  871. } else {
  872. u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
  873. if (!keydup)
  874. return -ENOMEM;
  875. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  876. mv_cesa_hmac_ahash_complete,
  877. &result);
  878. sg_init_one(&sg, keydup, keylen);
  879. ahash_request_set_crypt(req, &sg, ipad, keylen);
  880. init_completion(&result.completion);
  881. ret = crypto_ahash_digest(req);
  882. if (ret == -EINPROGRESS) {
  883. wait_for_completion_interruptible(&result.completion);
  884. ret = result.error;
  885. }
  886. /* Set the memory region to 0 to avoid any leak. */
  887. memset(keydup, 0, keylen);
  888. kfree(keydup);
  889. if (ret)
  890. return ret;
  891. keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
  892. }
  893. memset(ipad + keylen, 0, blocksize - keylen);
  894. memcpy(opad, ipad, blocksize);
  895. for (i = 0; i < blocksize; i++) {
  896. ipad[i] ^= 0x36;
  897. opad[i] ^= 0x5c;
  898. }
  899. return 0;
  900. }
  901. static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
  902. const u8 *key, unsigned int keylen,
  903. void *istate, void *ostate)
  904. {
  905. struct ahash_request *req;
  906. struct crypto_ahash *tfm;
  907. unsigned int blocksize;
  908. u8 *ipad = NULL;
  909. u8 *opad;
  910. int ret;
  911. tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
  912. CRYPTO_ALG_TYPE_AHASH_MASK);
  913. if (IS_ERR(tfm))
  914. return PTR_ERR(tfm);
  915. req = ahash_request_alloc(tfm, GFP_KERNEL);
  916. if (!req) {
  917. ret = -ENOMEM;
  918. goto free_ahash;
  919. }
  920. crypto_ahash_clear_flags(tfm, ~0);
  921. blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  922. ipad = kzalloc(2 * blocksize, GFP_KERNEL);
  923. if (!ipad) {
  924. ret = -ENOMEM;
  925. goto free_req;
  926. }
  927. opad = ipad + blocksize;
  928. ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
  929. if (ret)
  930. goto free_ipad;
  931. ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
  932. if (ret)
  933. goto free_ipad;
  934. ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
  935. free_ipad:
  936. kfree(ipad);
  937. free_req:
  938. ahash_request_free(req);
  939. free_ahash:
  940. crypto_free_ahash(tfm);
  941. return ret;
  942. }
  943. static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
  944. {
  945. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
  946. ctx->base.ops = &mv_cesa_ahash_req_ops;
  947. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  948. sizeof(struct mv_cesa_ahash_req));
  949. return 0;
  950. }
  951. static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
  952. {
  953. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  954. struct mv_cesa_op_ctx tmpl = { };
  955. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
  956. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  957. mv_cesa_ahash_init(req, &tmpl, true);
  958. return 0;
  959. }
  960. static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
  961. unsigned int keylen)
  962. {
  963. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  964. struct md5_state istate, ostate;
  965. int ret, i;
  966. ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
  967. if (ret)
  968. return ret;
  969. for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
  970. ctx->iv[i] = be32_to_cpu(istate.hash[i]);
  971. for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
  972. ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);
  973. return 0;
  974. }
  975. static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
  976. {
  977. int ret;
  978. ret = mv_cesa_ahmac_md5_init(req);
  979. if (ret)
  980. return ret;
  981. return mv_cesa_ahash_finup(req);
  982. }
  983. struct ahash_alg mv_ahmac_md5_alg = {
  984. .init = mv_cesa_ahmac_md5_init,
  985. .update = mv_cesa_ahash_update,
  986. .final = mv_cesa_ahash_final,
  987. .finup = mv_cesa_ahash_finup,
  988. .digest = mv_cesa_ahmac_md5_digest,
  989. .setkey = mv_cesa_ahmac_md5_setkey,
  990. .export = mv_cesa_md5_export,
  991. .import = mv_cesa_md5_import,
  992. .halg = {
  993. .digestsize = MD5_DIGEST_SIZE,
  994. .statesize = sizeof(struct md5_state),
  995. .base = {
  996. .cra_name = "hmac(md5)",
  997. .cra_driver_name = "mv-hmac-md5",
  998. .cra_priority = 300,
  999. .cra_flags = CRYPTO_ALG_ASYNC |
  1000. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1001. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  1002. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1003. .cra_init = mv_cesa_ahmac_cra_init,
  1004. .cra_module = THIS_MODULE,
  1005. }
  1006. }
  1007. };
  1008. static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
  1009. {
  1010. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1011. struct mv_cesa_op_ctx tmpl = { };
  1012. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
  1013. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  1014. mv_cesa_ahash_init(req, &tmpl, false);
  1015. return 0;
  1016. }
  1017. static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
  1018. unsigned int keylen)
  1019. {
  1020. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1021. struct sha1_state istate, ostate;
  1022. int ret, i;
  1023. ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
  1024. if (ret)
  1025. return ret;
  1026. for (i = 0; i < ARRAY_SIZE(istate.state); i++)
  1027. ctx->iv[i] = be32_to_cpu(istate.state[i]);
  1028. for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
  1029. ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
  1030. return 0;
  1031. }
  1032. static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
  1033. {
  1034. int ret;
  1035. ret = mv_cesa_ahmac_sha1_init(req);
  1036. if (ret)
  1037. return ret;
  1038. return mv_cesa_ahash_finup(req);
  1039. }
  1040. struct ahash_alg mv_ahmac_sha1_alg = {
  1041. .init = mv_cesa_ahmac_sha1_init,
  1042. .update = mv_cesa_ahash_update,
  1043. .final = mv_cesa_ahash_final,
  1044. .finup = mv_cesa_ahash_finup,
  1045. .digest = mv_cesa_ahmac_sha1_digest,
  1046. .setkey = mv_cesa_ahmac_sha1_setkey,
  1047. .export = mv_cesa_sha1_export,
  1048. .import = mv_cesa_sha1_import,
  1049. .halg = {
  1050. .digestsize = SHA1_DIGEST_SIZE,
  1051. .statesize = sizeof(struct sha1_state),
  1052. .base = {
  1053. .cra_name = "hmac(sha1)",
  1054. .cra_driver_name = "mv-hmac-sha1",
  1055. .cra_priority = 300,
  1056. .cra_flags = CRYPTO_ALG_ASYNC |
  1057. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1058. .cra_blocksize = SHA1_BLOCK_SIZE,
  1059. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1060. .cra_init = mv_cesa_ahmac_cra_init,
  1061. .cra_module = THIS_MODULE,
  1062. }
  1063. }
  1064. };
  1065. static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
  1066. unsigned int keylen)
  1067. {
  1068. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1069. struct sha256_state istate, ostate;
  1070. int ret, i;
  1071. ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
  1072. if (ret)
  1073. return ret;
  1074. for (i = 0; i < ARRAY_SIZE(istate.state); i++)
  1075. ctx->iv[i] = be32_to_cpu(istate.state[i]);
  1076. for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
  1077. ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
  1078. return 0;
  1079. }
  1080. static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
  1081. {
  1082. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1083. struct mv_cesa_op_ctx tmpl = { };
  1084. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
  1085. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  1086. mv_cesa_ahash_init(req, &tmpl, false);
  1087. return 0;
  1088. }
  1089. static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
  1090. {
  1091. int ret;
  1092. ret = mv_cesa_ahmac_sha256_init(req);
  1093. if (ret)
  1094. return ret;
  1095. return mv_cesa_ahash_finup(req);
  1096. }
  1097. struct ahash_alg mv_ahmac_sha256_alg = {
  1098. .init = mv_cesa_ahmac_sha256_init,
  1099. .update = mv_cesa_ahash_update,
  1100. .final = mv_cesa_ahash_final,
  1101. .finup = mv_cesa_ahash_finup,
  1102. .digest = mv_cesa_ahmac_sha256_digest,
  1103. .setkey = mv_cesa_ahmac_sha256_setkey,
  1104. .export = mv_cesa_sha256_export,
  1105. .import = mv_cesa_sha256_import,
  1106. .halg = {
  1107. .digestsize = SHA256_DIGEST_SIZE,
  1108. .statesize = sizeof(struct sha256_state),
  1109. .base = {
  1110. .cra_name = "hmac(sha256)",
  1111. .cra_driver_name = "mv-hmac-sha256",
  1112. .cra_priority = 300,
  1113. .cra_flags = CRYPTO_ALG_ASYNC |
  1114. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1115. .cra_blocksize = SHA256_BLOCK_SIZE,
  1116. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1117. .cra_init = mv_cesa_ahmac_cra_init,
  1118. .cra_module = THIS_MODULE,
  1119. }
  1120. }
  1121. };