caamhash.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. struct device *jrdev;
  91. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN];
  92. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN];
  93. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN];
  94. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN];
  95. u32 sh_desc_finup[DESC_HASH_MAX_USED_LEN];
  96. dma_addr_t sh_desc_update_dma;
  97. dma_addr_t sh_desc_update_first_dma;
  98. dma_addr_t sh_desc_fin_dma;
  99. dma_addr_t sh_desc_digest_dma;
  100. dma_addr_t sh_desc_finup_dma;
  101. u32 alg_type;
  102. u32 alg_op;
  103. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  104. dma_addr_t key_dma;
  105. int ctx_len;
  106. unsigned int split_key_len;
  107. unsigned int split_key_pad_len;
  108. };
  109. /* ahash state */
  110. struct caam_hash_state {
  111. dma_addr_t buf_dma;
  112. dma_addr_t ctx_dma;
  113. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  114. int buflen_0;
  115. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  116. int buflen_1;
  117. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  118. int (*update)(struct ahash_request *req);
  119. int (*final)(struct ahash_request *req);
  120. int (*finup)(struct ahash_request *req);
  121. int current_buf;
  122. };
  123. struct caam_export_state {
  124. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  125. u8 caam_ctx[MAX_CTX_LEN];
  126. int buflen;
  127. int (*update)(struct ahash_request *req);
  128. int (*final)(struct ahash_request *req);
  129. int (*finup)(struct ahash_request *req);
  130. };
  131. /* Common job descriptor seq in/out ptr routines */
  132. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  133. static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  134. struct caam_hash_state *state,
  135. int ctx_len)
  136. {
  137. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  138. ctx_len, DMA_FROM_DEVICE);
  139. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  140. dev_err(jrdev, "unable to map ctx\n");
  141. return -ENOMEM;
  142. }
  143. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  144. return 0;
  145. }
  146. /* Map req->result, and append seq_out_ptr command that points to it */
  147. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  148. u8 *result, int digestsize)
  149. {
  150. dma_addr_t dst_dma;
  151. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  152. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  153. return dst_dma;
  154. }
  155. /* Map current buffer in state and put it in link table */
  156. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  157. struct sec4_sg_entry *sec4_sg,
  158. u8 *buf, int buflen)
  159. {
  160. dma_addr_t buf_dma;
  161. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  162. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  163. return buf_dma;
  164. }
  165. /* Map req->src and put it in link table */
  166. static inline void src_map_to_sec4_sg(struct device *jrdev,
  167. struct scatterlist *src, int src_nents,
  168. struct sec4_sg_entry *sec4_sg)
  169. {
  170. dma_map_sg(jrdev, src, src_nents, DMA_TO_DEVICE);
  171. sg_to_sec4_sg_last(src, src_nents, sec4_sg, 0);
  172. }
  173. /*
  174. * Only put buffer in link table if it contains data, which is possible,
  175. * since a buffer has previously been used, and needs to be unmapped,
  176. */
  177. static inline dma_addr_t
  178. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  179. u8 *buf, dma_addr_t buf_dma, int buflen,
  180. int last_buflen)
  181. {
  182. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  183. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  184. if (buflen)
  185. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  186. else
  187. buf_dma = 0;
  188. return buf_dma;
  189. }
  190. /* Map state->caam_ctx, and add it to link table */
  191. static inline int ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  192. struct caam_hash_state *state, int ctx_len,
  193. struct sec4_sg_entry *sec4_sg, u32 flag)
  194. {
  195. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  196. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  197. dev_err(jrdev, "unable to map ctx\n");
  198. return -ENOMEM;
  199. }
  200. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  201. return 0;
  202. }
  203. /* Common shared descriptor commands */
  204. static inline void append_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  205. {
  206. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  207. ctx->split_key_len, CLASS_2 |
  208. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  209. }
  210. /* Append key if it has been set */
  211. static inline void init_sh_desc_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  212. {
  213. u32 *key_jump_cmd;
  214. init_sh_desc(desc, HDR_SHARE_SERIAL);
  215. if (ctx->split_key_len) {
  216. /* Skip if already shared */
  217. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  218. JUMP_COND_SHRD);
  219. append_key_ahash(desc, ctx);
  220. set_jump_tgt_here(desc, key_jump_cmd);
  221. }
  222. /* Propagate errors from shared to job descriptor */
  223. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  224. }
  225. /*
  226. * For ahash read data from seqin following state->caam_ctx,
  227. * and write resulting class2 context to seqout, which may be state->caam_ctx
  228. * or req->result
  229. */
  230. static inline void ahash_append_load_str(u32 *desc, int digestsize)
  231. {
  232. /* Calculate remaining bytes to read */
  233. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  234. /* Read remaining bytes */
  235. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  236. FIFOLD_TYPE_MSG | KEY_VLF);
  237. /* Store class2 context bytes */
  238. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  239. LDST_SRCDST_BYTE_CONTEXT);
  240. }
  241. /*
  242. * For ahash update, final and finup, import context, read and write to seqout
  243. */
  244. static inline void ahash_ctx_data_to_out(u32 *desc, u32 op, u32 state,
  245. int digestsize,
  246. struct caam_hash_ctx *ctx)
  247. {
  248. init_sh_desc_key_ahash(desc, ctx);
  249. /* Import context from software */
  250. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  251. LDST_CLASS_2_CCB | ctx->ctx_len);
  252. /* Class 2 operation */
  253. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  254. /*
  255. * Load from buf and/or src and write to req->result or state->context
  256. */
  257. ahash_append_load_str(desc, digestsize);
  258. }
  259. /* For ahash firsts and digest, read and write to seqout */
  260. static inline void ahash_data_to_out(u32 *desc, u32 op, u32 state,
  261. int digestsize, struct caam_hash_ctx *ctx)
  262. {
  263. init_sh_desc_key_ahash(desc, ctx);
  264. /* Class 2 operation */
  265. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  266. /*
  267. * Load from buf and/or src and write to req->result or state->context
  268. */
  269. ahash_append_load_str(desc, digestsize);
  270. }
  271. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  272. {
  273. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  274. int digestsize = crypto_ahash_digestsize(ahash);
  275. struct device *jrdev = ctx->jrdev;
  276. u32 have_key = 0;
  277. u32 *desc;
  278. if (ctx->split_key_len)
  279. have_key = OP_ALG_AAI_HMAC_PRECOMP;
  280. /* ahash_update shared descriptor */
  281. desc = ctx->sh_desc_update;
  282. init_sh_desc(desc, HDR_SHARE_SERIAL);
  283. /* Import context from software */
  284. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  285. LDST_CLASS_2_CCB | ctx->ctx_len);
  286. /* Class 2 operation */
  287. append_operation(desc, ctx->alg_type | OP_ALG_AS_UPDATE |
  288. OP_ALG_ENCRYPT);
  289. /* Load data and write to result or context */
  290. ahash_append_load_str(desc, ctx->ctx_len);
  291. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  292. DMA_TO_DEVICE);
  293. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  294. dev_err(jrdev, "unable to map shared descriptor\n");
  295. return -ENOMEM;
  296. }
  297. #ifdef DEBUG
  298. print_hex_dump(KERN_ERR,
  299. "ahash update shdesc@"__stringify(__LINE__)": ",
  300. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  301. #endif
  302. /* ahash_update_first shared descriptor */
  303. desc = ctx->sh_desc_update_first;
  304. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INIT,
  305. ctx->ctx_len, ctx);
  306. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  307. desc_bytes(desc),
  308. DMA_TO_DEVICE);
  309. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  310. dev_err(jrdev, "unable to map shared descriptor\n");
  311. return -ENOMEM;
  312. }
  313. #ifdef DEBUG
  314. print_hex_dump(KERN_ERR,
  315. "ahash update first shdesc@"__stringify(__LINE__)": ",
  316. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  317. #endif
  318. /* ahash_final shared descriptor */
  319. desc = ctx->sh_desc_fin;
  320. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  321. OP_ALG_AS_FINALIZE, digestsize, ctx);
  322. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  323. DMA_TO_DEVICE);
  324. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  325. dev_err(jrdev, "unable to map shared descriptor\n");
  326. return -ENOMEM;
  327. }
  328. #ifdef DEBUG
  329. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  330. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  331. desc_bytes(desc), 1);
  332. #endif
  333. /* ahash_finup shared descriptor */
  334. desc = ctx->sh_desc_finup;
  335. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  336. OP_ALG_AS_FINALIZE, digestsize, ctx);
  337. ctx->sh_desc_finup_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  338. DMA_TO_DEVICE);
  339. if (dma_mapping_error(jrdev, ctx->sh_desc_finup_dma)) {
  340. dev_err(jrdev, "unable to map shared descriptor\n");
  341. return -ENOMEM;
  342. }
  343. #ifdef DEBUG
  344. print_hex_dump(KERN_ERR, "ahash finup shdesc@"__stringify(__LINE__)": ",
  345. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  346. desc_bytes(desc), 1);
  347. #endif
  348. /* ahash_digest shared descriptor */
  349. desc = ctx->sh_desc_digest;
  350. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INITFINAL,
  351. digestsize, ctx);
  352. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  353. desc_bytes(desc),
  354. DMA_TO_DEVICE);
  355. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  356. dev_err(jrdev, "unable to map shared descriptor\n");
  357. return -ENOMEM;
  358. }
  359. #ifdef DEBUG
  360. print_hex_dump(KERN_ERR,
  361. "ahash digest shdesc@"__stringify(__LINE__)": ",
  362. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  363. desc_bytes(desc), 1);
  364. #endif
  365. return 0;
  366. }
  367. static int gen_split_hash_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  368. u32 keylen)
  369. {
  370. return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
  371. ctx->split_key_pad_len, key_in, keylen,
  372. ctx->alg_op);
  373. }
  374. /* Digest hash size if it is too large */
  375. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  376. u32 *keylen, u8 *key_out, u32 digestsize)
  377. {
  378. struct device *jrdev = ctx->jrdev;
  379. u32 *desc;
  380. struct split_key_result result;
  381. dma_addr_t src_dma, dst_dma;
  382. int ret = 0;
  383. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  384. if (!desc) {
  385. dev_err(jrdev, "unable to allocate key input memory\n");
  386. return -ENOMEM;
  387. }
  388. init_job_desc(desc, 0);
  389. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  390. DMA_TO_DEVICE);
  391. if (dma_mapping_error(jrdev, src_dma)) {
  392. dev_err(jrdev, "unable to map key input memory\n");
  393. kfree(desc);
  394. return -ENOMEM;
  395. }
  396. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  397. DMA_FROM_DEVICE);
  398. if (dma_mapping_error(jrdev, dst_dma)) {
  399. dev_err(jrdev, "unable to map key output memory\n");
  400. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  401. kfree(desc);
  402. return -ENOMEM;
  403. }
  404. /* Job descriptor to perform unkeyed hash on key_in */
  405. append_operation(desc, ctx->alg_type | OP_ALG_ENCRYPT |
  406. OP_ALG_AS_INITFINAL);
  407. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  408. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  409. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  410. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  411. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  412. LDST_SRCDST_BYTE_CONTEXT);
  413. #ifdef DEBUG
  414. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  415. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  416. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  417. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  418. #endif
  419. result.err = 0;
  420. init_completion(&result.completion);
  421. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  422. if (!ret) {
  423. /* in progress */
  424. wait_for_completion_interruptible(&result.completion);
  425. ret = result.err;
  426. #ifdef DEBUG
  427. print_hex_dump(KERN_ERR,
  428. "digested key@"__stringify(__LINE__)": ",
  429. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  430. digestsize, 1);
  431. #endif
  432. }
  433. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  434. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  435. *keylen = digestsize;
  436. kfree(desc);
  437. return ret;
  438. }
  439. static int ahash_setkey(struct crypto_ahash *ahash,
  440. const u8 *key, unsigned int keylen)
  441. {
  442. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  443. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  444. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  445. struct device *jrdev = ctx->jrdev;
  446. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  447. int digestsize = crypto_ahash_digestsize(ahash);
  448. int ret = 0;
  449. u8 *hashed_key = NULL;
  450. #ifdef DEBUG
  451. printk(KERN_ERR "keylen %d\n", keylen);
  452. #endif
  453. if (keylen > blocksize) {
  454. hashed_key = kmalloc(sizeof(u8) * digestsize, GFP_KERNEL |
  455. GFP_DMA);
  456. if (!hashed_key)
  457. return -ENOMEM;
  458. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  459. digestsize);
  460. if (ret)
  461. goto badkey;
  462. key = hashed_key;
  463. }
  464. /* Pick class 2 key length from algorithm submask */
  465. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  466. OP_ALG_ALGSEL_SHIFT] * 2;
  467. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  468. #ifdef DEBUG
  469. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  470. ctx->split_key_len, ctx->split_key_pad_len);
  471. print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
  472. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  473. #endif
  474. ret = gen_split_hash_key(ctx, key, keylen);
  475. if (ret)
  476. goto badkey;
  477. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  478. DMA_TO_DEVICE);
  479. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  480. dev_err(jrdev, "unable to map key i/o memory\n");
  481. ret = -ENOMEM;
  482. goto map_err;
  483. }
  484. #ifdef DEBUG
  485. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  486. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  487. ctx->split_key_pad_len, 1);
  488. #endif
  489. ret = ahash_set_sh_desc(ahash);
  490. if (ret) {
  491. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len,
  492. DMA_TO_DEVICE);
  493. }
  494. map_err:
  495. kfree(hashed_key);
  496. return ret;
  497. badkey:
  498. kfree(hashed_key);
  499. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  500. return -EINVAL;
  501. }
  502. /*
  503. * ahash_edesc - s/w-extended ahash descriptor
  504. * @dst_dma: physical mapped address of req->result
  505. * @sec4_sg_dma: physical mapped address of h/w link table
  506. * @src_nents: number of segments in input scatterlist
  507. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  508. * @sec4_sg: pointer to h/w link table
  509. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  510. */
  511. struct ahash_edesc {
  512. dma_addr_t dst_dma;
  513. dma_addr_t sec4_sg_dma;
  514. int src_nents;
  515. int sec4_sg_bytes;
  516. struct sec4_sg_entry *sec4_sg;
  517. u32 hw_desc[0];
  518. };
  519. static inline void ahash_unmap(struct device *dev,
  520. struct ahash_edesc *edesc,
  521. struct ahash_request *req, int dst_len)
  522. {
  523. if (edesc->src_nents)
  524. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  525. if (edesc->dst_dma)
  526. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  527. if (edesc->sec4_sg_bytes)
  528. dma_unmap_single(dev, edesc->sec4_sg_dma,
  529. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  530. }
  531. static inline void ahash_unmap_ctx(struct device *dev,
  532. struct ahash_edesc *edesc,
  533. struct ahash_request *req, int dst_len, u32 flag)
  534. {
  535. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  536. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  537. struct caam_hash_state *state = ahash_request_ctx(req);
  538. if (state->ctx_dma)
  539. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  540. ahash_unmap(dev, edesc, req, dst_len);
  541. }
  542. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  543. void *context)
  544. {
  545. struct ahash_request *req = context;
  546. struct ahash_edesc *edesc;
  547. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  548. int digestsize = crypto_ahash_digestsize(ahash);
  549. #ifdef DEBUG
  550. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  551. struct caam_hash_state *state = ahash_request_ctx(req);
  552. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  553. #endif
  554. edesc = (struct ahash_edesc *)((char *)desc -
  555. offsetof(struct ahash_edesc, hw_desc));
  556. if (err)
  557. caam_jr_strstatus(jrdev, err);
  558. ahash_unmap(jrdev, edesc, req, digestsize);
  559. kfree(edesc);
  560. #ifdef DEBUG
  561. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  562. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  563. ctx->ctx_len, 1);
  564. if (req->result)
  565. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  566. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  567. digestsize, 1);
  568. #endif
  569. req->base.complete(&req->base, err);
  570. }
  571. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  572. void *context)
  573. {
  574. struct ahash_request *req = context;
  575. struct ahash_edesc *edesc;
  576. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  577. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  578. #ifdef DEBUG
  579. struct caam_hash_state *state = ahash_request_ctx(req);
  580. int digestsize = crypto_ahash_digestsize(ahash);
  581. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  582. #endif
  583. edesc = (struct ahash_edesc *)((char *)desc -
  584. offsetof(struct ahash_edesc, hw_desc));
  585. if (err)
  586. caam_jr_strstatus(jrdev, err);
  587. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  588. kfree(edesc);
  589. #ifdef DEBUG
  590. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  591. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  592. ctx->ctx_len, 1);
  593. if (req->result)
  594. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  595. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  596. digestsize, 1);
  597. #endif
  598. req->base.complete(&req->base, err);
  599. }
  600. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  601. void *context)
  602. {
  603. struct ahash_request *req = context;
  604. struct ahash_edesc *edesc;
  605. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  606. int digestsize = crypto_ahash_digestsize(ahash);
  607. #ifdef DEBUG
  608. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  609. struct caam_hash_state *state = ahash_request_ctx(req);
  610. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  611. #endif
  612. edesc = (struct ahash_edesc *)((char *)desc -
  613. offsetof(struct ahash_edesc, hw_desc));
  614. if (err)
  615. caam_jr_strstatus(jrdev, err);
  616. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
  617. kfree(edesc);
  618. #ifdef DEBUG
  619. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  620. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  621. ctx->ctx_len, 1);
  622. if (req->result)
  623. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  624. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  625. digestsize, 1);
  626. #endif
  627. req->base.complete(&req->base, err);
  628. }
  629. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  630. void *context)
  631. {
  632. struct ahash_request *req = context;
  633. struct ahash_edesc *edesc;
  634. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  635. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  636. #ifdef DEBUG
  637. struct caam_hash_state *state = ahash_request_ctx(req);
  638. int digestsize = crypto_ahash_digestsize(ahash);
  639. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  640. #endif
  641. edesc = (struct ahash_edesc *)((char *)desc -
  642. offsetof(struct ahash_edesc, hw_desc));
  643. if (err)
  644. caam_jr_strstatus(jrdev, err);
  645. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  646. kfree(edesc);
  647. #ifdef DEBUG
  648. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  649. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  650. ctx->ctx_len, 1);
  651. if (req->result)
  652. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  653. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  654. digestsize, 1);
  655. #endif
  656. req->base.complete(&req->base, err);
  657. }
  658. /* submit update job descriptor */
  659. static int ahash_update_ctx(struct ahash_request *req)
  660. {
  661. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  662. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  663. struct caam_hash_state *state = ahash_request_ctx(req);
  664. struct device *jrdev = ctx->jrdev;
  665. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  666. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  667. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  668. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  669. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  670. int *next_buflen = state->current_buf ? &state->buflen_0 :
  671. &state->buflen_1, last_buflen;
  672. int in_len = *buflen + req->nbytes, to_hash;
  673. u32 *sh_desc = ctx->sh_desc_update, *desc;
  674. dma_addr_t ptr = ctx->sh_desc_update_dma;
  675. int src_nents, sec4_sg_bytes, sec4_sg_src_index;
  676. struct ahash_edesc *edesc;
  677. int ret = 0;
  678. int sh_len;
  679. last_buflen = *next_buflen;
  680. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  681. to_hash = in_len - *next_buflen;
  682. if (to_hash) {
  683. src_nents = sg_nents_for_len(req->src,
  684. req->nbytes - (*next_buflen));
  685. if (src_nents < 0) {
  686. dev_err(jrdev, "Invalid number of src SG.\n");
  687. return src_nents;
  688. }
  689. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  690. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  691. sizeof(struct sec4_sg_entry);
  692. /*
  693. * allocate space for base edesc and hw desc commands,
  694. * link tables
  695. */
  696. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN +
  697. sec4_sg_bytes, GFP_DMA | flags);
  698. if (!edesc) {
  699. dev_err(jrdev,
  700. "could not allocate extended descriptor\n");
  701. return -ENOMEM;
  702. }
  703. edesc->src_nents = src_nents;
  704. edesc->sec4_sg_bytes = sec4_sg_bytes;
  705. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  706. DESC_JOB_IO_LEN;
  707. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  708. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  709. if (ret)
  710. return ret;
  711. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  712. edesc->sec4_sg + 1,
  713. buf, state->buf_dma,
  714. *buflen, last_buflen);
  715. if (src_nents) {
  716. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  717. edesc->sec4_sg + sec4_sg_src_index);
  718. if (*next_buflen)
  719. scatterwalk_map_and_copy(next_buf, req->src,
  720. to_hash - *buflen,
  721. *next_buflen, 0);
  722. } else {
  723. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  724. SEC4_SG_LEN_FIN;
  725. }
  726. state->current_buf = !state->current_buf;
  727. sh_len = desc_len(sh_desc);
  728. desc = edesc->hw_desc;
  729. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  730. HDR_REVERSE);
  731. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  732. sec4_sg_bytes,
  733. DMA_TO_DEVICE);
  734. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  735. dev_err(jrdev, "unable to map S/G table\n");
  736. return -ENOMEM;
  737. }
  738. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  739. to_hash, LDST_SGF);
  740. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  741. #ifdef DEBUG
  742. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  743. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  744. desc_bytes(desc), 1);
  745. #endif
  746. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  747. if (!ret) {
  748. ret = -EINPROGRESS;
  749. } else {
  750. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  751. DMA_BIDIRECTIONAL);
  752. kfree(edesc);
  753. }
  754. } else if (*next_buflen) {
  755. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  756. req->nbytes, 0);
  757. *buflen = *next_buflen;
  758. *next_buflen = last_buflen;
  759. }
  760. #ifdef DEBUG
  761. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  762. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  763. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  764. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  765. *next_buflen, 1);
  766. #endif
  767. return ret;
  768. }
  769. static int ahash_final_ctx(struct ahash_request *req)
  770. {
  771. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  772. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  773. struct caam_hash_state *state = ahash_request_ctx(req);
  774. struct device *jrdev = ctx->jrdev;
  775. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  776. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  777. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  778. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  779. int last_buflen = state->current_buf ? state->buflen_0 :
  780. state->buflen_1;
  781. u32 *sh_desc = ctx->sh_desc_fin, *desc;
  782. dma_addr_t ptr = ctx->sh_desc_fin_dma;
  783. int sec4_sg_bytes, sec4_sg_src_index;
  784. int digestsize = crypto_ahash_digestsize(ahash);
  785. struct ahash_edesc *edesc;
  786. int ret = 0;
  787. int sh_len;
  788. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  789. sec4_sg_bytes = sec4_sg_src_index * sizeof(struct sec4_sg_entry);
  790. /* allocate space for base edesc and hw desc commands, link tables */
  791. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN + sec4_sg_bytes,
  792. GFP_DMA | flags);
  793. if (!edesc) {
  794. dev_err(jrdev, "could not allocate extended descriptor\n");
  795. return -ENOMEM;
  796. }
  797. sh_len = desc_len(sh_desc);
  798. desc = edesc->hw_desc;
  799. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  800. edesc->sec4_sg_bytes = sec4_sg_bytes;
  801. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  802. DESC_JOB_IO_LEN;
  803. edesc->src_nents = 0;
  804. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  805. edesc->sec4_sg, DMA_TO_DEVICE);
  806. if (ret)
  807. return ret;
  808. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  809. buf, state->buf_dma, buflen,
  810. last_buflen);
  811. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |= SEC4_SG_LEN_FIN;
  812. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  813. sec4_sg_bytes, DMA_TO_DEVICE);
  814. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  815. dev_err(jrdev, "unable to map S/G table\n");
  816. return -ENOMEM;
  817. }
  818. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  819. LDST_SGF);
  820. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  821. digestsize);
  822. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  823. dev_err(jrdev, "unable to map dst\n");
  824. return -ENOMEM;
  825. }
  826. #ifdef DEBUG
  827. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  828. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  829. #endif
  830. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  831. if (!ret) {
  832. ret = -EINPROGRESS;
  833. } else {
  834. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  835. kfree(edesc);
  836. }
  837. return ret;
  838. }
  839. static int ahash_finup_ctx(struct ahash_request *req)
  840. {
  841. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  842. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  843. struct caam_hash_state *state = ahash_request_ctx(req);
  844. struct device *jrdev = ctx->jrdev;
  845. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  846. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  847. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  848. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  849. int last_buflen = state->current_buf ? state->buflen_0 :
  850. state->buflen_1;
  851. u32 *sh_desc = ctx->sh_desc_finup, *desc;
  852. dma_addr_t ptr = ctx->sh_desc_finup_dma;
  853. int sec4_sg_bytes, sec4_sg_src_index;
  854. int src_nents;
  855. int digestsize = crypto_ahash_digestsize(ahash);
  856. struct ahash_edesc *edesc;
  857. int ret = 0;
  858. int sh_len;
  859. src_nents = sg_nents_for_len(req->src, req->nbytes);
  860. if (src_nents < 0) {
  861. dev_err(jrdev, "Invalid number of src SG.\n");
  862. return src_nents;
  863. }
  864. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  865. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  866. sizeof(struct sec4_sg_entry);
  867. /* allocate space for base edesc and hw desc commands, link tables */
  868. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN + sec4_sg_bytes,
  869. GFP_DMA | flags);
  870. if (!edesc) {
  871. dev_err(jrdev, "could not allocate extended descriptor\n");
  872. return -ENOMEM;
  873. }
  874. sh_len = desc_len(sh_desc);
  875. desc = edesc->hw_desc;
  876. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  877. edesc->src_nents = src_nents;
  878. edesc->sec4_sg_bytes = sec4_sg_bytes;
  879. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  880. DESC_JOB_IO_LEN;
  881. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  882. edesc->sec4_sg, DMA_TO_DEVICE);
  883. if (ret)
  884. return ret;
  885. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  886. buf, state->buf_dma, buflen,
  887. last_buflen);
  888. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg +
  889. sec4_sg_src_index);
  890. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  891. sec4_sg_bytes, DMA_TO_DEVICE);
  892. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  893. dev_err(jrdev, "unable to map S/G table\n");
  894. return -ENOMEM;
  895. }
  896. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  897. buflen + req->nbytes, LDST_SGF);
  898. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  899. digestsize);
  900. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  901. dev_err(jrdev, "unable to map dst\n");
  902. return -ENOMEM;
  903. }
  904. #ifdef DEBUG
  905. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  906. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  907. #endif
  908. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  909. if (!ret) {
  910. ret = -EINPROGRESS;
  911. } else {
  912. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  913. kfree(edesc);
  914. }
  915. return ret;
  916. }
  917. static int ahash_digest(struct ahash_request *req)
  918. {
  919. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  920. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  921. struct device *jrdev = ctx->jrdev;
  922. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  923. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  924. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  925. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  926. int digestsize = crypto_ahash_digestsize(ahash);
  927. int src_nents, sec4_sg_bytes;
  928. dma_addr_t src_dma;
  929. struct ahash_edesc *edesc;
  930. int ret = 0;
  931. u32 options;
  932. int sh_len;
  933. src_nents = sg_count(req->src, req->nbytes);
  934. if (src_nents < 0) {
  935. dev_err(jrdev, "Invalid number of src SG.\n");
  936. return src_nents;
  937. }
  938. dma_map_sg(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE);
  939. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  940. /* allocate space for base edesc and hw desc commands, link tables */
  941. edesc = kzalloc(sizeof(*edesc) + sec4_sg_bytes + DESC_JOB_IO_LEN,
  942. GFP_DMA | flags);
  943. if (!edesc) {
  944. dev_err(jrdev, "could not allocate extended descriptor\n");
  945. return -ENOMEM;
  946. }
  947. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  948. DESC_JOB_IO_LEN;
  949. edesc->sec4_sg_bytes = sec4_sg_bytes;
  950. edesc->src_nents = src_nents;
  951. sh_len = desc_len(sh_desc);
  952. desc = edesc->hw_desc;
  953. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  954. if (src_nents) {
  955. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  956. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  957. sec4_sg_bytes, DMA_TO_DEVICE);
  958. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  959. dev_err(jrdev, "unable to map S/G table\n");
  960. return -ENOMEM;
  961. }
  962. src_dma = edesc->sec4_sg_dma;
  963. options = LDST_SGF;
  964. } else {
  965. src_dma = sg_dma_address(req->src);
  966. options = 0;
  967. }
  968. append_seq_in_ptr(desc, src_dma, req->nbytes, options);
  969. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  970. digestsize);
  971. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  972. dev_err(jrdev, "unable to map dst\n");
  973. return -ENOMEM;
  974. }
  975. #ifdef DEBUG
  976. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  977. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  978. #endif
  979. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  980. if (!ret) {
  981. ret = -EINPROGRESS;
  982. } else {
  983. ahash_unmap(jrdev, edesc, req, digestsize);
  984. kfree(edesc);
  985. }
  986. return ret;
  987. }
  988. /* submit ahash final if it the first job descriptor */
  989. static int ahash_final_no_ctx(struct ahash_request *req)
  990. {
  991. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  992. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  993. struct caam_hash_state *state = ahash_request_ctx(req);
  994. struct device *jrdev = ctx->jrdev;
  995. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  996. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  997. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  998. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  999. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1000. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1001. int digestsize = crypto_ahash_digestsize(ahash);
  1002. struct ahash_edesc *edesc;
  1003. int ret = 0;
  1004. int sh_len;
  1005. /* allocate space for base edesc and hw desc commands, link tables */
  1006. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN, GFP_DMA | flags);
  1007. if (!edesc) {
  1008. dev_err(jrdev, "could not allocate extended descriptor\n");
  1009. return -ENOMEM;
  1010. }
  1011. edesc->sec4_sg_bytes = 0;
  1012. sh_len = desc_len(sh_desc);
  1013. desc = edesc->hw_desc;
  1014. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1015. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  1016. if (dma_mapping_error(jrdev, state->buf_dma)) {
  1017. dev_err(jrdev, "unable to map src\n");
  1018. return -ENOMEM;
  1019. }
  1020. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  1021. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1022. digestsize);
  1023. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1024. dev_err(jrdev, "unable to map dst\n");
  1025. return -ENOMEM;
  1026. }
  1027. edesc->src_nents = 0;
  1028. #ifdef DEBUG
  1029. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1030. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1031. #endif
  1032. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1033. if (!ret) {
  1034. ret = -EINPROGRESS;
  1035. } else {
  1036. ahash_unmap(jrdev, edesc, req, digestsize);
  1037. kfree(edesc);
  1038. }
  1039. return ret;
  1040. }
  1041. /* submit ahash update if it the first job descriptor after update */
  1042. static int ahash_update_no_ctx(struct ahash_request *req)
  1043. {
  1044. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1045. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1046. struct caam_hash_state *state = ahash_request_ctx(req);
  1047. struct device *jrdev = ctx->jrdev;
  1048. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1049. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1050. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1051. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  1052. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  1053. int *next_buflen = state->current_buf ? &state->buflen_0 :
  1054. &state->buflen_1;
  1055. int in_len = *buflen + req->nbytes, to_hash;
  1056. int sec4_sg_bytes, src_nents;
  1057. struct ahash_edesc *edesc;
  1058. u32 *desc, *sh_desc = ctx->sh_desc_update_first;
  1059. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1060. int ret = 0;
  1061. int sh_len;
  1062. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1063. to_hash = in_len - *next_buflen;
  1064. if (to_hash) {
  1065. src_nents = sg_nents_for_len(req->src,
  1066. req->nbytes - (*next_buflen));
  1067. if (src_nents < 0) {
  1068. dev_err(jrdev, "Invalid number of src SG.\n");
  1069. return src_nents;
  1070. }
  1071. sec4_sg_bytes = (1 + src_nents) *
  1072. sizeof(struct sec4_sg_entry);
  1073. /*
  1074. * allocate space for base edesc and hw desc commands,
  1075. * link tables
  1076. */
  1077. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN +
  1078. sec4_sg_bytes, GFP_DMA | flags);
  1079. if (!edesc) {
  1080. dev_err(jrdev,
  1081. "could not allocate extended descriptor\n");
  1082. return -ENOMEM;
  1083. }
  1084. edesc->src_nents = src_nents;
  1085. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1086. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1087. DESC_JOB_IO_LEN;
  1088. edesc->dst_dma = 0;
  1089. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1090. buf, *buflen);
  1091. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  1092. edesc->sec4_sg + 1);
  1093. if (*next_buflen) {
  1094. scatterwalk_map_and_copy(next_buf, req->src,
  1095. to_hash - *buflen,
  1096. *next_buflen, 0);
  1097. }
  1098. state->current_buf = !state->current_buf;
  1099. sh_len = desc_len(sh_desc);
  1100. desc = edesc->hw_desc;
  1101. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1102. HDR_REVERSE);
  1103. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1104. sec4_sg_bytes,
  1105. DMA_TO_DEVICE);
  1106. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1107. dev_err(jrdev, "unable to map S/G table\n");
  1108. return -ENOMEM;
  1109. }
  1110. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1111. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1112. if (ret)
  1113. return ret;
  1114. #ifdef DEBUG
  1115. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1116. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1117. desc_bytes(desc), 1);
  1118. #endif
  1119. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1120. if (!ret) {
  1121. ret = -EINPROGRESS;
  1122. state->update = ahash_update_ctx;
  1123. state->finup = ahash_finup_ctx;
  1124. state->final = ahash_final_ctx;
  1125. } else {
  1126. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1127. DMA_TO_DEVICE);
  1128. kfree(edesc);
  1129. }
  1130. } else if (*next_buflen) {
  1131. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  1132. req->nbytes, 0);
  1133. *buflen = *next_buflen;
  1134. *next_buflen = 0;
  1135. }
  1136. #ifdef DEBUG
  1137. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1138. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1139. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1140. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1141. *next_buflen, 1);
  1142. #endif
  1143. return ret;
  1144. }
  1145. /* submit ahash finup if it the first job descriptor after update */
  1146. static int ahash_finup_no_ctx(struct ahash_request *req)
  1147. {
  1148. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1149. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1150. struct caam_hash_state *state = ahash_request_ctx(req);
  1151. struct device *jrdev = ctx->jrdev;
  1152. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1153. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1154. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1155. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1156. int last_buflen = state->current_buf ? state->buflen_0 :
  1157. state->buflen_1;
  1158. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1159. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1160. int sec4_sg_bytes, sec4_sg_src_index, src_nents;
  1161. int digestsize = crypto_ahash_digestsize(ahash);
  1162. struct ahash_edesc *edesc;
  1163. int sh_len;
  1164. int ret = 0;
  1165. src_nents = sg_nents_for_len(req->src, req->nbytes);
  1166. if (src_nents < 0) {
  1167. dev_err(jrdev, "Invalid number of src SG.\n");
  1168. return src_nents;
  1169. }
  1170. sec4_sg_src_index = 2;
  1171. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  1172. sizeof(struct sec4_sg_entry);
  1173. /* allocate space for base edesc and hw desc commands, link tables */
  1174. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN + sec4_sg_bytes,
  1175. GFP_DMA | flags);
  1176. if (!edesc) {
  1177. dev_err(jrdev, "could not allocate extended descriptor\n");
  1178. return -ENOMEM;
  1179. }
  1180. sh_len = desc_len(sh_desc);
  1181. desc = edesc->hw_desc;
  1182. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1183. edesc->src_nents = src_nents;
  1184. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1185. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1186. DESC_JOB_IO_LEN;
  1187. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1188. state->buf_dma, buflen,
  1189. last_buflen);
  1190. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg + 1);
  1191. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1192. sec4_sg_bytes, DMA_TO_DEVICE);
  1193. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1194. dev_err(jrdev, "unable to map S/G table\n");
  1195. return -ENOMEM;
  1196. }
  1197. append_seq_in_ptr(desc, edesc->sec4_sg_dma, buflen +
  1198. req->nbytes, LDST_SGF);
  1199. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1200. digestsize);
  1201. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1202. dev_err(jrdev, "unable to map dst\n");
  1203. return -ENOMEM;
  1204. }
  1205. #ifdef DEBUG
  1206. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1207. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1208. #endif
  1209. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1210. if (!ret) {
  1211. ret = -EINPROGRESS;
  1212. } else {
  1213. ahash_unmap(jrdev, edesc, req, digestsize);
  1214. kfree(edesc);
  1215. }
  1216. return ret;
  1217. }
  1218. /* submit first update job descriptor after init */
  1219. static int ahash_update_first(struct ahash_request *req)
  1220. {
  1221. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1222. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1223. struct caam_hash_state *state = ahash_request_ctx(req);
  1224. struct device *jrdev = ctx->jrdev;
  1225. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1226. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1227. u8 *next_buf = state->current_buf ? state->buf_1 : state->buf_0;
  1228. int *next_buflen = state->current_buf ?
  1229. &state->buflen_1 : &state->buflen_0;
  1230. int to_hash;
  1231. u32 *sh_desc = ctx->sh_desc_update_first, *desc;
  1232. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1233. int sec4_sg_bytes, src_nents;
  1234. dma_addr_t src_dma;
  1235. u32 options;
  1236. struct ahash_edesc *edesc;
  1237. int ret = 0;
  1238. int sh_len;
  1239. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1240. 1);
  1241. to_hash = req->nbytes - *next_buflen;
  1242. if (to_hash) {
  1243. src_nents = sg_count(req->src, req->nbytes - (*next_buflen));
  1244. if (src_nents < 0) {
  1245. dev_err(jrdev, "Invalid number of src SG.\n");
  1246. return src_nents;
  1247. }
  1248. dma_map_sg(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE);
  1249. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  1250. /*
  1251. * allocate space for base edesc and hw desc commands,
  1252. * link tables
  1253. */
  1254. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN +
  1255. sec4_sg_bytes, GFP_DMA | flags);
  1256. if (!edesc) {
  1257. dev_err(jrdev,
  1258. "could not allocate extended descriptor\n");
  1259. return -ENOMEM;
  1260. }
  1261. edesc->src_nents = src_nents;
  1262. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1263. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1264. DESC_JOB_IO_LEN;
  1265. edesc->dst_dma = 0;
  1266. if (src_nents) {
  1267. sg_to_sec4_sg_last(req->src, src_nents,
  1268. edesc->sec4_sg, 0);
  1269. edesc->sec4_sg_dma = dma_map_single(jrdev,
  1270. edesc->sec4_sg,
  1271. sec4_sg_bytes,
  1272. DMA_TO_DEVICE);
  1273. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1274. dev_err(jrdev, "unable to map S/G table\n");
  1275. return -ENOMEM;
  1276. }
  1277. src_dma = edesc->sec4_sg_dma;
  1278. options = LDST_SGF;
  1279. } else {
  1280. src_dma = sg_dma_address(req->src);
  1281. options = 0;
  1282. }
  1283. if (*next_buflen)
  1284. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  1285. *next_buflen, 0);
  1286. sh_len = desc_len(sh_desc);
  1287. desc = edesc->hw_desc;
  1288. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1289. HDR_REVERSE);
  1290. append_seq_in_ptr(desc, src_dma, to_hash, options);
  1291. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1292. if (ret)
  1293. return ret;
  1294. #ifdef DEBUG
  1295. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1296. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1297. desc_bytes(desc), 1);
  1298. #endif
  1299. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst,
  1300. req);
  1301. if (!ret) {
  1302. ret = -EINPROGRESS;
  1303. state->update = ahash_update_ctx;
  1304. state->finup = ahash_finup_ctx;
  1305. state->final = ahash_final_ctx;
  1306. } else {
  1307. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1308. DMA_TO_DEVICE);
  1309. kfree(edesc);
  1310. }
  1311. } else if (*next_buflen) {
  1312. state->update = ahash_update_no_ctx;
  1313. state->finup = ahash_finup_no_ctx;
  1314. state->final = ahash_final_no_ctx;
  1315. scatterwalk_map_and_copy(next_buf, req->src, 0,
  1316. req->nbytes, 0);
  1317. }
  1318. #ifdef DEBUG
  1319. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1320. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1321. *next_buflen, 1);
  1322. #endif
  1323. return ret;
  1324. }
  1325. static int ahash_finup_first(struct ahash_request *req)
  1326. {
  1327. return ahash_digest(req);
  1328. }
  1329. static int ahash_init(struct ahash_request *req)
  1330. {
  1331. struct caam_hash_state *state = ahash_request_ctx(req);
  1332. state->update = ahash_update_first;
  1333. state->finup = ahash_finup_first;
  1334. state->final = ahash_final_no_ctx;
  1335. state->current_buf = 0;
  1336. state->buf_dma = 0;
  1337. state->buflen_0 = 0;
  1338. state->buflen_1 = 0;
  1339. return 0;
  1340. }
  1341. static int ahash_update(struct ahash_request *req)
  1342. {
  1343. struct caam_hash_state *state = ahash_request_ctx(req);
  1344. return state->update(req);
  1345. }
  1346. static int ahash_finup(struct ahash_request *req)
  1347. {
  1348. struct caam_hash_state *state = ahash_request_ctx(req);
  1349. return state->finup(req);
  1350. }
  1351. static int ahash_final(struct ahash_request *req)
  1352. {
  1353. struct caam_hash_state *state = ahash_request_ctx(req);
  1354. return state->final(req);
  1355. }
  1356. static int ahash_export(struct ahash_request *req, void *out)
  1357. {
  1358. struct caam_hash_state *state = ahash_request_ctx(req);
  1359. struct caam_export_state *export = out;
  1360. int len;
  1361. u8 *buf;
  1362. if (state->current_buf) {
  1363. buf = state->buf_1;
  1364. len = state->buflen_1;
  1365. } else {
  1366. buf = state->buf_0;
  1367. len = state->buflen_0;
  1368. }
  1369. memcpy(export->buf, buf, len);
  1370. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  1371. export->buflen = len;
  1372. export->update = state->update;
  1373. export->final = state->final;
  1374. export->finup = state->finup;
  1375. return 0;
  1376. }
  1377. static int ahash_import(struct ahash_request *req, const void *in)
  1378. {
  1379. struct caam_hash_state *state = ahash_request_ctx(req);
  1380. const struct caam_export_state *export = in;
  1381. memset(state, 0, sizeof(*state));
  1382. memcpy(state->buf_0, export->buf, export->buflen);
  1383. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  1384. state->buflen_0 = export->buflen;
  1385. state->update = export->update;
  1386. state->final = export->final;
  1387. state->finup = export->finup;
  1388. return 0;
  1389. }
  1390. struct caam_hash_template {
  1391. char name[CRYPTO_MAX_ALG_NAME];
  1392. char driver_name[CRYPTO_MAX_ALG_NAME];
  1393. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1394. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1395. unsigned int blocksize;
  1396. struct ahash_alg template_ahash;
  1397. u32 alg_type;
  1398. u32 alg_op;
  1399. };
  1400. /* ahash descriptors */
  1401. static struct caam_hash_template driver_hash[] = {
  1402. {
  1403. .name = "sha1",
  1404. .driver_name = "sha1-caam",
  1405. .hmac_name = "hmac(sha1)",
  1406. .hmac_driver_name = "hmac-sha1-caam",
  1407. .blocksize = SHA1_BLOCK_SIZE,
  1408. .template_ahash = {
  1409. .init = ahash_init,
  1410. .update = ahash_update,
  1411. .final = ahash_final,
  1412. .finup = ahash_finup,
  1413. .digest = ahash_digest,
  1414. .export = ahash_export,
  1415. .import = ahash_import,
  1416. .setkey = ahash_setkey,
  1417. .halg = {
  1418. .digestsize = SHA1_DIGEST_SIZE,
  1419. .statesize = sizeof(struct caam_export_state),
  1420. },
  1421. },
  1422. .alg_type = OP_ALG_ALGSEL_SHA1,
  1423. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1424. }, {
  1425. .name = "sha224",
  1426. .driver_name = "sha224-caam",
  1427. .hmac_name = "hmac(sha224)",
  1428. .hmac_driver_name = "hmac-sha224-caam",
  1429. .blocksize = SHA224_BLOCK_SIZE,
  1430. .template_ahash = {
  1431. .init = ahash_init,
  1432. .update = ahash_update,
  1433. .final = ahash_final,
  1434. .finup = ahash_finup,
  1435. .digest = ahash_digest,
  1436. .export = ahash_export,
  1437. .import = ahash_import,
  1438. .setkey = ahash_setkey,
  1439. .halg = {
  1440. .digestsize = SHA224_DIGEST_SIZE,
  1441. .statesize = sizeof(struct caam_export_state),
  1442. },
  1443. },
  1444. .alg_type = OP_ALG_ALGSEL_SHA224,
  1445. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1446. }, {
  1447. .name = "sha256",
  1448. .driver_name = "sha256-caam",
  1449. .hmac_name = "hmac(sha256)",
  1450. .hmac_driver_name = "hmac-sha256-caam",
  1451. .blocksize = SHA256_BLOCK_SIZE,
  1452. .template_ahash = {
  1453. .init = ahash_init,
  1454. .update = ahash_update,
  1455. .final = ahash_final,
  1456. .finup = ahash_finup,
  1457. .digest = ahash_digest,
  1458. .export = ahash_export,
  1459. .import = ahash_import,
  1460. .setkey = ahash_setkey,
  1461. .halg = {
  1462. .digestsize = SHA256_DIGEST_SIZE,
  1463. .statesize = sizeof(struct caam_export_state),
  1464. },
  1465. },
  1466. .alg_type = OP_ALG_ALGSEL_SHA256,
  1467. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1468. }, {
  1469. .name = "sha384",
  1470. .driver_name = "sha384-caam",
  1471. .hmac_name = "hmac(sha384)",
  1472. .hmac_driver_name = "hmac-sha384-caam",
  1473. .blocksize = SHA384_BLOCK_SIZE,
  1474. .template_ahash = {
  1475. .init = ahash_init,
  1476. .update = ahash_update,
  1477. .final = ahash_final,
  1478. .finup = ahash_finup,
  1479. .digest = ahash_digest,
  1480. .export = ahash_export,
  1481. .import = ahash_import,
  1482. .setkey = ahash_setkey,
  1483. .halg = {
  1484. .digestsize = SHA384_DIGEST_SIZE,
  1485. .statesize = sizeof(struct caam_export_state),
  1486. },
  1487. },
  1488. .alg_type = OP_ALG_ALGSEL_SHA384,
  1489. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1490. }, {
  1491. .name = "sha512",
  1492. .driver_name = "sha512-caam",
  1493. .hmac_name = "hmac(sha512)",
  1494. .hmac_driver_name = "hmac-sha512-caam",
  1495. .blocksize = SHA512_BLOCK_SIZE,
  1496. .template_ahash = {
  1497. .init = ahash_init,
  1498. .update = ahash_update,
  1499. .final = ahash_final,
  1500. .finup = ahash_finup,
  1501. .digest = ahash_digest,
  1502. .export = ahash_export,
  1503. .import = ahash_import,
  1504. .setkey = ahash_setkey,
  1505. .halg = {
  1506. .digestsize = SHA512_DIGEST_SIZE,
  1507. .statesize = sizeof(struct caam_export_state),
  1508. },
  1509. },
  1510. .alg_type = OP_ALG_ALGSEL_SHA512,
  1511. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1512. }, {
  1513. .name = "md5",
  1514. .driver_name = "md5-caam",
  1515. .hmac_name = "hmac(md5)",
  1516. .hmac_driver_name = "hmac-md5-caam",
  1517. .blocksize = MD5_BLOCK_WORDS * 4,
  1518. .template_ahash = {
  1519. .init = ahash_init,
  1520. .update = ahash_update,
  1521. .final = ahash_final,
  1522. .finup = ahash_finup,
  1523. .digest = ahash_digest,
  1524. .export = ahash_export,
  1525. .import = ahash_import,
  1526. .setkey = ahash_setkey,
  1527. .halg = {
  1528. .digestsize = MD5_DIGEST_SIZE,
  1529. .statesize = sizeof(struct caam_export_state),
  1530. },
  1531. },
  1532. .alg_type = OP_ALG_ALGSEL_MD5,
  1533. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1534. },
  1535. };
  1536. struct caam_hash_alg {
  1537. struct list_head entry;
  1538. int alg_type;
  1539. int alg_op;
  1540. struct ahash_alg ahash_alg;
  1541. };
  1542. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1543. {
  1544. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1545. struct crypto_alg *base = tfm->__crt_alg;
  1546. struct hash_alg_common *halg =
  1547. container_of(base, struct hash_alg_common, base);
  1548. struct ahash_alg *alg =
  1549. container_of(halg, struct ahash_alg, halg);
  1550. struct caam_hash_alg *caam_hash =
  1551. container_of(alg, struct caam_hash_alg, ahash_alg);
  1552. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1553. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1554. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1555. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1556. HASH_MSG_LEN + 32,
  1557. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1558. HASH_MSG_LEN + 64,
  1559. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1560. int ret = 0;
  1561. /*
  1562. * Get a Job ring from Job Ring driver to ensure in-order
  1563. * crypto request processing per tfm
  1564. */
  1565. ctx->jrdev = caam_jr_alloc();
  1566. if (IS_ERR(ctx->jrdev)) {
  1567. pr_err("Job Ring Device allocation for transform failed\n");
  1568. return PTR_ERR(ctx->jrdev);
  1569. }
  1570. /* copy descriptor header template value */
  1571. ctx->alg_type = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1572. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_hash->alg_op;
  1573. ctx->ctx_len = runninglen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  1574. OP_ALG_ALGSEL_SHIFT];
  1575. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1576. sizeof(struct caam_hash_state));
  1577. ret = ahash_set_sh_desc(ahash);
  1578. return ret;
  1579. }
  1580. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1581. {
  1582. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1583. if (ctx->sh_desc_update_dma &&
  1584. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1585. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1586. desc_bytes(ctx->sh_desc_update),
  1587. DMA_TO_DEVICE);
  1588. if (ctx->sh_desc_update_first_dma &&
  1589. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1590. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1591. desc_bytes(ctx->sh_desc_update_first),
  1592. DMA_TO_DEVICE);
  1593. if (ctx->sh_desc_fin_dma &&
  1594. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1595. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1596. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1597. if (ctx->sh_desc_digest_dma &&
  1598. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1599. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1600. desc_bytes(ctx->sh_desc_digest),
  1601. DMA_TO_DEVICE);
  1602. if (ctx->sh_desc_finup_dma &&
  1603. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_finup_dma))
  1604. dma_unmap_single(ctx->jrdev, ctx->sh_desc_finup_dma,
  1605. desc_bytes(ctx->sh_desc_finup), DMA_TO_DEVICE);
  1606. caam_jr_free(ctx->jrdev);
  1607. }
  1608. static void __exit caam_algapi_hash_exit(void)
  1609. {
  1610. struct caam_hash_alg *t_alg, *n;
  1611. if (!hash_list.next)
  1612. return;
  1613. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1614. crypto_unregister_ahash(&t_alg->ahash_alg);
  1615. list_del(&t_alg->entry);
  1616. kfree(t_alg);
  1617. }
  1618. }
  1619. static struct caam_hash_alg *
  1620. caam_hash_alloc(struct caam_hash_template *template,
  1621. bool keyed)
  1622. {
  1623. struct caam_hash_alg *t_alg;
  1624. struct ahash_alg *halg;
  1625. struct crypto_alg *alg;
  1626. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  1627. if (!t_alg) {
  1628. pr_err("failed to allocate t_alg\n");
  1629. return ERR_PTR(-ENOMEM);
  1630. }
  1631. t_alg->ahash_alg = template->template_ahash;
  1632. halg = &t_alg->ahash_alg;
  1633. alg = &halg->halg.base;
  1634. if (keyed) {
  1635. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1636. template->hmac_name);
  1637. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1638. template->hmac_driver_name);
  1639. } else {
  1640. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1641. template->name);
  1642. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1643. template->driver_name);
  1644. }
  1645. alg->cra_module = THIS_MODULE;
  1646. alg->cra_init = caam_hash_cra_init;
  1647. alg->cra_exit = caam_hash_cra_exit;
  1648. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1649. alg->cra_priority = CAAM_CRA_PRIORITY;
  1650. alg->cra_blocksize = template->blocksize;
  1651. alg->cra_alignmask = 0;
  1652. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1653. alg->cra_type = &crypto_ahash_type;
  1654. t_alg->alg_type = template->alg_type;
  1655. t_alg->alg_op = template->alg_op;
  1656. return t_alg;
  1657. }
  1658. static int __init caam_algapi_hash_init(void)
  1659. {
  1660. struct device_node *dev_node;
  1661. struct platform_device *pdev;
  1662. struct device *ctrldev;
  1663. int i = 0, err = 0;
  1664. struct caam_drv_private *priv;
  1665. unsigned int md_limit = SHA512_DIGEST_SIZE;
  1666. u32 cha_inst, cha_vid;
  1667. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1668. if (!dev_node) {
  1669. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1670. if (!dev_node)
  1671. return -ENODEV;
  1672. }
  1673. pdev = of_find_device_by_node(dev_node);
  1674. if (!pdev) {
  1675. of_node_put(dev_node);
  1676. return -ENODEV;
  1677. }
  1678. ctrldev = &pdev->dev;
  1679. priv = dev_get_drvdata(ctrldev);
  1680. of_node_put(dev_node);
  1681. /*
  1682. * If priv is NULL, it's probably because the caam driver wasn't
  1683. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  1684. */
  1685. if (!priv)
  1686. return -ENODEV;
  1687. /*
  1688. * Register crypto algorithms the device supports. First, identify
  1689. * presence and attributes of MD block.
  1690. */
  1691. cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
  1692. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  1693. /*
  1694. * Skip registration of any hashing algorithms if MD block
  1695. * is not present.
  1696. */
  1697. if (!((cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT))
  1698. return -ENODEV;
  1699. /* Limit digest size based on LP256 */
  1700. if ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)
  1701. md_limit = SHA256_DIGEST_SIZE;
  1702. INIT_LIST_HEAD(&hash_list);
  1703. /* register crypto algorithms the device supports */
  1704. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1705. struct caam_hash_alg *t_alg;
  1706. struct caam_hash_template *alg = driver_hash + i;
  1707. /* If MD size is not supported by device, skip registration */
  1708. if (alg->template_ahash.halg.digestsize > md_limit)
  1709. continue;
  1710. /* register hmac version */
  1711. t_alg = caam_hash_alloc(alg, true);
  1712. if (IS_ERR(t_alg)) {
  1713. err = PTR_ERR(t_alg);
  1714. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1715. continue;
  1716. }
  1717. err = crypto_register_ahash(&t_alg->ahash_alg);
  1718. if (err) {
  1719. pr_warn("%s alg registration failed: %d\n",
  1720. t_alg->ahash_alg.halg.base.cra_driver_name,
  1721. err);
  1722. kfree(t_alg);
  1723. } else
  1724. list_add_tail(&t_alg->entry, &hash_list);
  1725. /* register unkeyed version */
  1726. t_alg = caam_hash_alloc(alg, false);
  1727. if (IS_ERR(t_alg)) {
  1728. err = PTR_ERR(t_alg);
  1729. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1730. continue;
  1731. }
  1732. err = crypto_register_ahash(&t_alg->ahash_alg);
  1733. if (err) {
  1734. pr_warn("%s alg registration failed: %d\n",
  1735. t_alg->ahash_alg.halg.base.cra_driver_name,
  1736. err);
  1737. kfree(t_alg);
  1738. } else
  1739. list_add_tail(&t_alg->entry, &hash_list);
  1740. }
  1741. return err;
  1742. }
  1743. module_init(caam_algapi_hash_init);
  1744. module_exit(caam_algapi_hash_exit);
  1745. MODULE_LICENSE("GPL");
  1746. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1747. MODULE_AUTHOR("Freescale Semiconductor - NMG");