ring_buffer.c 129 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ftrace_event.h>
  7. #include <linux/ring_buffer.h>
  8. #include <linux/trace_clock.h>
  9. #include <linux/trace_seq.h>
  10. #include <linux/spinlock.h>
  11. #include <linux/irq_work.h>
  12. #include <linux/debugfs.h>
  13. #include <linux/uaccess.h>
  14. #include <linux/hardirq.h>
  15. #include <linux/kthread.h> /* for self test */
  16. #include <linux/kmemcheck.h>
  17. #include <linux/module.h>
  18. #include <linux/percpu.h>
  19. #include <linux/mutex.h>
  20. #include <linux/delay.h>
  21. #include <linux/slab.h>
  22. #include <linux/init.h>
  23. #include <linux/hash.h>
  24. #include <linux/list.h>
  25. #include <linux/cpu.h>
  26. #include <linux/fs.h>
  27. #include <asm/local.h>
  28. static void update_pages_handler(struct work_struct *work);
  29. /*
  30. * The ring buffer header is special. We must manually up keep it.
  31. */
  32. int ring_buffer_print_entry_header(struct trace_seq *s)
  33. {
  34. int ret;
  35. ret = trace_seq_puts(s, "# compressed entry header\n");
  36. ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
  37. ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
  38. ret = trace_seq_puts(s, "\tarray : 32 bits\n");
  39. ret = trace_seq_putc(s, '\n');
  40. ret = trace_seq_printf(s, "\tpadding : type == %d\n",
  41. RINGBUF_TYPE_PADDING);
  42. ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43. RINGBUF_TYPE_TIME_EXTEND);
  44. ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
  45. RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  46. return ret;
  47. }
  48. /*
  49. * The ring buffer is made up of a list of pages. A separate list of pages is
  50. * allocated for each CPU. A writer may only write to a buffer that is
  51. * associated with the CPU it is currently executing on. A reader may read
  52. * from any per cpu buffer.
  53. *
  54. * The reader is special. For each per cpu buffer, the reader has its own
  55. * reader page. When a reader has read the entire reader page, this reader
  56. * page is swapped with another page in the ring buffer.
  57. *
  58. * Now, as long as the writer is off the reader page, the reader can do what
  59. * ever it wants with that page. The writer will never write to that page
  60. * again (as long as it is out of the ring buffer).
  61. *
  62. * Here's some silly ASCII art.
  63. *
  64. * +------+
  65. * |reader| RING BUFFER
  66. * |page |
  67. * +------+ +---+ +---+ +---+
  68. * | |-->| |-->| |
  69. * +---+ +---+ +---+
  70. * ^ |
  71. * | |
  72. * +---------------+
  73. *
  74. *
  75. * +------+
  76. * |reader| RING BUFFER
  77. * |page |------------------v
  78. * +------+ +---+ +---+ +---+
  79. * | |-->| |-->| |
  80. * +---+ +---+ +---+
  81. * ^ |
  82. * | |
  83. * +---------------+
  84. *
  85. *
  86. * +------+
  87. * |reader| RING BUFFER
  88. * |page |------------------v
  89. * +------+ +---+ +---+ +---+
  90. * ^ | |-->| |-->| |
  91. * | +---+ +---+ +---+
  92. * | |
  93. * | |
  94. * +------------------------------+
  95. *
  96. *
  97. * +------+
  98. * |buffer| RING BUFFER
  99. * |page |------------------v
  100. * +------+ +---+ +---+ +---+
  101. * ^ | | | |-->| |
  102. * | New +---+ +---+ +---+
  103. * | Reader------^ |
  104. * | page |
  105. * +------------------------------+
  106. *
  107. *
  108. * After we make this swap, the reader can hand this page off to the splice
  109. * code and be done with it. It can even allocate a new page if it needs to
  110. * and swap that into the ring buffer.
  111. *
  112. * We will be using cmpxchg soon to make all this lockless.
  113. *
  114. */
  115. /*
  116. * A fast way to enable or disable all ring buffers is to
  117. * call tracing_on or tracing_off. Turning off the ring buffers
  118. * prevents all ring buffers from being recorded to.
  119. * Turning this switch on, makes it OK to write to the
  120. * ring buffer, if the ring buffer is enabled itself.
  121. *
  122. * There's three layers that must be on in order to write
  123. * to the ring buffer.
  124. *
  125. * 1) This global flag must be set.
  126. * 2) The ring buffer must be enabled for recording.
  127. * 3) The per cpu buffer must be enabled for recording.
  128. *
  129. * In case of an anomaly, this global flag has a bit set that
  130. * will permantly disable all ring buffers.
  131. */
  132. /*
  133. * Global flag to disable all recording to ring buffers
  134. * This has two bits: ON, DISABLED
  135. *
  136. * ON DISABLED
  137. * ---- ----------
  138. * 0 0 : ring buffers are off
  139. * 1 0 : ring buffers are on
  140. * X 1 : ring buffers are permanently disabled
  141. */
  142. enum {
  143. RB_BUFFERS_ON_BIT = 0,
  144. RB_BUFFERS_DISABLED_BIT = 1,
  145. };
  146. enum {
  147. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  148. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  149. };
  150. static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  151. /* Used for individual buffers (after the counter) */
  152. #define RB_BUFFER_OFF (1 << 20)
  153. #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
  154. /**
  155. * tracing_off_permanent - permanently disable ring buffers
  156. *
  157. * This function, once called, will disable all ring buffers
  158. * permanently.
  159. */
  160. void tracing_off_permanent(void)
  161. {
  162. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  163. }
  164. #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
  165. #define RB_ALIGNMENT 4U
  166. #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  167. #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
  168. #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
  169. # define RB_FORCE_8BYTE_ALIGNMENT 0
  170. # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
  171. #else
  172. # define RB_FORCE_8BYTE_ALIGNMENT 1
  173. # define RB_ARCH_ALIGNMENT 8U
  174. #endif
  175. #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
  176. /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
  177. #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
  178. enum {
  179. RB_LEN_TIME_EXTEND = 8,
  180. RB_LEN_TIME_STAMP = 16,
  181. };
  182. #define skip_time_extend(event) \
  183. ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
  184. static inline int rb_null_event(struct ring_buffer_event *event)
  185. {
  186. return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
  187. }
  188. static void rb_event_set_padding(struct ring_buffer_event *event)
  189. {
  190. /* padding has a NULL time_delta */
  191. event->type_len = RINGBUF_TYPE_PADDING;
  192. event->time_delta = 0;
  193. }
  194. static unsigned
  195. rb_event_data_length(struct ring_buffer_event *event)
  196. {
  197. unsigned length;
  198. if (event->type_len)
  199. length = event->type_len * RB_ALIGNMENT;
  200. else
  201. length = event->array[0];
  202. return length + RB_EVNT_HDR_SIZE;
  203. }
  204. /*
  205. * Return the length of the given event. Will return
  206. * the length of the time extend if the event is a
  207. * time extend.
  208. */
  209. static inline unsigned
  210. rb_event_length(struct ring_buffer_event *event)
  211. {
  212. switch (event->type_len) {
  213. case RINGBUF_TYPE_PADDING:
  214. if (rb_null_event(event))
  215. /* undefined */
  216. return -1;
  217. return event->array[0] + RB_EVNT_HDR_SIZE;
  218. case RINGBUF_TYPE_TIME_EXTEND:
  219. return RB_LEN_TIME_EXTEND;
  220. case RINGBUF_TYPE_TIME_STAMP:
  221. return RB_LEN_TIME_STAMP;
  222. case RINGBUF_TYPE_DATA:
  223. return rb_event_data_length(event);
  224. default:
  225. BUG();
  226. }
  227. /* not hit */
  228. return 0;
  229. }
  230. /*
  231. * Return total length of time extend and data,
  232. * or just the event length for all other events.
  233. */
  234. static inline unsigned
  235. rb_event_ts_length(struct ring_buffer_event *event)
  236. {
  237. unsigned len = 0;
  238. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  239. /* time extends include the data event after it */
  240. len = RB_LEN_TIME_EXTEND;
  241. event = skip_time_extend(event);
  242. }
  243. return len + rb_event_length(event);
  244. }
  245. /**
  246. * ring_buffer_event_length - return the length of the event
  247. * @event: the event to get the length of
  248. *
  249. * Returns the size of the data load of a data event.
  250. * If the event is something other than a data event, it
  251. * returns the size of the event itself. With the exception
  252. * of a TIME EXTEND, where it still returns the size of the
  253. * data load of the data event after it.
  254. */
  255. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  256. {
  257. unsigned length;
  258. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  259. event = skip_time_extend(event);
  260. length = rb_event_length(event);
  261. if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  262. return length;
  263. length -= RB_EVNT_HDR_SIZE;
  264. if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
  265. length -= sizeof(event->array[0]);
  266. return length;
  267. }
  268. EXPORT_SYMBOL_GPL(ring_buffer_event_length);
  269. /* inline for ring buffer fast paths */
  270. static void *
  271. rb_event_data(struct ring_buffer_event *event)
  272. {
  273. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  274. event = skip_time_extend(event);
  275. BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  276. /* If length is in len field, then array[0] has the data */
  277. if (event->type_len)
  278. return (void *)&event->array[0];
  279. /* Otherwise length is in array[0] and array[1] has the data */
  280. return (void *)&event->array[1];
  281. }
  282. /**
  283. * ring_buffer_event_data - return the data of the event
  284. * @event: the event to get the data from
  285. */
  286. void *ring_buffer_event_data(struct ring_buffer_event *event)
  287. {
  288. return rb_event_data(event);
  289. }
  290. EXPORT_SYMBOL_GPL(ring_buffer_event_data);
  291. #define for_each_buffer_cpu(buffer, cpu) \
  292. for_each_cpu(cpu, buffer->cpumask)
  293. #define TS_SHIFT 27
  294. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  295. #define TS_DELTA_TEST (~TS_MASK)
  296. /* Flag when events were overwritten */
  297. #define RB_MISSED_EVENTS (1 << 31)
  298. /* Missed count stored at end */
  299. #define RB_MISSED_STORED (1 << 30)
  300. struct buffer_data_page {
  301. u64 time_stamp; /* page time stamp */
  302. local_t commit; /* write committed index */
  303. unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
  304. };
  305. /*
  306. * Note, the buffer_page list must be first. The buffer pages
  307. * are allocated in cache lines, which means that each buffer
  308. * page will be at the beginning of a cache line, and thus
  309. * the least significant bits will be zero. We use this to
  310. * add flags in the list struct pointers, to make the ring buffer
  311. * lockless.
  312. */
  313. struct buffer_page {
  314. struct list_head list; /* list of buffer pages */
  315. local_t write; /* index for next write */
  316. unsigned read; /* index for next read */
  317. local_t entries; /* entries on this page */
  318. unsigned long real_end; /* real end of data */
  319. struct buffer_data_page *page; /* Actual data page */
  320. };
  321. /*
  322. * The buffer page counters, write and entries, must be reset
  323. * atomically when crossing page boundaries. To synchronize this
  324. * update, two counters are inserted into the number. One is
  325. * the actual counter for the write position or count on the page.
  326. *
  327. * The other is a counter of updaters. Before an update happens
  328. * the update partition of the counter is incremented. This will
  329. * allow the updater to update the counter atomically.
  330. *
  331. * The counter is 20 bits, and the state data is 12.
  332. */
  333. #define RB_WRITE_MASK 0xfffff
  334. #define RB_WRITE_INTCNT (1 << 20)
  335. static void rb_init_page(struct buffer_data_page *bpage)
  336. {
  337. local_set(&bpage->commit, 0);
  338. }
  339. /**
  340. * ring_buffer_page_len - the size of data on the page.
  341. * @page: The page to read
  342. *
  343. * Returns the amount of data on the page, including buffer page header.
  344. */
  345. size_t ring_buffer_page_len(void *page)
  346. {
  347. return local_read(&((struct buffer_data_page *)page)->commit)
  348. + BUF_PAGE_HDR_SIZE;
  349. }
  350. /*
  351. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  352. * this issue out.
  353. */
  354. static void free_buffer_page(struct buffer_page *bpage)
  355. {
  356. free_page((unsigned long)bpage->page);
  357. kfree(bpage);
  358. }
  359. /*
  360. * We need to fit the time_stamp delta into 27 bits.
  361. */
  362. static inline int test_time_stamp(u64 delta)
  363. {
  364. if (delta & TS_DELTA_TEST)
  365. return 1;
  366. return 0;
  367. }
  368. #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
  369. /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
  370. #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
  371. int ring_buffer_print_page_header(struct trace_seq *s)
  372. {
  373. struct buffer_data_page field;
  374. int ret;
  375. ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
  376. "offset:0;\tsize:%u;\tsigned:%u;\n",
  377. (unsigned int)sizeof(field.time_stamp),
  378. (unsigned int)is_signed_type(u64));
  379. ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
  380. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  381. (unsigned int)offsetof(typeof(field), commit),
  382. (unsigned int)sizeof(field.commit),
  383. (unsigned int)is_signed_type(long));
  384. ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
  385. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  386. (unsigned int)offsetof(typeof(field), commit),
  387. 1,
  388. (unsigned int)is_signed_type(long));
  389. ret = trace_seq_printf(s, "\tfield: char data;\t"
  390. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  391. (unsigned int)offsetof(typeof(field), data),
  392. (unsigned int)BUF_PAGE_SIZE,
  393. (unsigned int)is_signed_type(char));
  394. return ret;
  395. }
  396. struct rb_irq_work {
  397. struct irq_work work;
  398. wait_queue_head_t waiters;
  399. bool waiters_pending;
  400. };
  401. /*
  402. * head_page == tail_page && head == tail then buffer is empty.
  403. */
  404. struct ring_buffer_per_cpu {
  405. int cpu;
  406. atomic_t record_disabled;
  407. struct ring_buffer *buffer;
  408. raw_spinlock_t reader_lock; /* serialize readers */
  409. arch_spinlock_t lock;
  410. struct lock_class_key lock_key;
  411. unsigned int nr_pages;
  412. struct list_head *pages;
  413. struct buffer_page *head_page; /* read from head */
  414. struct buffer_page *tail_page; /* write to tail */
  415. struct buffer_page *commit_page; /* committed pages */
  416. struct buffer_page *reader_page;
  417. unsigned long lost_events;
  418. unsigned long last_overrun;
  419. local_t entries_bytes;
  420. local_t entries;
  421. local_t overrun;
  422. local_t commit_overrun;
  423. local_t dropped_events;
  424. local_t committing;
  425. local_t commits;
  426. unsigned long read;
  427. unsigned long read_bytes;
  428. u64 write_stamp;
  429. u64 read_stamp;
  430. /* ring buffer pages to update, > 0 to add, < 0 to remove */
  431. int nr_pages_to_update;
  432. struct list_head new_pages; /* new pages to add */
  433. struct work_struct update_pages_work;
  434. struct completion update_done;
  435. struct rb_irq_work irq_work;
  436. };
  437. struct ring_buffer {
  438. unsigned flags;
  439. int cpus;
  440. atomic_t record_disabled;
  441. atomic_t resize_disabled;
  442. cpumask_var_t cpumask;
  443. struct lock_class_key *reader_lock_key;
  444. struct mutex mutex;
  445. struct ring_buffer_per_cpu **buffers;
  446. #ifdef CONFIG_HOTPLUG_CPU
  447. struct notifier_block cpu_notify;
  448. #endif
  449. u64 (*clock)(void);
  450. struct rb_irq_work irq_work;
  451. };
  452. struct ring_buffer_iter {
  453. struct ring_buffer_per_cpu *cpu_buffer;
  454. unsigned long head;
  455. struct buffer_page *head_page;
  456. struct buffer_page *cache_reader_page;
  457. unsigned long cache_read;
  458. u64 read_stamp;
  459. };
  460. /*
  461. * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
  462. *
  463. * Schedules a delayed work to wake up any task that is blocked on the
  464. * ring buffer waiters queue.
  465. */
  466. static void rb_wake_up_waiters(struct irq_work *work)
  467. {
  468. struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
  469. wake_up_all(&rbwork->waiters);
  470. }
  471. /**
  472. * ring_buffer_wait - wait for input to the ring buffer
  473. * @buffer: buffer to wait on
  474. * @cpu: the cpu buffer to wait on
  475. *
  476. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  477. * as data is added to any of the @buffer's cpu buffers. Otherwise
  478. * it will wait for data to be added to a specific cpu buffer.
  479. */
  480. void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
  481. {
  482. struct ring_buffer_per_cpu *cpu_buffer;
  483. DEFINE_WAIT(wait);
  484. struct rb_irq_work *work;
  485. /*
  486. * Depending on what the caller is waiting for, either any
  487. * data in any cpu buffer, or a specific buffer, put the
  488. * caller on the appropriate wait queue.
  489. */
  490. if (cpu == RING_BUFFER_ALL_CPUS)
  491. work = &buffer->irq_work;
  492. else {
  493. cpu_buffer = buffer->buffers[cpu];
  494. work = &cpu_buffer->irq_work;
  495. }
  496. prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
  497. /*
  498. * The events can happen in critical sections where
  499. * checking a work queue can cause deadlocks.
  500. * After adding a task to the queue, this flag is set
  501. * only to notify events to try to wake up the queue
  502. * using irq_work.
  503. *
  504. * We don't clear it even if the buffer is no longer
  505. * empty. The flag only causes the next event to run
  506. * irq_work to do the work queue wake up. The worse
  507. * that can happen if we race with !trace_empty() is that
  508. * an event will cause an irq_work to try to wake up
  509. * an empty queue.
  510. *
  511. * There's no reason to protect this flag either, as
  512. * the work queue and irq_work logic will do the necessary
  513. * synchronization for the wake ups. The only thing
  514. * that is necessary is that the wake up happens after
  515. * a task has been queued. It's OK for spurious wake ups.
  516. */
  517. work->waiters_pending = true;
  518. if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
  519. (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
  520. schedule();
  521. finish_wait(&work->waiters, &wait);
  522. }
  523. /**
  524. * ring_buffer_poll_wait - poll on buffer input
  525. * @buffer: buffer to wait on
  526. * @cpu: the cpu buffer to wait on
  527. * @filp: the file descriptor
  528. * @poll_table: The poll descriptor
  529. *
  530. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  531. * as data is added to any of the @buffer's cpu buffers. Otherwise
  532. * it will wait for data to be added to a specific cpu buffer.
  533. *
  534. * Returns POLLIN | POLLRDNORM if data exists in the buffers,
  535. * zero otherwise.
  536. */
  537. int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
  538. struct file *filp, poll_table *poll_table)
  539. {
  540. struct ring_buffer_per_cpu *cpu_buffer;
  541. struct rb_irq_work *work;
  542. if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
  543. (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
  544. return POLLIN | POLLRDNORM;
  545. if (cpu == RING_BUFFER_ALL_CPUS)
  546. work = &buffer->irq_work;
  547. else {
  548. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  549. return -EINVAL;
  550. cpu_buffer = buffer->buffers[cpu];
  551. work = &cpu_buffer->irq_work;
  552. }
  553. work->waiters_pending = true;
  554. poll_wait(filp, &work->waiters, poll_table);
  555. if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
  556. (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
  557. return POLLIN | POLLRDNORM;
  558. return 0;
  559. }
  560. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  561. #define RB_WARN_ON(b, cond) \
  562. ({ \
  563. int _____ret = unlikely(cond); \
  564. if (_____ret) { \
  565. if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
  566. struct ring_buffer_per_cpu *__b = \
  567. (void *)b; \
  568. atomic_inc(&__b->buffer->record_disabled); \
  569. } else \
  570. atomic_inc(&b->record_disabled); \
  571. WARN_ON(1); \
  572. } \
  573. _____ret; \
  574. })
  575. /* Up this if you want to test the TIME_EXTENTS and normalization */
  576. #define DEBUG_SHIFT 0
  577. static inline u64 rb_time_stamp(struct ring_buffer *buffer)
  578. {
  579. /* shift to debug/test normalization and TIME_EXTENTS */
  580. return buffer->clock() << DEBUG_SHIFT;
  581. }
  582. u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
  583. {
  584. u64 time;
  585. preempt_disable_notrace();
  586. time = rb_time_stamp(buffer);
  587. preempt_enable_no_resched_notrace();
  588. return time;
  589. }
  590. EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
  591. void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
  592. int cpu, u64 *ts)
  593. {
  594. /* Just stupid testing the normalize function and deltas */
  595. *ts >>= DEBUG_SHIFT;
  596. }
  597. EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
  598. /*
  599. * Making the ring buffer lockless makes things tricky.
  600. * Although writes only happen on the CPU that they are on,
  601. * and they only need to worry about interrupts. Reads can
  602. * happen on any CPU.
  603. *
  604. * The reader page is always off the ring buffer, but when the
  605. * reader finishes with a page, it needs to swap its page with
  606. * a new one from the buffer. The reader needs to take from
  607. * the head (writes go to the tail). But if a writer is in overwrite
  608. * mode and wraps, it must push the head page forward.
  609. *
  610. * Here lies the problem.
  611. *
  612. * The reader must be careful to replace only the head page, and
  613. * not another one. As described at the top of the file in the
  614. * ASCII art, the reader sets its old page to point to the next
  615. * page after head. It then sets the page after head to point to
  616. * the old reader page. But if the writer moves the head page
  617. * during this operation, the reader could end up with the tail.
  618. *
  619. * We use cmpxchg to help prevent this race. We also do something
  620. * special with the page before head. We set the LSB to 1.
  621. *
  622. * When the writer must push the page forward, it will clear the
  623. * bit that points to the head page, move the head, and then set
  624. * the bit that points to the new head page.
  625. *
  626. * We also don't want an interrupt coming in and moving the head
  627. * page on another writer. Thus we use the second LSB to catch
  628. * that too. Thus:
  629. *
  630. * head->list->prev->next bit 1 bit 0
  631. * ------- -------
  632. * Normal page 0 0
  633. * Points to head page 0 1
  634. * New head page 1 0
  635. *
  636. * Note we can not trust the prev pointer of the head page, because:
  637. *
  638. * +----+ +-----+ +-----+
  639. * | |------>| T |---X--->| N |
  640. * | |<------| | | |
  641. * +----+ +-----+ +-----+
  642. * ^ ^ |
  643. * | +-----+ | |
  644. * +----------| R |----------+ |
  645. * | |<-----------+
  646. * +-----+
  647. *
  648. * Key: ---X--> HEAD flag set in pointer
  649. * T Tail page
  650. * R Reader page
  651. * N Next page
  652. *
  653. * (see __rb_reserve_next() to see where this happens)
  654. *
  655. * What the above shows is that the reader just swapped out
  656. * the reader page with a page in the buffer, but before it
  657. * could make the new header point back to the new page added
  658. * it was preempted by a writer. The writer moved forward onto
  659. * the new page added by the reader and is about to move forward
  660. * again.
  661. *
  662. * You can see, it is legitimate for the previous pointer of
  663. * the head (or any page) not to point back to itself. But only
  664. * temporarially.
  665. */
  666. #define RB_PAGE_NORMAL 0UL
  667. #define RB_PAGE_HEAD 1UL
  668. #define RB_PAGE_UPDATE 2UL
  669. #define RB_FLAG_MASK 3UL
  670. /* PAGE_MOVED is not part of the mask */
  671. #define RB_PAGE_MOVED 4UL
  672. /*
  673. * rb_list_head - remove any bit
  674. */
  675. static struct list_head *rb_list_head(struct list_head *list)
  676. {
  677. unsigned long val = (unsigned long)list;
  678. return (struct list_head *)(val & ~RB_FLAG_MASK);
  679. }
  680. /*
  681. * rb_is_head_page - test if the given page is the head page
  682. *
  683. * Because the reader may move the head_page pointer, we can
  684. * not trust what the head page is (it may be pointing to
  685. * the reader page). But if the next page is a header page,
  686. * its flags will be non zero.
  687. */
  688. static inline int
  689. rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  690. struct buffer_page *page, struct list_head *list)
  691. {
  692. unsigned long val;
  693. val = (unsigned long)list->next;
  694. if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
  695. return RB_PAGE_MOVED;
  696. return val & RB_FLAG_MASK;
  697. }
  698. /*
  699. * rb_is_reader_page
  700. *
  701. * The unique thing about the reader page, is that, if the
  702. * writer is ever on it, the previous pointer never points
  703. * back to the reader page.
  704. */
  705. static int rb_is_reader_page(struct buffer_page *page)
  706. {
  707. struct list_head *list = page->list.prev;
  708. return rb_list_head(list->next) != &page->list;
  709. }
  710. /*
  711. * rb_set_list_to_head - set a list_head to be pointing to head.
  712. */
  713. static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
  714. struct list_head *list)
  715. {
  716. unsigned long *ptr;
  717. ptr = (unsigned long *)&list->next;
  718. *ptr |= RB_PAGE_HEAD;
  719. *ptr &= ~RB_PAGE_UPDATE;
  720. }
  721. /*
  722. * rb_head_page_activate - sets up head page
  723. */
  724. static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
  725. {
  726. struct buffer_page *head;
  727. head = cpu_buffer->head_page;
  728. if (!head)
  729. return;
  730. /*
  731. * Set the previous list pointer to have the HEAD flag.
  732. */
  733. rb_set_list_to_head(cpu_buffer, head->list.prev);
  734. }
  735. static void rb_list_head_clear(struct list_head *list)
  736. {
  737. unsigned long *ptr = (unsigned long *)&list->next;
  738. *ptr &= ~RB_FLAG_MASK;
  739. }
  740. /*
  741. * rb_head_page_dactivate - clears head page ptr (for free list)
  742. */
  743. static void
  744. rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
  745. {
  746. struct list_head *hd;
  747. /* Go through the whole list and clear any pointers found. */
  748. rb_list_head_clear(cpu_buffer->pages);
  749. list_for_each(hd, cpu_buffer->pages)
  750. rb_list_head_clear(hd);
  751. }
  752. static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
  753. struct buffer_page *head,
  754. struct buffer_page *prev,
  755. int old_flag, int new_flag)
  756. {
  757. struct list_head *list;
  758. unsigned long val = (unsigned long)&head->list;
  759. unsigned long ret;
  760. list = &prev->list;
  761. val &= ~RB_FLAG_MASK;
  762. ret = cmpxchg((unsigned long *)&list->next,
  763. val | old_flag, val | new_flag);
  764. /* check if the reader took the page */
  765. if ((ret & ~RB_FLAG_MASK) != val)
  766. return RB_PAGE_MOVED;
  767. return ret & RB_FLAG_MASK;
  768. }
  769. static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
  770. struct buffer_page *head,
  771. struct buffer_page *prev,
  772. int old_flag)
  773. {
  774. return rb_head_page_set(cpu_buffer, head, prev,
  775. old_flag, RB_PAGE_UPDATE);
  776. }
  777. static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
  778. struct buffer_page *head,
  779. struct buffer_page *prev,
  780. int old_flag)
  781. {
  782. return rb_head_page_set(cpu_buffer, head, prev,
  783. old_flag, RB_PAGE_HEAD);
  784. }
  785. static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
  786. struct buffer_page *head,
  787. struct buffer_page *prev,
  788. int old_flag)
  789. {
  790. return rb_head_page_set(cpu_buffer, head, prev,
  791. old_flag, RB_PAGE_NORMAL);
  792. }
  793. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  794. struct buffer_page **bpage)
  795. {
  796. struct list_head *p = rb_list_head((*bpage)->list.next);
  797. *bpage = list_entry(p, struct buffer_page, list);
  798. }
  799. static struct buffer_page *
  800. rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
  801. {
  802. struct buffer_page *head;
  803. struct buffer_page *page;
  804. struct list_head *list;
  805. int i;
  806. if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
  807. return NULL;
  808. /* sanity check */
  809. list = cpu_buffer->pages;
  810. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
  811. return NULL;
  812. page = head = cpu_buffer->head_page;
  813. /*
  814. * It is possible that the writer moves the header behind
  815. * where we started, and we miss in one loop.
  816. * A second loop should grab the header, but we'll do
  817. * three loops just because I'm paranoid.
  818. */
  819. for (i = 0; i < 3; i++) {
  820. do {
  821. if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
  822. cpu_buffer->head_page = page;
  823. return page;
  824. }
  825. rb_inc_page(cpu_buffer, &page);
  826. } while (page != head);
  827. }
  828. RB_WARN_ON(cpu_buffer, 1);
  829. return NULL;
  830. }
  831. static int rb_head_page_replace(struct buffer_page *old,
  832. struct buffer_page *new)
  833. {
  834. unsigned long *ptr = (unsigned long *)&old->list.prev->next;
  835. unsigned long val;
  836. unsigned long ret;
  837. val = *ptr & ~RB_FLAG_MASK;
  838. val |= RB_PAGE_HEAD;
  839. ret = cmpxchg(ptr, val, (unsigned long)&new->list);
  840. return ret == val;
  841. }
  842. /*
  843. * rb_tail_page_update - move the tail page forward
  844. *
  845. * Returns 1 if moved tail page, 0 if someone else did.
  846. */
  847. static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
  848. struct buffer_page *tail_page,
  849. struct buffer_page *next_page)
  850. {
  851. struct buffer_page *old_tail;
  852. unsigned long old_entries;
  853. unsigned long old_write;
  854. int ret = 0;
  855. /*
  856. * The tail page now needs to be moved forward.
  857. *
  858. * We need to reset the tail page, but without messing
  859. * with possible erasing of data brought in by interrupts
  860. * that have moved the tail page and are currently on it.
  861. *
  862. * We add a counter to the write field to denote this.
  863. */
  864. old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
  865. old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
  866. /*
  867. * Just make sure we have seen our old_write and synchronize
  868. * with any interrupts that come in.
  869. */
  870. barrier();
  871. /*
  872. * If the tail page is still the same as what we think
  873. * it is, then it is up to us to update the tail
  874. * pointer.
  875. */
  876. if (tail_page == cpu_buffer->tail_page) {
  877. /* Zero the write counter */
  878. unsigned long val = old_write & ~RB_WRITE_MASK;
  879. unsigned long eval = old_entries & ~RB_WRITE_MASK;
  880. /*
  881. * This will only succeed if an interrupt did
  882. * not come in and change it. In which case, we
  883. * do not want to modify it.
  884. *
  885. * We add (void) to let the compiler know that we do not care
  886. * about the return value of these functions. We use the
  887. * cmpxchg to only update if an interrupt did not already
  888. * do it for us. If the cmpxchg fails, we don't care.
  889. */
  890. (void)local_cmpxchg(&next_page->write, old_write, val);
  891. (void)local_cmpxchg(&next_page->entries, old_entries, eval);
  892. /*
  893. * No need to worry about races with clearing out the commit.
  894. * it only can increment when a commit takes place. But that
  895. * only happens in the outer most nested commit.
  896. */
  897. local_set(&next_page->page->commit, 0);
  898. old_tail = cmpxchg(&cpu_buffer->tail_page,
  899. tail_page, next_page);
  900. if (old_tail == tail_page)
  901. ret = 1;
  902. }
  903. return ret;
  904. }
  905. static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
  906. struct buffer_page *bpage)
  907. {
  908. unsigned long val = (unsigned long)bpage;
  909. if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
  910. return 1;
  911. return 0;
  912. }
  913. /**
  914. * rb_check_list - make sure a pointer to a list has the last bits zero
  915. */
  916. static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
  917. struct list_head *list)
  918. {
  919. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
  920. return 1;
  921. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
  922. return 1;
  923. return 0;
  924. }
  925. /**
  926. * rb_check_pages - integrity check of buffer pages
  927. * @cpu_buffer: CPU buffer with pages to test
  928. *
  929. * As a safety measure we check to make sure the data pages have not
  930. * been corrupted.
  931. */
  932. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  933. {
  934. struct list_head *head = cpu_buffer->pages;
  935. struct buffer_page *bpage, *tmp;
  936. /* Reset the head page if it exists */
  937. if (cpu_buffer->head_page)
  938. rb_set_head_page(cpu_buffer);
  939. rb_head_page_deactivate(cpu_buffer);
  940. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  941. return -1;
  942. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  943. return -1;
  944. if (rb_check_list(cpu_buffer, head))
  945. return -1;
  946. list_for_each_entry_safe(bpage, tmp, head, list) {
  947. if (RB_WARN_ON(cpu_buffer,
  948. bpage->list.next->prev != &bpage->list))
  949. return -1;
  950. if (RB_WARN_ON(cpu_buffer,
  951. bpage->list.prev->next != &bpage->list))
  952. return -1;
  953. if (rb_check_list(cpu_buffer, &bpage->list))
  954. return -1;
  955. }
  956. rb_head_page_activate(cpu_buffer);
  957. return 0;
  958. }
  959. static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
  960. {
  961. int i;
  962. struct buffer_page *bpage, *tmp;
  963. for (i = 0; i < nr_pages; i++) {
  964. struct page *page;
  965. /*
  966. * __GFP_NORETRY flag makes sure that the allocation fails
  967. * gracefully without invoking oom-killer and the system is
  968. * not destabilized.
  969. */
  970. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  971. GFP_KERNEL | __GFP_NORETRY,
  972. cpu_to_node(cpu));
  973. if (!bpage)
  974. goto free_pages;
  975. list_add(&bpage->list, pages);
  976. page = alloc_pages_node(cpu_to_node(cpu),
  977. GFP_KERNEL | __GFP_NORETRY, 0);
  978. if (!page)
  979. goto free_pages;
  980. bpage->page = page_address(page);
  981. rb_init_page(bpage->page);
  982. }
  983. return 0;
  984. free_pages:
  985. list_for_each_entry_safe(bpage, tmp, pages, list) {
  986. list_del_init(&bpage->list);
  987. free_buffer_page(bpage);
  988. }
  989. return -ENOMEM;
  990. }
  991. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  992. unsigned nr_pages)
  993. {
  994. LIST_HEAD(pages);
  995. WARN_ON(!nr_pages);
  996. if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
  997. return -ENOMEM;
  998. /*
  999. * The ring buffer page list is a circular list that does not
  1000. * start and end with a list head. All page list items point to
  1001. * other pages.
  1002. */
  1003. cpu_buffer->pages = pages.next;
  1004. list_del(&pages);
  1005. cpu_buffer->nr_pages = nr_pages;
  1006. rb_check_pages(cpu_buffer);
  1007. return 0;
  1008. }
  1009. static struct ring_buffer_per_cpu *
  1010. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
  1011. {
  1012. struct ring_buffer_per_cpu *cpu_buffer;
  1013. struct buffer_page *bpage;
  1014. struct page *page;
  1015. int ret;
  1016. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  1017. GFP_KERNEL, cpu_to_node(cpu));
  1018. if (!cpu_buffer)
  1019. return NULL;
  1020. cpu_buffer->cpu = cpu;
  1021. cpu_buffer->buffer = buffer;
  1022. raw_spin_lock_init(&cpu_buffer->reader_lock);
  1023. lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
  1024. cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
  1025. INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
  1026. init_completion(&cpu_buffer->update_done);
  1027. init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
  1028. init_waitqueue_head(&cpu_buffer->irq_work.waiters);
  1029. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  1030. GFP_KERNEL, cpu_to_node(cpu));
  1031. if (!bpage)
  1032. goto fail_free_buffer;
  1033. rb_check_bpage(cpu_buffer, bpage);
  1034. cpu_buffer->reader_page = bpage;
  1035. page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
  1036. if (!page)
  1037. goto fail_free_reader;
  1038. bpage->page = page_address(page);
  1039. rb_init_page(bpage->page);
  1040. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1041. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1042. ret = rb_allocate_pages(cpu_buffer, nr_pages);
  1043. if (ret < 0)
  1044. goto fail_free_reader;
  1045. cpu_buffer->head_page
  1046. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  1047. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  1048. rb_head_page_activate(cpu_buffer);
  1049. return cpu_buffer;
  1050. fail_free_reader:
  1051. free_buffer_page(cpu_buffer->reader_page);
  1052. fail_free_buffer:
  1053. kfree(cpu_buffer);
  1054. return NULL;
  1055. }
  1056. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  1057. {
  1058. struct list_head *head = cpu_buffer->pages;
  1059. struct buffer_page *bpage, *tmp;
  1060. free_buffer_page(cpu_buffer->reader_page);
  1061. rb_head_page_deactivate(cpu_buffer);
  1062. if (head) {
  1063. list_for_each_entry_safe(bpage, tmp, head, list) {
  1064. list_del_init(&bpage->list);
  1065. free_buffer_page(bpage);
  1066. }
  1067. bpage = list_entry(head, struct buffer_page, list);
  1068. free_buffer_page(bpage);
  1069. }
  1070. kfree(cpu_buffer);
  1071. }
  1072. #ifdef CONFIG_HOTPLUG_CPU
  1073. static int rb_cpu_notify(struct notifier_block *self,
  1074. unsigned long action, void *hcpu);
  1075. #endif
  1076. /**
  1077. * __ring_buffer_alloc - allocate a new ring_buffer
  1078. * @size: the size in bytes per cpu that is needed.
  1079. * @flags: attributes to set for the ring buffer.
  1080. *
  1081. * Currently the only flag that is available is the RB_FL_OVERWRITE
  1082. * flag. This flag means that the buffer will overwrite old data
  1083. * when the buffer wraps. If this flag is not set, the buffer will
  1084. * drop data when the tail hits the head.
  1085. */
  1086. struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
  1087. struct lock_class_key *key)
  1088. {
  1089. struct ring_buffer *buffer;
  1090. int bsize;
  1091. int cpu, nr_pages;
  1092. /* keep it in its own cache line */
  1093. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  1094. GFP_KERNEL);
  1095. if (!buffer)
  1096. return NULL;
  1097. if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
  1098. goto fail_free_buffer;
  1099. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1100. buffer->flags = flags;
  1101. buffer->clock = trace_clock_local;
  1102. buffer->reader_lock_key = key;
  1103. init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
  1104. init_waitqueue_head(&buffer->irq_work.waiters);
  1105. /* need at least two pages */
  1106. if (nr_pages < 2)
  1107. nr_pages = 2;
  1108. /*
  1109. * In case of non-hotplug cpu, if the ring-buffer is allocated
  1110. * in early initcall, it will not be notified of secondary cpus.
  1111. * In that off case, we need to allocate for all possible cpus.
  1112. */
  1113. #ifdef CONFIG_HOTPLUG_CPU
  1114. cpu_notifier_register_begin();
  1115. cpumask_copy(buffer->cpumask, cpu_online_mask);
  1116. #else
  1117. cpumask_copy(buffer->cpumask, cpu_possible_mask);
  1118. #endif
  1119. buffer->cpus = nr_cpu_ids;
  1120. bsize = sizeof(void *) * nr_cpu_ids;
  1121. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  1122. GFP_KERNEL);
  1123. if (!buffer->buffers)
  1124. goto fail_free_cpumask;
  1125. for_each_buffer_cpu(buffer, cpu) {
  1126. buffer->buffers[cpu] =
  1127. rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  1128. if (!buffer->buffers[cpu])
  1129. goto fail_free_buffers;
  1130. }
  1131. #ifdef CONFIG_HOTPLUG_CPU
  1132. buffer->cpu_notify.notifier_call = rb_cpu_notify;
  1133. buffer->cpu_notify.priority = 0;
  1134. __register_cpu_notifier(&buffer->cpu_notify);
  1135. cpu_notifier_register_done();
  1136. #endif
  1137. mutex_init(&buffer->mutex);
  1138. return buffer;
  1139. fail_free_buffers:
  1140. for_each_buffer_cpu(buffer, cpu) {
  1141. if (buffer->buffers[cpu])
  1142. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1143. }
  1144. kfree(buffer->buffers);
  1145. fail_free_cpumask:
  1146. free_cpumask_var(buffer->cpumask);
  1147. #ifdef CONFIG_HOTPLUG_CPU
  1148. cpu_notifier_register_done();
  1149. #endif
  1150. fail_free_buffer:
  1151. kfree(buffer);
  1152. return NULL;
  1153. }
  1154. EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
  1155. /**
  1156. * ring_buffer_free - free a ring buffer.
  1157. * @buffer: the buffer to free.
  1158. */
  1159. void
  1160. ring_buffer_free(struct ring_buffer *buffer)
  1161. {
  1162. int cpu;
  1163. #ifdef CONFIG_HOTPLUG_CPU
  1164. cpu_notifier_register_begin();
  1165. __unregister_cpu_notifier(&buffer->cpu_notify);
  1166. #endif
  1167. for_each_buffer_cpu(buffer, cpu)
  1168. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1169. #ifdef CONFIG_HOTPLUG_CPU
  1170. cpu_notifier_register_done();
  1171. #endif
  1172. kfree(buffer->buffers);
  1173. free_cpumask_var(buffer->cpumask);
  1174. kfree(buffer);
  1175. }
  1176. EXPORT_SYMBOL_GPL(ring_buffer_free);
  1177. void ring_buffer_set_clock(struct ring_buffer *buffer,
  1178. u64 (*clock)(void))
  1179. {
  1180. buffer->clock = clock;
  1181. }
  1182. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  1183. static inline unsigned long rb_page_entries(struct buffer_page *bpage)
  1184. {
  1185. return local_read(&bpage->entries) & RB_WRITE_MASK;
  1186. }
  1187. static inline unsigned long rb_page_write(struct buffer_page *bpage)
  1188. {
  1189. return local_read(&bpage->write) & RB_WRITE_MASK;
  1190. }
  1191. static int
  1192. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
  1193. {
  1194. struct list_head *tail_page, *to_remove, *next_page;
  1195. struct buffer_page *to_remove_page, *tmp_iter_page;
  1196. struct buffer_page *last_page, *first_page;
  1197. unsigned int nr_removed;
  1198. unsigned long head_bit;
  1199. int page_entries;
  1200. head_bit = 0;
  1201. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1202. atomic_inc(&cpu_buffer->record_disabled);
  1203. /*
  1204. * We don't race with the readers since we have acquired the reader
  1205. * lock. We also don't race with writers after disabling recording.
  1206. * This makes it easy to figure out the first and the last page to be
  1207. * removed from the list. We unlink all the pages in between including
  1208. * the first and last pages. This is done in a busy loop so that we
  1209. * lose the least number of traces.
  1210. * The pages are freed after we restart recording and unlock readers.
  1211. */
  1212. tail_page = &cpu_buffer->tail_page->list;
  1213. /*
  1214. * tail page might be on reader page, we remove the next page
  1215. * from the ring buffer
  1216. */
  1217. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  1218. tail_page = rb_list_head(tail_page->next);
  1219. to_remove = tail_page;
  1220. /* start of pages to remove */
  1221. first_page = list_entry(rb_list_head(to_remove->next),
  1222. struct buffer_page, list);
  1223. for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
  1224. to_remove = rb_list_head(to_remove)->next;
  1225. head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
  1226. }
  1227. next_page = rb_list_head(to_remove)->next;
  1228. /*
  1229. * Now we remove all pages between tail_page and next_page.
  1230. * Make sure that we have head_bit value preserved for the
  1231. * next page
  1232. */
  1233. tail_page->next = (struct list_head *)((unsigned long)next_page |
  1234. head_bit);
  1235. next_page = rb_list_head(next_page);
  1236. next_page->prev = tail_page;
  1237. /* make sure pages points to a valid page in the ring buffer */
  1238. cpu_buffer->pages = next_page;
  1239. /* update head page */
  1240. if (head_bit)
  1241. cpu_buffer->head_page = list_entry(next_page,
  1242. struct buffer_page, list);
  1243. /*
  1244. * change read pointer to make sure any read iterators reset
  1245. * themselves
  1246. */
  1247. cpu_buffer->read = 0;
  1248. /* pages are removed, resume tracing and then free the pages */
  1249. atomic_dec(&cpu_buffer->record_disabled);
  1250. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1251. RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
  1252. /* last buffer page to remove */
  1253. last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
  1254. list);
  1255. tmp_iter_page = first_page;
  1256. do {
  1257. to_remove_page = tmp_iter_page;
  1258. rb_inc_page(cpu_buffer, &tmp_iter_page);
  1259. /* update the counters */
  1260. page_entries = rb_page_entries(to_remove_page);
  1261. if (page_entries) {
  1262. /*
  1263. * If something was added to this page, it was full
  1264. * since it is not the tail page. So we deduct the
  1265. * bytes consumed in ring buffer from here.
  1266. * Increment overrun to account for the lost events.
  1267. */
  1268. local_add(page_entries, &cpu_buffer->overrun);
  1269. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1270. }
  1271. /*
  1272. * We have already removed references to this list item, just
  1273. * free up the buffer_page and its page
  1274. */
  1275. free_buffer_page(to_remove_page);
  1276. nr_removed--;
  1277. } while (to_remove_page != last_page);
  1278. RB_WARN_ON(cpu_buffer, nr_removed);
  1279. return nr_removed == 0;
  1280. }
  1281. static int
  1282. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1283. {
  1284. struct list_head *pages = &cpu_buffer->new_pages;
  1285. int retries, success;
  1286. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1287. /*
  1288. * We are holding the reader lock, so the reader page won't be swapped
  1289. * in the ring buffer. Now we are racing with the writer trying to
  1290. * move head page and the tail page.
  1291. * We are going to adapt the reader page update process where:
  1292. * 1. We first splice the start and end of list of new pages between
  1293. * the head page and its previous page.
  1294. * 2. We cmpxchg the prev_page->next to point from head page to the
  1295. * start of new pages list.
  1296. * 3. Finally, we update the head->prev to the end of new list.
  1297. *
  1298. * We will try this process 10 times, to make sure that we don't keep
  1299. * spinning.
  1300. */
  1301. retries = 10;
  1302. success = 0;
  1303. while (retries--) {
  1304. struct list_head *head_page, *prev_page, *r;
  1305. struct list_head *last_page, *first_page;
  1306. struct list_head *head_page_with_bit;
  1307. head_page = &rb_set_head_page(cpu_buffer)->list;
  1308. if (!head_page)
  1309. break;
  1310. prev_page = head_page->prev;
  1311. first_page = pages->next;
  1312. last_page = pages->prev;
  1313. head_page_with_bit = (struct list_head *)
  1314. ((unsigned long)head_page | RB_PAGE_HEAD);
  1315. last_page->next = head_page_with_bit;
  1316. first_page->prev = prev_page;
  1317. r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
  1318. if (r == head_page_with_bit) {
  1319. /*
  1320. * yay, we replaced the page pointer to our new list,
  1321. * now, we just have to update to head page's prev
  1322. * pointer to point to end of list
  1323. */
  1324. head_page->prev = last_page;
  1325. success = 1;
  1326. break;
  1327. }
  1328. }
  1329. if (success)
  1330. INIT_LIST_HEAD(pages);
  1331. /*
  1332. * If we weren't successful in adding in new pages, warn and stop
  1333. * tracing
  1334. */
  1335. RB_WARN_ON(cpu_buffer, !success);
  1336. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1337. /* free pages if they weren't inserted */
  1338. if (!success) {
  1339. struct buffer_page *bpage, *tmp;
  1340. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1341. list) {
  1342. list_del_init(&bpage->list);
  1343. free_buffer_page(bpage);
  1344. }
  1345. }
  1346. return success;
  1347. }
  1348. static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1349. {
  1350. int success;
  1351. if (cpu_buffer->nr_pages_to_update > 0)
  1352. success = rb_insert_pages(cpu_buffer);
  1353. else
  1354. success = rb_remove_pages(cpu_buffer,
  1355. -cpu_buffer->nr_pages_to_update);
  1356. if (success)
  1357. cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
  1358. }
  1359. static void update_pages_handler(struct work_struct *work)
  1360. {
  1361. struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
  1362. struct ring_buffer_per_cpu, update_pages_work);
  1363. rb_update_pages(cpu_buffer);
  1364. complete(&cpu_buffer->update_done);
  1365. }
  1366. /**
  1367. * ring_buffer_resize - resize the ring buffer
  1368. * @buffer: the buffer to resize.
  1369. * @size: the new size.
  1370. * @cpu_id: the cpu buffer to resize
  1371. *
  1372. * Minimum size is 2 * BUF_PAGE_SIZE.
  1373. *
  1374. * Returns 0 on success and < 0 on failure.
  1375. */
  1376. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
  1377. int cpu_id)
  1378. {
  1379. struct ring_buffer_per_cpu *cpu_buffer;
  1380. unsigned nr_pages;
  1381. int cpu, err = 0;
  1382. /*
  1383. * Always succeed at resizing a non-existent buffer:
  1384. */
  1385. if (!buffer)
  1386. return size;
  1387. /* Make sure the requested buffer exists */
  1388. if (cpu_id != RING_BUFFER_ALL_CPUS &&
  1389. !cpumask_test_cpu(cpu_id, buffer->cpumask))
  1390. return size;
  1391. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1392. size *= BUF_PAGE_SIZE;
  1393. /* we need a minimum of two pages */
  1394. if (size < BUF_PAGE_SIZE * 2)
  1395. size = BUF_PAGE_SIZE * 2;
  1396. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1397. /*
  1398. * Don't succeed if resizing is disabled, as a reader might be
  1399. * manipulating the ring buffer and is expecting a sane state while
  1400. * this is true.
  1401. */
  1402. if (atomic_read(&buffer->resize_disabled))
  1403. return -EBUSY;
  1404. /* prevent another thread from changing buffer sizes */
  1405. mutex_lock(&buffer->mutex);
  1406. if (cpu_id == RING_BUFFER_ALL_CPUS) {
  1407. /* calculate the pages to update */
  1408. for_each_buffer_cpu(buffer, cpu) {
  1409. cpu_buffer = buffer->buffers[cpu];
  1410. cpu_buffer->nr_pages_to_update = nr_pages -
  1411. cpu_buffer->nr_pages;
  1412. /*
  1413. * nothing more to do for removing pages or no update
  1414. */
  1415. if (cpu_buffer->nr_pages_to_update <= 0)
  1416. continue;
  1417. /*
  1418. * to add pages, make sure all new pages can be
  1419. * allocated without receiving ENOMEM
  1420. */
  1421. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1422. if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1423. &cpu_buffer->new_pages, cpu)) {
  1424. /* not enough memory for new pages */
  1425. err = -ENOMEM;
  1426. goto out_err;
  1427. }
  1428. }
  1429. get_online_cpus();
  1430. /*
  1431. * Fire off all the required work handlers
  1432. * We can't schedule on offline CPUs, but it's not necessary
  1433. * since we can change their buffer sizes without any race.
  1434. */
  1435. for_each_buffer_cpu(buffer, cpu) {
  1436. cpu_buffer = buffer->buffers[cpu];
  1437. if (!cpu_buffer->nr_pages_to_update)
  1438. continue;
  1439. /* The update must run on the CPU that is being updated. */
  1440. preempt_disable();
  1441. if (cpu == smp_processor_id() || !cpu_online(cpu)) {
  1442. rb_update_pages(cpu_buffer);
  1443. cpu_buffer->nr_pages_to_update = 0;
  1444. } else {
  1445. /*
  1446. * Can not disable preemption for schedule_work_on()
  1447. * on PREEMPT_RT.
  1448. */
  1449. preempt_enable();
  1450. schedule_work_on(cpu,
  1451. &cpu_buffer->update_pages_work);
  1452. preempt_disable();
  1453. }
  1454. preempt_enable();
  1455. }
  1456. /* wait for all the updates to complete */
  1457. for_each_buffer_cpu(buffer, cpu) {
  1458. cpu_buffer = buffer->buffers[cpu];
  1459. if (!cpu_buffer->nr_pages_to_update)
  1460. continue;
  1461. if (cpu_online(cpu))
  1462. wait_for_completion(&cpu_buffer->update_done);
  1463. cpu_buffer->nr_pages_to_update = 0;
  1464. }
  1465. put_online_cpus();
  1466. } else {
  1467. /* Make sure this CPU has been intitialized */
  1468. if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
  1469. goto out;
  1470. cpu_buffer = buffer->buffers[cpu_id];
  1471. if (nr_pages == cpu_buffer->nr_pages)
  1472. goto out;
  1473. cpu_buffer->nr_pages_to_update = nr_pages -
  1474. cpu_buffer->nr_pages;
  1475. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1476. if (cpu_buffer->nr_pages_to_update > 0 &&
  1477. __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1478. &cpu_buffer->new_pages, cpu_id)) {
  1479. err = -ENOMEM;
  1480. goto out_err;
  1481. }
  1482. get_online_cpus();
  1483. preempt_disable();
  1484. /* The update must run on the CPU that is being updated. */
  1485. if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
  1486. rb_update_pages(cpu_buffer);
  1487. else {
  1488. /*
  1489. * Can not disable preemption for schedule_work_on()
  1490. * on PREEMPT_RT.
  1491. */
  1492. preempt_enable();
  1493. schedule_work_on(cpu_id,
  1494. &cpu_buffer->update_pages_work);
  1495. wait_for_completion(&cpu_buffer->update_done);
  1496. preempt_disable();
  1497. }
  1498. preempt_enable();
  1499. cpu_buffer->nr_pages_to_update = 0;
  1500. put_online_cpus();
  1501. }
  1502. out:
  1503. /*
  1504. * The ring buffer resize can happen with the ring buffer
  1505. * enabled, so that the update disturbs the tracing as little
  1506. * as possible. But if the buffer is disabled, we do not need
  1507. * to worry about that, and we can take the time to verify
  1508. * that the buffer is not corrupt.
  1509. */
  1510. if (atomic_read(&buffer->record_disabled)) {
  1511. atomic_inc(&buffer->record_disabled);
  1512. /*
  1513. * Even though the buffer was disabled, we must make sure
  1514. * that it is truly disabled before calling rb_check_pages.
  1515. * There could have been a race between checking
  1516. * record_disable and incrementing it.
  1517. */
  1518. synchronize_sched();
  1519. for_each_buffer_cpu(buffer, cpu) {
  1520. cpu_buffer = buffer->buffers[cpu];
  1521. rb_check_pages(cpu_buffer);
  1522. }
  1523. atomic_dec(&buffer->record_disabled);
  1524. }
  1525. mutex_unlock(&buffer->mutex);
  1526. return size;
  1527. out_err:
  1528. for_each_buffer_cpu(buffer, cpu) {
  1529. struct buffer_page *bpage, *tmp;
  1530. cpu_buffer = buffer->buffers[cpu];
  1531. cpu_buffer->nr_pages_to_update = 0;
  1532. if (list_empty(&cpu_buffer->new_pages))
  1533. continue;
  1534. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1535. list) {
  1536. list_del_init(&bpage->list);
  1537. free_buffer_page(bpage);
  1538. }
  1539. }
  1540. mutex_unlock(&buffer->mutex);
  1541. return err;
  1542. }
  1543. EXPORT_SYMBOL_GPL(ring_buffer_resize);
  1544. void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
  1545. {
  1546. mutex_lock(&buffer->mutex);
  1547. if (val)
  1548. buffer->flags |= RB_FL_OVERWRITE;
  1549. else
  1550. buffer->flags &= ~RB_FL_OVERWRITE;
  1551. mutex_unlock(&buffer->mutex);
  1552. }
  1553. EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
  1554. static inline void *
  1555. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  1556. {
  1557. return bpage->data + index;
  1558. }
  1559. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  1560. {
  1561. return bpage->page->data + index;
  1562. }
  1563. static inline struct ring_buffer_event *
  1564. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  1565. {
  1566. return __rb_page_index(cpu_buffer->reader_page,
  1567. cpu_buffer->reader_page->read);
  1568. }
  1569. static inline struct ring_buffer_event *
  1570. rb_iter_head_event(struct ring_buffer_iter *iter)
  1571. {
  1572. return __rb_page_index(iter->head_page, iter->head);
  1573. }
  1574. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  1575. {
  1576. return local_read(&bpage->page->commit);
  1577. }
  1578. /* Size is determined by what has been committed */
  1579. static inline unsigned rb_page_size(struct buffer_page *bpage)
  1580. {
  1581. return rb_page_commit(bpage);
  1582. }
  1583. static inline unsigned
  1584. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  1585. {
  1586. return rb_page_commit(cpu_buffer->commit_page);
  1587. }
  1588. static inline unsigned
  1589. rb_event_index(struct ring_buffer_event *event)
  1590. {
  1591. unsigned long addr = (unsigned long)event;
  1592. return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
  1593. }
  1594. static inline int
  1595. rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1596. struct ring_buffer_event *event)
  1597. {
  1598. unsigned long addr = (unsigned long)event;
  1599. unsigned long index;
  1600. index = rb_event_index(event);
  1601. addr &= PAGE_MASK;
  1602. return cpu_buffer->commit_page->page == (void *)addr &&
  1603. rb_commit_index(cpu_buffer) == index;
  1604. }
  1605. static void
  1606. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  1607. {
  1608. unsigned long max_count;
  1609. /*
  1610. * We only race with interrupts and NMIs on this CPU.
  1611. * If we own the commit event, then we can commit
  1612. * all others that interrupted us, since the interruptions
  1613. * are in stack format (they finish before they come
  1614. * back to us). This allows us to do a simple loop to
  1615. * assign the commit to the tail.
  1616. */
  1617. again:
  1618. max_count = cpu_buffer->nr_pages * 100;
  1619. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  1620. if (RB_WARN_ON(cpu_buffer, !(--max_count)))
  1621. return;
  1622. if (RB_WARN_ON(cpu_buffer,
  1623. rb_is_reader_page(cpu_buffer->tail_page)))
  1624. return;
  1625. local_set(&cpu_buffer->commit_page->page->commit,
  1626. rb_page_write(cpu_buffer->commit_page));
  1627. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  1628. cpu_buffer->write_stamp =
  1629. cpu_buffer->commit_page->page->time_stamp;
  1630. /* add barrier to keep gcc from optimizing too much */
  1631. barrier();
  1632. }
  1633. while (rb_commit_index(cpu_buffer) !=
  1634. rb_page_write(cpu_buffer->commit_page)) {
  1635. local_set(&cpu_buffer->commit_page->page->commit,
  1636. rb_page_write(cpu_buffer->commit_page));
  1637. RB_WARN_ON(cpu_buffer,
  1638. local_read(&cpu_buffer->commit_page->page->commit) &
  1639. ~RB_WRITE_MASK);
  1640. barrier();
  1641. }
  1642. /* again, keep gcc from optimizing */
  1643. barrier();
  1644. /*
  1645. * If an interrupt came in just after the first while loop
  1646. * and pushed the tail page forward, we will be left with
  1647. * a dangling commit that will never go forward.
  1648. */
  1649. if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
  1650. goto again;
  1651. }
  1652. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1653. {
  1654. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  1655. cpu_buffer->reader_page->read = 0;
  1656. }
  1657. static void rb_inc_iter(struct ring_buffer_iter *iter)
  1658. {
  1659. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1660. /*
  1661. * The iterator could be on the reader page (it starts there).
  1662. * But the head could have moved, since the reader was
  1663. * found. Check for this case and assign the iterator
  1664. * to the head page instead of next.
  1665. */
  1666. if (iter->head_page == cpu_buffer->reader_page)
  1667. iter->head_page = rb_set_head_page(cpu_buffer);
  1668. else
  1669. rb_inc_page(cpu_buffer, &iter->head_page);
  1670. iter->read_stamp = iter->head_page->page->time_stamp;
  1671. iter->head = 0;
  1672. }
  1673. /* Slow path, do not inline */
  1674. static noinline struct ring_buffer_event *
  1675. rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
  1676. {
  1677. event->type_len = RINGBUF_TYPE_TIME_EXTEND;
  1678. /* Not the first event on the page? */
  1679. if (rb_event_index(event)) {
  1680. event->time_delta = delta & TS_MASK;
  1681. event->array[0] = delta >> TS_SHIFT;
  1682. } else {
  1683. /* nope, just zero it */
  1684. event->time_delta = 0;
  1685. event->array[0] = 0;
  1686. }
  1687. return skip_time_extend(event);
  1688. }
  1689. /**
  1690. * rb_update_event - update event type and data
  1691. * @event: the even to update
  1692. * @type: the type of event
  1693. * @length: the size of the event field in the ring buffer
  1694. *
  1695. * Update the type and data fields of the event. The length
  1696. * is the actual size that is written to the ring buffer,
  1697. * and with this, we can determine what to place into the
  1698. * data field.
  1699. */
  1700. static void
  1701. rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
  1702. struct ring_buffer_event *event, unsigned length,
  1703. int add_timestamp, u64 delta)
  1704. {
  1705. /* Only a commit updates the timestamp */
  1706. if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
  1707. delta = 0;
  1708. /*
  1709. * If we need to add a timestamp, then we
  1710. * add it to the start of the resevered space.
  1711. */
  1712. if (unlikely(add_timestamp)) {
  1713. event = rb_add_time_stamp(event, delta);
  1714. length -= RB_LEN_TIME_EXTEND;
  1715. delta = 0;
  1716. }
  1717. event->time_delta = delta;
  1718. length -= RB_EVNT_HDR_SIZE;
  1719. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
  1720. event->type_len = 0;
  1721. event->array[0] = length;
  1722. } else
  1723. event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
  1724. }
  1725. /*
  1726. * rb_handle_head_page - writer hit the head page
  1727. *
  1728. * Returns: +1 to retry page
  1729. * 0 to continue
  1730. * -1 on error
  1731. */
  1732. static int
  1733. rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  1734. struct buffer_page *tail_page,
  1735. struct buffer_page *next_page)
  1736. {
  1737. struct buffer_page *new_head;
  1738. int entries;
  1739. int type;
  1740. int ret;
  1741. entries = rb_page_entries(next_page);
  1742. /*
  1743. * The hard part is here. We need to move the head
  1744. * forward, and protect against both readers on
  1745. * other CPUs and writers coming in via interrupts.
  1746. */
  1747. type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
  1748. RB_PAGE_HEAD);
  1749. /*
  1750. * type can be one of four:
  1751. * NORMAL - an interrupt already moved it for us
  1752. * HEAD - we are the first to get here.
  1753. * UPDATE - we are the interrupt interrupting
  1754. * a current move.
  1755. * MOVED - a reader on another CPU moved the next
  1756. * pointer to its reader page. Give up
  1757. * and try again.
  1758. */
  1759. switch (type) {
  1760. case RB_PAGE_HEAD:
  1761. /*
  1762. * We changed the head to UPDATE, thus
  1763. * it is our responsibility to update
  1764. * the counters.
  1765. */
  1766. local_add(entries, &cpu_buffer->overrun);
  1767. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1768. /*
  1769. * The entries will be zeroed out when we move the
  1770. * tail page.
  1771. */
  1772. /* still more to do */
  1773. break;
  1774. case RB_PAGE_UPDATE:
  1775. /*
  1776. * This is an interrupt that interrupt the
  1777. * previous update. Still more to do.
  1778. */
  1779. break;
  1780. case RB_PAGE_NORMAL:
  1781. /*
  1782. * An interrupt came in before the update
  1783. * and processed this for us.
  1784. * Nothing left to do.
  1785. */
  1786. return 1;
  1787. case RB_PAGE_MOVED:
  1788. /*
  1789. * The reader is on another CPU and just did
  1790. * a swap with our next_page.
  1791. * Try again.
  1792. */
  1793. return 1;
  1794. default:
  1795. RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
  1796. return -1;
  1797. }
  1798. /*
  1799. * Now that we are here, the old head pointer is
  1800. * set to UPDATE. This will keep the reader from
  1801. * swapping the head page with the reader page.
  1802. * The reader (on another CPU) will spin till
  1803. * we are finished.
  1804. *
  1805. * We just need to protect against interrupts
  1806. * doing the job. We will set the next pointer
  1807. * to HEAD. After that, we set the old pointer
  1808. * to NORMAL, but only if it was HEAD before.
  1809. * otherwise we are an interrupt, and only
  1810. * want the outer most commit to reset it.
  1811. */
  1812. new_head = next_page;
  1813. rb_inc_page(cpu_buffer, &new_head);
  1814. ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
  1815. RB_PAGE_NORMAL);
  1816. /*
  1817. * Valid returns are:
  1818. * HEAD - an interrupt came in and already set it.
  1819. * NORMAL - One of two things:
  1820. * 1) We really set it.
  1821. * 2) A bunch of interrupts came in and moved
  1822. * the page forward again.
  1823. */
  1824. switch (ret) {
  1825. case RB_PAGE_HEAD:
  1826. case RB_PAGE_NORMAL:
  1827. /* OK */
  1828. break;
  1829. default:
  1830. RB_WARN_ON(cpu_buffer, 1);
  1831. return -1;
  1832. }
  1833. /*
  1834. * It is possible that an interrupt came in,
  1835. * set the head up, then more interrupts came in
  1836. * and moved it again. When we get back here,
  1837. * the page would have been set to NORMAL but we
  1838. * just set it back to HEAD.
  1839. *
  1840. * How do you detect this? Well, if that happened
  1841. * the tail page would have moved.
  1842. */
  1843. if (ret == RB_PAGE_NORMAL) {
  1844. /*
  1845. * If the tail had moved passed next, then we need
  1846. * to reset the pointer.
  1847. */
  1848. if (cpu_buffer->tail_page != tail_page &&
  1849. cpu_buffer->tail_page != next_page)
  1850. rb_head_page_set_normal(cpu_buffer, new_head,
  1851. next_page,
  1852. RB_PAGE_HEAD);
  1853. }
  1854. /*
  1855. * If this was the outer most commit (the one that
  1856. * changed the original pointer from HEAD to UPDATE),
  1857. * then it is up to us to reset it to NORMAL.
  1858. */
  1859. if (type == RB_PAGE_HEAD) {
  1860. ret = rb_head_page_set_normal(cpu_buffer, next_page,
  1861. tail_page,
  1862. RB_PAGE_UPDATE);
  1863. if (RB_WARN_ON(cpu_buffer,
  1864. ret != RB_PAGE_UPDATE))
  1865. return -1;
  1866. }
  1867. return 0;
  1868. }
  1869. static unsigned rb_calculate_event_length(unsigned length)
  1870. {
  1871. struct ring_buffer_event event; /* Used only for sizeof array */
  1872. /* zero length can cause confusions */
  1873. if (!length)
  1874. length = 1;
  1875. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
  1876. length += sizeof(event.array[0]);
  1877. length += RB_EVNT_HDR_SIZE;
  1878. length = ALIGN(length, RB_ARCH_ALIGNMENT);
  1879. return length;
  1880. }
  1881. static inline void
  1882. rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1883. struct buffer_page *tail_page,
  1884. unsigned long tail, unsigned long length)
  1885. {
  1886. struct ring_buffer_event *event;
  1887. /*
  1888. * Only the event that crossed the page boundary
  1889. * must fill the old tail_page with padding.
  1890. */
  1891. if (tail >= BUF_PAGE_SIZE) {
  1892. /*
  1893. * If the page was filled, then we still need
  1894. * to update the real_end. Reset it to zero
  1895. * and the reader will ignore it.
  1896. */
  1897. if (tail == BUF_PAGE_SIZE)
  1898. tail_page->real_end = 0;
  1899. local_sub(length, &tail_page->write);
  1900. return;
  1901. }
  1902. event = __rb_page_index(tail_page, tail);
  1903. kmemcheck_annotate_bitfield(event, bitfield);
  1904. /* account for padding bytes */
  1905. local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
  1906. /*
  1907. * Save the original length to the meta data.
  1908. * This will be used by the reader to add lost event
  1909. * counter.
  1910. */
  1911. tail_page->real_end = tail;
  1912. /*
  1913. * If this event is bigger than the minimum size, then
  1914. * we need to be careful that we don't subtract the
  1915. * write counter enough to allow another writer to slip
  1916. * in on this page.
  1917. * We put in a discarded commit instead, to make sure
  1918. * that this space is not used again.
  1919. *
  1920. * If we are less than the minimum size, we don't need to
  1921. * worry about it.
  1922. */
  1923. if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
  1924. /* No room for any events */
  1925. /* Mark the rest of the page with padding */
  1926. rb_event_set_padding(event);
  1927. /* Set the write back to the previous setting */
  1928. local_sub(length, &tail_page->write);
  1929. return;
  1930. }
  1931. /* Put in a discarded event */
  1932. event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
  1933. event->type_len = RINGBUF_TYPE_PADDING;
  1934. /* time delta must be non zero */
  1935. event->time_delta = 1;
  1936. /* Set write to end of buffer */
  1937. length = (tail + length) - BUF_PAGE_SIZE;
  1938. local_sub(length, &tail_page->write);
  1939. }
  1940. /*
  1941. * This is the slow path, force gcc not to inline it.
  1942. */
  1943. static noinline struct ring_buffer_event *
  1944. rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1945. unsigned long length, unsigned long tail,
  1946. struct buffer_page *tail_page, u64 ts)
  1947. {
  1948. struct buffer_page *commit_page = cpu_buffer->commit_page;
  1949. struct ring_buffer *buffer = cpu_buffer->buffer;
  1950. struct buffer_page *next_page;
  1951. int ret;
  1952. next_page = tail_page;
  1953. rb_inc_page(cpu_buffer, &next_page);
  1954. /*
  1955. * If for some reason, we had an interrupt storm that made
  1956. * it all the way around the buffer, bail, and warn
  1957. * about it.
  1958. */
  1959. if (unlikely(next_page == commit_page)) {
  1960. local_inc(&cpu_buffer->commit_overrun);
  1961. goto out_reset;
  1962. }
  1963. /*
  1964. * This is where the fun begins!
  1965. *
  1966. * We are fighting against races between a reader that
  1967. * could be on another CPU trying to swap its reader
  1968. * page with the buffer head.
  1969. *
  1970. * We are also fighting against interrupts coming in and
  1971. * moving the head or tail on us as well.
  1972. *
  1973. * If the next page is the head page then we have filled
  1974. * the buffer, unless the commit page is still on the
  1975. * reader page.
  1976. */
  1977. if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
  1978. /*
  1979. * If the commit is not on the reader page, then
  1980. * move the header page.
  1981. */
  1982. if (!rb_is_reader_page(cpu_buffer->commit_page)) {
  1983. /*
  1984. * If we are not in overwrite mode,
  1985. * this is easy, just stop here.
  1986. */
  1987. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  1988. local_inc(&cpu_buffer->dropped_events);
  1989. goto out_reset;
  1990. }
  1991. ret = rb_handle_head_page(cpu_buffer,
  1992. tail_page,
  1993. next_page);
  1994. if (ret < 0)
  1995. goto out_reset;
  1996. if (ret)
  1997. goto out_again;
  1998. } else {
  1999. /*
  2000. * We need to be careful here too. The
  2001. * commit page could still be on the reader
  2002. * page. We could have a small buffer, and
  2003. * have filled up the buffer with events
  2004. * from interrupts and such, and wrapped.
  2005. *
  2006. * Note, if the tail page is also the on the
  2007. * reader_page, we let it move out.
  2008. */
  2009. if (unlikely((cpu_buffer->commit_page !=
  2010. cpu_buffer->tail_page) &&
  2011. (cpu_buffer->commit_page ==
  2012. cpu_buffer->reader_page))) {
  2013. local_inc(&cpu_buffer->commit_overrun);
  2014. goto out_reset;
  2015. }
  2016. }
  2017. }
  2018. ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
  2019. if (ret) {
  2020. /*
  2021. * Nested commits always have zero deltas, so
  2022. * just reread the time stamp
  2023. */
  2024. ts = rb_time_stamp(buffer);
  2025. next_page->page->time_stamp = ts;
  2026. }
  2027. out_again:
  2028. rb_reset_tail(cpu_buffer, tail_page, tail, length);
  2029. /* fail and let the caller try again */
  2030. return ERR_PTR(-EAGAIN);
  2031. out_reset:
  2032. /* reset write */
  2033. rb_reset_tail(cpu_buffer, tail_page, tail, length);
  2034. return NULL;
  2035. }
  2036. static struct ring_buffer_event *
  2037. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  2038. unsigned long length, u64 ts,
  2039. u64 delta, int add_timestamp)
  2040. {
  2041. struct buffer_page *tail_page;
  2042. struct ring_buffer_event *event;
  2043. unsigned long tail, write;
  2044. /*
  2045. * If the time delta since the last event is too big to
  2046. * hold in the time field of the event, then we append a
  2047. * TIME EXTEND event ahead of the data event.
  2048. */
  2049. if (unlikely(add_timestamp))
  2050. length += RB_LEN_TIME_EXTEND;
  2051. tail_page = cpu_buffer->tail_page;
  2052. write = local_add_return(length, &tail_page->write);
  2053. /* set write to only the index of the write */
  2054. write &= RB_WRITE_MASK;
  2055. tail = write - length;
  2056. /*
  2057. * If this is the first commit on the page, then it has the same
  2058. * timestamp as the page itself.
  2059. */
  2060. if (!tail)
  2061. delta = 0;
  2062. /* See if we shot pass the end of this buffer page */
  2063. if (unlikely(write > BUF_PAGE_SIZE))
  2064. return rb_move_tail(cpu_buffer, length, tail,
  2065. tail_page, ts);
  2066. /* We reserved something on the buffer */
  2067. event = __rb_page_index(tail_page, tail);
  2068. kmemcheck_annotate_bitfield(event, bitfield);
  2069. rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
  2070. local_inc(&tail_page->entries);
  2071. /*
  2072. * If this is the first commit on the page, then update
  2073. * its timestamp.
  2074. */
  2075. if (!tail)
  2076. tail_page->page->time_stamp = ts;
  2077. /* account for these added bytes */
  2078. local_add(length, &cpu_buffer->entries_bytes);
  2079. return event;
  2080. }
  2081. static inline int
  2082. rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
  2083. struct ring_buffer_event *event)
  2084. {
  2085. unsigned long new_index, old_index;
  2086. struct buffer_page *bpage;
  2087. unsigned long index;
  2088. unsigned long addr;
  2089. new_index = rb_event_index(event);
  2090. old_index = new_index + rb_event_ts_length(event);
  2091. addr = (unsigned long)event;
  2092. addr &= PAGE_MASK;
  2093. bpage = cpu_buffer->tail_page;
  2094. if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
  2095. unsigned long write_mask =
  2096. local_read(&bpage->write) & ~RB_WRITE_MASK;
  2097. unsigned long event_length = rb_event_length(event);
  2098. /*
  2099. * This is on the tail page. It is possible that
  2100. * a write could come in and move the tail page
  2101. * and write to the next page. That is fine
  2102. * because we just shorten what is on this page.
  2103. */
  2104. old_index += write_mask;
  2105. new_index += write_mask;
  2106. index = local_cmpxchg(&bpage->write, old_index, new_index);
  2107. if (index == old_index) {
  2108. /* update counters */
  2109. local_sub(event_length, &cpu_buffer->entries_bytes);
  2110. return 1;
  2111. }
  2112. }
  2113. /* could not discard */
  2114. return 0;
  2115. }
  2116. static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2117. {
  2118. local_inc(&cpu_buffer->committing);
  2119. local_inc(&cpu_buffer->commits);
  2120. }
  2121. static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2122. {
  2123. unsigned long commits;
  2124. if (RB_WARN_ON(cpu_buffer,
  2125. !local_read(&cpu_buffer->committing)))
  2126. return;
  2127. again:
  2128. commits = local_read(&cpu_buffer->commits);
  2129. /* synchronize with interrupts */
  2130. barrier();
  2131. if (local_read(&cpu_buffer->committing) == 1)
  2132. rb_set_commit_to_write(cpu_buffer);
  2133. local_dec(&cpu_buffer->committing);
  2134. /* synchronize with interrupts */
  2135. barrier();
  2136. /*
  2137. * Need to account for interrupts coming in between the
  2138. * updating of the commit page and the clearing of the
  2139. * committing counter.
  2140. */
  2141. if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
  2142. !local_read(&cpu_buffer->committing)) {
  2143. local_inc(&cpu_buffer->committing);
  2144. goto again;
  2145. }
  2146. }
  2147. static struct ring_buffer_event *
  2148. rb_reserve_next_event(struct ring_buffer *buffer,
  2149. struct ring_buffer_per_cpu *cpu_buffer,
  2150. unsigned long length)
  2151. {
  2152. struct ring_buffer_event *event;
  2153. u64 ts, delta;
  2154. int nr_loops = 0;
  2155. int add_timestamp;
  2156. u64 diff;
  2157. rb_start_commit(cpu_buffer);
  2158. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  2159. /*
  2160. * Due to the ability to swap a cpu buffer from a buffer
  2161. * it is possible it was swapped before we committed.
  2162. * (committing stops a swap). We check for it here and
  2163. * if it happened, we have to fail the write.
  2164. */
  2165. barrier();
  2166. if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
  2167. local_dec(&cpu_buffer->committing);
  2168. local_dec(&cpu_buffer->commits);
  2169. return NULL;
  2170. }
  2171. #endif
  2172. length = rb_calculate_event_length(length);
  2173. again:
  2174. add_timestamp = 0;
  2175. delta = 0;
  2176. /*
  2177. * We allow for interrupts to reenter here and do a trace.
  2178. * If one does, it will cause this original code to loop
  2179. * back here. Even with heavy interrupts happening, this
  2180. * should only happen a few times in a row. If this happens
  2181. * 1000 times in a row, there must be either an interrupt
  2182. * storm or we have something buggy.
  2183. * Bail!
  2184. */
  2185. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  2186. goto out_fail;
  2187. ts = rb_time_stamp(cpu_buffer->buffer);
  2188. diff = ts - cpu_buffer->write_stamp;
  2189. /* make sure this diff is calculated here */
  2190. barrier();
  2191. /* Did the write stamp get updated already? */
  2192. if (likely(ts >= cpu_buffer->write_stamp)) {
  2193. delta = diff;
  2194. if (unlikely(test_time_stamp(delta))) {
  2195. int local_clock_stable = 1;
  2196. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  2197. local_clock_stable = sched_clock_stable();
  2198. #endif
  2199. WARN_ONCE(delta > (1ULL << 59),
  2200. KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
  2201. (unsigned long long)delta,
  2202. (unsigned long long)ts,
  2203. (unsigned long long)cpu_buffer->write_stamp,
  2204. local_clock_stable ? "" :
  2205. "If you just came from a suspend/resume,\n"
  2206. "please switch to the trace global clock:\n"
  2207. " echo global > /sys/kernel/debug/tracing/trace_clock\n");
  2208. add_timestamp = 1;
  2209. }
  2210. }
  2211. event = __rb_reserve_next(cpu_buffer, length, ts,
  2212. delta, add_timestamp);
  2213. if (unlikely(PTR_ERR(event) == -EAGAIN))
  2214. goto again;
  2215. if (!event)
  2216. goto out_fail;
  2217. return event;
  2218. out_fail:
  2219. rb_end_commit(cpu_buffer);
  2220. return NULL;
  2221. }
  2222. #ifdef CONFIG_TRACING
  2223. /*
  2224. * The lock and unlock are done within a preempt disable section.
  2225. * The current_context per_cpu variable can only be modified
  2226. * by the current task between lock and unlock. But it can
  2227. * be modified more than once via an interrupt. To pass this
  2228. * information from the lock to the unlock without having to
  2229. * access the 'in_interrupt()' functions again (which do show
  2230. * a bit of overhead in something as critical as function tracing,
  2231. * we use a bitmask trick.
  2232. *
  2233. * bit 0 = NMI context
  2234. * bit 1 = IRQ context
  2235. * bit 2 = SoftIRQ context
  2236. * bit 3 = normal context.
  2237. *
  2238. * This works because this is the order of contexts that can
  2239. * preempt other contexts. A SoftIRQ never preempts an IRQ
  2240. * context.
  2241. *
  2242. * When the context is determined, the corresponding bit is
  2243. * checked and set (if it was set, then a recursion of that context
  2244. * happened).
  2245. *
  2246. * On unlock, we need to clear this bit. To do so, just subtract
  2247. * 1 from the current_context and AND it to itself.
  2248. *
  2249. * (binary)
  2250. * 101 - 1 = 100
  2251. * 101 & 100 = 100 (clearing bit zero)
  2252. *
  2253. * 1010 - 1 = 1001
  2254. * 1010 & 1001 = 1000 (clearing bit 1)
  2255. *
  2256. * The least significant bit can be cleared this way, and it
  2257. * just so happens that it is the same bit corresponding to
  2258. * the current context.
  2259. */
  2260. static DEFINE_PER_CPU(unsigned int, current_context);
  2261. static __always_inline int trace_recursive_lock(void)
  2262. {
  2263. unsigned int val = this_cpu_read(current_context);
  2264. int bit;
  2265. if (in_interrupt()) {
  2266. if (in_nmi())
  2267. bit = 0;
  2268. else if (in_irq())
  2269. bit = 1;
  2270. else
  2271. bit = 2;
  2272. } else
  2273. bit = 3;
  2274. if (unlikely(val & (1 << bit)))
  2275. return 1;
  2276. val |= (1 << bit);
  2277. this_cpu_write(current_context, val);
  2278. return 0;
  2279. }
  2280. static __always_inline void trace_recursive_unlock(void)
  2281. {
  2282. unsigned int val = this_cpu_read(current_context);
  2283. val--;
  2284. val &= this_cpu_read(current_context);
  2285. this_cpu_write(current_context, val);
  2286. }
  2287. #else
  2288. #define trace_recursive_lock() (0)
  2289. #define trace_recursive_unlock() do { } while (0)
  2290. #endif
  2291. /**
  2292. * ring_buffer_lock_reserve - reserve a part of the buffer
  2293. * @buffer: the ring buffer to reserve from
  2294. * @length: the length of the data to reserve (excluding event header)
  2295. *
  2296. * Returns a reseverd event on the ring buffer to copy directly to.
  2297. * The user of this interface will need to get the body to write into
  2298. * and can use the ring_buffer_event_data() interface.
  2299. *
  2300. * The length is the length of the data needed, not the event length
  2301. * which also includes the event header.
  2302. *
  2303. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  2304. * If NULL is returned, then nothing has been allocated or locked.
  2305. */
  2306. struct ring_buffer_event *
  2307. ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
  2308. {
  2309. struct ring_buffer_per_cpu *cpu_buffer;
  2310. struct ring_buffer_event *event;
  2311. int cpu;
  2312. if (ring_buffer_flags != RB_BUFFERS_ON)
  2313. return NULL;
  2314. /* If we are tracing schedule, we don't want to recurse */
  2315. preempt_disable_notrace();
  2316. if (atomic_read(&buffer->record_disabled))
  2317. goto out_nocheck;
  2318. if (trace_recursive_lock())
  2319. goto out_nocheck;
  2320. cpu = raw_smp_processor_id();
  2321. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2322. goto out;
  2323. cpu_buffer = buffer->buffers[cpu];
  2324. if (atomic_read(&cpu_buffer->record_disabled))
  2325. goto out;
  2326. if (length > BUF_MAX_DATA_SIZE)
  2327. goto out;
  2328. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2329. if (!event)
  2330. goto out;
  2331. return event;
  2332. out:
  2333. trace_recursive_unlock();
  2334. out_nocheck:
  2335. preempt_enable_notrace();
  2336. return NULL;
  2337. }
  2338. EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
  2339. static void
  2340. rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2341. struct ring_buffer_event *event)
  2342. {
  2343. u64 delta;
  2344. /*
  2345. * The event first in the commit queue updates the
  2346. * time stamp.
  2347. */
  2348. if (rb_event_is_commit(cpu_buffer, event)) {
  2349. /*
  2350. * A commit event that is first on a page
  2351. * updates the write timestamp with the page stamp
  2352. */
  2353. if (!rb_event_index(event))
  2354. cpu_buffer->write_stamp =
  2355. cpu_buffer->commit_page->page->time_stamp;
  2356. else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  2357. delta = event->array[0];
  2358. delta <<= TS_SHIFT;
  2359. delta += event->time_delta;
  2360. cpu_buffer->write_stamp += delta;
  2361. } else
  2362. cpu_buffer->write_stamp += event->time_delta;
  2363. }
  2364. }
  2365. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  2366. struct ring_buffer_event *event)
  2367. {
  2368. local_inc(&cpu_buffer->entries);
  2369. rb_update_write_stamp(cpu_buffer, event);
  2370. rb_end_commit(cpu_buffer);
  2371. }
  2372. static __always_inline void
  2373. rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
  2374. {
  2375. if (buffer->irq_work.waiters_pending) {
  2376. buffer->irq_work.waiters_pending = false;
  2377. /* irq_work_queue() supplies it's own memory barriers */
  2378. irq_work_queue(&buffer->irq_work.work);
  2379. }
  2380. if (cpu_buffer->irq_work.waiters_pending) {
  2381. cpu_buffer->irq_work.waiters_pending = false;
  2382. /* irq_work_queue() supplies it's own memory barriers */
  2383. irq_work_queue(&cpu_buffer->irq_work.work);
  2384. }
  2385. }
  2386. /**
  2387. * ring_buffer_unlock_commit - commit a reserved
  2388. * @buffer: The buffer to commit to
  2389. * @event: The event pointer to commit.
  2390. *
  2391. * This commits the data to the ring buffer, and releases any locks held.
  2392. *
  2393. * Must be paired with ring_buffer_lock_reserve.
  2394. */
  2395. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  2396. struct ring_buffer_event *event)
  2397. {
  2398. struct ring_buffer_per_cpu *cpu_buffer;
  2399. int cpu = raw_smp_processor_id();
  2400. cpu_buffer = buffer->buffers[cpu];
  2401. rb_commit(cpu_buffer, event);
  2402. rb_wakeups(buffer, cpu_buffer);
  2403. trace_recursive_unlock();
  2404. preempt_enable_notrace();
  2405. return 0;
  2406. }
  2407. EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
  2408. static inline void rb_event_discard(struct ring_buffer_event *event)
  2409. {
  2410. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  2411. event = skip_time_extend(event);
  2412. /* array[0] holds the actual length for the discarded event */
  2413. event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
  2414. event->type_len = RINGBUF_TYPE_PADDING;
  2415. /* time delta must be non zero */
  2416. if (!event->time_delta)
  2417. event->time_delta = 1;
  2418. }
  2419. /*
  2420. * Decrement the entries to the page that an event is on.
  2421. * The event does not even need to exist, only the pointer
  2422. * to the page it is on. This may only be called before the commit
  2423. * takes place.
  2424. */
  2425. static inline void
  2426. rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
  2427. struct ring_buffer_event *event)
  2428. {
  2429. unsigned long addr = (unsigned long)event;
  2430. struct buffer_page *bpage = cpu_buffer->commit_page;
  2431. struct buffer_page *start;
  2432. addr &= PAGE_MASK;
  2433. /* Do the likely case first */
  2434. if (likely(bpage->page == (void *)addr)) {
  2435. local_dec(&bpage->entries);
  2436. return;
  2437. }
  2438. /*
  2439. * Because the commit page may be on the reader page we
  2440. * start with the next page and check the end loop there.
  2441. */
  2442. rb_inc_page(cpu_buffer, &bpage);
  2443. start = bpage;
  2444. do {
  2445. if (bpage->page == (void *)addr) {
  2446. local_dec(&bpage->entries);
  2447. return;
  2448. }
  2449. rb_inc_page(cpu_buffer, &bpage);
  2450. } while (bpage != start);
  2451. /* commit not part of this buffer?? */
  2452. RB_WARN_ON(cpu_buffer, 1);
  2453. }
  2454. /**
  2455. * ring_buffer_commit_discard - discard an event that has not been committed
  2456. * @buffer: the ring buffer
  2457. * @event: non committed event to discard
  2458. *
  2459. * Sometimes an event that is in the ring buffer needs to be ignored.
  2460. * This function lets the user discard an event in the ring buffer
  2461. * and then that event will not be read later.
  2462. *
  2463. * This function only works if it is called before the the item has been
  2464. * committed. It will try to free the event from the ring buffer
  2465. * if another event has not been added behind it.
  2466. *
  2467. * If another event has been added behind it, it will set the event
  2468. * up as discarded, and perform the commit.
  2469. *
  2470. * If this function is called, do not call ring_buffer_unlock_commit on
  2471. * the event.
  2472. */
  2473. void ring_buffer_discard_commit(struct ring_buffer *buffer,
  2474. struct ring_buffer_event *event)
  2475. {
  2476. struct ring_buffer_per_cpu *cpu_buffer;
  2477. int cpu;
  2478. /* The event is discarded regardless */
  2479. rb_event_discard(event);
  2480. cpu = smp_processor_id();
  2481. cpu_buffer = buffer->buffers[cpu];
  2482. /*
  2483. * This must only be called if the event has not been
  2484. * committed yet. Thus we can assume that preemption
  2485. * is still disabled.
  2486. */
  2487. RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
  2488. rb_decrement_entry(cpu_buffer, event);
  2489. if (rb_try_to_discard(cpu_buffer, event))
  2490. goto out;
  2491. /*
  2492. * The commit is still visible by the reader, so we
  2493. * must still update the timestamp.
  2494. */
  2495. rb_update_write_stamp(cpu_buffer, event);
  2496. out:
  2497. rb_end_commit(cpu_buffer);
  2498. trace_recursive_unlock();
  2499. preempt_enable_notrace();
  2500. }
  2501. EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
  2502. /**
  2503. * ring_buffer_write - write data to the buffer without reserving
  2504. * @buffer: The ring buffer to write to.
  2505. * @length: The length of the data being written (excluding the event header)
  2506. * @data: The data to write to the buffer.
  2507. *
  2508. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  2509. * one function. If you already have the data to write to the buffer, it
  2510. * may be easier to simply call this function.
  2511. *
  2512. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  2513. * and not the length of the event which would hold the header.
  2514. */
  2515. int ring_buffer_write(struct ring_buffer *buffer,
  2516. unsigned long length,
  2517. void *data)
  2518. {
  2519. struct ring_buffer_per_cpu *cpu_buffer;
  2520. struct ring_buffer_event *event;
  2521. void *body;
  2522. int ret = -EBUSY;
  2523. int cpu;
  2524. if (ring_buffer_flags != RB_BUFFERS_ON)
  2525. return -EBUSY;
  2526. preempt_disable_notrace();
  2527. if (atomic_read(&buffer->record_disabled))
  2528. goto out;
  2529. cpu = raw_smp_processor_id();
  2530. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2531. goto out;
  2532. cpu_buffer = buffer->buffers[cpu];
  2533. if (atomic_read(&cpu_buffer->record_disabled))
  2534. goto out;
  2535. if (length > BUF_MAX_DATA_SIZE)
  2536. goto out;
  2537. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2538. if (!event)
  2539. goto out;
  2540. body = rb_event_data(event);
  2541. memcpy(body, data, length);
  2542. rb_commit(cpu_buffer, event);
  2543. rb_wakeups(buffer, cpu_buffer);
  2544. ret = 0;
  2545. out:
  2546. preempt_enable_notrace();
  2547. return ret;
  2548. }
  2549. EXPORT_SYMBOL_GPL(ring_buffer_write);
  2550. static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  2551. {
  2552. struct buffer_page *reader = cpu_buffer->reader_page;
  2553. struct buffer_page *head = rb_set_head_page(cpu_buffer);
  2554. struct buffer_page *commit = cpu_buffer->commit_page;
  2555. /* In case of error, head will be NULL */
  2556. if (unlikely(!head))
  2557. return 1;
  2558. return reader->read == rb_page_commit(reader) &&
  2559. (commit == reader ||
  2560. (commit == head &&
  2561. head->read == rb_page_commit(commit)));
  2562. }
  2563. /**
  2564. * ring_buffer_record_disable - stop all writes into the buffer
  2565. * @buffer: The ring buffer to stop writes to.
  2566. *
  2567. * This prevents all writes to the buffer. Any attempt to write
  2568. * to the buffer after this will fail and return NULL.
  2569. *
  2570. * The caller should call synchronize_sched() after this.
  2571. */
  2572. void ring_buffer_record_disable(struct ring_buffer *buffer)
  2573. {
  2574. atomic_inc(&buffer->record_disabled);
  2575. }
  2576. EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
  2577. /**
  2578. * ring_buffer_record_enable - enable writes to the buffer
  2579. * @buffer: The ring buffer to enable writes
  2580. *
  2581. * Note, multiple disables will need the same number of enables
  2582. * to truly enable the writing (much like preempt_disable).
  2583. */
  2584. void ring_buffer_record_enable(struct ring_buffer *buffer)
  2585. {
  2586. atomic_dec(&buffer->record_disabled);
  2587. }
  2588. EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
  2589. /**
  2590. * ring_buffer_record_off - stop all writes into the buffer
  2591. * @buffer: The ring buffer to stop writes to.
  2592. *
  2593. * This prevents all writes to the buffer. Any attempt to write
  2594. * to the buffer after this will fail and return NULL.
  2595. *
  2596. * This is different than ring_buffer_record_disable() as
  2597. * it works like an on/off switch, where as the disable() version
  2598. * must be paired with a enable().
  2599. */
  2600. void ring_buffer_record_off(struct ring_buffer *buffer)
  2601. {
  2602. unsigned int rd;
  2603. unsigned int new_rd;
  2604. do {
  2605. rd = atomic_read(&buffer->record_disabled);
  2606. new_rd = rd | RB_BUFFER_OFF;
  2607. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2608. }
  2609. EXPORT_SYMBOL_GPL(ring_buffer_record_off);
  2610. /**
  2611. * ring_buffer_record_on - restart writes into the buffer
  2612. * @buffer: The ring buffer to start writes to.
  2613. *
  2614. * This enables all writes to the buffer that was disabled by
  2615. * ring_buffer_record_off().
  2616. *
  2617. * This is different than ring_buffer_record_enable() as
  2618. * it works like an on/off switch, where as the enable() version
  2619. * must be paired with a disable().
  2620. */
  2621. void ring_buffer_record_on(struct ring_buffer *buffer)
  2622. {
  2623. unsigned int rd;
  2624. unsigned int new_rd;
  2625. do {
  2626. rd = atomic_read(&buffer->record_disabled);
  2627. new_rd = rd & ~RB_BUFFER_OFF;
  2628. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2629. }
  2630. EXPORT_SYMBOL_GPL(ring_buffer_record_on);
  2631. /**
  2632. * ring_buffer_record_is_on - return true if the ring buffer can write
  2633. * @buffer: The ring buffer to see if write is enabled
  2634. *
  2635. * Returns true if the ring buffer is in a state that it accepts writes.
  2636. */
  2637. int ring_buffer_record_is_on(struct ring_buffer *buffer)
  2638. {
  2639. return !atomic_read(&buffer->record_disabled);
  2640. }
  2641. /**
  2642. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  2643. * @buffer: The ring buffer to stop writes to.
  2644. * @cpu: The CPU buffer to stop
  2645. *
  2646. * This prevents all writes to the buffer. Any attempt to write
  2647. * to the buffer after this will fail and return NULL.
  2648. *
  2649. * The caller should call synchronize_sched() after this.
  2650. */
  2651. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  2652. {
  2653. struct ring_buffer_per_cpu *cpu_buffer;
  2654. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2655. return;
  2656. cpu_buffer = buffer->buffers[cpu];
  2657. atomic_inc(&cpu_buffer->record_disabled);
  2658. }
  2659. EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
  2660. /**
  2661. * ring_buffer_record_enable_cpu - enable writes to the buffer
  2662. * @buffer: The ring buffer to enable writes
  2663. * @cpu: The CPU to enable.
  2664. *
  2665. * Note, multiple disables will need the same number of enables
  2666. * to truly enable the writing (much like preempt_disable).
  2667. */
  2668. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  2669. {
  2670. struct ring_buffer_per_cpu *cpu_buffer;
  2671. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2672. return;
  2673. cpu_buffer = buffer->buffers[cpu];
  2674. atomic_dec(&cpu_buffer->record_disabled);
  2675. }
  2676. EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
  2677. /*
  2678. * The total entries in the ring buffer is the running counter
  2679. * of entries entered into the ring buffer, minus the sum of
  2680. * the entries read from the ring buffer and the number of
  2681. * entries that were overwritten.
  2682. */
  2683. static inline unsigned long
  2684. rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
  2685. {
  2686. return local_read(&cpu_buffer->entries) -
  2687. (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
  2688. }
  2689. /**
  2690. * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
  2691. * @buffer: The ring buffer
  2692. * @cpu: The per CPU buffer to read from.
  2693. */
  2694. u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
  2695. {
  2696. unsigned long flags;
  2697. struct ring_buffer_per_cpu *cpu_buffer;
  2698. struct buffer_page *bpage;
  2699. u64 ret = 0;
  2700. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2701. return 0;
  2702. cpu_buffer = buffer->buffers[cpu];
  2703. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2704. /*
  2705. * if the tail is on reader_page, oldest time stamp is on the reader
  2706. * page
  2707. */
  2708. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  2709. bpage = cpu_buffer->reader_page;
  2710. else
  2711. bpage = rb_set_head_page(cpu_buffer);
  2712. if (bpage)
  2713. ret = bpage->page->time_stamp;
  2714. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2715. return ret;
  2716. }
  2717. EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
  2718. /**
  2719. * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
  2720. * @buffer: The ring buffer
  2721. * @cpu: The per CPU buffer to read from.
  2722. */
  2723. unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
  2724. {
  2725. struct ring_buffer_per_cpu *cpu_buffer;
  2726. unsigned long ret;
  2727. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2728. return 0;
  2729. cpu_buffer = buffer->buffers[cpu];
  2730. ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
  2731. return ret;
  2732. }
  2733. EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
  2734. /**
  2735. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  2736. * @buffer: The ring buffer
  2737. * @cpu: The per CPU buffer to get the entries from.
  2738. */
  2739. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  2740. {
  2741. struct ring_buffer_per_cpu *cpu_buffer;
  2742. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2743. return 0;
  2744. cpu_buffer = buffer->buffers[cpu];
  2745. return rb_num_of_entries(cpu_buffer);
  2746. }
  2747. EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
  2748. /**
  2749. * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
  2750. * buffer wrapping around (only if RB_FL_OVERWRITE is on).
  2751. * @buffer: The ring buffer
  2752. * @cpu: The per CPU buffer to get the number of overruns from
  2753. */
  2754. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2755. {
  2756. struct ring_buffer_per_cpu *cpu_buffer;
  2757. unsigned long ret;
  2758. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2759. return 0;
  2760. cpu_buffer = buffer->buffers[cpu];
  2761. ret = local_read(&cpu_buffer->overrun);
  2762. return ret;
  2763. }
  2764. EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
  2765. /**
  2766. * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
  2767. * commits failing due to the buffer wrapping around while there are uncommitted
  2768. * events, such as during an interrupt storm.
  2769. * @buffer: The ring buffer
  2770. * @cpu: The per CPU buffer to get the number of overruns from
  2771. */
  2772. unsigned long
  2773. ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2774. {
  2775. struct ring_buffer_per_cpu *cpu_buffer;
  2776. unsigned long ret;
  2777. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2778. return 0;
  2779. cpu_buffer = buffer->buffers[cpu];
  2780. ret = local_read(&cpu_buffer->commit_overrun);
  2781. return ret;
  2782. }
  2783. EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
  2784. /**
  2785. * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
  2786. * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
  2787. * @buffer: The ring buffer
  2788. * @cpu: The per CPU buffer to get the number of overruns from
  2789. */
  2790. unsigned long
  2791. ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
  2792. {
  2793. struct ring_buffer_per_cpu *cpu_buffer;
  2794. unsigned long ret;
  2795. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2796. return 0;
  2797. cpu_buffer = buffer->buffers[cpu];
  2798. ret = local_read(&cpu_buffer->dropped_events);
  2799. return ret;
  2800. }
  2801. EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
  2802. /**
  2803. * ring_buffer_read_events_cpu - get the number of events successfully read
  2804. * @buffer: The ring buffer
  2805. * @cpu: The per CPU buffer to get the number of events read
  2806. */
  2807. unsigned long
  2808. ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
  2809. {
  2810. struct ring_buffer_per_cpu *cpu_buffer;
  2811. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2812. return 0;
  2813. cpu_buffer = buffer->buffers[cpu];
  2814. return cpu_buffer->read;
  2815. }
  2816. EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
  2817. /**
  2818. * ring_buffer_entries - get the number of entries in a buffer
  2819. * @buffer: The ring buffer
  2820. *
  2821. * Returns the total number of entries in the ring buffer
  2822. * (all CPU entries)
  2823. */
  2824. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  2825. {
  2826. struct ring_buffer_per_cpu *cpu_buffer;
  2827. unsigned long entries = 0;
  2828. int cpu;
  2829. /* if you care about this being correct, lock the buffer */
  2830. for_each_buffer_cpu(buffer, cpu) {
  2831. cpu_buffer = buffer->buffers[cpu];
  2832. entries += rb_num_of_entries(cpu_buffer);
  2833. }
  2834. return entries;
  2835. }
  2836. EXPORT_SYMBOL_GPL(ring_buffer_entries);
  2837. /**
  2838. * ring_buffer_overruns - get the number of overruns in buffer
  2839. * @buffer: The ring buffer
  2840. *
  2841. * Returns the total number of overruns in the ring buffer
  2842. * (all CPU entries)
  2843. */
  2844. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  2845. {
  2846. struct ring_buffer_per_cpu *cpu_buffer;
  2847. unsigned long overruns = 0;
  2848. int cpu;
  2849. /* if you care about this being correct, lock the buffer */
  2850. for_each_buffer_cpu(buffer, cpu) {
  2851. cpu_buffer = buffer->buffers[cpu];
  2852. overruns += local_read(&cpu_buffer->overrun);
  2853. }
  2854. return overruns;
  2855. }
  2856. EXPORT_SYMBOL_GPL(ring_buffer_overruns);
  2857. static void rb_iter_reset(struct ring_buffer_iter *iter)
  2858. {
  2859. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  2860. /* Iterator usage is expected to have record disabled */
  2861. if (list_empty(&cpu_buffer->reader_page->list)) {
  2862. iter->head_page = rb_set_head_page(cpu_buffer);
  2863. if (unlikely(!iter->head_page))
  2864. return;
  2865. iter->head = iter->head_page->read;
  2866. } else {
  2867. iter->head_page = cpu_buffer->reader_page;
  2868. iter->head = cpu_buffer->reader_page->read;
  2869. }
  2870. if (iter->head)
  2871. iter->read_stamp = cpu_buffer->read_stamp;
  2872. else
  2873. iter->read_stamp = iter->head_page->page->time_stamp;
  2874. iter->cache_reader_page = cpu_buffer->reader_page;
  2875. iter->cache_read = cpu_buffer->read;
  2876. }
  2877. /**
  2878. * ring_buffer_iter_reset - reset an iterator
  2879. * @iter: The iterator to reset
  2880. *
  2881. * Resets the iterator, so that it will start from the beginning
  2882. * again.
  2883. */
  2884. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  2885. {
  2886. struct ring_buffer_per_cpu *cpu_buffer;
  2887. unsigned long flags;
  2888. if (!iter)
  2889. return;
  2890. cpu_buffer = iter->cpu_buffer;
  2891. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2892. rb_iter_reset(iter);
  2893. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2894. }
  2895. EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
  2896. /**
  2897. * ring_buffer_iter_empty - check if an iterator has no more to read
  2898. * @iter: The iterator to check
  2899. */
  2900. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  2901. {
  2902. struct ring_buffer_per_cpu *cpu_buffer;
  2903. cpu_buffer = iter->cpu_buffer;
  2904. return iter->head_page == cpu_buffer->commit_page &&
  2905. iter->head == rb_commit_index(cpu_buffer);
  2906. }
  2907. EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
  2908. static void
  2909. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2910. struct ring_buffer_event *event)
  2911. {
  2912. u64 delta;
  2913. switch (event->type_len) {
  2914. case RINGBUF_TYPE_PADDING:
  2915. return;
  2916. case RINGBUF_TYPE_TIME_EXTEND:
  2917. delta = event->array[0];
  2918. delta <<= TS_SHIFT;
  2919. delta += event->time_delta;
  2920. cpu_buffer->read_stamp += delta;
  2921. return;
  2922. case RINGBUF_TYPE_TIME_STAMP:
  2923. /* FIXME: not implemented */
  2924. return;
  2925. case RINGBUF_TYPE_DATA:
  2926. cpu_buffer->read_stamp += event->time_delta;
  2927. return;
  2928. default:
  2929. BUG();
  2930. }
  2931. return;
  2932. }
  2933. static void
  2934. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  2935. struct ring_buffer_event *event)
  2936. {
  2937. u64 delta;
  2938. switch (event->type_len) {
  2939. case RINGBUF_TYPE_PADDING:
  2940. return;
  2941. case RINGBUF_TYPE_TIME_EXTEND:
  2942. delta = event->array[0];
  2943. delta <<= TS_SHIFT;
  2944. delta += event->time_delta;
  2945. iter->read_stamp += delta;
  2946. return;
  2947. case RINGBUF_TYPE_TIME_STAMP:
  2948. /* FIXME: not implemented */
  2949. return;
  2950. case RINGBUF_TYPE_DATA:
  2951. iter->read_stamp += event->time_delta;
  2952. return;
  2953. default:
  2954. BUG();
  2955. }
  2956. return;
  2957. }
  2958. static struct buffer_page *
  2959. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  2960. {
  2961. struct buffer_page *reader = NULL;
  2962. unsigned long overwrite;
  2963. unsigned long flags;
  2964. int nr_loops = 0;
  2965. int ret;
  2966. local_irq_save(flags);
  2967. arch_spin_lock(&cpu_buffer->lock);
  2968. again:
  2969. /*
  2970. * This should normally only loop twice. But because the
  2971. * start of the reader inserts an empty page, it causes
  2972. * a case where we will loop three times. There should be no
  2973. * reason to loop four times (that I know of).
  2974. */
  2975. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  2976. reader = NULL;
  2977. goto out;
  2978. }
  2979. reader = cpu_buffer->reader_page;
  2980. /* If there's more to read, return this page */
  2981. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  2982. goto out;
  2983. /* Never should we have an index greater than the size */
  2984. if (RB_WARN_ON(cpu_buffer,
  2985. cpu_buffer->reader_page->read > rb_page_size(reader)))
  2986. goto out;
  2987. /* check if we caught up to the tail */
  2988. reader = NULL;
  2989. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  2990. goto out;
  2991. /* Don't bother swapping if the ring buffer is empty */
  2992. if (rb_num_of_entries(cpu_buffer) == 0)
  2993. goto out;
  2994. /*
  2995. * Reset the reader page to size zero.
  2996. */
  2997. local_set(&cpu_buffer->reader_page->write, 0);
  2998. local_set(&cpu_buffer->reader_page->entries, 0);
  2999. local_set(&cpu_buffer->reader_page->page->commit, 0);
  3000. cpu_buffer->reader_page->real_end = 0;
  3001. spin:
  3002. /*
  3003. * Splice the empty reader page into the list around the head.
  3004. */
  3005. reader = rb_set_head_page(cpu_buffer);
  3006. if (!reader)
  3007. goto out;
  3008. cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
  3009. cpu_buffer->reader_page->list.prev = reader->list.prev;
  3010. /*
  3011. * cpu_buffer->pages just needs to point to the buffer, it
  3012. * has no specific buffer page to point to. Lets move it out
  3013. * of our way so we don't accidentally swap it.
  3014. */
  3015. cpu_buffer->pages = reader->list.prev;
  3016. /* The reader page will be pointing to the new head */
  3017. rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
  3018. /*
  3019. * We want to make sure we read the overruns after we set up our
  3020. * pointers to the next object. The writer side does a
  3021. * cmpxchg to cross pages which acts as the mb on the writer
  3022. * side. Note, the reader will constantly fail the swap
  3023. * while the writer is updating the pointers, so this
  3024. * guarantees that the overwrite recorded here is the one we
  3025. * want to compare with the last_overrun.
  3026. */
  3027. smp_mb();
  3028. overwrite = local_read(&(cpu_buffer->overrun));
  3029. /*
  3030. * Here's the tricky part.
  3031. *
  3032. * We need to move the pointer past the header page.
  3033. * But we can only do that if a writer is not currently
  3034. * moving it. The page before the header page has the
  3035. * flag bit '1' set if it is pointing to the page we want.
  3036. * but if the writer is in the process of moving it
  3037. * than it will be '2' or already moved '0'.
  3038. */
  3039. ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
  3040. /*
  3041. * If we did not convert it, then we must try again.
  3042. */
  3043. if (!ret)
  3044. goto spin;
  3045. /*
  3046. * Yeah! We succeeded in replacing the page.
  3047. *
  3048. * Now make the new head point back to the reader page.
  3049. */
  3050. rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
  3051. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  3052. /* Finally update the reader page to the new head */
  3053. cpu_buffer->reader_page = reader;
  3054. rb_reset_reader_page(cpu_buffer);
  3055. if (overwrite != cpu_buffer->last_overrun) {
  3056. cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
  3057. cpu_buffer->last_overrun = overwrite;
  3058. }
  3059. goto again;
  3060. out:
  3061. arch_spin_unlock(&cpu_buffer->lock);
  3062. local_irq_restore(flags);
  3063. return reader;
  3064. }
  3065. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  3066. {
  3067. struct ring_buffer_event *event;
  3068. struct buffer_page *reader;
  3069. unsigned length;
  3070. reader = rb_get_reader_page(cpu_buffer);
  3071. /* This function should not be called when buffer is empty */
  3072. if (RB_WARN_ON(cpu_buffer, !reader))
  3073. return;
  3074. event = rb_reader_event(cpu_buffer);
  3075. if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  3076. cpu_buffer->read++;
  3077. rb_update_read_stamp(cpu_buffer, event);
  3078. length = rb_event_length(event);
  3079. cpu_buffer->reader_page->read += length;
  3080. }
  3081. static void rb_advance_iter(struct ring_buffer_iter *iter)
  3082. {
  3083. struct ring_buffer_per_cpu *cpu_buffer;
  3084. struct ring_buffer_event *event;
  3085. unsigned length;
  3086. cpu_buffer = iter->cpu_buffer;
  3087. /*
  3088. * Check if we are at the end of the buffer.
  3089. */
  3090. if (iter->head >= rb_page_size(iter->head_page)) {
  3091. /* discarded commits can make the page empty */
  3092. if (iter->head_page == cpu_buffer->commit_page)
  3093. return;
  3094. rb_inc_iter(iter);
  3095. return;
  3096. }
  3097. event = rb_iter_head_event(iter);
  3098. length = rb_event_length(event);
  3099. /*
  3100. * This should not be called to advance the header if we are
  3101. * at the tail of the buffer.
  3102. */
  3103. if (RB_WARN_ON(cpu_buffer,
  3104. (iter->head_page == cpu_buffer->commit_page) &&
  3105. (iter->head + length > rb_commit_index(cpu_buffer))))
  3106. return;
  3107. rb_update_iter_read_stamp(iter, event);
  3108. iter->head += length;
  3109. /* check for end of page padding */
  3110. if ((iter->head >= rb_page_size(iter->head_page)) &&
  3111. (iter->head_page != cpu_buffer->commit_page))
  3112. rb_inc_iter(iter);
  3113. }
  3114. static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
  3115. {
  3116. return cpu_buffer->lost_events;
  3117. }
  3118. static struct ring_buffer_event *
  3119. rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
  3120. unsigned long *lost_events)
  3121. {
  3122. struct ring_buffer_event *event;
  3123. struct buffer_page *reader;
  3124. int nr_loops = 0;
  3125. again:
  3126. /*
  3127. * We repeat when a time extend is encountered.
  3128. * Since the time extend is always attached to a data event,
  3129. * we should never loop more than once.
  3130. * (We never hit the following condition more than twice).
  3131. */
  3132. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
  3133. return NULL;
  3134. reader = rb_get_reader_page(cpu_buffer);
  3135. if (!reader)
  3136. return NULL;
  3137. event = rb_reader_event(cpu_buffer);
  3138. switch (event->type_len) {
  3139. case RINGBUF_TYPE_PADDING:
  3140. if (rb_null_event(event))
  3141. RB_WARN_ON(cpu_buffer, 1);
  3142. /*
  3143. * Because the writer could be discarding every
  3144. * event it creates (which would probably be bad)
  3145. * if we were to go back to "again" then we may never
  3146. * catch up, and will trigger the warn on, or lock
  3147. * the box. Return the padding, and we will release
  3148. * the current locks, and try again.
  3149. */
  3150. return event;
  3151. case RINGBUF_TYPE_TIME_EXTEND:
  3152. /* Internal data, OK to advance */
  3153. rb_advance_reader(cpu_buffer);
  3154. goto again;
  3155. case RINGBUF_TYPE_TIME_STAMP:
  3156. /* FIXME: not implemented */
  3157. rb_advance_reader(cpu_buffer);
  3158. goto again;
  3159. case RINGBUF_TYPE_DATA:
  3160. if (ts) {
  3161. *ts = cpu_buffer->read_stamp + event->time_delta;
  3162. ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
  3163. cpu_buffer->cpu, ts);
  3164. }
  3165. if (lost_events)
  3166. *lost_events = rb_lost_events(cpu_buffer);
  3167. return event;
  3168. default:
  3169. BUG();
  3170. }
  3171. return NULL;
  3172. }
  3173. EXPORT_SYMBOL_GPL(ring_buffer_peek);
  3174. static struct ring_buffer_event *
  3175. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3176. {
  3177. struct ring_buffer *buffer;
  3178. struct ring_buffer_per_cpu *cpu_buffer;
  3179. struct ring_buffer_event *event;
  3180. int nr_loops = 0;
  3181. cpu_buffer = iter->cpu_buffer;
  3182. buffer = cpu_buffer->buffer;
  3183. /*
  3184. * Check if someone performed a consuming read to
  3185. * the buffer. A consuming read invalidates the iterator
  3186. * and we need to reset the iterator in this case.
  3187. */
  3188. if (unlikely(iter->cache_read != cpu_buffer->read ||
  3189. iter->cache_reader_page != cpu_buffer->reader_page))
  3190. rb_iter_reset(iter);
  3191. again:
  3192. if (ring_buffer_iter_empty(iter))
  3193. return NULL;
  3194. /*
  3195. * We repeat when a time extend is encountered.
  3196. * Since the time extend is always attached to a data event,
  3197. * we should never loop more than once.
  3198. * (We never hit the following condition more than twice).
  3199. */
  3200. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
  3201. return NULL;
  3202. if (rb_per_cpu_empty(cpu_buffer))
  3203. return NULL;
  3204. if (iter->head >= local_read(&iter->head_page->page->commit)) {
  3205. rb_inc_iter(iter);
  3206. goto again;
  3207. }
  3208. event = rb_iter_head_event(iter);
  3209. switch (event->type_len) {
  3210. case RINGBUF_TYPE_PADDING:
  3211. if (rb_null_event(event)) {
  3212. rb_inc_iter(iter);
  3213. goto again;
  3214. }
  3215. rb_advance_iter(iter);
  3216. return event;
  3217. case RINGBUF_TYPE_TIME_EXTEND:
  3218. /* Internal data, OK to advance */
  3219. rb_advance_iter(iter);
  3220. goto again;
  3221. case RINGBUF_TYPE_TIME_STAMP:
  3222. /* FIXME: not implemented */
  3223. rb_advance_iter(iter);
  3224. goto again;
  3225. case RINGBUF_TYPE_DATA:
  3226. if (ts) {
  3227. *ts = iter->read_stamp + event->time_delta;
  3228. ring_buffer_normalize_time_stamp(buffer,
  3229. cpu_buffer->cpu, ts);
  3230. }
  3231. return event;
  3232. default:
  3233. BUG();
  3234. }
  3235. return NULL;
  3236. }
  3237. EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
  3238. static inline int rb_ok_to_lock(void)
  3239. {
  3240. /*
  3241. * If an NMI die dumps out the content of the ring buffer
  3242. * do not grab locks. We also permanently disable the ring
  3243. * buffer too. A one time deal is all you get from reading
  3244. * the ring buffer from an NMI.
  3245. */
  3246. if (likely(!in_nmi()))
  3247. return 1;
  3248. tracing_off_permanent();
  3249. return 0;
  3250. }
  3251. /**
  3252. * ring_buffer_peek - peek at the next event to be read
  3253. * @buffer: The ring buffer to read
  3254. * @cpu: The cpu to peak at
  3255. * @ts: The timestamp counter of this event.
  3256. * @lost_events: a variable to store if events were lost (may be NULL)
  3257. *
  3258. * This will return the event that will be read next, but does
  3259. * not consume the data.
  3260. */
  3261. struct ring_buffer_event *
  3262. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
  3263. unsigned long *lost_events)
  3264. {
  3265. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3266. struct ring_buffer_event *event;
  3267. unsigned long flags;
  3268. int dolock;
  3269. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3270. return NULL;
  3271. dolock = rb_ok_to_lock();
  3272. again:
  3273. local_irq_save(flags);
  3274. if (dolock)
  3275. raw_spin_lock(&cpu_buffer->reader_lock);
  3276. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3277. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3278. rb_advance_reader(cpu_buffer);
  3279. if (dolock)
  3280. raw_spin_unlock(&cpu_buffer->reader_lock);
  3281. local_irq_restore(flags);
  3282. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3283. goto again;
  3284. return event;
  3285. }
  3286. /**
  3287. * ring_buffer_iter_peek - peek at the next event to be read
  3288. * @iter: The ring buffer iterator
  3289. * @ts: The timestamp counter of this event.
  3290. *
  3291. * This will return the event that will be read next, but does
  3292. * not increment the iterator.
  3293. */
  3294. struct ring_buffer_event *
  3295. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3296. {
  3297. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3298. struct ring_buffer_event *event;
  3299. unsigned long flags;
  3300. again:
  3301. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3302. event = rb_iter_peek(iter, ts);
  3303. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3304. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3305. goto again;
  3306. return event;
  3307. }
  3308. /**
  3309. * ring_buffer_consume - return an event and consume it
  3310. * @buffer: The ring buffer to get the next event from
  3311. * @cpu: the cpu to read the buffer from
  3312. * @ts: a variable to store the timestamp (may be NULL)
  3313. * @lost_events: a variable to store if events were lost (may be NULL)
  3314. *
  3315. * Returns the next event in the ring buffer, and that event is consumed.
  3316. * Meaning, that sequential reads will keep returning a different event,
  3317. * and eventually empty the ring buffer if the producer is slower.
  3318. */
  3319. struct ring_buffer_event *
  3320. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
  3321. unsigned long *lost_events)
  3322. {
  3323. struct ring_buffer_per_cpu *cpu_buffer;
  3324. struct ring_buffer_event *event = NULL;
  3325. unsigned long flags;
  3326. int dolock;
  3327. dolock = rb_ok_to_lock();
  3328. again:
  3329. /* might be called in atomic */
  3330. preempt_disable();
  3331. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3332. goto out;
  3333. cpu_buffer = buffer->buffers[cpu];
  3334. local_irq_save(flags);
  3335. if (dolock)
  3336. raw_spin_lock(&cpu_buffer->reader_lock);
  3337. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3338. if (event) {
  3339. cpu_buffer->lost_events = 0;
  3340. rb_advance_reader(cpu_buffer);
  3341. }
  3342. if (dolock)
  3343. raw_spin_unlock(&cpu_buffer->reader_lock);
  3344. local_irq_restore(flags);
  3345. out:
  3346. preempt_enable();
  3347. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3348. goto again;
  3349. return event;
  3350. }
  3351. EXPORT_SYMBOL_GPL(ring_buffer_consume);
  3352. /**
  3353. * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
  3354. * @buffer: The ring buffer to read from
  3355. * @cpu: The cpu buffer to iterate over
  3356. *
  3357. * This performs the initial preparations necessary to iterate
  3358. * through the buffer. Memory is allocated, buffer recording
  3359. * is disabled, and the iterator pointer is returned to the caller.
  3360. *
  3361. * Disabling buffer recordng prevents the reading from being
  3362. * corrupted. This is not a consuming read, so a producer is not
  3363. * expected.
  3364. *
  3365. * After a sequence of ring_buffer_read_prepare calls, the user is
  3366. * expected to make at least one call to ring_buffer_read_prepare_sync.
  3367. * Afterwards, ring_buffer_read_start is invoked to get things going
  3368. * for real.
  3369. *
  3370. * This overall must be paired with ring_buffer_read_finish.
  3371. */
  3372. struct ring_buffer_iter *
  3373. ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
  3374. {
  3375. struct ring_buffer_per_cpu *cpu_buffer;
  3376. struct ring_buffer_iter *iter;
  3377. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3378. return NULL;
  3379. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  3380. if (!iter)
  3381. return NULL;
  3382. cpu_buffer = buffer->buffers[cpu];
  3383. iter->cpu_buffer = cpu_buffer;
  3384. atomic_inc(&buffer->resize_disabled);
  3385. atomic_inc(&cpu_buffer->record_disabled);
  3386. return iter;
  3387. }
  3388. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
  3389. /**
  3390. * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
  3391. *
  3392. * All previously invoked ring_buffer_read_prepare calls to prepare
  3393. * iterators will be synchronized. Afterwards, read_buffer_read_start
  3394. * calls on those iterators are allowed.
  3395. */
  3396. void
  3397. ring_buffer_read_prepare_sync(void)
  3398. {
  3399. synchronize_sched();
  3400. }
  3401. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
  3402. /**
  3403. * ring_buffer_read_start - start a non consuming read of the buffer
  3404. * @iter: The iterator returned by ring_buffer_read_prepare
  3405. *
  3406. * This finalizes the startup of an iteration through the buffer.
  3407. * The iterator comes from a call to ring_buffer_read_prepare and
  3408. * an intervening ring_buffer_read_prepare_sync must have been
  3409. * performed.
  3410. *
  3411. * Must be paired with ring_buffer_read_finish.
  3412. */
  3413. void
  3414. ring_buffer_read_start(struct ring_buffer_iter *iter)
  3415. {
  3416. struct ring_buffer_per_cpu *cpu_buffer;
  3417. unsigned long flags;
  3418. if (!iter)
  3419. return;
  3420. cpu_buffer = iter->cpu_buffer;
  3421. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3422. arch_spin_lock(&cpu_buffer->lock);
  3423. rb_iter_reset(iter);
  3424. arch_spin_unlock(&cpu_buffer->lock);
  3425. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3426. }
  3427. EXPORT_SYMBOL_GPL(ring_buffer_read_start);
  3428. /**
  3429. * ring_buffer_read_finish - finish reading the iterator of the buffer
  3430. * @iter: The iterator retrieved by ring_buffer_start
  3431. *
  3432. * This re-enables the recording to the buffer, and frees the
  3433. * iterator.
  3434. */
  3435. void
  3436. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  3437. {
  3438. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3439. unsigned long flags;
  3440. /*
  3441. * Ring buffer is disabled from recording, here's a good place
  3442. * to check the integrity of the ring buffer.
  3443. * Must prevent readers from trying to read, as the check
  3444. * clears the HEAD page and readers require it.
  3445. */
  3446. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3447. rb_check_pages(cpu_buffer);
  3448. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3449. atomic_dec(&cpu_buffer->record_disabled);
  3450. atomic_dec(&cpu_buffer->buffer->resize_disabled);
  3451. kfree(iter);
  3452. }
  3453. EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
  3454. /**
  3455. * ring_buffer_read - read the next item in the ring buffer by the iterator
  3456. * @iter: The ring buffer iterator
  3457. * @ts: The time stamp of the event read.
  3458. *
  3459. * This reads the next event in the ring buffer and increments the iterator.
  3460. */
  3461. struct ring_buffer_event *
  3462. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  3463. {
  3464. struct ring_buffer_event *event;
  3465. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3466. unsigned long flags;
  3467. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3468. again:
  3469. event = rb_iter_peek(iter, ts);
  3470. if (!event)
  3471. goto out;
  3472. if (event->type_len == RINGBUF_TYPE_PADDING)
  3473. goto again;
  3474. rb_advance_iter(iter);
  3475. out:
  3476. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3477. return event;
  3478. }
  3479. EXPORT_SYMBOL_GPL(ring_buffer_read);
  3480. /**
  3481. * ring_buffer_size - return the size of the ring buffer (in bytes)
  3482. * @buffer: The ring buffer.
  3483. */
  3484. unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
  3485. {
  3486. /*
  3487. * Earlier, this method returned
  3488. * BUF_PAGE_SIZE * buffer->nr_pages
  3489. * Since the nr_pages field is now removed, we have converted this to
  3490. * return the per cpu buffer value.
  3491. */
  3492. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3493. return 0;
  3494. return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
  3495. }
  3496. EXPORT_SYMBOL_GPL(ring_buffer_size);
  3497. static void
  3498. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  3499. {
  3500. rb_head_page_deactivate(cpu_buffer);
  3501. cpu_buffer->head_page
  3502. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  3503. local_set(&cpu_buffer->head_page->write, 0);
  3504. local_set(&cpu_buffer->head_page->entries, 0);
  3505. local_set(&cpu_buffer->head_page->page->commit, 0);
  3506. cpu_buffer->head_page->read = 0;
  3507. cpu_buffer->tail_page = cpu_buffer->head_page;
  3508. cpu_buffer->commit_page = cpu_buffer->head_page;
  3509. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  3510. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  3511. local_set(&cpu_buffer->reader_page->write, 0);
  3512. local_set(&cpu_buffer->reader_page->entries, 0);
  3513. local_set(&cpu_buffer->reader_page->page->commit, 0);
  3514. cpu_buffer->reader_page->read = 0;
  3515. local_set(&cpu_buffer->entries_bytes, 0);
  3516. local_set(&cpu_buffer->overrun, 0);
  3517. local_set(&cpu_buffer->commit_overrun, 0);
  3518. local_set(&cpu_buffer->dropped_events, 0);
  3519. local_set(&cpu_buffer->entries, 0);
  3520. local_set(&cpu_buffer->committing, 0);
  3521. local_set(&cpu_buffer->commits, 0);
  3522. cpu_buffer->read = 0;
  3523. cpu_buffer->read_bytes = 0;
  3524. cpu_buffer->write_stamp = 0;
  3525. cpu_buffer->read_stamp = 0;
  3526. cpu_buffer->lost_events = 0;
  3527. cpu_buffer->last_overrun = 0;
  3528. rb_head_page_activate(cpu_buffer);
  3529. }
  3530. /**
  3531. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  3532. * @buffer: The ring buffer to reset a per cpu buffer of
  3533. * @cpu: The CPU buffer to be reset
  3534. */
  3535. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  3536. {
  3537. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3538. unsigned long flags;
  3539. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3540. return;
  3541. atomic_inc(&buffer->resize_disabled);
  3542. atomic_inc(&cpu_buffer->record_disabled);
  3543. /* Make sure all commits have finished */
  3544. synchronize_sched();
  3545. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3546. if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
  3547. goto out;
  3548. arch_spin_lock(&cpu_buffer->lock);
  3549. rb_reset_cpu(cpu_buffer);
  3550. arch_spin_unlock(&cpu_buffer->lock);
  3551. out:
  3552. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3553. atomic_dec(&cpu_buffer->record_disabled);
  3554. atomic_dec(&buffer->resize_disabled);
  3555. }
  3556. EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
  3557. /**
  3558. * ring_buffer_reset - reset a ring buffer
  3559. * @buffer: The ring buffer to reset all cpu buffers
  3560. */
  3561. void ring_buffer_reset(struct ring_buffer *buffer)
  3562. {
  3563. int cpu;
  3564. for_each_buffer_cpu(buffer, cpu)
  3565. ring_buffer_reset_cpu(buffer, cpu);
  3566. }
  3567. EXPORT_SYMBOL_GPL(ring_buffer_reset);
  3568. /**
  3569. * rind_buffer_empty - is the ring buffer empty?
  3570. * @buffer: The ring buffer to test
  3571. */
  3572. int ring_buffer_empty(struct ring_buffer *buffer)
  3573. {
  3574. struct ring_buffer_per_cpu *cpu_buffer;
  3575. unsigned long flags;
  3576. int dolock;
  3577. int cpu;
  3578. int ret;
  3579. dolock = rb_ok_to_lock();
  3580. /* yes this is racy, but if you don't like the race, lock the buffer */
  3581. for_each_buffer_cpu(buffer, cpu) {
  3582. cpu_buffer = buffer->buffers[cpu];
  3583. local_irq_save(flags);
  3584. if (dolock)
  3585. raw_spin_lock(&cpu_buffer->reader_lock);
  3586. ret = rb_per_cpu_empty(cpu_buffer);
  3587. if (dolock)
  3588. raw_spin_unlock(&cpu_buffer->reader_lock);
  3589. local_irq_restore(flags);
  3590. if (!ret)
  3591. return 0;
  3592. }
  3593. return 1;
  3594. }
  3595. EXPORT_SYMBOL_GPL(ring_buffer_empty);
  3596. /**
  3597. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  3598. * @buffer: The ring buffer
  3599. * @cpu: The CPU buffer to test
  3600. */
  3601. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  3602. {
  3603. struct ring_buffer_per_cpu *cpu_buffer;
  3604. unsigned long flags;
  3605. int dolock;
  3606. int ret;
  3607. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3608. return 1;
  3609. dolock = rb_ok_to_lock();
  3610. cpu_buffer = buffer->buffers[cpu];
  3611. local_irq_save(flags);
  3612. if (dolock)
  3613. raw_spin_lock(&cpu_buffer->reader_lock);
  3614. ret = rb_per_cpu_empty(cpu_buffer);
  3615. if (dolock)
  3616. raw_spin_unlock(&cpu_buffer->reader_lock);
  3617. local_irq_restore(flags);
  3618. return ret;
  3619. }
  3620. EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
  3621. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  3622. /**
  3623. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  3624. * @buffer_a: One buffer to swap with
  3625. * @buffer_b: The other buffer to swap with
  3626. *
  3627. * This function is useful for tracers that want to take a "snapshot"
  3628. * of a CPU buffer and has another back up buffer lying around.
  3629. * it is expected that the tracer handles the cpu buffer not being
  3630. * used at the moment.
  3631. */
  3632. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  3633. struct ring_buffer *buffer_b, int cpu)
  3634. {
  3635. struct ring_buffer_per_cpu *cpu_buffer_a;
  3636. struct ring_buffer_per_cpu *cpu_buffer_b;
  3637. int ret = -EINVAL;
  3638. if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
  3639. !cpumask_test_cpu(cpu, buffer_b->cpumask))
  3640. goto out;
  3641. cpu_buffer_a = buffer_a->buffers[cpu];
  3642. cpu_buffer_b = buffer_b->buffers[cpu];
  3643. /* At least make sure the two buffers are somewhat the same */
  3644. if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
  3645. goto out;
  3646. ret = -EAGAIN;
  3647. if (ring_buffer_flags != RB_BUFFERS_ON)
  3648. goto out;
  3649. if (atomic_read(&buffer_a->record_disabled))
  3650. goto out;
  3651. if (atomic_read(&buffer_b->record_disabled))
  3652. goto out;
  3653. if (atomic_read(&cpu_buffer_a->record_disabled))
  3654. goto out;
  3655. if (atomic_read(&cpu_buffer_b->record_disabled))
  3656. goto out;
  3657. /*
  3658. * We can't do a synchronize_sched here because this
  3659. * function can be called in atomic context.
  3660. * Normally this will be called from the same CPU as cpu.
  3661. * If not it's up to the caller to protect this.
  3662. */
  3663. atomic_inc(&cpu_buffer_a->record_disabled);
  3664. atomic_inc(&cpu_buffer_b->record_disabled);
  3665. ret = -EBUSY;
  3666. if (local_read(&cpu_buffer_a->committing))
  3667. goto out_dec;
  3668. if (local_read(&cpu_buffer_b->committing))
  3669. goto out_dec;
  3670. buffer_a->buffers[cpu] = cpu_buffer_b;
  3671. buffer_b->buffers[cpu] = cpu_buffer_a;
  3672. cpu_buffer_b->buffer = buffer_a;
  3673. cpu_buffer_a->buffer = buffer_b;
  3674. ret = 0;
  3675. out_dec:
  3676. atomic_dec(&cpu_buffer_a->record_disabled);
  3677. atomic_dec(&cpu_buffer_b->record_disabled);
  3678. out:
  3679. return ret;
  3680. }
  3681. EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
  3682. #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
  3683. /**
  3684. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  3685. * @buffer: the buffer to allocate for.
  3686. * @cpu: the cpu buffer to allocate.
  3687. *
  3688. * This function is used in conjunction with ring_buffer_read_page.
  3689. * When reading a full page from the ring buffer, these functions
  3690. * can be used to speed up the process. The calling function should
  3691. * allocate a few pages first with this function. Then when it
  3692. * needs to get pages from the ring buffer, it passes the result
  3693. * of this function into ring_buffer_read_page, which will swap
  3694. * the page that was allocated, with the read page of the buffer.
  3695. *
  3696. * Returns:
  3697. * The page allocated, or NULL on error.
  3698. */
  3699. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
  3700. {
  3701. struct buffer_data_page *bpage;
  3702. struct page *page;
  3703. page = alloc_pages_node(cpu_to_node(cpu),
  3704. GFP_KERNEL | __GFP_NORETRY, 0);
  3705. if (!page)
  3706. return NULL;
  3707. bpage = page_address(page);
  3708. rb_init_page(bpage);
  3709. return bpage;
  3710. }
  3711. EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
  3712. /**
  3713. * ring_buffer_free_read_page - free an allocated read page
  3714. * @buffer: the buffer the page was allocate for
  3715. * @data: the page to free
  3716. *
  3717. * Free a page allocated from ring_buffer_alloc_read_page.
  3718. */
  3719. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  3720. {
  3721. free_page((unsigned long)data);
  3722. }
  3723. EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
  3724. /**
  3725. * ring_buffer_read_page - extract a page from the ring buffer
  3726. * @buffer: buffer to extract from
  3727. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  3728. * @len: amount to extract
  3729. * @cpu: the cpu of the buffer to extract
  3730. * @full: should the extraction only happen when the page is full.
  3731. *
  3732. * This function will pull out a page from the ring buffer and consume it.
  3733. * @data_page must be the address of the variable that was returned
  3734. * from ring_buffer_alloc_read_page. This is because the page might be used
  3735. * to swap with a page in the ring buffer.
  3736. *
  3737. * for example:
  3738. * rpage = ring_buffer_alloc_read_page(buffer, cpu);
  3739. * if (!rpage)
  3740. * return error;
  3741. * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
  3742. * if (ret >= 0)
  3743. * process_page(rpage, ret);
  3744. *
  3745. * When @full is set, the function will not return true unless
  3746. * the writer is off the reader page.
  3747. *
  3748. * Note: it is up to the calling functions to handle sleeps and wakeups.
  3749. * The ring buffer can be used anywhere in the kernel and can not
  3750. * blindly call wake_up. The layer that uses the ring buffer must be
  3751. * responsible for that.
  3752. *
  3753. * Returns:
  3754. * >=0 if data has been transferred, returns the offset of consumed data.
  3755. * <0 if no data has been transferred.
  3756. */
  3757. int ring_buffer_read_page(struct ring_buffer *buffer,
  3758. void **data_page, size_t len, int cpu, int full)
  3759. {
  3760. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3761. struct ring_buffer_event *event;
  3762. struct buffer_data_page *bpage;
  3763. struct buffer_page *reader;
  3764. unsigned long missed_events;
  3765. unsigned long flags;
  3766. unsigned int commit;
  3767. unsigned int read;
  3768. u64 save_timestamp;
  3769. int ret = -1;
  3770. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3771. goto out;
  3772. /*
  3773. * If len is not big enough to hold the page header, then
  3774. * we can not copy anything.
  3775. */
  3776. if (len <= BUF_PAGE_HDR_SIZE)
  3777. goto out;
  3778. len -= BUF_PAGE_HDR_SIZE;
  3779. if (!data_page)
  3780. goto out;
  3781. bpage = *data_page;
  3782. if (!bpage)
  3783. goto out;
  3784. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3785. reader = rb_get_reader_page(cpu_buffer);
  3786. if (!reader)
  3787. goto out_unlock;
  3788. event = rb_reader_event(cpu_buffer);
  3789. read = reader->read;
  3790. commit = rb_page_commit(reader);
  3791. /* Check if any events were dropped */
  3792. missed_events = cpu_buffer->lost_events;
  3793. /*
  3794. * If this page has been partially read or
  3795. * if len is not big enough to read the rest of the page or
  3796. * a writer is still on the page, then
  3797. * we must copy the data from the page to the buffer.
  3798. * Otherwise, we can simply swap the page with the one passed in.
  3799. */
  3800. if (read || (len < (commit - read)) ||
  3801. cpu_buffer->reader_page == cpu_buffer->commit_page) {
  3802. struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
  3803. unsigned int rpos = read;
  3804. unsigned int pos = 0;
  3805. unsigned int size;
  3806. if (full)
  3807. goto out_unlock;
  3808. if (len > (commit - read))
  3809. len = (commit - read);
  3810. /* Always keep the time extend and data together */
  3811. size = rb_event_ts_length(event);
  3812. if (len < size)
  3813. goto out_unlock;
  3814. /* save the current timestamp, since the user will need it */
  3815. save_timestamp = cpu_buffer->read_stamp;
  3816. /* Need to copy one event at a time */
  3817. do {
  3818. /* We need the size of one event, because
  3819. * rb_advance_reader only advances by one event,
  3820. * whereas rb_event_ts_length may include the size of
  3821. * one or two events.
  3822. * We have already ensured there's enough space if this
  3823. * is a time extend. */
  3824. size = rb_event_length(event);
  3825. memcpy(bpage->data + pos, rpage->data + rpos, size);
  3826. len -= size;
  3827. rb_advance_reader(cpu_buffer);
  3828. rpos = reader->read;
  3829. pos += size;
  3830. if (rpos >= commit)
  3831. break;
  3832. event = rb_reader_event(cpu_buffer);
  3833. /* Always keep the time extend and data together */
  3834. size = rb_event_ts_length(event);
  3835. } while (len >= size);
  3836. /* update bpage */
  3837. local_set(&bpage->commit, pos);
  3838. bpage->time_stamp = save_timestamp;
  3839. /* we copied everything to the beginning */
  3840. read = 0;
  3841. } else {
  3842. /* update the entry counter */
  3843. cpu_buffer->read += rb_page_entries(reader);
  3844. cpu_buffer->read_bytes += BUF_PAGE_SIZE;
  3845. /* swap the pages */
  3846. rb_init_page(bpage);
  3847. bpage = reader->page;
  3848. reader->page = *data_page;
  3849. local_set(&reader->write, 0);
  3850. local_set(&reader->entries, 0);
  3851. reader->read = 0;
  3852. *data_page = bpage;
  3853. /*
  3854. * Use the real_end for the data size,
  3855. * This gives us a chance to store the lost events
  3856. * on the page.
  3857. */
  3858. if (reader->real_end)
  3859. local_set(&bpage->commit, reader->real_end);
  3860. }
  3861. ret = read;
  3862. cpu_buffer->lost_events = 0;
  3863. commit = local_read(&bpage->commit);
  3864. /*
  3865. * Set a flag in the commit field if we lost events
  3866. */
  3867. if (missed_events) {
  3868. /* If there is room at the end of the page to save the
  3869. * missed events, then record it there.
  3870. */
  3871. if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
  3872. memcpy(&bpage->data[commit], &missed_events,
  3873. sizeof(missed_events));
  3874. local_add(RB_MISSED_STORED, &bpage->commit);
  3875. commit += sizeof(missed_events);
  3876. }
  3877. local_add(RB_MISSED_EVENTS, &bpage->commit);
  3878. }
  3879. /*
  3880. * This page may be off to user land. Zero it out here.
  3881. */
  3882. if (commit < BUF_PAGE_SIZE)
  3883. memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
  3884. out_unlock:
  3885. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3886. out:
  3887. return ret;
  3888. }
  3889. EXPORT_SYMBOL_GPL(ring_buffer_read_page);
  3890. #ifdef CONFIG_HOTPLUG_CPU
  3891. static int rb_cpu_notify(struct notifier_block *self,
  3892. unsigned long action, void *hcpu)
  3893. {
  3894. struct ring_buffer *buffer =
  3895. container_of(self, struct ring_buffer, cpu_notify);
  3896. long cpu = (long)hcpu;
  3897. int cpu_i, nr_pages_same;
  3898. unsigned int nr_pages;
  3899. switch (action) {
  3900. case CPU_UP_PREPARE:
  3901. case CPU_UP_PREPARE_FROZEN:
  3902. if (cpumask_test_cpu(cpu, buffer->cpumask))
  3903. return NOTIFY_OK;
  3904. nr_pages = 0;
  3905. nr_pages_same = 1;
  3906. /* check if all cpu sizes are same */
  3907. for_each_buffer_cpu(buffer, cpu_i) {
  3908. /* fill in the size from first enabled cpu */
  3909. if (nr_pages == 0)
  3910. nr_pages = buffer->buffers[cpu_i]->nr_pages;
  3911. if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
  3912. nr_pages_same = 0;
  3913. break;
  3914. }
  3915. }
  3916. /* allocate minimum pages, user can later expand it */
  3917. if (!nr_pages_same)
  3918. nr_pages = 2;
  3919. buffer->buffers[cpu] =
  3920. rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  3921. if (!buffer->buffers[cpu]) {
  3922. WARN(1, "failed to allocate ring buffer on CPU %ld\n",
  3923. cpu);
  3924. return NOTIFY_OK;
  3925. }
  3926. smp_wmb();
  3927. cpumask_set_cpu(cpu, buffer->cpumask);
  3928. break;
  3929. case CPU_DOWN_PREPARE:
  3930. case CPU_DOWN_PREPARE_FROZEN:
  3931. /*
  3932. * Do nothing.
  3933. * If we were to free the buffer, then the user would
  3934. * lose any trace that was in the buffer.
  3935. */
  3936. break;
  3937. default:
  3938. break;
  3939. }
  3940. return NOTIFY_OK;
  3941. }
  3942. #endif
  3943. #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
  3944. /*
  3945. * This is a basic integrity check of the ring buffer.
  3946. * Late in the boot cycle this test will run when configured in.
  3947. * It will kick off a thread per CPU that will go into a loop
  3948. * writing to the per cpu ring buffer various sizes of data.
  3949. * Some of the data will be large items, some small.
  3950. *
  3951. * Another thread is created that goes into a spin, sending out
  3952. * IPIs to the other CPUs to also write into the ring buffer.
  3953. * this is to test the nesting ability of the buffer.
  3954. *
  3955. * Basic stats are recorded and reported. If something in the
  3956. * ring buffer should happen that's not expected, a big warning
  3957. * is displayed and all ring buffers are disabled.
  3958. */
  3959. static struct task_struct *rb_threads[NR_CPUS] __initdata;
  3960. struct rb_test_data {
  3961. struct ring_buffer *buffer;
  3962. unsigned long events;
  3963. unsigned long bytes_written;
  3964. unsigned long bytes_alloc;
  3965. unsigned long bytes_dropped;
  3966. unsigned long events_nested;
  3967. unsigned long bytes_written_nested;
  3968. unsigned long bytes_alloc_nested;
  3969. unsigned long bytes_dropped_nested;
  3970. int min_size_nested;
  3971. int max_size_nested;
  3972. int max_size;
  3973. int min_size;
  3974. int cpu;
  3975. int cnt;
  3976. };
  3977. static struct rb_test_data rb_data[NR_CPUS] __initdata;
  3978. /* 1 meg per cpu */
  3979. #define RB_TEST_BUFFER_SIZE 1048576
  3980. static char rb_string[] __initdata =
  3981. "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
  3982. "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
  3983. "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
  3984. static bool rb_test_started __initdata;
  3985. struct rb_item {
  3986. int size;
  3987. char str[];
  3988. };
  3989. static __init int rb_write_something(struct rb_test_data *data, bool nested)
  3990. {
  3991. struct ring_buffer_event *event;
  3992. struct rb_item *item;
  3993. bool started;
  3994. int event_len;
  3995. int size;
  3996. int len;
  3997. int cnt;
  3998. /* Have nested writes different that what is written */
  3999. cnt = data->cnt + (nested ? 27 : 0);
  4000. /* Multiply cnt by ~e, to make some unique increment */
  4001. size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
  4002. len = size + sizeof(struct rb_item);
  4003. started = rb_test_started;
  4004. /* read rb_test_started before checking buffer enabled */
  4005. smp_rmb();
  4006. event = ring_buffer_lock_reserve(data->buffer, len);
  4007. if (!event) {
  4008. /* Ignore dropped events before test starts. */
  4009. if (started) {
  4010. if (nested)
  4011. data->bytes_dropped += len;
  4012. else
  4013. data->bytes_dropped_nested += len;
  4014. }
  4015. return len;
  4016. }
  4017. event_len = ring_buffer_event_length(event);
  4018. if (RB_WARN_ON(data->buffer, event_len < len))
  4019. goto out;
  4020. item = ring_buffer_event_data(event);
  4021. item->size = size;
  4022. memcpy(item->str, rb_string, size);
  4023. if (nested) {
  4024. data->bytes_alloc_nested += event_len;
  4025. data->bytes_written_nested += len;
  4026. data->events_nested++;
  4027. if (!data->min_size_nested || len < data->min_size_nested)
  4028. data->min_size_nested = len;
  4029. if (len > data->max_size_nested)
  4030. data->max_size_nested = len;
  4031. } else {
  4032. data->bytes_alloc += event_len;
  4033. data->bytes_written += len;
  4034. data->events++;
  4035. if (!data->min_size || len < data->min_size)
  4036. data->max_size = len;
  4037. if (len > data->max_size)
  4038. data->max_size = len;
  4039. }
  4040. out:
  4041. ring_buffer_unlock_commit(data->buffer, event);
  4042. return 0;
  4043. }
  4044. static __init int rb_test(void *arg)
  4045. {
  4046. struct rb_test_data *data = arg;
  4047. while (!kthread_should_stop()) {
  4048. rb_write_something(data, false);
  4049. data->cnt++;
  4050. set_current_state(TASK_INTERRUPTIBLE);
  4051. /* Now sleep between a min of 100-300us and a max of 1ms */
  4052. usleep_range(((data->cnt % 3) + 1) * 100, 1000);
  4053. }
  4054. return 0;
  4055. }
  4056. static __init void rb_ipi(void *ignore)
  4057. {
  4058. struct rb_test_data *data;
  4059. int cpu = smp_processor_id();
  4060. data = &rb_data[cpu];
  4061. rb_write_something(data, true);
  4062. }
  4063. static __init int rb_hammer_test(void *arg)
  4064. {
  4065. while (!kthread_should_stop()) {
  4066. /* Send an IPI to all cpus to write data! */
  4067. smp_call_function(rb_ipi, NULL, 1);
  4068. /* No sleep, but for non preempt, let others run */
  4069. schedule();
  4070. }
  4071. return 0;
  4072. }
  4073. static __init int test_ringbuffer(void)
  4074. {
  4075. struct task_struct *rb_hammer;
  4076. struct ring_buffer *buffer;
  4077. int cpu;
  4078. int ret = 0;
  4079. pr_info("Running ring buffer tests...\n");
  4080. buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
  4081. if (WARN_ON(!buffer))
  4082. return 0;
  4083. /* Disable buffer so that threads can't write to it yet */
  4084. ring_buffer_record_off(buffer);
  4085. for_each_online_cpu(cpu) {
  4086. rb_data[cpu].buffer = buffer;
  4087. rb_data[cpu].cpu = cpu;
  4088. rb_data[cpu].cnt = cpu;
  4089. rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
  4090. "rbtester/%d", cpu);
  4091. if (WARN_ON(!rb_threads[cpu])) {
  4092. pr_cont("FAILED\n");
  4093. ret = -1;
  4094. goto out_free;
  4095. }
  4096. kthread_bind(rb_threads[cpu], cpu);
  4097. wake_up_process(rb_threads[cpu]);
  4098. }
  4099. /* Now create the rb hammer! */
  4100. rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
  4101. if (WARN_ON(!rb_hammer)) {
  4102. pr_cont("FAILED\n");
  4103. ret = -1;
  4104. goto out_free;
  4105. }
  4106. ring_buffer_record_on(buffer);
  4107. /*
  4108. * Show buffer is enabled before setting rb_test_started.
  4109. * Yes there's a small race window where events could be
  4110. * dropped and the thread wont catch it. But when a ring
  4111. * buffer gets enabled, there will always be some kind of
  4112. * delay before other CPUs see it. Thus, we don't care about
  4113. * those dropped events. We care about events dropped after
  4114. * the threads see that the buffer is active.
  4115. */
  4116. smp_wmb();
  4117. rb_test_started = true;
  4118. set_current_state(TASK_INTERRUPTIBLE);
  4119. /* Just run for 10 seconds */;
  4120. schedule_timeout(10 * HZ);
  4121. kthread_stop(rb_hammer);
  4122. out_free:
  4123. for_each_online_cpu(cpu) {
  4124. if (!rb_threads[cpu])
  4125. break;
  4126. kthread_stop(rb_threads[cpu]);
  4127. }
  4128. if (ret) {
  4129. ring_buffer_free(buffer);
  4130. return ret;
  4131. }
  4132. /* Report! */
  4133. pr_info("finished\n");
  4134. for_each_online_cpu(cpu) {
  4135. struct ring_buffer_event *event;
  4136. struct rb_test_data *data = &rb_data[cpu];
  4137. struct rb_item *item;
  4138. unsigned long total_events;
  4139. unsigned long total_dropped;
  4140. unsigned long total_written;
  4141. unsigned long total_alloc;
  4142. unsigned long total_read = 0;
  4143. unsigned long total_size = 0;
  4144. unsigned long total_len = 0;
  4145. unsigned long total_lost = 0;
  4146. unsigned long lost;
  4147. int big_event_size;
  4148. int small_event_size;
  4149. ret = -1;
  4150. total_events = data->events + data->events_nested;
  4151. total_written = data->bytes_written + data->bytes_written_nested;
  4152. total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
  4153. total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
  4154. big_event_size = data->max_size + data->max_size_nested;
  4155. small_event_size = data->min_size + data->min_size_nested;
  4156. pr_info("CPU %d:\n", cpu);
  4157. pr_info(" events: %ld\n", total_events);
  4158. pr_info(" dropped bytes: %ld\n", total_dropped);
  4159. pr_info(" alloced bytes: %ld\n", total_alloc);
  4160. pr_info(" written bytes: %ld\n", total_written);
  4161. pr_info(" biggest event: %d\n", big_event_size);
  4162. pr_info(" smallest event: %d\n", small_event_size);
  4163. if (RB_WARN_ON(buffer, total_dropped))
  4164. break;
  4165. ret = 0;
  4166. while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
  4167. total_lost += lost;
  4168. item = ring_buffer_event_data(event);
  4169. total_len += ring_buffer_event_length(event);
  4170. total_size += item->size + sizeof(struct rb_item);
  4171. if (memcmp(&item->str[0], rb_string, item->size) != 0) {
  4172. pr_info("FAILED!\n");
  4173. pr_info("buffer had: %.*s\n", item->size, item->str);
  4174. pr_info("expected: %.*s\n", item->size, rb_string);
  4175. RB_WARN_ON(buffer, 1);
  4176. ret = -1;
  4177. break;
  4178. }
  4179. total_read++;
  4180. }
  4181. if (ret)
  4182. break;
  4183. ret = -1;
  4184. pr_info(" read events: %ld\n", total_read);
  4185. pr_info(" lost events: %ld\n", total_lost);
  4186. pr_info(" total events: %ld\n", total_lost + total_read);
  4187. pr_info(" recorded len bytes: %ld\n", total_len);
  4188. pr_info(" recorded size bytes: %ld\n", total_size);
  4189. if (total_lost)
  4190. pr_info(" With dropped events, record len and size may not match\n"
  4191. " alloced and written from above\n");
  4192. if (!total_lost) {
  4193. if (RB_WARN_ON(buffer, total_len != total_alloc ||
  4194. total_size != total_written))
  4195. break;
  4196. }
  4197. if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
  4198. break;
  4199. ret = 0;
  4200. }
  4201. if (!ret)
  4202. pr_info("Ring buffer PASSED!\n");
  4203. ring_buffer_free(buffer);
  4204. return 0;
  4205. }
  4206. late_initcall(test_ringbuffer);
  4207. #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */