namespace.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/init.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include <linux/bootmem.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. static unsigned int m_hash_mask __read_mostly;
  29. static unsigned int m_hash_shift __read_mostly;
  30. static unsigned int mp_hash_mask __read_mostly;
  31. static unsigned int mp_hash_shift __read_mostly;
  32. static __initdata unsigned long mhash_entries;
  33. static int __init set_mhash_entries(char *str)
  34. {
  35. if (!str)
  36. return 0;
  37. mhash_entries = simple_strtoul(str, &str, 0);
  38. return 1;
  39. }
  40. __setup("mhash_entries=", set_mhash_entries);
  41. static __initdata unsigned long mphash_entries;
  42. static int __init set_mphash_entries(char *str)
  43. {
  44. if (!str)
  45. return 0;
  46. mphash_entries = simple_strtoul(str, &str, 0);
  47. return 1;
  48. }
  49. __setup("mphash_entries=", set_mphash_entries);
  50. static u64 event;
  51. static DEFINE_IDA(mnt_id_ida);
  52. static DEFINE_IDA(mnt_group_ida);
  53. static DEFINE_SPINLOCK(mnt_id_lock);
  54. static int mnt_id_start = 0;
  55. static int mnt_group_start = 1;
  56. static struct hlist_head *mount_hashtable __read_mostly;
  57. static struct hlist_head *mountpoint_hashtable __read_mostly;
  58. static struct kmem_cache *mnt_cache __read_mostly;
  59. static DECLARE_RWSEM(namespace_sem);
  60. /* /sys/fs */
  61. struct kobject *fs_kobj;
  62. EXPORT_SYMBOL_GPL(fs_kobj);
  63. /*
  64. * vfsmount lock may be taken for read to prevent changes to the
  65. * vfsmount hash, ie. during mountpoint lookups or walking back
  66. * up the tree.
  67. *
  68. * It should be taken for write in all cases where the vfsmount
  69. * tree or hash is modified or when a vfsmount structure is modified.
  70. */
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  72. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  73. {
  74. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  75. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  76. tmp = tmp + (tmp >> m_hash_shift);
  77. return &mount_hashtable[tmp & m_hash_mask];
  78. }
  79. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  80. {
  81. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  82. tmp = tmp + (tmp >> mp_hash_shift);
  83. return &mountpoint_hashtable[tmp & mp_hash_mask];
  84. }
  85. /*
  86. * allocation is serialized by namespace_sem, but we need the spinlock to
  87. * serialize with freeing.
  88. */
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static struct mount *alloc_vfsmnt(const char *name)
  170. {
  171. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  172. if (mnt) {
  173. int err;
  174. err = mnt_alloc_id(mnt);
  175. if (err)
  176. goto out_free_cache;
  177. if (name) {
  178. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  179. if (!mnt->mnt_devname)
  180. goto out_free_id;
  181. }
  182. #ifdef CONFIG_SMP
  183. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  184. if (!mnt->mnt_pcp)
  185. goto out_free_devname;
  186. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  187. #else
  188. mnt->mnt_count = 1;
  189. mnt->mnt_writers = 0;
  190. #endif
  191. INIT_HLIST_NODE(&mnt->mnt_hash);
  192. INIT_LIST_HEAD(&mnt->mnt_child);
  193. INIT_LIST_HEAD(&mnt->mnt_mounts);
  194. INIT_LIST_HEAD(&mnt->mnt_list);
  195. INIT_LIST_HEAD(&mnt->mnt_expire);
  196. INIT_LIST_HEAD(&mnt->mnt_share);
  197. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  198. INIT_LIST_HEAD(&mnt->mnt_slave);
  199. #ifdef CONFIG_FSNOTIFY
  200. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  201. #endif
  202. }
  203. return mnt;
  204. #ifdef CONFIG_SMP
  205. out_free_devname:
  206. kfree(mnt->mnt_devname);
  207. #endif
  208. out_free_id:
  209. mnt_free_id(mnt);
  210. out_free_cache:
  211. kmem_cache_free(mnt_cache, mnt);
  212. return NULL;
  213. }
  214. /*
  215. * Most r/o checks on a fs are for operations that take
  216. * discrete amounts of time, like a write() or unlink().
  217. * We must keep track of when those operations start
  218. * (for permission checks) and when they end, so that
  219. * we can determine when writes are able to occur to
  220. * a filesystem.
  221. */
  222. /*
  223. * __mnt_is_readonly: check whether a mount is read-only
  224. * @mnt: the mount to check for its write status
  225. *
  226. * This shouldn't be used directly ouside of the VFS.
  227. * It does not guarantee that the filesystem will stay
  228. * r/w, just that it is right *now*. This can not and
  229. * should not be used in place of IS_RDONLY(inode).
  230. * mnt_want/drop_write() will _keep_ the filesystem
  231. * r/w.
  232. */
  233. int __mnt_is_readonly(struct vfsmount *mnt)
  234. {
  235. if (mnt->mnt_flags & MNT_READONLY)
  236. return 1;
  237. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  238. return 1;
  239. return 0;
  240. }
  241. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  242. static inline void mnt_inc_writers(struct mount *mnt)
  243. {
  244. #ifdef CONFIG_SMP
  245. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  246. #else
  247. mnt->mnt_writers++;
  248. #endif
  249. }
  250. static inline void mnt_dec_writers(struct mount *mnt)
  251. {
  252. #ifdef CONFIG_SMP
  253. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  254. #else
  255. mnt->mnt_writers--;
  256. #endif
  257. }
  258. static unsigned int mnt_get_writers(struct mount *mnt)
  259. {
  260. #ifdef CONFIG_SMP
  261. unsigned int count = 0;
  262. int cpu;
  263. for_each_possible_cpu(cpu) {
  264. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  265. }
  266. return count;
  267. #else
  268. return mnt->mnt_writers;
  269. #endif
  270. }
  271. static int mnt_is_readonly(struct vfsmount *mnt)
  272. {
  273. if (mnt->mnt_sb->s_readonly_remount)
  274. return 1;
  275. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  276. smp_rmb();
  277. return __mnt_is_readonly(mnt);
  278. }
  279. /*
  280. * Most r/o & frozen checks on a fs are for operations that take discrete
  281. * amounts of time, like a write() or unlink(). We must keep track of when
  282. * those operations start (for permission checks) and when they end, so that we
  283. * can determine when writes are able to occur to a filesystem.
  284. */
  285. /**
  286. * __mnt_want_write - get write access to a mount without freeze protection
  287. * @m: the mount on which to take a write
  288. *
  289. * This tells the low-level filesystem that a write is about to be performed to
  290. * it, and makes sure that writes are allowed (mnt it read-write) before
  291. * returning success. This operation does not protect against filesystem being
  292. * frozen. When the write operation is finished, __mnt_drop_write() must be
  293. * called. This is effectively a refcount.
  294. */
  295. int __mnt_want_write(struct vfsmount *m)
  296. {
  297. struct mount *mnt = real_mount(m);
  298. int ret = 0;
  299. preempt_disable();
  300. mnt_inc_writers(mnt);
  301. /*
  302. * The store to mnt_inc_writers must be visible before we pass
  303. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  304. * incremented count after it has set MNT_WRITE_HOLD.
  305. */
  306. smp_mb();
  307. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  308. cpu_relax();
  309. /*
  310. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  311. * be set to match its requirements. So we must not load that until
  312. * MNT_WRITE_HOLD is cleared.
  313. */
  314. smp_rmb();
  315. if (mnt_is_readonly(m)) {
  316. mnt_dec_writers(mnt);
  317. ret = -EROFS;
  318. }
  319. preempt_enable();
  320. return ret;
  321. }
  322. /**
  323. * mnt_want_write - get write access to a mount
  324. * @m: the mount on which to take a write
  325. *
  326. * This tells the low-level filesystem that a write is about to be performed to
  327. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  328. * is not frozen) before returning success. When the write operation is
  329. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  330. */
  331. int mnt_want_write(struct vfsmount *m)
  332. {
  333. int ret;
  334. sb_start_write(m->mnt_sb);
  335. ret = __mnt_want_write(m);
  336. if (ret)
  337. sb_end_write(m->mnt_sb);
  338. return ret;
  339. }
  340. EXPORT_SYMBOL_GPL(mnt_want_write);
  341. /**
  342. * mnt_clone_write - get write access to a mount
  343. * @mnt: the mount on which to take a write
  344. *
  345. * This is effectively like mnt_want_write, except
  346. * it must only be used to take an extra write reference
  347. * on a mountpoint that we already know has a write reference
  348. * on it. This allows some optimisation.
  349. *
  350. * After finished, mnt_drop_write must be called as usual to
  351. * drop the reference.
  352. */
  353. int mnt_clone_write(struct vfsmount *mnt)
  354. {
  355. /* superblock may be r/o */
  356. if (__mnt_is_readonly(mnt))
  357. return -EROFS;
  358. preempt_disable();
  359. mnt_inc_writers(real_mount(mnt));
  360. preempt_enable();
  361. return 0;
  362. }
  363. EXPORT_SYMBOL_GPL(mnt_clone_write);
  364. /**
  365. * __mnt_want_write_file - get write access to a file's mount
  366. * @file: the file who's mount on which to take a write
  367. *
  368. * This is like __mnt_want_write, but it takes a file and can
  369. * do some optimisations if the file is open for write already
  370. */
  371. int __mnt_want_write_file(struct file *file)
  372. {
  373. if (!(file->f_mode & FMODE_WRITER))
  374. return __mnt_want_write(file->f_path.mnt);
  375. else
  376. return mnt_clone_write(file->f_path.mnt);
  377. }
  378. /**
  379. * mnt_want_write_file - get write access to a file's mount
  380. * @file: the file who's mount on which to take a write
  381. *
  382. * This is like mnt_want_write, but it takes a file and can
  383. * do some optimisations if the file is open for write already
  384. */
  385. int mnt_want_write_file(struct file *file)
  386. {
  387. int ret;
  388. sb_start_write(file->f_path.mnt->mnt_sb);
  389. ret = __mnt_want_write_file(file);
  390. if (ret)
  391. sb_end_write(file->f_path.mnt->mnt_sb);
  392. return ret;
  393. }
  394. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  395. /**
  396. * __mnt_drop_write - give up write access to a mount
  397. * @mnt: the mount on which to give up write access
  398. *
  399. * Tells the low-level filesystem that we are done
  400. * performing writes to it. Must be matched with
  401. * __mnt_want_write() call above.
  402. */
  403. void __mnt_drop_write(struct vfsmount *mnt)
  404. {
  405. preempt_disable();
  406. mnt_dec_writers(real_mount(mnt));
  407. preempt_enable();
  408. }
  409. /**
  410. * mnt_drop_write - give up write access to a mount
  411. * @mnt: the mount on which to give up write access
  412. *
  413. * Tells the low-level filesystem that we are done performing writes to it and
  414. * also allows filesystem to be frozen again. Must be matched with
  415. * mnt_want_write() call above.
  416. */
  417. void mnt_drop_write(struct vfsmount *mnt)
  418. {
  419. __mnt_drop_write(mnt);
  420. sb_end_write(mnt->mnt_sb);
  421. }
  422. EXPORT_SYMBOL_GPL(mnt_drop_write);
  423. void __mnt_drop_write_file(struct file *file)
  424. {
  425. __mnt_drop_write(file->f_path.mnt);
  426. }
  427. void mnt_drop_write_file(struct file *file)
  428. {
  429. mnt_drop_write(file->f_path.mnt);
  430. }
  431. EXPORT_SYMBOL(mnt_drop_write_file);
  432. static int mnt_make_readonly(struct mount *mnt)
  433. {
  434. int ret = 0;
  435. lock_mount_hash();
  436. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  437. /*
  438. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  439. * should be visible before we do.
  440. */
  441. smp_mb();
  442. /*
  443. * With writers on hold, if this value is zero, then there are
  444. * definitely no active writers (although held writers may subsequently
  445. * increment the count, they'll have to wait, and decrement it after
  446. * seeing MNT_READONLY).
  447. *
  448. * It is OK to have counter incremented on one CPU and decremented on
  449. * another: the sum will add up correctly. The danger would be when we
  450. * sum up each counter, if we read a counter before it is incremented,
  451. * but then read another CPU's count which it has been subsequently
  452. * decremented from -- we would see more decrements than we should.
  453. * MNT_WRITE_HOLD protects against this scenario, because
  454. * mnt_want_write first increments count, then smp_mb, then spins on
  455. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  456. * we're counting up here.
  457. */
  458. if (mnt_get_writers(mnt) > 0)
  459. ret = -EBUSY;
  460. else
  461. mnt->mnt.mnt_flags |= MNT_READONLY;
  462. /*
  463. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  464. * that become unheld will see MNT_READONLY.
  465. */
  466. smp_wmb();
  467. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  468. unlock_mount_hash();
  469. return ret;
  470. }
  471. static void __mnt_unmake_readonly(struct mount *mnt)
  472. {
  473. lock_mount_hash();
  474. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  475. unlock_mount_hash();
  476. }
  477. int sb_prepare_remount_readonly(struct super_block *sb)
  478. {
  479. struct mount *mnt;
  480. int err = 0;
  481. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  482. if (atomic_long_read(&sb->s_remove_count))
  483. return -EBUSY;
  484. lock_mount_hash();
  485. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  486. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  487. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  488. smp_mb();
  489. if (mnt_get_writers(mnt) > 0) {
  490. err = -EBUSY;
  491. break;
  492. }
  493. }
  494. }
  495. if (!err && atomic_long_read(&sb->s_remove_count))
  496. err = -EBUSY;
  497. if (!err) {
  498. sb->s_readonly_remount = 1;
  499. smp_wmb();
  500. }
  501. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  502. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  503. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  504. }
  505. unlock_mount_hash();
  506. return err;
  507. }
  508. static void free_vfsmnt(struct mount *mnt)
  509. {
  510. kfree(mnt->mnt_devname);
  511. #ifdef CONFIG_SMP
  512. free_percpu(mnt->mnt_pcp);
  513. #endif
  514. kmem_cache_free(mnt_cache, mnt);
  515. }
  516. static void delayed_free_vfsmnt(struct rcu_head *head)
  517. {
  518. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  519. }
  520. /* call under rcu_read_lock */
  521. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  522. {
  523. struct mount *mnt;
  524. if (read_seqretry(&mount_lock, seq))
  525. return false;
  526. if (bastard == NULL)
  527. return true;
  528. mnt = real_mount(bastard);
  529. mnt_add_count(mnt, 1);
  530. if (likely(!read_seqretry(&mount_lock, seq)))
  531. return true;
  532. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  533. mnt_add_count(mnt, -1);
  534. return false;
  535. }
  536. rcu_read_unlock();
  537. mntput(bastard);
  538. rcu_read_lock();
  539. return false;
  540. }
  541. /*
  542. * find the first mount at @dentry on vfsmount @mnt.
  543. * call under rcu_read_lock()
  544. */
  545. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  546. {
  547. struct hlist_head *head = m_hash(mnt, dentry);
  548. struct mount *p;
  549. hlist_for_each_entry_rcu(p, head, mnt_hash)
  550. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  551. return p;
  552. return NULL;
  553. }
  554. /*
  555. * find the last mount at @dentry on vfsmount @mnt.
  556. * mount_lock must be held.
  557. */
  558. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  559. {
  560. struct mount *p, *res;
  561. res = p = __lookup_mnt(mnt, dentry);
  562. if (!p)
  563. goto out;
  564. hlist_for_each_entry_continue(p, mnt_hash) {
  565. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  566. break;
  567. res = p;
  568. }
  569. out:
  570. return res;
  571. }
  572. /*
  573. * lookup_mnt - Return the first child mount mounted at path
  574. *
  575. * "First" means first mounted chronologically. If you create the
  576. * following mounts:
  577. *
  578. * mount /dev/sda1 /mnt
  579. * mount /dev/sda2 /mnt
  580. * mount /dev/sda3 /mnt
  581. *
  582. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  583. * return successively the root dentry and vfsmount of /dev/sda1, then
  584. * /dev/sda2, then /dev/sda3, then NULL.
  585. *
  586. * lookup_mnt takes a reference to the found vfsmount.
  587. */
  588. struct vfsmount *lookup_mnt(struct path *path)
  589. {
  590. struct mount *child_mnt;
  591. struct vfsmount *m;
  592. unsigned seq;
  593. rcu_read_lock();
  594. do {
  595. seq = read_seqbegin(&mount_lock);
  596. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  597. m = child_mnt ? &child_mnt->mnt : NULL;
  598. } while (!legitimize_mnt(m, seq));
  599. rcu_read_unlock();
  600. return m;
  601. }
  602. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  603. {
  604. struct hlist_head *chain = mp_hash(dentry);
  605. struct mountpoint *mp;
  606. int ret;
  607. hlist_for_each_entry(mp, chain, m_hash) {
  608. if (mp->m_dentry == dentry) {
  609. /* might be worth a WARN_ON() */
  610. if (d_unlinked(dentry))
  611. return ERR_PTR(-ENOENT);
  612. mp->m_count++;
  613. return mp;
  614. }
  615. }
  616. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  617. if (!mp)
  618. return ERR_PTR(-ENOMEM);
  619. ret = d_set_mounted(dentry);
  620. if (ret) {
  621. kfree(mp);
  622. return ERR_PTR(ret);
  623. }
  624. mp->m_dentry = dentry;
  625. mp->m_count = 1;
  626. hlist_add_head(&mp->m_hash, chain);
  627. return mp;
  628. }
  629. static void put_mountpoint(struct mountpoint *mp)
  630. {
  631. if (!--mp->m_count) {
  632. struct dentry *dentry = mp->m_dentry;
  633. spin_lock(&dentry->d_lock);
  634. dentry->d_flags &= ~DCACHE_MOUNTED;
  635. spin_unlock(&dentry->d_lock);
  636. hlist_del(&mp->m_hash);
  637. kfree(mp);
  638. }
  639. }
  640. static inline int check_mnt(struct mount *mnt)
  641. {
  642. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  643. }
  644. /*
  645. * vfsmount lock must be held for write
  646. */
  647. static void touch_mnt_namespace(struct mnt_namespace *ns)
  648. {
  649. if (ns) {
  650. ns->event = ++event;
  651. wake_up_interruptible(&ns->poll);
  652. }
  653. }
  654. /*
  655. * vfsmount lock must be held for write
  656. */
  657. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  658. {
  659. if (ns && ns->event != event) {
  660. ns->event = event;
  661. wake_up_interruptible(&ns->poll);
  662. }
  663. }
  664. /*
  665. * vfsmount lock must be held for write
  666. */
  667. static void detach_mnt(struct mount *mnt, struct path *old_path)
  668. {
  669. old_path->dentry = mnt->mnt_mountpoint;
  670. old_path->mnt = &mnt->mnt_parent->mnt;
  671. mnt->mnt_parent = mnt;
  672. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  673. list_del_init(&mnt->mnt_child);
  674. hlist_del_init_rcu(&mnt->mnt_hash);
  675. put_mountpoint(mnt->mnt_mp);
  676. mnt->mnt_mp = NULL;
  677. }
  678. /*
  679. * vfsmount lock must be held for write
  680. */
  681. void mnt_set_mountpoint(struct mount *mnt,
  682. struct mountpoint *mp,
  683. struct mount *child_mnt)
  684. {
  685. mp->m_count++;
  686. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  687. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  688. child_mnt->mnt_parent = mnt;
  689. child_mnt->mnt_mp = mp;
  690. }
  691. /*
  692. * vfsmount lock must be held for write
  693. */
  694. static void attach_mnt(struct mount *mnt,
  695. struct mount *parent,
  696. struct mountpoint *mp)
  697. {
  698. mnt_set_mountpoint(parent, mp, mnt);
  699. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  700. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  701. }
  702. /*
  703. * vfsmount lock must be held for write
  704. */
  705. static void commit_tree(struct mount *mnt, struct mount *shadows)
  706. {
  707. struct mount *parent = mnt->mnt_parent;
  708. struct mount *m;
  709. LIST_HEAD(head);
  710. struct mnt_namespace *n = parent->mnt_ns;
  711. BUG_ON(parent == mnt);
  712. list_add_tail(&head, &mnt->mnt_list);
  713. list_for_each_entry(m, &head, mnt_list)
  714. m->mnt_ns = n;
  715. list_splice(&head, n->list.prev);
  716. if (shadows)
  717. hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
  718. else
  719. hlist_add_head_rcu(&mnt->mnt_hash,
  720. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  721. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  722. touch_mnt_namespace(n);
  723. }
  724. static struct mount *next_mnt(struct mount *p, struct mount *root)
  725. {
  726. struct list_head *next = p->mnt_mounts.next;
  727. if (next == &p->mnt_mounts) {
  728. while (1) {
  729. if (p == root)
  730. return NULL;
  731. next = p->mnt_child.next;
  732. if (next != &p->mnt_parent->mnt_mounts)
  733. break;
  734. p = p->mnt_parent;
  735. }
  736. }
  737. return list_entry(next, struct mount, mnt_child);
  738. }
  739. static struct mount *skip_mnt_tree(struct mount *p)
  740. {
  741. struct list_head *prev = p->mnt_mounts.prev;
  742. while (prev != &p->mnt_mounts) {
  743. p = list_entry(prev, struct mount, mnt_child);
  744. prev = p->mnt_mounts.prev;
  745. }
  746. return p;
  747. }
  748. struct vfsmount *
  749. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  750. {
  751. struct mount *mnt;
  752. struct dentry *root;
  753. if (!type)
  754. return ERR_PTR(-ENODEV);
  755. mnt = alloc_vfsmnt(name);
  756. if (!mnt)
  757. return ERR_PTR(-ENOMEM);
  758. if (flags & MS_KERNMOUNT)
  759. mnt->mnt.mnt_flags = MNT_INTERNAL;
  760. root = mount_fs(type, flags, name, data);
  761. if (IS_ERR(root)) {
  762. mnt_free_id(mnt);
  763. free_vfsmnt(mnt);
  764. return ERR_CAST(root);
  765. }
  766. mnt->mnt.mnt_root = root;
  767. mnt->mnt.mnt_sb = root->d_sb;
  768. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  769. mnt->mnt_parent = mnt;
  770. lock_mount_hash();
  771. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  772. unlock_mount_hash();
  773. return &mnt->mnt;
  774. }
  775. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  776. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  777. int flag)
  778. {
  779. struct super_block *sb = old->mnt.mnt_sb;
  780. struct mount *mnt;
  781. int err;
  782. mnt = alloc_vfsmnt(old->mnt_devname);
  783. if (!mnt)
  784. return ERR_PTR(-ENOMEM);
  785. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  786. mnt->mnt_group_id = 0; /* not a peer of original */
  787. else
  788. mnt->mnt_group_id = old->mnt_group_id;
  789. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  790. err = mnt_alloc_group_id(mnt);
  791. if (err)
  792. goto out_free;
  793. }
  794. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  795. /* Don't allow unprivileged users to change mount flags */
  796. if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
  797. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  798. /* Don't allow unprivileged users to reveal what is under a mount */
  799. if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
  800. mnt->mnt.mnt_flags |= MNT_LOCKED;
  801. atomic_inc(&sb->s_active);
  802. mnt->mnt.mnt_sb = sb;
  803. mnt->mnt.mnt_root = dget(root);
  804. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  805. mnt->mnt_parent = mnt;
  806. lock_mount_hash();
  807. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  808. unlock_mount_hash();
  809. if ((flag & CL_SLAVE) ||
  810. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  811. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  812. mnt->mnt_master = old;
  813. CLEAR_MNT_SHARED(mnt);
  814. } else if (!(flag & CL_PRIVATE)) {
  815. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  816. list_add(&mnt->mnt_share, &old->mnt_share);
  817. if (IS_MNT_SLAVE(old))
  818. list_add(&mnt->mnt_slave, &old->mnt_slave);
  819. mnt->mnt_master = old->mnt_master;
  820. }
  821. if (flag & CL_MAKE_SHARED)
  822. set_mnt_shared(mnt);
  823. /* stick the duplicate mount on the same expiry list
  824. * as the original if that was on one */
  825. if (flag & CL_EXPIRE) {
  826. if (!list_empty(&old->mnt_expire))
  827. list_add(&mnt->mnt_expire, &old->mnt_expire);
  828. }
  829. return mnt;
  830. out_free:
  831. mnt_free_id(mnt);
  832. free_vfsmnt(mnt);
  833. return ERR_PTR(err);
  834. }
  835. static void mntput_no_expire(struct mount *mnt)
  836. {
  837. put_again:
  838. rcu_read_lock();
  839. mnt_add_count(mnt, -1);
  840. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  841. rcu_read_unlock();
  842. return;
  843. }
  844. lock_mount_hash();
  845. if (mnt_get_count(mnt)) {
  846. rcu_read_unlock();
  847. unlock_mount_hash();
  848. return;
  849. }
  850. if (unlikely(mnt->mnt_pinned)) {
  851. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  852. mnt->mnt_pinned = 0;
  853. rcu_read_unlock();
  854. unlock_mount_hash();
  855. acct_auto_close_mnt(&mnt->mnt);
  856. goto put_again;
  857. }
  858. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  859. rcu_read_unlock();
  860. unlock_mount_hash();
  861. return;
  862. }
  863. mnt->mnt.mnt_flags |= MNT_DOOMED;
  864. rcu_read_unlock();
  865. list_del(&mnt->mnt_instance);
  866. unlock_mount_hash();
  867. /*
  868. * This probably indicates that somebody messed
  869. * up a mnt_want/drop_write() pair. If this
  870. * happens, the filesystem was probably unable
  871. * to make r/w->r/o transitions.
  872. */
  873. /*
  874. * The locking used to deal with mnt_count decrement provides barriers,
  875. * so mnt_get_writers() below is safe.
  876. */
  877. WARN_ON(mnt_get_writers(mnt));
  878. fsnotify_vfsmount_delete(&mnt->mnt);
  879. dput(mnt->mnt.mnt_root);
  880. deactivate_super(mnt->mnt.mnt_sb);
  881. mnt_free_id(mnt);
  882. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  883. }
  884. void mntput(struct vfsmount *mnt)
  885. {
  886. if (mnt) {
  887. struct mount *m = real_mount(mnt);
  888. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  889. if (unlikely(m->mnt_expiry_mark))
  890. m->mnt_expiry_mark = 0;
  891. mntput_no_expire(m);
  892. }
  893. }
  894. EXPORT_SYMBOL(mntput);
  895. struct vfsmount *mntget(struct vfsmount *mnt)
  896. {
  897. if (mnt)
  898. mnt_add_count(real_mount(mnt), 1);
  899. return mnt;
  900. }
  901. EXPORT_SYMBOL(mntget);
  902. void mnt_pin(struct vfsmount *mnt)
  903. {
  904. lock_mount_hash();
  905. real_mount(mnt)->mnt_pinned++;
  906. unlock_mount_hash();
  907. }
  908. EXPORT_SYMBOL(mnt_pin);
  909. void mnt_unpin(struct vfsmount *m)
  910. {
  911. struct mount *mnt = real_mount(m);
  912. lock_mount_hash();
  913. if (mnt->mnt_pinned) {
  914. mnt_add_count(mnt, 1);
  915. mnt->mnt_pinned--;
  916. }
  917. unlock_mount_hash();
  918. }
  919. EXPORT_SYMBOL(mnt_unpin);
  920. static inline void mangle(struct seq_file *m, const char *s)
  921. {
  922. seq_escape(m, s, " \t\n\\");
  923. }
  924. /*
  925. * Simple .show_options callback for filesystems which don't want to
  926. * implement more complex mount option showing.
  927. *
  928. * See also save_mount_options().
  929. */
  930. int generic_show_options(struct seq_file *m, struct dentry *root)
  931. {
  932. const char *options;
  933. rcu_read_lock();
  934. options = rcu_dereference(root->d_sb->s_options);
  935. if (options != NULL && options[0]) {
  936. seq_putc(m, ',');
  937. mangle(m, options);
  938. }
  939. rcu_read_unlock();
  940. return 0;
  941. }
  942. EXPORT_SYMBOL(generic_show_options);
  943. /*
  944. * If filesystem uses generic_show_options(), this function should be
  945. * called from the fill_super() callback.
  946. *
  947. * The .remount_fs callback usually needs to be handled in a special
  948. * way, to make sure, that previous options are not overwritten if the
  949. * remount fails.
  950. *
  951. * Also note, that if the filesystem's .remount_fs function doesn't
  952. * reset all options to their default value, but changes only newly
  953. * given options, then the displayed options will not reflect reality
  954. * any more.
  955. */
  956. void save_mount_options(struct super_block *sb, char *options)
  957. {
  958. BUG_ON(sb->s_options);
  959. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  960. }
  961. EXPORT_SYMBOL(save_mount_options);
  962. void replace_mount_options(struct super_block *sb, char *options)
  963. {
  964. char *old = sb->s_options;
  965. rcu_assign_pointer(sb->s_options, options);
  966. if (old) {
  967. synchronize_rcu();
  968. kfree(old);
  969. }
  970. }
  971. EXPORT_SYMBOL(replace_mount_options);
  972. #ifdef CONFIG_PROC_FS
  973. /* iterator; we want it to have access to namespace_sem, thus here... */
  974. static void *m_start(struct seq_file *m, loff_t *pos)
  975. {
  976. struct proc_mounts *p = proc_mounts(m);
  977. down_read(&namespace_sem);
  978. if (p->cached_event == p->ns->event) {
  979. void *v = p->cached_mount;
  980. if (*pos == p->cached_index)
  981. return v;
  982. if (*pos == p->cached_index + 1) {
  983. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  984. return p->cached_mount = v;
  985. }
  986. }
  987. p->cached_event = p->ns->event;
  988. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  989. p->cached_index = *pos;
  990. return p->cached_mount;
  991. }
  992. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  993. {
  994. struct proc_mounts *p = proc_mounts(m);
  995. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  996. p->cached_index = *pos;
  997. return p->cached_mount;
  998. }
  999. static void m_stop(struct seq_file *m, void *v)
  1000. {
  1001. up_read(&namespace_sem);
  1002. }
  1003. static int m_show(struct seq_file *m, void *v)
  1004. {
  1005. struct proc_mounts *p = proc_mounts(m);
  1006. struct mount *r = list_entry(v, struct mount, mnt_list);
  1007. return p->show(m, &r->mnt);
  1008. }
  1009. const struct seq_operations mounts_op = {
  1010. .start = m_start,
  1011. .next = m_next,
  1012. .stop = m_stop,
  1013. .show = m_show,
  1014. };
  1015. #endif /* CONFIG_PROC_FS */
  1016. /**
  1017. * may_umount_tree - check if a mount tree is busy
  1018. * @mnt: root of mount tree
  1019. *
  1020. * This is called to check if a tree of mounts has any
  1021. * open files, pwds, chroots or sub mounts that are
  1022. * busy.
  1023. */
  1024. int may_umount_tree(struct vfsmount *m)
  1025. {
  1026. struct mount *mnt = real_mount(m);
  1027. int actual_refs = 0;
  1028. int minimum_refs = 0;
  1029. struct mount *p;
  1030. BUG_ON(!m);
  1031. /* write lock needed for mnt_get_count */
  1032. lock_mount_hash();
  1033. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1034. actual_refs += mnt_get_count(p);
  1035. minimum_refs += 2;
  1036. }
  1037. unlock_mount_hash();
  1038. if (actual_refs > minimum_refs)
  1039. return 0;
  1040. return 1;
  1041. }
  1042. EXPORT_SYMBOL(may_umount_tree);
  1043. /**
  1044. * may_umount - check if a mount point is busy
  1045. * @mnt: root of mount
  1046. *
  1047. * This is called to check if a mount point has any
  1048. * open files, pwds, chroots or sub mounts. If the
  1049. * mount has sub mounts this will return busy
  1050. * regardless of whether the sub mounts are busy.
  1051. *
  1052. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1053. * give false negatives. The main reason why it's here is that we need
  1054. * a non-destructive way to look for easily umountable filesystems.
  1055. */
  1056. int may_umount(struct vfsmount *mnt)
  1057. {
  1058. int ret = 1;
  1059. down_read(&namespace_sem);
  1060. lock_mount_hash();
  1061. if (propagate_mount_busy(real_mount(mnt), 2))
  1062. ret = 0;
  1063. unlock_mount_hash();
  1064. up_read(&namespace_sem);
  1065. return ret;
  1066. }
  1067. EXPORT_SYMBOL(may_umount);
  1068. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1069. static void namespace_unlock(void)
  1070. {
  1071. struct mount *mnt;
  1072. struct hlist_head head = unmounted;
  1073. if (likely(hlist_empty(&head))) {
  1074. up_write(&namespace_sem);
  1075. return;
  1076. }
  1077. head.first->pprev = &head.first;
  1078. INIT_HLIST_HEAD(&unmounted);
  1079. up_write(&namespace_sem);
  1080. synchronize_rcu();
  1081. while (!hlist_empty(&head)) {
  1082. mnt = hlist_entry(head.first, struct mount, mnt_hash);
  1083. hlist_del_init(&mnt->mnt_hash);
  1084. if (mnt->mnt_ex_mountpoint.mnt)
  1085. path_put(&mnt->mnt_ex_mountpoint);
  1086. mntput(&mnt->mnt);
  1087. }
  1088. }
  1089. static inline void namespace_lock(void)
  1090. {
  1091. down_write(&namespace_sem);
  1092. }
  1093. /*
  1094. * mount_lock must be held
  1095. * namespace_sem must be held for write
  1096. * how = 0 => just this tree, don't propagate
  1097. * how = 1 => propagate; we know that nobody else has reference to any victims
  1098. * how = 2 => lazy umount
  1099. */
  1100. void umount_tree(struct mount *mnt, int how)
  1101. {
  1102. HLIST_HEAD(tmp_list);
  1103. struct mount *p;
  1104. struct mount *last = NULL;
  1105. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1106. hlist_del_init_rcu(&p->mnt_hash);
  1107. hlist_add_head(&p->mnt_hash, &tmp_list);
  1108. }
  1109. if (how)
  1110. propagate_umount(&tmp_list);
  1111. hlist_for_each_entry(p, &tmp_list, mnt_hash) {
  1112. list_del_init(&p->mnt_expire);
  1113. list_del_init(&p->mnt_list);
  1114. __touch_mnt_namespace(p->mnt_ns);
  1115. p->mnt_ns = NULL;
  1116. if (how < 2)
  1117. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1118. list_del_init(&p->mnt_child);
  1119. if (mnt_has_parent(p)) {
  1120. put_mountpoint(p->mnt_mp);
  1121. /* move the reference to mountpoint into ->mnt_ex_mountpoint */
  1122. p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
  1123. p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
  1124. p->mnt_mountpoint = p->mnt.mnt_root;
  1125. p->mnt_parent = p;
  1126. p->mnt_mp = NULL;
  1127. }
  1128. change_mnt_propagation(p, MS_PRIVATE);
  1129. last = p;
  1130. }
  1131. if (last) {
  1132. last->mnt_hash.next = unmounted.first;
  1133. unmounted.first = tmp_list.first;
  1134. unmounted.first->pprev = &unmounted.first;
  1135. }
  1136. }
  1137. static void shrink_submounts(struct mount *mnt);
  1138. static int do_umount(struct mount *mnt, int flags)
  1139. {
  1140. struct super_block *sb = mnt->mnt.mnt_sb;
  1141. int retval;
  1142. retval = security_sb_umount(&mnt->mnt, flags);
  1143. if (retval)
  1144. return retval;
  1145. /*
  1146. * Allow userspace to request a mountpoint be expired rather than
  1147. * unmounting unconditionally. Unmount only happens if:
  1148. * (1) the mark is already set (the mark is cleared by mntput())
  1149. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1150. */
  1151. if (flags & MNT_EXPIRE) {
  1152. if (&mnt->mnt == current->fs->root.mnt ||
  1153. flags & (MNT_FORCE | MNT_DETACH))
  1154. return -EINVAL;
  1155. /*
  1156. * probably don't strictly need the lock here if we examined
  1157. * all race cases, but it's a slowpath.
  1158. */
  1159. lock_mount_hash();
  1160. if (mnt_get_count(mnt) != 2) {
  1161. unlock_mount_hash();
  1162. return -EBUSY;
  1163. }
  1164. unlock_mount_hash();
  1165. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1166. return -EAGAIN;
  1167. }
  1168. /*
  1169. * If we may have to abort operations to get out of this
  1170. * mount, and they will themselves hold resources we must
  1171. * allow the fs to do things. In the Unix tradition of
  1172. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1173. * might fail to complete on the first run through as other tasks
  1174. * must return, and the like. Thats for the mount program to worry
  1175. * about for the moment.
  1176. */
  1177. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1178. sb->s_op->umount_begin(sb);
  1179. }
  1180. /*
  1181. * No sense to grab the lock for this test, but test itself looks
  1182. * somewhat bogus. Suggestions for better replacement?
  1183. * Ho-hum... In principle, we might treat that as umount + switch
  1184. * to rootfs. GC would eventually take care of the old vfsmount.
  1185. * Actually it makes sense, especially if rootfs would contain a
  1186. * /reboot - static binary that would close all descriptors and
  1187. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1188. */
  1189. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1190. /*
  1191. * Special case for "unmounting" root ...
  1192. * we just try to remount it readonly.
  1193. */
  1194. down_write(&sb->s_umount);
  1195. if (!(sb->s_flags & MS_RDONLY))
  1196. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1197. up_write(&sb->s_umount);
  1198. return retval;
  1199. }
  1200. namespace_lock();
  1201. lock_mount_hash();
  1202. event++;
  1203. if (flags & MNT_DETACH) {
  1204. if (!list_empty(&mnt->mnt_list))
  1205. umount_tree(mnt, 2);
  1206. retval = 0;
  1207. } else {
  1208. shrink_submounts(mnt);
  1209. retval = -EBUSY;
  1210. if (!propagate_mount_busy(mnt, 2)) {
  1211. if (!list_empty(&mnt->mnt_list))
  1212. umount_tree(mnt, 1);
  1213. retval = 0;
  1214. }
  1215. }
  1216. unlock_mount_hash();
  1217. namespace_unlock();
  1218. return retval;
  1219. }
  1220. /*
  1221. * Is the caller allowed to modify his namespace?
  1222. */
  1223. static inline bool may_mount(void)
  1224. {
  1225. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1226. }
  1227. /*
  1228. * Now umount can handle mount points as well as block devices.
  1229. * This is important for filesystems which use unnamed block devices.
  1230. *
  1231. * We now support a flag for forced unmount like the other 'big iron'
  1232. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1233. */
  1234. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1235. {
  1236. struct path path;
  1237. struct mount *mnt;
  1238. int retval;
  1239. int lookup_flags = 0;
  1240. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1241. return -EINVAL;
  1242. if (!may_mount())
  1243. return -EPERM;
  1244. if (!(flags & UMOUNT_NOFOLLOW))
  1245. lookup_flags |= LOOKUP_FOLLOW;
  1246. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1247. if (retval)
  1248. goto out;
  1249. mnt = real_mount(path.mnt);
  1250. retval = -EINVAL;
  1251. if (path.dentry != path.mnt->mnt_root)
  1252. goto dput_and_out;
  1253. if (!check_mnt(mnt))
  1254. goto dput_and_out;
  1255. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1256. goto dput_and_out;
  1257. retval = do_umount(mnt, flags);
  1258. dput_and_out:
  1259. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1260. dput(path.dentry);
  1261. mntput_no_expire(mnt);
  1262. out:
  1263. return retval;
  1264. }
  1265. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1266. /*
  1267. * The 2.0 compatible umount. No flags.
  1268. */
  1269. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1270. {
  1271. return sys_umount(name, 0);
  1272. }
  1273. #endif
  1274. static bool is_mnt_ns_file(struct dentry *dentry)
  1275. {
  1276. /* Is this a proxy for a mount namespace? */
  1277. struct inode *inode = dentry->d_inode;
  1278. struct proc_ns *ei;
  1279. if (!proc_ns_inode(inode))
  1280. return false;
  1281. ei = get_proc_ns(inode);
  1282. if (ei->ns_ops != &mntns_operations)
  1283. return false;
  1284. return true;
  1285. }
  1286. static bool mnt_ns_loop(struct dentry *dentry)
  1287. {
  1288. /* Could bind mounting the mount namespace inode cause a
  1289. * mount namespace loop?
  1290. */
  1291. struct mnt_namespace *mnt_ns;
  1292. if (!is_mnt_ns_file(dentry))
  1293. return false;
  1294. mnt_ns = get_proc_ns(dentry->d_inode)->ns;
  1295. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1296. }
  1297. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1298. int flag)
  1299. {
  1300. struct mount *res, *p, *q, *r, *parent;
  1301. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1302. return ERR_PTR(-EINVAL);
  1303. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1304. return ERR_PTR(-EINVAL);
  1305. res = q = clone_mnt(mnt, dentry, flag);
  1306. if (IS_ERR(q))
  1307. return q;
  1308. q->mnt.mnt_flags &= ~MNT_LOCKED;
  1309. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1310. p = mnt;
  1311. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1312. struct mount *s;
  1313. if (!is_subdir(r->mnt_mountpoint, dentry))
  1314. continue;
  1315. for (s = r; s; s = next_mnt(s, r)) {
  1316. if (!(flag & CL_COPY_UNBINDABLE) &&
  1317. IS_MNT_UNBINDABLE(s)) {
  1318. s = skip_mnt_tree(s);
  1319. continue;
  1320. }
  1321. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1322. is_mnt_ns_file(s->mnt.mnt_root)) {
  1323. s = skip_mnt_tree(s);
  1324. continue;
  1325. }
  1326. while (p != s->mnt_parent) {
  1327. p = p->mnt_parent;
  1328. q = q->mnt_parent;
  1329. }
  1330. p = s;
  1331. parent = q;
  1332. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1333. if (IS_ERR(q))
  1334. goto out;
  1335. lock_mount_hash();
  1336. list_add_tail(&q->mnt_list, &res->mnt_list);
  1337. attach_mnt(q, parent, p->mnt_mp);
  1338. unlock_mount_hash();
  1339. }
  1340. }
  1341. return res;
  1342. out:
  1343. if (res) {
  1344. lock_mount_hash();
  1345. umount_tree(res, 0);
  1346. unlock_mount_hash();
  1347. }
  1348. return q;
  1349. }
  1350. /* Caller should check returned pointer for errors */
  1351. struct vfsmount *collect_mounts(struct path *path)
  1352. {
  1353. struct mount *tree;
  1354. namespace_lock();
  1355. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1356. CL_COPY_ALL | CL_PRIVATE);
  1357. namespace_unlock();
  1358. if (IS_ERR(tree))
  1359. return ERR_CAST(tree);
  1360. return &tree->mnt;
  1361. }
  1362. void drop_collected_mounts(struct vfsmount *mnt)
  1363. {
  1364. namespace_lock();
  1365. lock_mount_hash();
  1366. umount_tree(real_mount(mnt), 0);
  1367. unlock_mount_hash();
  1368. namespace_unlock();
  1369. }
  1370. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1371. struct vfsmount *root)
  1372. {
  1373. struct mount *mnt;
  1374. int res = f(root, arg);
  1375. if (res)
  1376. return res;
  1377. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1378. res = f(&mnt->mnt, arg);
  1379. if (res)
  1380. return res;
  1381. }
  1382. return 0;
  1383. }
  1384. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1385. {
  1386. struct mount *p;
  1387. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1388. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1389. mnt_release_group_id(p);
  1390. }
  1391. }
  1392. static int invent_group_ids(struct mount *mnt, bool recurse)
  1393. {
  1394. struct mount *p;
  1395. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1396. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1397. int err = mnt_alloc_group_id(p);
  1398. if (err) {
  1399. cleanup_group_ids(mnt, p);
  1400. return err;
  1401. }
  1402. }
  1403. }
  1404. return 0;
  1405. }
  1406. /*
  1407. * @source_mnt : mount tree to be attached
  1408. * @nd : place the mount tree @source_mnt is attached
  1409. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1410. * store the parent mount and mountpoint dentry.
  1411. * (done when source_mnt is moved)
  1412. *
  1413. * NOTE: in the table below explains the semantics when a source mount
  1414. * of a given type is attached to a destination mount of a given type.
  1415. * ---------------------------------------------------------------------------
  1416. * | BIND MOUNT OPERATION |
  1417. * |**************************************************************************
  1418. * | source-->| shared | private | slave | unbindable |
  1419. * | dest | | | | |
  1420. * | | | | | | |
  1421. * | v | | | | |
  1422. * |**************************************************************************
  1423. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1424. * | | | | | |
  1425. * |non-shared| shared (+) | private | slave (*) | invalid |
  1426. * ***************************************************************************
  1427. * A bind operation clones the source mount and mounts the clone on the
  1428. * destination mount.
  1429. *
  1430. * (++) the cloned mount is propagated to all the mounts in the propagation
  1431. * tree of the destination mount and the cloned mount is added to
  1432. * the peer group of the source mount.
  1433. * (+) the cloned mount is created under the destination mount and is marked
  1434. * as shared. The cloned mount is added to the peer group of the source
  1435. * mount.
  1436. * (+++) the mount is propagated to all the mounts in the propagation tree
  1437. * of the destination mount and the cloned mount is made slave
  1438. * of the same master as that of the source mount. The cloned mount
  1439. * is marked as 'shared and slave'.
  1440. * (*) the cloned mount is made a slave of the same master as that of the
  1441. * source mount.
  1442. *
  1443. * ---------------------------------------------------------------------------
  1444. * | MOVE MOUNT OPERATION |
  1445. * |**************************************************************************
  1446. * | source-->| shared | private | slave | unbindable |
  1447. * | dest | | | | |
  1448. * | | | | | | |
  1449. * | v | | | | |
  1450. * |**************************************************************************
  1451. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1452. * | | | | | |
  1453. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1454. * ***************************************************************************
  1455. *
  1456. * (+) the mount is moved to the destination. And is then propagated to
  1457. * all the mounts in the propagation tree of the destination mount.
  1458. * (+*) the mount is moved to the destination.
  1459. * (+++) the mount is moved to the destination and is then propagated to
  1460. * all the mounts belonging to the destination mount's propagation tree.
  1461. * the mount is marked as 'shared and slave'.
  1462. * (*) the mount continues to be a slave at the new location.
  1463. *
  1464. * if the source mount is a tree, the operations explained above is
  1465. * applied to each mount in the tree.
  1466. * Must be called without spinlocks held, since this function can sleep
  1467. * in allocations.
  1468. */
  1469. static int attach_recursive_mnt(struct mount *source_mnt,
  1470. struct mount *dest_mnt,
  1471. struct mountpoint *dest_mp,
  1472. struct path *parent_path)
  1473. {
  1474. HLIST_HEAD(tree_list);
  1475. struct mount *child, *p;
  1476. struct hlist_node *n;
  1477. int err;
  1478. if (IS_MNT_SHARED(dest_mnt)) {
  1479. err = invent_group_ids(source_mnt, true);
  1480. if (err)
  1481. goto out;
  1482. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1483. lock_mount_hash();
  1484. if (err)
  1485. goto out_cleanup_ids;
  1486. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1487. set_mnt_shared(p);
  1488. } else {
  1489. lock_mount_hash();
  1490. }
  1491. if (parent_path) {
  1492. detach_mnt(source_mnt, parent_path);
  1493. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1494. touch_mnt_namespace(source_mnt->mnt_ns);
  1495. } else {
  1496. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1497. commit_tree(source_mnt, NULL);
  1498. }
  1499. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1500. struct mount *q;
  1501. hlist_del_init(&child->mnt_hash);
  1502. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1503. child->mnt_mountpoint);
  1504. commit_tree(child, q);
  1505. }
  1506. unlock_mount_hash();
  1507. return 0;
  1508. out_cleanup_ids:
  1509. while (!hlist_empty(&tree_list)) {
  1510. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1511. umount_tree(child, 0);
  1512. }
  1513. unlock_mount_hash();
  1514. cleanup_group_ids(source_mnt, NULL);
  1515. out:
  1516. return err;
  1517. }
  1518. static struct mountpoint *lock_mount(struct path *path)
  1519. {
  1520. struct vfsmount *mnt;
  1521. struct dentry *dentry = path->dentry;
  1522. retry:
  1523. mutex_lock(&dentry->d_inode->i_mutex);
  1524. if (unlikely(cant_mount(dentry))) {
  1525. mutex_unlock(&dentry->d_inode->i_mutex);
  1526. return ERR_PTR(-ENOENT);
  1527. }
  1528. namespace_lock();
  1529. mnt = lookup_mnt(path);
  1530. if (likely(!mnt)) {
  1531. struct mountpoint *mp = new_mountpoint(dentry);
  1532. if (IS_ERR(mp)) {
  1533. namespace_unlock();
  1534. mutex_unlock(&dentry->d_inode->i_mutex);
  1535. return mp;
  1536. }
  1537. return mp;
  1538. }
  1539. namespace_unlock();
  1540. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1541. path_put(path);
  1542. path->mnt = mnt;
  1543. dentry = path->dentry = dget(mnt->mnt_root);
  1544. goto retry;
  1545. }
  1546. static void unlock_mount(struct mountpoint *where)
  1547. {
  1548. struct dentry *dentry = where->m_dentry;
  1549. put_mountpoint(where);
  1550. namespace_unlock();
  1551. mutex_unlock(&dentry->d_inode->i_mutex);
  1552. }
  1553. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1554. {
  1555. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1556. return -EINVAL;
  1557. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1558. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1559. return -ENOTDIR;
  1560. return attach_recursive_mnt(mnt, p, mp, NULL);
  1561. }
  1562. /*
  1563. * Sanity check the flags to change_mnt_propagation.
  1564. */
  1565. static int flags_to_propagation_type(int flags)
  1566. {
  1567. int type = flags & ~(MS_REC | MS_SILENT);
  1568. /* Fail if any non-propagation flags are set */
  1569. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1570. return 0;
  1571. /* Only one propagation flag should be set */
  1572. if (!is_power_of_2(type))
  1573. return 0;
  1574. return type;
  1575. }
  1576. /*
  1577. * recursively change the type of the mountpoint.
  1578. */
  1579. static int do_change_type(struct path *path, int flag)
  1580. {
  1581. struct mount *m;
  1582. struct mount *mnt = real_mount(path->mnt);
  1583. int recurse = flag & MS_REC;
  1584. int type;
  1585. int err = 0;
  1586. if (path->dentry != path->mnt->mnt_root)
  1587. return -EINVAL;
  1588. type = flags_to_propagation_type(flag);
  1589. if (!type)
  1590. return -EINVAL;
  1591. namespace_lock();
  1592. if (type == MS_SHARED) {
  1593. err = invent_group_ids(mnt, recurse);
  1594. if (err)
  1595. goto out_unlock;
  1596. }
  1597. lock_mount_hash();
  1598. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1599. change_mnt_propagation(m, type);
  1600. unlock_mount_hash();
  1601. out_unlock:
  1602. namespace_unlock();
  1603. return err;
  1604. }
  1605. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1606. {
  1607. struct mount *child;
  1608. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1609. if (!is_subdir(child->mnt_mountpoint, dentry))
  1610. continue;
  1611. if (child->mnt.mnt_flags & MNT_LOCKED)
  1612. return true;
  1613. }
  1614. return false;
  1615. }
  1616. /*
  1617. * do loopback mount.
  1618. */
  1619. static int do_loopback(struct path *path, const char *old_name,
  1620. int recurse)
  1621. {
  1622. struct path old_path;
  1623. struct mount *mnt = NULL, *old, *parent;
  1624. struct mountpoint *mp;
  1625. int err;
  1626. if (!old_name || !*old_name)
  1627. return -EINVAL;
  1628. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1629. if (err)
  1630. return err;
  1631. err = -EINVAL;
  1632. if (mnt_ns_loop(old_path.dentry))
  1633. goto out;
  1634. mp = lock_mount(path);
  1635. err = PTR_ERR(mp);
  1636. if (IS_ERR(mp))
  1637. goto out;
  1638. old = real_mount(old_path.mnt);
  1639. parent = real_mount(path->mnt);
  1640. err = -EINVAL;
  1641. if (IS_MNT_UNBINDABLE(old))
  1642. goto out2;
  1643. if (!check_mnt(parent) || !check_mnt(old))
  1644. goto out2;
  1645. if (!recurse && has_locked_children(old, old_path.dentry))
  1646. goto out2;
  1647. if (recurse)
  1648. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1649. else
  1650. mnt = clone_mnt(old, old_path.dentry, 0);
  1651. if (IS_ERR(mnt)) {
  1652. err = PTR_ERR(mnt);
  1653. goto out2;
  1654. }
  1655. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1656. err = graft_tree(mnt, parent, mp);
  1657. if (err) {
  1658. lock_mount_hash();
  1659. umount_tree(mnt, 0);
  1660. unlock_mount_hash();
  1661. }
  1662. out2:
  1663. unlock_mount(mp);
  1664. out:
  1665. path_put(&old_path);
  1666. return err;
  1667. }
  1668. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1669. {
  1670. int error = 0;
  1671. int readonly_request = 0;
  1672. if (ms_flags & MS_RDONLY)
  1673. readonly_request = 1;
  1674. if (readonly_request == __mnt_is_readonly(mnt))
  1675. return 0;
  1676. if (mnt->mnt_flags & MNT_LOCK_READONLY)
  1677. return -EPERM;
  1678. if (readonly_request)
  1679. error = mnt_make_readonly(real_mount(mnt));
  1680. else
  1681. __mnt_unmake_readonly(real_mount(mnt));
  1682. return error;
  1683. }
  1684. /*
  1685. * change filesystem flags. dir should be a physical root of filesystem.
  1686. * If you've mounted a non-root directory somewhere and want to do remount
  1687. * on it - tough luck.
  1688. */
  1689. static int do_remount(struct path *path, int flags, int mnt_flags,
  1690. void *data)
  1691. {
  1692. int err;
  1693. struct super_block *sb = path->mnt->mnt_sb;
  1694. struct mount *mnt = real_mount(path->mnt);
  1695. if (!check_mnt(mnt))
  1696. return -EINVAL;
  1697. if (path->dentry != path->mnt->mnt_root)
  1698. return -EINVAL;
  1699. err = security_sb_remount(sb, data);
  1700. if (err)
  1701. return err;
  1702. down_write(&sb->s_umount);
  1703. if (flags & MS_BIND)
  1704. err = change_mount_flags(path->mnt, flags);
  1705. else if (!capable(CAP_SYS_ADMIN))
  1706. err = -EPERM;
  1707. else
  1708. err = do_remount_sb(sb, flags, data, 0);
  1709. if (!err) {
  1710. lock_mount_hash();
  1711. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1712. mnt->mnt.mnt_flags = mnt_flags;
  1713. touch_mnt_namespace(mnt->mnt_ns);
  1714. unlock_mount_hash();
  1715. }
  1716. up_write(&sb->s_umount);
  1717. return err;
  1718. }
  1719. static inline int tree_contains_unbindable(struct mount *mnt)
  1720. {
  1721. struct mount *p;
  1722. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1723. if (IS_MNT_UNBINDABLE(p))
  1724. return 1;
  1725. }
  1726. return 0;
  1727. }
  1728. static int do_move_mount(struct path *path, const char *old_name)
  1729. {
  1730. struct path old_path, parent_path;
  1731. struct mount *p;
  1732. struct mount *old;
  1733. struct mountpoint *mp;
  1734. int err;
  1735. if (!old_name || !*old_name)
  1736. return -EINVAL;
  1737. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1738. if (err)
  1739. return err;
  1740. mp = lock_mount(path);
  1741. err = PTR_ERR(mp);
  1742. if (IS_ERR(mp))
  1743. goto out;
  1744. old = real_mount(old_path.mnt);
  1745. p = real_mount(path->mnt);
  1746. err = -EINVAL;
  1747. if (!check_mnt(p) || !check_mnt(old))
  1748. goto out1;
  1749. if (old->mnt.mnt_flags & MNT_LOCKED)
  1750. goto out1;
  1751. err = -EINVAL;
  1752. if (old_path.dentry != old_path.mnt->mnt_root)
  1753. goto out1;
  1754. if (!mnt_has_parent(old))
  1755. goto out1;
  1756. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1757. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1758. goto out1;
  1759. /*
  1760. * Don't move a mount residing in a shared parent.
  1761. */
  1762. if (IS_MNT_SHARED(old->mnt_parent))
  1763. goto out1;
  1764. /*
  1765. * Don't move a mount tree containing unbindable mounts to a destination
  1766. * mount which is shared.
  1767. */
  1768. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1769. goto out1;
  1770. err = -ELOOP;
  1771. for (; mnt_has_parent(p); p = p->mnt_parent)
  1772. if (p == old)
  1773. goto out1;
  1774. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1775. if (err)
  1776. goto out1;
  1777. /* if the mount is moved, it should no longer be expire
  1778. * automatically */
  1779. list_del_init(&old->mnt_expire);
  1780. out1:
  1781. unlock_mount(mp);
  1782. out:
  1783. if (!err)
  1784. path_put(&parent_path);
  1785. path_put(&old_path);
  1786. return err;
  1787. }
  1788. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1789. {
  1790. int err;
  1791. const char *subtype = strchr(fstype, '.');
  1792. if (subtype) {
  1793. subtype++;
  1794. err = -EINVAL;
  1795. if (!subtype[0])
  1796. goto err;
  1797. } else
  1798. subtype = "";
  1799. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1800. err = -ENOMEM;
  1801. if (!mnt->mnt_sb->s_subtype)
  1802. goto err;
  1803. return mnt;
  1804. err:
  1805. mntput(mnt);
  1806. return ERR_PTR(err);
  1807. }
  1808. /*
  1809. * add a mount into a namespace's mount tree
  1810. */
  1811. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1812. {
  1813. struct mountpoint *mp;
  1814. struct mount *parent;
  1815. int err;
  1816. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  1817. mp = lock_mount(path);
  1818. if (IS_ERR(mp))
  1819. return PTR_ERR(mp);
  1820. parent = real_mount(path->mnt);
  1821. err = -EINVAL;
  1822. if (unlikely(!check_mnt(parent))) {
  1823. /* that's acceptable only for automounts done in private ns */
  1824. if (!(mnt_flags & MNT_SHRINKABLE))
  1825. goto unlock;
  1826. /* ... and for those we'd better have mountpoint still alive */
  1827. if (!parent->mnt_ns)
  1828. goto unlock;
  1829. }
  1830. /* Refuse the same filesystem on the same mount point */
  1831. err = -EBUSY;
  1832. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1833. path->mnt->mnt_root == path->dentry)
  1834. goto unlock;
  1835. err = -EINVAL;
  1836. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1837. goto unlock;
  1838. newmnt->mnt.mnt_flags = mnt_flags;
  1839. err = graft_tree(newmnt, parent, mp);
  1840. unlock:
  1841. unlock_mount(mp);
  1842. return err;
  1843. }
  1844. /*
  1845. * create a new mount for userspace and request it to be added into the
  1846. * namespace's tree
  1847. */
  1848. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1849. int mnt_flags, const char *name, void *data)
  1850. {
  1851. struct file_system_type *type;
  1852. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1853. struct vfsmount *mnt;
  1854. int err;
  1855. if (!fstype)
  1856. return -EINVAL;
  1857. type = get_fs_type(fstype);
  1858. if (!type)
  1859. return -ENODEV;
  1860. if (user_ns != &init_user_ns) {
  1861. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1862. put_filesystem(type);
  1863. return -EPERM;
  1864. }
  1865. /* Only in special cases allow devices from mounts
  1866. * created outside the initial user namespace.
  1867. */
  1868. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1869. flags |= MS_NODEV;
  1870. mnt_flags |= MNT_NODEV;
  1871. }
  1872. }
  1873. mnt = vfs_kern_mount(type, flags, name, data);
  1874. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1875. !mnt->mnt_sb->s_subtype)
  1876. mnt = fs_set_subtype(mnt, fstype);
  1877. put_filesystem(type);
  1878. if (IS_ERR(mnt))
  1879. return PTR_ERR(mnt);
  1880. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1881. if (err)
  1882. mntput(mnt);
  1883. return err;
  1884. }
  1885. int finish_automount(struct vfsmount *m, struct path *path)
  1886. {
  1887. struct mount *mnt = real_mount(m);
  1888. int err;
  1889. /* The new mount record should have at least 2 refs to prevent it being
  1890. * expired before we get a chance to add it
  1891. */
  1892. BUG_ON(mnt_get_count(mnt) < 2);
  1893. if (m->mnt_sb == path->mnt->mnt_sb &&
  1894. m->mnt_root == path->dentry) {
  1895. err = -ELOOP;
  1896. goto fail;
  1897. }
  1898. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1899. if (!err)
  1900. return 0;
  1901. fail:
  1902. /* remove m from any expiration list it may be on */
  1903. if (!list_empty(&mnt->mnt_expire)) {
  1904. namespace_lock();
  1905. list_del_init(&mnt->mnt_expire);
  1906. namespace_unlock();
  1907. }
  1908. mntput(m);
  1909. mntput(m);
  1910. return err;
  1911. }
  1912. /**
  1913. * mnt_set_expiry - Put a mount on an expiration list
  1914. * @mnt: The mount to list.
  1915. * @expiry_list: The list to add the mount to.
  1916. */
  1917. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1918. {
  1919. namespace_lock();
  1920. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1921. namespace_unlock();
  1922. }
  1923. EXPORT_SYMBOL(mnt_set_expiry);
  1924. /*
  1925. * process a list of expirable mountpoints with the intent of discarding any
  1926. * mountpoints that aren't in use and haven't been touched since last we came
  1927. * here
  1928. */
  1929. void mark_mounts_for_expiry(struct list_head *mounts)
  1930. {
  1931. struct mount *mnt, *next;
  1932. LIST_HEAD(graveyard);
  1933. if (list_empty(mounts))
  1934. return;
  1935. namespace_lock();
  1936. lock_mount_hash();
  1937. /* extract from the expiration list every vfsmount that matches the
  1938. * following criteria:
  1939. * - only referenced by its parent vfsmount
  1940. * - still marked for expiry (marked on the last call here; marks are
  1941. * cleared by mntput())
  1942. */
  1943. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1944. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1945. propagate_mount_busy(mnt, 1))
  1946. continue;
  1947. list_move(&mnt->mnt_expire, &graveyard);
  1948. }
  1949. while (!list_empty(&graveyard)) {
  1950. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1951. touch_mnt_namespace(mnt->mnt_ns);
  1952. umount_tree(mnt, 1);
  1953. }
  1954. unlock_mount_hash();
  1955. namespace_unlock();
  1956. }
  1957. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1958. /*
  1959. * Ripoff of 'select_parent()'
  1960. *
  1961. * search the list of submounts for a given mountpoint, and move any
  1962. * shrinkable submounts to the 'graveyard' list.
  1963. */
  1964. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1965. {
  1966. struct mount *this_parent = parent;
  1967. struct list_head *next;
  1968. int found = 0;
  1969. repeat:
  1970. next = this_parent->mnt_mounts.next;
  1971. resume:
  1972. while (next != &this_parent->mnt_mounts) {
  1973. struct list_head *tmp = next;
  1974. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1975. next = tmp->next;
  1976. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1977. continue;
  1978. /*
  1979. * Descend a level if the d_mounts list is non-empty.
  1980. */
  1981. if (!list_empty(&mnt->mnt_mounts)) {
  1982. this_parent = mnt;
  1983. goto repeat;
  1984. }
  1985. if (!propagate_mount_busy(mnt, 1)) {
  1986. list_move_tail(&mnt->mnt_expire, graveyard);
  1987. found++;
  1988. }
  1989. }
  1990. /*
  1991. * All done at this level ... ascend and resume the search
  1992. */
  1993. if (this_parent != parent) {
  1994. next = this_parent->mnt_child.next;
  1995. this_parent = this_parent->mnt_parent;
  1996. goto resume;
  1997. }
  1998. return found;
  1999. }
  2000. /*
  2001. * process a list of expirable mountpoints with the intent of discarding any
  2002. * submounts of a specific parent mountpoint
  2003. *
  2004. * mount_lock must be held for write
  2005. */
  2006. static void shrink_submounts(struct mount *mnt)
  2007. {
  2008. LIST_HEAD(graveyard);
  2009. struct mount *m;
  2010. /* extract submounts of 'mountpoint' from the expiration list */
  2011. while (select_submounts(mnt, &graveyard)) {
  2012. while (!list_empty(&graveyard)) {
  2013. m = list_first_entry(&graveyard, struct mount,
  2014. mnt_expire);
  2015. touch_mnt_namespace(m->mnt_ns);
  2016. umount_tree(m, 1);
  2017. }
  2018. }
  2019. }
  2020. /*
  2021. * Some copy_from_user() implementations do not return the exact number of
  2022. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2023. * Note that this function differs from copy_from_user() in that it will oops
  2024. * on bad values of `to', rather than returning a short copy.
  2025. */
  2026. static long exact_copy_from_user(void *to, const void __user * from,
  2027. unsigned long n)
  2028. {
  2029. char *t = to;
  2030. const char __user *f = from;
  2031. char c;
  2032. if (!access_ok(VERIFY_READ, from, n))
  2033. return n;
  2034. while (n) {
  2035. if (__get_user(c, f)) {
  2036. memset(t, 0, n);
  2037. break;
  2038. }
  2039. *t++ = c;
  2040. f++;
  2041. n--;
  2042. }
  2043. return n;
  2044. }
  2045. int copy_mount_options(const void __user * data, unsigned long *where)
  2046. {
  2047. int i;
  2048. unsigned long page;
  2049. unsigned long size;
  2050. *where = 0;
  2051. if (!data)
  2052. return 0;
  2053. if (!(page = __get_free_page(GFP_KERNEL)))
  2054. return -ENOMEM;
  2055. /* We only care that *some* data at the address the user
  2056. * gave us is valid. Just in case, we'll zero
  2057. * the remainder of the page.
  2058. */
  2059. /* copy_from_user cannot cross TASK_SIZE ! */
  2060. size = TASK_SIZE - (unsigned long)data;
  2061. if (size > PAGE_SIZE)
  2062. size = PAGE_SIZE;
  2063. i = size - exact_copy_from_user((void *)page, data, size);
  2064. if (!i) {
  2065. free_page(page);
  2066. return -EFAULT;
  2067. }
  2068. if (i != PAGE_SIZE)
  2069. memset((char *)page + i, 0, PAGE_SIZE - i);
  2070. *where = page;
  2071. return 0;
  2072. }
  2073. int copy_mount_string(const void __user *data, char **where)
  2074. {
  2075. char *tmp;
  2076. if (!data) {
  2077. *where = NULL;
  2078. return 0;
  2079. }
  2080. tmp = strndup_user(data, PAGE_SIZE);
  2081. if (IS_ERR(tmp))
  2082. return PTR_ERR(tmp);
  2083. *where = tmp;
  2084. return 0;
  2085. }
  2086. /*
  2087. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2088. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2089. *
  2090. * data is a (void *) that can point to any structure up to
  2091. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2092. * information (or be NULL).
  2093. *
  2094. * Pre-0.97 versions of mount() didn't have a flags word.
  2095. * When the flags word was introduced its top half was required
  2096. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2097. * Therefore, if this magic number is present, it carries no information
  2098. * and must be discarded.
  2099. */
  2100. long do_mount(const char *dev_name, const char *dir_name,
  2101. const char *type_page, unsigned long flags, void *data_page)
  2102. {
  2103. struct path path;
  2104. int retval = 0;
  2105. int mnt_flags = 0;
  2106. /* Discard magic */
  2107. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2108. flags &= ~MS_MGC_MSK;
  2109. /* Basic sanity checks */
  2110. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2111. return -EINVAL;
  2112. if (data_page)
  2113. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2114. /* ... and get the mountpoint */
  2115. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2116. if (retval)
  2117. return retval;
  2118. retval = security_sb_mount(dev_name, &path,
  2119. type_page, flags, data_page);
  2120. if (!retval && !may_mount())
  2121. retval = -EPERM;
  2122. if (retval)
  2123. goto dput_out;
  2124. /* Default to relatime unless overriden */
  2125. if (!(flags & MS_NOATIME))
  2126. mnt_flags |= MNT_RELATIME;
  2127. /* Separate the per-mountpoint flags */
  2128. if (flags & MS_NOSUID)
  2129. mnt_flags |= MNT_NOSUID;
  2130. if (flags & MS_NODEV)
  2131. mnt_flags |= MNT_NODEV;
  2132. if (flags & MS_NOEXEC)
  2133. mnt_flags |= MNT_NOEXEC;
  2134. if (flags & MS_NOATIME)
  2135. mnt_flags |= MNT_NOATIME;
  2136. if (flags & MS_NODIRATIME)
  2137. mnt_flags |= MNT_NODIRATIME;
  2138. if (flags & MS_STRICTATIME)
  2139. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2140. if (flags & MS_RDONLY)
  2141. mnt_flags |= MNT_READONLY;
  2142. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2143. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2144. MS_STRICTATIME);
  2145. if (flags & MS_REMOUNT)
  2146. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2147. data_page);
  2148. else if (flags & MS_BIND)
  2149. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2150. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2151. retval = do_change_type(&path, flags);
  2152. else if (flags & MS_MOVE)
  2153. retval = do_move_mount(&path, dev_name);
  2154. else
  2155. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2156. dev_name, data_page);
  2157. dput_out:
  2158. path_put(&path);
  2159. return retval;
  2160. }
  2161. static void free_mnt_ns(struct mnt_namespace *ns)
  2162. {
  2163. proc_free_inum(ns->proc_inum);
  2164. put_user_ns(ns->user_ns);
  2165. kfree(ns);
  2166. }
  2167. /*
  2168. * Assign a sequence number so we can detect when we attempt to bind
  2169. * mount a reference to an older mount namespace into the current
  2170. * mount namespace, preventing reference counting loops. A 64bit
  2171. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2172. * is effectively never, so we can ignore the possibility.
  2173. */
  2174. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2175. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2176. {
  2177. struct mnt_namespace *new_ns;
  2178. int ret;
  2179. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2180. if (!new_ns)
  2181. return ERR_PTR(-ENOMEM);
  2182. ret = proc_alloc_inum(&new_ns->proc_inum);
  2183. if (ret) {
  2184. kfree(new_ns);
  2185. return ERR_PTR(ret);
  2186. }
  2187. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2188. atomic_set(&new_ns->count, 1);
  2189. new_ns->root = NULL;
  2190. INIT_LIST_HEAD(&new_ns->list);
  2191. init_waitqueue_head(&new_ns->poll);
  2192. new_ns->event = 0;
  2193. new_ns->user_ns = get_user_ns(user_ns);
  2194. return new_ns;
  2195. }
  2196. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2197. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2198. {
  2199. struct mnt_namespace *new_ns;
  2200. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2201. struct mount *p, *q;
  2202. struct mount *old;
  2203. struct mount *new;
  2204. int copy_flags;
  2205. BUG_ON(!ns);
  2206. if (likely(!(flags & CLONE_NEWNS))) {
  2207. get_mnt_ns(ns);
  2208. return ns;
  2209. }
  2210. old = ns->root;
  2211. new_ns = alloc_mnt_ns(user_ns);
  2212. if (IS_ERR(new_ns))
  2213. return new_ns;
  2214. namespace_lock();
  2215. /* First pass: copy the tree topology */
  2216. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2217. if (user_ns != ns->user_ns)
  2218. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2219. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2220. if (IS_ERR(new)) {
  2221. namespace_unlock();
  2222. free_mnt_ns(new_ns);
  2223. return ERR_CAST(new);
  2224. }
  2225. new_ns->root = new;
  2226. list_add_tail(&new_ns->list, &new->mnt_list);
  2227. /*
  2228. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2229. * as belonging to new namespace. We have already acquired a private
  2230. * fs_struct, so tsk->fs->lock is not needed.
  2231. */
  2232. p = old;
  2233. q = new;
  2234. while (p) {
  2235. q->mnt_ns = new_ns;
  2236. if (new_fs) {
  2237. if (&p->mnt == new_fs->root.mnt) {
  2238. new_fs->root.mnt = mntget(&q->mnt);
  2239. rootmnt = &p->mnt;
  2240. }
  2241. if (&p->mnt == new_fs->pwd.mnt) {
  2242. new_fs->pwd.mnt = mntget(&q->mnt);
  2243. pwdmnt = &p->mnt;
  2244. }
  2245. }
  2246. p = next_mnt(p, old);
  2247. q = next_mnt(q, new);
  2248. if (!q)
  2249. break;
  2250. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2251. p = next_mnt(p, old);
  2252. }
  2253. namespace_unlock();
  2254. if (rootmnt)
  2255. mntput(rootmnt);
  2256. if (pwdmnt)
  2257. mntput(pwdmnt);
  2258. return new_ns;
  2259. }
  2260. /**
  2261. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2262. * @mnt: pointer to the new root filesystem mountpoint
  2263. */
  2264. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2265. {
  2266. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2267. if (!IS_ERR(new_ns)) {
  2268. struct mount *mnt = real_mount(m);
  2269. mnt->mnt_ns = new_ns;
  2270. new_ns->root = mnt;
  2271. list_add(&mnt->mnt_list, &new_ns->list);
  2272. } else {
  2273. mntput(m);
  2274. }
  2275. return new_ns;
  2276. }
  2277. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2278. {
  2279. struct mnt_namespace *ns;
  2280. struct super_block *s;
  2281. struct path path;
  2282. int err;
  2283. ns = create_mnt_ns(mnt);
  2284. if (IS_ERR(ns))
  2285. return ERR_CAST(ns);
  2286. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2287. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2288. put_mnt_ns(ns);
  2289. if (err)
  2290. return ERR_PTR(err);
  2291. /* trade a vfsmount reference for active sb one */
  2292. s = path.mnt->mnt_sb;
  2293. atomic_inc(&s->s_active);
  2294. mntput(path.mnt);
  2295. /* lock the sucker */
  2296. down_write(&s->s_umount);
  2297. /* ... and return the root of (sub)tree on it */
  2298. return path.dentry;
  2299. }
  2300. EXPORT_SYMBOL(mount_subtree);
  2301. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2302. char __user *, type, unsigned long, flags, void __user *, data)
  2303. {
  2304. int ret;
  2305. char *kernel_type;
  2306. struct filename *kernel_dir;
  2307. char *kernel_dev;
  2308. unsigned long data_page;
  2309. ret = copy_mount_string(type, &kernel_type);
  2310. if (ret < 0)
  2311. goto out_type;
  2312. kernel_dir = getname(dir_name);
  2313. if (IS_ERR(kernel_dir)) {
  2314. ret = PTR_ERR(kernel_dir);
  2315. goto out_dir;
  2316. }
  2317. ret = copy_mount_string(dev_name, &kernel_dev);
  2318. if (ret < 0)
  2319. goto out_dev;
  2320. ret = copy_mount_options(data, &data_page);
  2321. if (ret < 0)
  2322. goto out_data;
  2323. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2324. (void *) data_page);
  2325. free_page(data_page);
  2326. out_data:
  2327. kfree(kernel_dev);
  2328. out_dev:
  2329. putname(kernel_dir);
  2330. out_dir:
  2331. kfree(kernel_type);
  2332. out_type:
  2333. return ret;
  2334. }
  2335. /*
  2336. * Return true if path is reachable from root
  2337. *
  2338. * namespace_sem or mount_lock is held
  2339. */
  2340. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2341. const struct path *root)
  2342. {
  2343. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2344. dentry = mnt->mnt_mountpoint;
  2345. mnt = mnt->mnt_parent;
  2346. }
  2347. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2348. }
  2349. int path_is_under(struct path *path1, struct path *path2)
  2350. {
  2351. int res;
  2352. read_seqlock_excl(&mount_lock);
  2353. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2354. read_sequnlock_excl(&mount_lock);
  2355. return res;
  2356. }
  2357. EXPORT_SYMBOL(path_is_under);
  2358. /*
  2359. * pivot_root Semantics:
  2360. * Moves the root file system of the current process to the directory put_old,
  2361. * makes new_root as the new root file system of the current process, and sets
  2362. * root/cwd of all processes which had them on the current root to new_root.
  2363. *
  2364. * Restrictions:
  2365. * The new_root and put_old must be directories, and must not be on the
  2366. * same file system as the current process root. The put_old must be
  2367. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2368. * pointed to by put_old must yield the same directory as new_root. No other
  2369. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2370. *
  2371. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2372. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2373. * in this situation.
  2374. *
  2375. * Notes:
  2376. * - we don't move root/cwd if they are not at the root (reason: if something
  2377. * cared enough to change them, it's probably wrong to force them elsewhere)
  2378. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2379. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2380. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2381. * first.
  2382. */
  2383. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2384. const char __user *, put_old)
  2385. {
  2386. struct path new, old, parent_path, root_parent, root;
  2387. struct mount *new_mnt, *root_mnt, *old_mnt;
  2388. struct mountpoint *old_mp, *root_mp;
  2389. int error;
  2390. if (!may_mount())
  2391. return -EPERM;
  2392. error = user_path_dir(new_root, &new);
  2393. if (error)
  2394. goto out0;
  2395. error = user_path_dir(put_old, &old);
  2396. if (error)
  2397. goto out1;
  2398. error = security_sb_pivotroot(&old, &new);
  2399. if (error)
  2400. goto out2;
  2401. get_fs_root(current->fs, &root);
  2402. old_mp = lock_mount(&old);
  2403. error = PTR_ERR(old_mp);
  2404. if (IS_ERR(old_mp))
  2405. goto out3;
  2406. error = -EINVAL;
  2407. new_mnt = real_mount(new.mnt);
  2408. root_mnt = real_mount(root.mnt);
  2409. old_mnt = real_mount(old.mnt);
  2410. if (IS_MNT_SHARED(old_mnt) ||
  2411. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2412. IS_MNT_SHARED(root_mnt->mnt_parent))
  2413. goto out4;
  2414. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2415. goto out4;
  2416. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2417. goto out4;
  2418. error = -ENOENT;
  2419. if (d_unlinked(new.dentry))
  2420. goto out4;
  2421. error = -EBUSY;
  2422. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2423. goto out4; /* loop, on the same file system */
  2424. error = -EINVAL;
  2425. if (root.mnt->mnt_root != root.dentry)
  2426. goto out4; /* not a mountpoint */
  2427. if (!mnt_has_parent(root_mnt))
  2428. goto out4; /* not attached */
  2429. root_mp = root_mnt->mnt_mp;
  2430. if (new.mnt->mnt_root != new.dentry)
  2431. goto out4; /* not a mountpoint */
  2432. if (!mnt_has_parent(new_mnt))
  2433. goto out4; /* not attached */
  2434. /* make sure we can reach put_old from new_root */
  2435. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2436. goto out4;
  2437. root_mp->m_count++; /* pin it so it won't go away */
  2438. lock_mount_hash();
  2439. detach_mnt(new_mnt, &parent_path);
  2440. detach_mnt(root_mnt, &root_parent);
  2441. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2442. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2443. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2444. }
  2445. /* mount old root on put_old */
  2446. attach_mnt(root_mnt, old_mnt, old_mp);
  2447. /* mount new_root on / */
  2448. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2449. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2450. unlock_mount_hash();
  2451. chroot_fs_refs(&root, &new);
  2452. put_mountpoint(root_mp);
  2453. error = 0;
  2454. out4:
  2455. unlock_mount(old_mp);
  2456. if (!error) {
  2457. path_put(&root_parent);
  2458. path_put(&parent_path);
  2459. }
  2460. out3:
  2461. path_put(&root);
  2462. out2:
  2463. path_put(&old);
  2464. out1:
  2465. path_put(&new);
  2466. out0:
  2467. return error;
  2468. }
  2469. static void __init init_mount_tree(void)
  2470. {
  2471. struct vfsmount *mnt;
  2472. struct mnt_namespace *ns;
  2473. struct path root;
  2474. struct file_system_type *type;
  2475. type = get_fs_type("rootfs");
  2476. if (!type)
  2477. panic("Can't find rootfs type");
  2478. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2479. put_filesystem(type);
  2480. if (IS_ERR(mnt))
  2481. panic("Can't create rootfs");
  2482. ns = create_mnt_ns(mnt);
  2483. if (IS_ERR(ns))
  2484. panic("Can't allocate initial namespace");
  2485. init_task.nsproxy->mnt_ns = ns;
  2486. get_mnt_ns(ns);
  2487. root.mnt = mnt;
  2488. root.dentry = mnt->mnt_root;
  2489. set_fs_pwd(current->fs, &root);
  2490. set_fs_root(current->fs, &root);
  2491. }
  2492. void __init mnt_init(void)
  2493. {
  2494. unsigned u;
  2495. int err;
  2496. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2497. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2498. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2499. sizeof(struct hlist_head),
  2500. mhash_entries, 19,
  2501. 0,
  2502. &m_hash_shift, &m_hash_mask, 0, 0);
  2503. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2504. sizeof(struct hlist_head),
  2505. mphash_entries, 19,
  2506. 0,
  2507. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2508. if (!mount_hashtable || !mountpoint_hashtable)
  2509. panic("Failed to allocate mount hash table\n");
  2510. for (u = 0; u <= m_hash_mask; u++)
  2511. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2512. for (u = 0; u <= mp_hash_mask; u++)
  2513. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2514. kernfs_init();
  2515. err = sysfs_init();
  2516. if (err)
  2517. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2518. __func__, err);
  2519. fs_kobj = kobject_create_and_add("fs", NULL);
  2520. if (!fs_kobj)
  2521. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2522. init_rootfs();
  2523. init_mount_tree();
  2524. }
  2525. void put_mnt_ns(struct mnt_namespace *ns)
  2526. {
  2527. if (!atomic_dec_and_test(&ns->count))
  2528. return;
  2529. drop_collected_mounts(&ns->root->mnt);
  2530. free_mnt_ns(ns);
  2531. }
  2532. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2533. {
  2534. struct vfsmount *mnt;
  2535. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2536. if (!IS_ERR(mnt)) {
  2537. /*
  2538. * it is a longterm mount, don't release mnt until
  2539. * we unmount before file sys is unregistered
  2540. */
  2541. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2542. }
  2543. return mnt;
  2544. }
  2545. EXPORT_SYMBOL_GPL(kern_mount_data);
  2546. void kern_unmount(struct vfsmount *mnt)
  2547. {
  2548. /* release long term mount so mount point can be released */
  2549. if (!IS_ERR_OR_NULL(mnt)) {
  2550. real_mount(mnt)->mnt_ns = NULL;
  2551. synchronize_rcu(); /* yecchhh... */
  2552. mntput(mnt);
  2553. }
  2554. }
  2555. EXPORT_SYMBOL(kern_unmount);
  2556. bool our_mnt(struct vfsmount *mnt)
  2557. {
  2558. return check_mnt(real_mount(mnt));
  2559. }
  2560. bool current_chrooted(void)
  2561. {
  2562. /* Does the current process have a non-standard root */
  2563. struct path ns_root;
  2564. struct path fs_root;
  2565. bool chrooted;
  2566. /* Find the namespace root */
  2567. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2568. ns_root.dentry = ns_root.mnt->mnt_root;
  2569. path_get(&ns_root);
  2570. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2571. ;
  2572. get_fs_root(current->fs, &fs_root);
  2573. chrooted = !path_equal(&fs_root, &ns_root);
  2574. path_put(&fs_root);
  2575. path_put(&ns_root);
  2576. return chrooted;
  2577. }
  2578. bool fs_fully_visible(struct file_system_type *type)
  2579. {
  2580. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2581. struct mount *mnt;
  2582. bool visible = false;
  2583. if (unlikely(!ns))
  2584. return false;
  2585. down_read(&namespace_sem);
  2586. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2587. struct mount *child;
  2588. if (mnt->mnt.mnt_sb->s_type != type)
  2589. continue;
  2590. /* This mount is not fully visible if there are any child mounts
  2591. * that cover anything except for empty directories.
  2592. */
  2593. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2594. struct inode *inode = child->mnt_mountpoint->d_inode;
  2595. if (!S_ISDIR(inode->i_mode))
  2596. goto next;
  2597. if (inode->i_nlink > 2)
  2598. goto next;
  2599. }
  2600. visible = true;
  2601. goto found;
  2602. next: ;
  2603. }
  2604. found:
  2605. up_read(&namespace_sem);
  2606. return visible;
  2607. }
  2608. static void *mntns_get(struct task_struct *task)
  2609. {
  2610. struct mnt_namespace *ns = NULL;
  2611. struct nsproxy *nsproxy;
  2612. rcu_read_lock();
  2613. nsproxy = task_nsproxy(task);
  2614. if (nsproxy) {
  2615. ns = nsproxy->mnt_ns;
  2616. get_mnt_ns(ns);
  2617. }
  2618. rcu_read_unlock();
  2619. return ns;
  2620. }
  2621. static void mntns_put(void *ns)
  2622. {
  2623. put_mnt_ns(ns);
  2624. }
  2625. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2626. {
  2627. struct fs_struct *fs = current->fs;
  2628. struct mnt_namespace *mnt_ns = ns;
  2629. struct path root;
  2630. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2631. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2632. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2633. return -EPERM;
  2634. if (fs->users != 1)
  2635. return -EINVAL;
  2636. get_mnt_ns(mnt_ns);
  2637. put_mnt_ns(nsproxy->mnt_ns);
  2638. nsproxy->mnt_ns = mnt_ns;
  2639. /* Find the root */
  2640. root.mnt = &mnt_ns->root->mnt;
  2641. root.dentry = mnt_ns->root->mnt.mnt_root;
  2642. path_get(&root);
  2643. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2644. ;
  2645. /* Update the pwd and root */
  2646. set_fs_pwd(fs, &root);
  2647. set_fs_root(fs, &root);
  2648. path_put(&root);
  2649. return 0;
  2650. }
  2651. static unsigned int mntns_inum(void *ns)
  2652. {
  2653. struct mnt_namespace *mnt_ns = ns;
  2654. return mnt_ns->proc_inum;
  2655. }
  2656. const struct proc_ns_operations mntns_operations = {
  2657. .name = "mnt",
  2658. .type = CLONE_NEWNS,
  2659. .get = mntns_get,
  2660. .put = mntns_put,
  2661. .install = mntns_install,
  2662. .inum = mntns_inum,
  2663. };