file.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/aio.h>
  27. #include <linux/falloc.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/statfs.h>
  31. #include <linux/compat.h>
  32. #include <linux/slab.h>
  33. #include <linux/btrfs.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "print-tree.h"
  39. #include "tree-log.h"
  40. #include "locking.h"
  41. #include "volumes.h"
  42. static struct kmem_cache *btrfs_inode_defrag_cachep;
  43. /*
  44. * when auto defrag is enabled we
  45. * queue up these defrag structs to remember which
  46. * inodes need defragging passes
  47. */
  48. struct inode_defrag {
  49. struct rb_node rb_node;
  50. /* objectid */
  51. u64 ino;
  52. /*
  53. * transid where the defrag was added, we search for
  54. * extents newer than this
  55. */
  56. u64 transid;
  57. /* root objectid */
  58. u64 root;
  59. /* last offset we were able to defrag */
  60. u64 last_offset;
  61. /* if we've wrapped around back to zero once already */
  62. int cycled;
  63. };
  64. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  65. struct inode_defrag *defrag2)
  66. {
  67. if (defrag1->root > defrag2->root)
  68. return 1;
  69. else if (defrag1->root < defrag2->root)
  70. return -1;
  71. else if (defrag1->ino > defrag2->ino)
  72. return 1;
  73. else if (defrag1->ino < defrag2->ino)
  74. return -1;
  75. else
  76. return 0;
  77. }
  78. /* pop a record for an inode into the defrag tree. The lock
  79. * must be held already
  80. *
  81. * If you're inserting a record for an older transid than an
  82. * existing record, the transid already in the tree is lowered
  83. *
  84. * If an existing record is found the defrag item you
  85. * pass in is freed
  86. */
  87. static int __btrfs_add_inode_defrag(struct inode *inode,
  88. struct inode_defrag *defrag)
  89. {
  90. struct btrfs_root *root = BTRFS_I(inode)->root;
  91. struct inode_defrag *entry;
  92. struct rb_node **p;
  93. struct rb_node *parent = NULL;
  94. int ret;
  95. p = &root->fs_info->defrag_inodes.rb_node;
  96. while (*p) {
  97. parent = *p;
  98. entry = rb_entry(parent, struct inode_defrag, rb_node);
  99. ret = __compare_inode_defrag(defrag, entry);
  100. if (ret < 0)
  101. p = &parent->rb_left;
  102. else if (ret > 0)
  103. p = &parent->rb_right;
  104. else {
  105. /* if we're reinserting an entry for
  106. * an old defrag run, make sure to
  107. * lower the transid of our existing record
  108. */
  109. if (defrag->transid < entry->transid)
  110. entry->transid = defrag->transid;
  111. if (defrag->last_offset > entry->last_offset)
  112. entry->last_offset = defrag->last_offset;
  113. return -EEXIST;
  114. }
  115. }
  116. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  117. rb_link_node(&defrag->rb_node, parent, p);
  118. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  119. return 0;
  120. }
  121. static inline int __need_auto_defrag(struct btrfs_root *root)
  122. {
  123. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  124. return 0;
  125. if (btrfs_fs_closing(root->fs_info))
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * insert a defrag record for this inode if auto defrag is
  131. * enabled
  132. */
  133. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  134. struct inode *inode)
  135. {
  136. struct btrfs_root *root = BTRFS_I(inode)->root;
  137. struct inode_defrag *defrag;
  138. u64 transid;
  139. int ret;
  140. if (!__need_auto_defrag(root))
  141. return 0;
  142. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  143. return 0;
  144. if (trans)
  145. transid = trans->transid;
  146. else
  147. transid = BTRFS_I(inode)->root->last_trans;
  148. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  149. if (!defrag)
  150. return -ENOMEM;
  151. defrag->ino = btrfs_ino(inode);
  152. defrag->transid = transid;
  153. defrag->root = root->root_key.objectid;
  154. spin_lock(&root->fs_info->defrag_inodes_lock);
  155. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  156. /*
  157. * If we set IN_DEFRAG flag and evict the inode from memory,
  158. * and then re-read this inode, this new inode doesn't have
  159. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  160. */
  161. ret = __btrfs_add_inode_defrag(inode, defrag);
  162. if (ret)
  163. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  164. } else {
  165. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  166. }
  167. spin_unlock(&root->fs_info->defrag_inodes_lock);
  168. return 0;
  169. }
  170. /*
  171. * Requeue the defrag object. If there is a defrag object that points to
  172. * the same inode in the tree, we will merge them together (by
  173. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  174. */
  175. static void btrfs_requeue_inode_defrag(struct inode *inode,
  176. struct inode_defrag *defrag)
  177. {
  178. struct btrfs_root *root = BTRFS_I(inode)->root;
  179. int ret;
  180. if (!__need_auto_defrag(root))
  181. goto out;
  182. /*
  183. * Here we don't check the IN_DEFRAG flag, because we need merge
  184. * them together.
  185. */
  186. spin_lock(&root->fs_info->defrag_inodes_lock);
  187. ret = __btrfs_add_inode_defrag(inode, defrag);
  188. spin_unlock(&root->fs_info->defrag_inodes_lock);
  189. if (ret)
  190. goto out;
  191. return;
  192. out:
  193. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  194. }
  195. /*
  196. * pick the defragable inode that we want, if it doesn't exist, we will get
  197. * the next one.
  198. */
  199. static struct inode_defrag *
  200. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  201. {
  202. struct inode_defrag *entry = NULL;
  203. struct inode_defrag tmp;
  204. struct rb_node *p;
  205. struct rb_node *parent = NULL;
  206. int ret;
  207. tmp.ino = ino;
  208. tmp.root = root;
  209. spin_lock(&fs_info->defrag_inodes_lock);
  210. p = fs_info->defrag_inodes.rb_node;
  211. while (p) {
  212. parent = p;
  213. entry = rb_entry(parent, struct inode_defrag, rb_node);
  214. ret = __compare_inode_defrag(&tmp, entry);
  215. if (ret < 0)
  216. p = parent->rb_left;
  217. else if (ret > 0)
  218. p = parent->rb_right;
  219. else
  220. goto out;
  221. }
  222. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  223. parent = rb_next(parent);
  224. if (parent)
  225. entry = rb_entry(parent, struct inode_defrag, rb_node);
  226. else
  227. entry = NULL;
  228. }
  229. out:
  230. if (entry)
  231. rb_erase(parent, &fs_info->defrag_inodes);
  232. spin_unlock(&fs_info->defrag_inodes_lock);
  233. return entry;
  234. }
  235. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  236. {
  237. struct inode_defrag *defrag;
  238. struct rb_node *node;
  239. spin_lock(&fs_info->defrag_inodes_lock);
  240. node = rb_first(&fs_info->defrag_inodes);
  241. while (node) {
  242. rb_erase(node, &fs_info->defrag_inodes);
  243. defrag = rb_entry(node, struct inode_defrag, rb_node);
  244. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  245. if (need_resched()) {
  246. spin_unlock(&fs_info->defrag_inodes_lock);
  247. cond_resched();
  248. spin_lock(&fs_info->defrag_inodes_lock);
  249. }
  250. node = rb_first(&fs_info->defrag_inodes);
  251. }
  252. spin_unlock(&fs_info->defrag_inodes_lock);
  253. }
  254. #define BTRFS_DEFRAG_BATCH 1024
  255. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  256. struct inode_defrag *defrag)
  257. {
  258. struct btrfs_root *inode_root;
  259. struct inode *inode;
  260. struct btrfs_key key;
  261. struct btrfs_ioctl_defrag_range_args range;
  262. int num_defrag;
  263. int index;
  264. int ret;
  265. /* get the inode */
  266. key.objectid = defrag->root;
  267. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  268. key.offset = (u64)-1;
  269. index = srcu_read_lock(&fs_info->subvol_srcu);
  270. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  271. if (IS_ERR(inode_root)) {
  272. ret = PTR_ERR(inode_root);
  273. goto cleanup;
  274. }
  275. key.objectid = defrag->ino;
  276. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  277. key.offset = 0;
  278. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  279. if (IS_ERR(inode)) {
  280. ret = PTR_ERR(inode);
  281. goto cleanup;
  282. }
  283. srcu_read_unlock(&fs_info->subvol_srcu, index);
  284. /* do a chunk of defrag */
  285. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  286. memset(&range, 0, sizeof(range));
  287. range.len = (u64)-1;
  288. range.start = defrag->last_offset;
  289. sb_start_write(fs_info->sb);
  290. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  291. BTRFS_DEFRAG_BATCH);
  292. sb_end_write(fs_info->sb);
  293. /*
  294. * if we filled the whole defrag batch, there
  295. * must be more work to do. Queue this defrag
  296. * again
  297. */
  298. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  299. defrag->last_offset = range.start;
  300. btrfs_requeue_inode_defrag(inode, defrag);
  301. } else if (defrag->last_offset && !defrag->cycled) {
  302. /*
  303. * we didn't fill our defrag batch, but
  304. * we didn't start at zero. Make sure we loop
  305. * around to the start of the file.
  306. */
  307. defrag->last_offset = 0;
  308. defrag->cycled = 1;
  309. btrfs_requeue_inode_defrag(inode, defrag);
  310. } else {
  311. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  312. }
  313. iput(inode);
  314. return 0;
  315. cleanup:
  316. srcu_read_unlock(&fs_info->subvol_srcu, index);
  317. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  318. return ret;
  319. }
  320. /*
  321. * run through the list of inodes in the FS that need
  322. * defragging
  323. */
  324. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  325. {
  326. struct inode_defrag *defrag;
  327. u64 first_ino = 0;
  328. u64 root_objectid = 0;
  329. atomic_inc(&fs_info->defrag_running);
  330. while (1) {
  331. /* Pause the auto defragger. */
  332. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  333. &fs_info->fs_state))
  334. break;
  335. if (!__need_auto_defrag(fs_info->tree_root))
  336. break;
  337. /* find an inode to defrag */
  338. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  339. first_ino);
  340. if (!defrag) {
  341. if (root_objectid || first_ino) {
  342. root_objectid = 0;
  343. first_ino = 0;
  344. continue;
  345. } else {
  346. break;
  347. }
  348. }
  349. first_ino = defrag->ino + 1;
  350. root_objectid = defrag->root;
  351. __btrfs_run_defrag_inode(fs_info, defrag);
  352. }
  353. atomic_dec(&fs_info->defrag_running);
  354. /*
  355. * during unmount, we use the transaction_wait queue to
  356. * wait for the defragger to stop
  357. */
  358. wake_up(&fs_info->transaction_wait);
  359. return 0;
  360. }
  361. /* simple helper to fault in pages and copy. This should go away
  362. * and be replaced with calls into generic code.
  363. */
  364. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  365. size_t write_bytes,
  366. struct page **prepared_pages,
  367. struct iov_iter *i)
  368. {
  369. size_t copied = 0;
  370. size_t total_copied = 0;
  371. int pg = 0;
  372. int offset = pos & (PAGE_CACHE_SIZE - 1);
  373. while (write_bytes > 0) {
  374. size_t count = min_t(size_t,
  375. PAGE_CACHE_SIZE - offset, write_bytes);
  376. struct page *page = prepared_pages[pg];
  377. /*
  378. * Copy data from userspace to the current page
  379. */
  380. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  381. /* Flush processor's dcache for this page */
  382. flush_dcache_page(page);
  383. /*
  384. * if we get a partial write, we can end up with
  385. * partially up to date pages. These add
  386. * a lot of complexity, so make sure they don't
  387. * happen by forcing this copy to be retried.
  388. *
  389. * The rest of the btrfs_file_write code will fall
  390. * back to page at a time copies after we return 0.
  391. */
  392. if (!PageUptodate(page) && copied < count)
  393. copied = 0;
  394. iov_iter_advance(i, copied);
  395. write_bytes -= copied;
  396. total_copied += copied;
  397. /* Return to btrfs_file_aio_write to fault page */
  398. if (unlikely(copied == 0))
  399. break;
  400. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  401. offset += copied;
  402. } else {
  403. pg++;
  404. offset = 0;
  405. }
  406. }
  407. return total_copied;
  408. }
  409. /*
  410. * unlocks pages after btrfs_file_write is done with them
  411. */
  412. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  413. {
  414. size_t i;
  415. for (i = 0; i < num_pages; i++) {
  416. /* page checked is some magic around finding pages that
  417. * have been modified without going through btrfs_set_page_dirty
  418. * clear it here
  419. */
  420. ClearPageChecked(pages[i]);
  421. unlock_page(pages[i]);
  422. mark_page_accessed(pages[i]);
  423. page_cache_release(pages[i]);
  424. }
  425. }
  426. /*
  427. * after copy_from_user, pages need to be dirtied and we need to make
  428. * sure holes are created between the current EOF and the start of
  429. * any next extents (if required).
  430. *
  431. * this also makes the decision about creating an inline extent vs
  432. * doing real data extents, marking pages dirty and delalloc as required.
  433. */
  434. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  435. struct page **pages, size_t num_pages,
  436. loff_t pos, size_t write_bytes,
  437. struct extent_state **cached)
  438. {
  439. int err = 0;
  440. int i;
  441. u64 num_bytes;
  442. u64 start_pos;
  443. u64 end_of_last_block;
  444. u64 end_pos = pos + write_bytes;
  445. loff_t isize = i_size_read(inode);
  446. start_pos = pos & ~((u64)root->sectorsize - 1);
  447. num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
  448. end_of_last_block = start_pos + num_bytes - 1;
  449. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  450. cached);
  451. if (err)
  452. return err;
  453. for (i = 0; i < num_pages; i++) {
  454. struct page *p = pages[i];
  455. SetPageUptodate(p);
  456. ClearPageChecked(p);
  457. set_page_dirty(p);
  458. }
  459. /*
  460. * we've only changed i_size in ram, and we haven't updated
  461. * the disk i_size. There is no need to log the inode
  462. * at this time.
  463. */
  464. if (end_pos > isize)
  465. i_size_write(inode, end_pos);
  466. return 0;
  467. }
  468. /*
  469. * this drops all the extents in the cache that intersect the range
  470. * [start, end]. Existing extents are split as required.
  471. */
  472. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  473. int skip_pinned)
  474. {
  475. struct extent_map *em;
  476. struct extent_map *split = NULL;
  477. struct extent_map *split2 = NULL;
  478. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  479. u64 len = end - start + 1;
  480. u64 gen;
  481. int ret;
  482. int testend = 1;
  483. unsigned long flags;
  484. int compressed = 0;
  485. bool modified;
  486. WARN_ON(end < start);
  487. if (end == (u64)-1) {
  488. len = (u64)-1;
  489. testend = 0;
  490. }
  491. while (1) {
  492. int no_splits = 0;
  493. modified = false;
  494. if (!split)
  495. split = alloc_extent_map();
  496. if (!split2)
  497. split2 = alloc_extent_map();
  498. if (!split || !split2)
  499. no_splits = 1;
  500. write_lock(&em_tree->lock);
  501. em = lookup_extent_mapping(em_tree, start, len);
  502. if (!em) {
  503. write_unlock(&em_tree->lock);
  504. break;
  505. }
  506. flags = em->flags;
  507. gen = em->generation;
  508. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  509. if (testend && em->start + em->len >= start + len) {
  510. free_extent_map(em);
  511. write_unlock(&em_tree->lock);
  512. break;
  513. }
  514. start = em->start + em->len;
  515. if (testend)
  516. len = start + len - (em->start + em->len);
  517. free_extent_map(em);
  518. write_unlock(&em_tree->lock);
  519. continue;
  520. }
  521. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  522. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  523. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  524. modified = !list_empty(&em->list);
  525. if (no_splits)
  526. goto next;
  527. if (em->start < start) {
  528. split->start = em->start;
  529. split->len = start - em->start;
  530. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  531. split->orig_start = em->orig_start;
  532. split->block_start = em->block_start;
  533. if (compressed)
  534. split->block_len = em->block_len;
  535. else
  536. split->block_len = split->len;
  537. split->orig_block_len = max(split->block_len,
  538. em->orig_block_len);
  539. split->ram_bytes = em->ram_bytes;
  540. } else {
  541. split->orig_start = split->start;
  542. split->block_len = 0;
  543. split->block_start = em->block_start;
  544. split->orig_block_len = 0;
  545. split->ram_bytes = split->len;
  546. }
  547. split->generation = gen;
  548. split->bdev = em->bdev;
  549. split->flags = flags;
  550. split->compress_type = em->compress_type;
  551. replace_extent_mapping(em_tree, em, split, modified);
  552. free_extent_map(split);
  553. split = split2;
  554. split2 = NULL;
  555. }
  556. if (testend && em->start + em->len > start + len) {
  557. u64 diff = start + len - em->start;
  558. split->start = start + len;
  559. split->len = em->start + em->len - (start + len);
  560. split->bdev = em->bdev;
  561. split->flags = flags;
  562. split->compress_type = em->compress_type;
  563. split->generation = gen;
  564. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  565. split->orig_block_len = max(em->block_len,
  566. em->orig_block_len);
  567. split->ram_bytes = em->ram_bytes;
  568. if (compressed) {
  569. split->block_len = em->block_len;
  570. split->block_start = em->block_start;
  571. split->orig_start = em->orig_start;
  572. } else {
  573. split->block_len = split->len;
  574. split->block_start = em->block_start
  575. + diff;
  576. split->orig_start = em->orig_start;
  577. }
  578. } else {
  579. split->ram_bytes = split->len;
  580. split->orig_start = split->start;
  581. split->block_len = 0;
  582. split->block_start = em->block_start;
  583. split->orig_block_len = 0;
  584. }
  585. if (extent_map_in_tree(em)) {
  586. replace_extent_mapping(em_tree, em, split,
  587. modified);
  588. } else {
  589. ret = add_extent_mapping(em_tree, split,
  590. modified);
  591. ASSERT(ret == 0); /* Logic error */
  592. }
  593. free_extent_map(split);
  594. split = NULL;
  595. }
  596. next:
  597. if (extent_map_in_tree(em))
  598. remove_extent_mapping(em_tree, em);
  599. write_unlock(&em_tree->lock);
  600. /* once for us */
  601. free_extent_map(em);
  602. /* once for the tree*/
  603. free_extent_map(em);
  604. }
  605. if (split)
  606. free_extent_map(split);
  607. if (split2)
  608. free_extent_map(split2);
  609. }
  610. /*
  611. * this is very complex, but the basic idea is to drop all extents
  612. * in the range start - end. hint_block is filled in with a block number
  613. * that would be a good hint to the block allocator for this file.
  614. *
  615. * If an extent intersects the range but is not entirely inside the range
  616. * it is either truncated or split. Anything entirely inside the range
  617. * is deleted from the tree.
  618. */
  619. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  620. struct btrfs_root *root, struct inode *inode,
  621. struct btrfs_path *path, u64 start, u64 end,
  622. u64 *drop_end, int drop_cache,
  623. int replace_extent,
  624. u32 extent_item_size,
  625. int *key_inserted)
  626. {
  627. struct extent_buffer *leaf;
  628. struct btrfs_file_extent_item *fi;
  629. struct btrfs_key key;
  630. struct btrfs_key new_key;
  631. u64 ino = btrfs_ino(inode);
  632. u64 search_start = start;
  633. u64 disk_bytenr = 0;
  634. u64 num_bytes = 0;
  635. u64 extent_offset = 0;
  636. u64 extent_end = 0;
  637. int del_nr = 0;
  638. int del_slot = 0;
  639. int extent_type;
  640. int recow;
  641. int ret;
  642. int modify_tree = -1;
  643. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  644. int found = 0;
  645. int leafs_visited = 0;
  646. if (drop_cache)
  647. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  648. if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
  649. modify_tree = 0;
  650. while (1) {
  651. recow = 0;
  652. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  653. search_start, modify_tree);
  654. if (ret < 0)
  655. break;
  656. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  657. leaf = path->nodes[0];
  658. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  659. if (key.objectid == ino &&
  660. key.type == BTRFS_EXTENT_DATA_KEY)
  661. path->slots[0]--;
  662. }
  663. ret = 0;
  664. leafs_visited++;
  665. next_slot:
  666. leaf = path->nodes[0];
  667. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  668. BUG_ON(del_nr > 0);
  669. ret = btrfs_next_leaf(root, path);
  670. if (ret < 0)
  671. break;
  672. if (ret > 0) {
  673. ret = 0;
  674. break;
  675. }
  676. leafs_visited++;
  677. leaf = path->nodes[0];
  678. recow = 1;
  679. }
  680. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  681. if (key.objectid > ino ||
  682. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  683. break;
  684. fi = btrfs_item_ptr(leaf, path->slots[0],
  685. struct btrfs_file_extent_item);
  686. extent_type = btrfs_file_extent_type(leaf, fi);
  687. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  688. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  689. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  690. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  691. extent_offset = btrfs_file_extent_offset(leaf, fi);
  692. extent_end = key.offset +
  693. btrfs_file_extent_num_bytes(leaf, fi);
  694. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  695. extent_end = key.offset +
  696. btrfs_file_extent_inline_len(leaf,
  697. path->slots[0], fi);
  698. } else {
  699. WARN_ON(1);
  700. extent_end = search_start;
  701. }
  702. if (extent_end <= search_start) {
  703. path->slots[0]++;
  704. goto next_slot;
  705. }
  706. found = 1;
  707. search_start = max(key.offset, start);
  708. if (recow || !modify_tree) {
  709. modify_tree = -1;
  710. btrfs_release_path(path);
  711. continue;
  712. }
  713. /*
  714. * | - range to drop - |
  715. * | -------- extent -------- |
  716. */
  717. if (start > key.offset && end < extent_end) {
  718. BUG_ON(del_nr > 0);
  719. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  720. ret = -EOPNOTSUPP;
  721. break;
  722. }
  723. memcpy(&new_key, &key, sizeof(new_key));
  724. new_key.offset = start;
  725. ret = btrfs_duplicate_item(trans, root, path,
  726. &new_key);
  727. if (ret == -EAGAIN) {
  728. btrfs_release_path(path);
  729. continue;
  730. }
  731. if (ret < 0)
  732. break;
  733. leaf = path->nodes[0];
  734. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  735. struct btrfs_file_extent_item);
  736. btrfs_set_file_extent_num_bytes(leaf, fi,
  737. start - key.offset);
  738. fi = btrfs_item_ptr(leaf, path->slots[0],
  739. struct btrfs_file_extent_item);
  740. extent_offset += start - key.offset;
  741. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  742. btrfs_set_file_extent_num_bytes(leaf, fi,
  743. extent_end - start);
  744. btrfs_mark_buffer_dirty(leaf);
  745. if (update_refs && disk_bytenr > 0) {
  746. ret = btrfs_inc_extent_ref(trans, root,
  747. disk_bytenr, num_bytes, 0,
  748. root->root_key.objectid,
  749. new_key.objectid,
  750. start - extent_offset, 0);
  751. BUG_ON(ret); /* -ENOMEM */
  752. }
  753. key.offset = start;
  754. }
  755. /*
  756. * | ---- range to drop ----- |
  757. * | -------- extent -------- |
  758. */
  759. if (start <= key.offset && end < extent_end) {
  760. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  761. ret = -EOPNOTSUPP;
  762. break;
  763. }
  764. memcpy(&new_key, &key, sizeof(new_key));
  765. new_key.offset = end;
  766. btrfs_set_item_key_safe(root, path, &new_key);
  767. extent_offset += end - key.offset;
  768. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  769. btrfs_set_file_extent_num_bytes(leaf, fi,
  770. extent_end - end);
  771. btrfs_mark_buffer_dirty(leaf);
  772. if (update_refs && disk_bytenr > 0)
  773. inode_sub_bytes(inode, end - key.offset);
  774. break;
  775. }
  776. search_start = extent_end;
  777. /*
  778. * | ---- range to drop ----- |
  779. * | -------- extent -------- |
  780. */
  781. if (start > key.offset && end >= extent_end) {
  782. BUG_ON(del_nr > 0);
  783. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  784. ret = -EOPNOTSUPP;
  785. break;
  786. }
  787. btrfs_set_file_extent_num_bytes(leaf, fi,
  788. start - key.offset);
  789. btrfs_mark_buffer_dirty(leaf);
  790. if (update_refs && disk_bytenr > 0)
  791. inode_sub_bytes(inode, extent_end - start);
  792. if (end == extent_end)
  793. break;
  794. path->slots[0]++;
  795. goto next_slot;
  796. }
  797. /*
  798. * | ---- range to drop ----- |
  799. * | ------ extent ------ |
  800. */
  801. if (start <= key.offset && end >= extent_end) {
  802. if (del_nr == 0) {
  803. del_slot = path->slots[0];
  804. del_nr = 1;
  805. } else {
  806. BUG_ON(del_slot + del_nr != path->slots[0]);
  807. del_nr++;
  808. }
  809. if (update_refs &&
  810. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  811. inode_sub_bytes(inode,
  812. extent_end - key.offset);
  813. extent_end = ALIGN(extent_end,
  814. root->sectorsize);
  815. } else if (update_refs && disk_bytenr > 0) {
  816. ret = btrfs_free_extent(trans, root,
  817. disk_bytenr, num_bytes, 0,
  818. root->root_key.objectid,
  819. key.objectid, key.offset -
  820. extent_offset, 0);
  821. BUG_ON(ret); /* -ENOMEM */
  822. inode_sub_bytes(inode,
  823. extent_end - key.offset);
  824. }
  825. if (end == extent_end)
  826. break;
  827. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  828. path->slots[0]++;
  829. goto next_slot;
  830. }
  831. ret = btrfs_del_items(trans, root, path, del_slot,
  832. del_nr);
  833. if (ret) {
  834. btrfs_abort_transaction(trans, root, ret);
  835. break;
  836. }
  837. del_nr = 0;
  838. del_slot = 0;
  839. btrfs_release_path(path);
  840. continue;
  841. }
  842. BUG_ON(1);
  843. }
  844. if (!ret && del_nr > 0) {
  845. /*
  846. * Set path->slots[0] to first slot, so that after the delete
  847. * if items are move off from our leaf to its immediate left or
  848. * right neighbor leafs, we end up with a correct and adjusted
  849. * path->slots[0] for our insertion (if replace_extent != 0).
  850. */
  851. path->slots[0] = del_slot;
  852. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  853. if (ret)
  854. btrfs_abort_transaction(trans, root, ret);
  855. }
  856. leaf = path->nodes[0];
  857. /*
  858. * If btrfs_del_items() was called, it might have deleted a leaf, in
  859. * which case it unlocked our path, so check path->locks[0] matches a
  860. * write lock.
  861. */
  862. if (!ret && replace_extent && leafs_visited == 1 &&
  863. (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
  864. path->locks[0] == BTRFS_WRITE_LOCK) &&
  865. btrfs_leaf_free_space(root, leaf) >=
  866. sizeof(struct btrfs_item) + extent_item_size) {
  867. key.objectid = ino;
  868. key.type = BTRFS_EXTENT_DATA_KEY;
  869. key.offset = start;
  870. if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
  871. struct btrfs_key slot_key;
  872. btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
  873. if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
  874. path->slots[0]++;
  875. }
  876. setup_items_for_insert(root, path, &key,
  877. &extent_item_size,
  878. extent_item_size,
  879. sizeof(struct btrfs_item) +
  880. extent_item_size, 1);
  881. *key_inserted = 1;
  882. }
  883. if (!replace_extent || !(*key_inserted))
  884. btrfs_release_path(path);
  885. if (drop_end)
  886. *drop_end = found ? min(end, extent_end) : end;
  887. return ret;
  888. }
  889. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  890. struct btrfs_root *root, struct inode *inode, u64 start,
  891. u64 end, int drop_cache)
  892. {
  893. struct btrfs_path *path;
  894. int ret;
  895. path = btrfs_alloc_path();
  896. if (!path)
  897. return -ENOMEM;
  898. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  899. drop_cache, 0, 0, NULL);
  900. btrfs_free_path(path);
  901. return ret;
  902. }
  903. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  904. u64 objectid, u64 bytenr, u64 orig_offset,
  905. u64 *start, u64 *end)
  906. {
  907. struct btrfs_file_extent_item *fi;
  908. struct btrfs_key key;
  909. u64 extent_end;
  910. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  911. return 0;
  912. btrfs_item_key_to_cpu(leaf, &key, slot);
  913. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  914. return 0;
  915. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  916. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  917. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  918. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  919. btrfs_file_extent_compression(leaf, fi) ||
  920. btrfs_file_extent_encryption(leaf, fi) ||
  921. btrfs_file_extent_other_encoding(leaf, fi))
  922. return 0;
  923. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  924. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  925. return 0;
  926. *start = key.offset;
  927. *end = extent_end;
  928. return 1;
  929. }
  930. /*
  931. * Mark extent in the range start - end as written.
  932. *
  933. * This changes extent type from 'pre-allocated' to 'regular'. If only
  934. * part of extent is marked as written, the extent will be split into
  935. * two or three.
  936. */
  937. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  938. struct inode *inode, u64 start, u64 end)
  939. {
  940. struct btrfs_root *root = BTRFS_I(inode)->root;
  941. struct extent_buffer *leaf;
  942. struct btrfs_path *path;
  943. struct btrfs_file_extent_item *fi;
  944. struct btrfs_key key;
  945. struct btrfs_key new_key;
  946. u64 bytenr;
  947. u64 num_bytes;
  948. u64 extent_end;
  949. u64 orig_offset;
  950. u64 other_start;
  951. u64 other_end;
  952. u64 split;
  953. int del_nr = 0;
  954. int del_slot = 0;
  955. int recow;
  956. int ret;
  957. u64 ino = btrfs_ino(inode);
  958. path = btrfs_alloc_path();
  959. if (!path)
  960. return -ENOMEM;
  961. again:
  962. recow = 0;
  963. split = start;
  964. key.objectid = ino;
  965. key.type = BTRFS_EXTENT_DATA_KEY;
  966. key.offset = split;
  967. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  968. if (ret < 0)
  969. goto out;
  970. if (ret > 0 && path->slots[0] > 0)
  971. path->slots[0]--;
  972. leaf = path->nodes[0];
  973. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  974. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  975. fi = btrfs_item_ptr(leaf, path->slots[0],
  976. struct btrfs_file_extent_item);
  977. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  978. BTRFS_FILE_EXTENT_PREALLOC);
  979. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  980. BUG_ON(key.offset > start || extent_end < end);
  981. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  982. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  983. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  984. memcpy(&new_key, &key, sizeof(new_key));
  985. if (start == key.offset && end < extent_end) {
  986. other_start = 0;
  987. other_end = start;
  988. if (extent_mergeable(leaf, path->slots[0] - 1,
  989. ino, bytenr, orig_offset,
  990. &other_start, &other_end)) {
  991. new_key.offset = end;
  992. btrfs_set_item_key_safe(root, path, &new_key);
  993. fi = btrfs_item_ptr(leaf, path->slots[0],
  994. struct btrfs_file_extent_item);
  995. btrfs_set_file_extent_generation(leaf, fi,
  996. trans->transid);
  997. btrfs_set_file_extent_num_bytes(leaf, fi,
  998. extent_end - end);
  999. btrfs_set_file_extent_offset(leaf, fi,
  1000. end - orig_offset);
  1001. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1002. struct btrfs_file_extent_item);
  1003. btrfs_set_file_extent_generation(leaf, fi,
  1004. trans->transid);
  1005. btrfs_set_file_extent_num_bytes(leaf, fi,
  1006. end - other_start);
  1007. btrfs_mark_buffer_dirty(leaf);
  1008. goto out;
  1009. }
  1010. }
  1011. if (start > key.offset && end == extent_end) {
  1012. other_start = end;
  1013. other_end = 0;
  1014. if (extent_mergeable(leaf, path->slots[0] + 1,
  1015. ino, bytenr, orig_offset,
  1016. &other_start, &other_end)) {
  1017. fi = btrfs_item_ptr(leaf, path->slots[0],
  1018. struct btrfs_file_extent_item);
  1019. btrfs_set_file_extent_num_bytes(leaf, fi,
  1020. start - key.offset);
  1021. btrfs_set_file_extent_generation(leaf, fi,
  1022. trans->transid);
  1023. path->slots[0]++;
  1024. new_key.offset = start;
  1025. btrfs_set_item_key_safe(root, path, &new_key);
  1026. fi = btrfs_item_ptr(leaf, path->slots[0],
  1027. struct btrfs_file_extent_item);
  1028. btrfs_set_file_extent_generation(leaf, fi,
  1029. trans->transid);
  1030. btrfs_set_file_extent_num_bytes(leaf, fi,
  1031. other_end - start);
  1032. btrfs_set_file_extent_offset(leaf, fi,
  1033. start - orig_offset);
  1034. btrfs_mark_buffer_dirty(leaf);
  1035. goto out;
  1036. }
  1037. }
  1038. while (start > key.offset || end < extent_end) {
  1039. if (key.offset == start)
  1040. split = end;
  1041. new_key.offset = split;
  1042. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  1043. if (ret == -EAGAIN) {
  1044. btrfs_release_path(path);
  1045. goto again;
  1046. }
  1047. if (ret < 0) {
  1048. btrfs_abort_transaction(trans, root, ret);
  1049. goto out;
  1050. }
  1051. leaf = path->nodes[0];
  1052. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1053. struct btrfs_file_extent_item);
  1054. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1055. btrfs_set_file_extent_num_bytes(leaf, fi,
  1056. split - key.offset);
  1057. fi = btrfs_item_ptr(leaf, path->slots[0],
  1058. struct btrfs_file_extent_item);
  1059. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1060. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  1061. btrfs_set_file_extent_num_bytes(leaf, fi,
  1062. extent_end - split);
  1063. btrfs_mark_buffer_dirty(leaf);
  1064. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  1065. root->root_key.objectid,
  1066. ino, orig_offset, 0);
  1067. BUG_ON(ret); /* -ENOMEM */
  1068. if (split == start) {
  1069. key.offset = start;
  1070. } else {
  1071. BUG_ON(start != key.offset);
  1072. path->slots[0]--;
  1073. extent_end = end;
  1074. }
  1075. recow = 1;
  1076. }
  1077. other_start = end;
  1078. other_end = 0;
  1079. if (extent_mergeable(leaf, path->slots[0] + 1,
  1080. ino, bytenr, orig_offset,
  1081. &other_start, &other_end)) {
  1082. if (recow) {
  1083. btrfs_release_path(path);
  1084. goto again;
  1085. }
  1086. extent_end = other_end;
  1087. del_slot = path->slots[0] + 1;
  1088. del_nr++;
  1089. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1090. 0, root->root_key.objectid,
  1091. ino, orig_offset, 0);
  1092. BUG_ON(ret); /* -ENOMEM */
  1093. }
  1094. other_start = 0;
  1095. other_end = start;
  1096. if (extent_mergeable(leaf, path->slots[0] - 1,
  1097. ino, bytenr, orig_offset,
  1098. &other_start, &other_end)) {
  1099. if (recow) {
  1100. btrfs_release_path(path);
  1101. goto again;
  1102. }
  1103. key.offset = other_start;
  1104. del_slot = path->slots[0];
  1105. del_nr++;
  1106. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1107. 0, root->root_key.objectid,
  1108. ino, orig_offset, 0);
  1109. BUG_ON(ret); /* -ENOMEM */
  1110. }
  1111. if (del_nr == 0) {
  1112. fi = btrfs_item_ptr(leaf, path->slots[0],
  1113. struct btrfs_file_extent_item);
  1114. btrfs_set_file_extent_type(leaf, fi,
  1115. BTRFS_FILE_EXTENT_REG);
  1116. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1117. btrfs_mark_buffer_dirty(leaf);
  1118. } else {
  1119. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1120. struct btrfs_file_extent_item);
  1121. btrfs_set_file_extent_type(leaf, fi,
  1122. BTRFS_FILE_EXTENT_REG);
  1123. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1124. btrfs_set_file_extent_num_bytes(leaf, fi,
  1125. extent_end - key.offset);
  1126. btrfs_mark_buffer_dirty(leaf);
  1127. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1128. if (ret < 0) {
  1129. btrfs_abort_transaction(trans, root, ret);
  1130. goto out;
  1131. }
  1132. }
  1133. out:
  1134. btrfs_free_path(path);
  1135. return 0;
  1136. }
  1137. /*
  1138. * on error we return an unlocked page and the error value
  1139. * on success we return a locked page and 0
  1140. */
  1141. static int prepare_uptodate_page(struct page *page, u64 pos,
  1142. bool force_uptodate)
  1143. {
  1144. int ret = 0;
  1145. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1146. !PageUptodate(page)) {
  1147. ret = btrfs_readpage(NULL, page);
  1148. if (ret)
  1149. return ret;
  1150. lock_page(page);
  1151. if (!PageUptodate(page)) {
  1152. unlock_page(page);
  1153. return -EIO;
  1154. }
  1155. }
  1156. return 0;
  1157. }
  1158. /*
  1159. * this just gets pages into the page cache and locks them down.
  1160. */
  1161. static noinline int prepare_pages(struct inode *inode, struct page **pages,
  1162. size_t num_pages, loff_t pos,
  1163. size_t write_bytes, bool force_uptodate)
  1164. {
  1165. int i;
  1166. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1167. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1168. int err = 0;
  1169. int faili;
  1170. for (i = 0; i < num_pages; i++) {
  1171. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1172. mask | __GFP_WRITE);
  1173. if (!pages[i]) {
  1174. faili = i - 1;
  1175. err = -ENOMEM;
  1176. goto fail;
  1177. }
  1178. if (i == 0)
  1179. err = prepare_uptodate_page(pages[i], pos,
  1180. force_uptodate);
  1181. if (i == num_pages - 1)
  1182. err = prepare_uptodate_page(pages[i],
  1183. pos + write_bytes, false);
  1184. if (err) {
  1185. page_cache_release(pages[i]);
  1186. faili = i - 1;
  1187. goto fail;
  1188. }
  1189. wait_on_page_writeback(pages[i]);
  1190. }
  1191. return 0;
  1192. fail:
  1193. while (faili >= 0) {
  1194. unlock_page(pages[faili]);
  1195. page_cache_release(pages[faili]);
  1196. faili--;
  1197. }
  1198. return err;
  1199. }
  1200. /*
  1201. * This function locks the extent and properly waits for data=ordered extents
  1202. * to finish before allowing the pages to be modified if need.
  1203. *
  1204. * The return value:
  1205. * 1 - the extent is locked
  1206. * 0 - the extent is not locked, and everything is OK
  1207. * -EAGAIN - need re-prepare the pages
  1208. * the other < 0 number - Something wrong happens
  1209. */
  1210. static noinline int
  1211. lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
  1212. size_t num_pages, loff_t pos,
  1213. u64 *lockstart, u64 *lockend,
  1214. struct extent_state **cached_state)
  1215. {
  1216. u64 start_pos;
  1217. u64 last_pos;
  1218. int i;
  1219. int ret = 0;
  1220. start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
  1221. last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
  1222. if (start_pos < inode->i_size) {
  1223. struct btrfs_ordered_extent *ordered;
  1224. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1225. start_pos, last_pos, 0, cached_state);
  1226. ordered = btrfs_lookup_ordered_range(inode, start_pos,
  1227. last_pos - start_pos + 1);
  1228. if (ordered &&
  1229. ordered->file_offset + ordered->len > start_pos &&
  1230. ordered->file_offset <= last_pos) {
  1231. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1232. start_pos, last_pos,
  1233. cached_state, GFP_NOFS);
  1234. for (i = 0; i < num_pages; i++) {
  1235. unlock_page(pages[i]);
  1236. page_cache_release(pages[i]);
  1237. }
  1238. btrfs_start_ordered_extent(inode, ordered, 1);
  1239. btrfs_put_ordered_extent(ordered);
  1240. return -EAGAIN;
  1241. }
  1242. if (ordered)
  1243. btrfs_put_ordered_extent(ordered);
  1244. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1245. last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
  1246. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1247. 0, 0, cached_state, GFP_NOFS);
  1248. *lockstart = start_pos;
  1249. *lockend = last_pos;
  1250. ret = 1;
  1251. }
  1252. for (i = 0; i < num_pages; i++) {
  1253. if (clear_page_dirty_for_io(pages[i]))
  1254. account_page_redirty(pages[i]);
  1255. set_page_extent_mapped(pages[i]);
  1256. WARN_ON(!PageLocked(pages[i]));
  1257. }
  1258. return ret;
  1259. }
  1260. static noinline int check_can_nocow(struct inode *inode, loff_t pos,
  1261. size_t *write_bytes)
  1262. {
  1263. struct btrfs_root *root = BTRFS_I(inode)->root;
  1264. struct btrfs_ordered_extent *ordered;
  1265. u64 lockstart, lockend;
  1266. u64 num_bytes;
  1267. int ret;
  1268. ret = btrfs_start_nocow_write(root);
  1269. if (!ret)
  1270. return -ENOSPC;
  1271. lockstart = round_down(pos, root->sectorsize);
  1272. lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
  1273. while (1) {
  1274. lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1275. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  1276. lockend - lockstart + 1);
  1277. if (!ordered) {
  1278. break;
  1279. }
  1280. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1281. btrfs_start_ordered_extent(inode, ordered, 1);
  1282. btrfs_put_ordered_extent(ordered);
  1283. }
  1284. num_bytes = lockend - lockstart + 1;
  1285. ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
  1286. if (ret <= 0) {
  1287. ret = 0;
  1288. btrfs_end_nocow_write(root);
  1289. } else {
  1290. *write_bytes = min_t(size_t, *write_bytes ,
  1291. num_bytes - pos + lockstart);
  1292. }
  1293. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1294. return ret;
  1295. }
  1296. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1297. struct iov_iter *i,
  1298. loff_t pos)
  1299. {
  1300. struct inode *inode = file_inode(file);
  1301. struct btrfs_root *root = BTRFS_I(inode)->root;
  1302. struct page **pages = NULL;
  1303. struct extent_state *cached_state = NULL;
  1304. u64 release_bytes = 0;
  1305. u64 lockstart;
  1306. u64 lockend;
  1307. unsigned long first_index;
  1308. size_t num_written = 0;
  1309. int nrptrs;
  1310. int ret = 0;
  1311. bool only_release_metadata = false;
  1312. bool force_page_uptodate = false;
  1313. bool need_unlock;
  1314. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1315. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1316. (sizeof(struct page *)));
  1317. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1318. nrptrs = max(nrptrs, 8);
  1319. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1320. if (!pages)
  1321. return -ENOMEM;
  1322. first_index = pos >> PAGE_CACHE_SHIFT;
  1323. while (iov_iter_count(i) > 0) {
  1324. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1325. size_t write_bytes = min(iov_iter_count(i),
  1326. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1327. offset);
  1328. size_t num_pages = (write_bytes + offset +
  1329. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1330. size_t reserve_bytes;
  1331. size_t dirty_pages;
  1332. size_t copied;
  1333. WARN_ON(num_pages > nrptrs);
  1334. /*
  1335. * Fault pages before locking them in prepare_pages
  1336. * to avoid recursive lock
  1337. */
  1338. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1339. ret = -EFAULT;
  1340. break;
  1341. }
  1342. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1343. ret = btrfs_check_data_free_space(inode, reserve_bytes);
  1344. if (ret == -ENOSPC &&
  1345. (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1346. BTRFS_INODE_PREALLOC))) {
  1347. ret = check_can_nocow(inode, pos, &write_bytes);
  1348. if (ret > 0) {
  1349. only_release_metadata = true;
  1350. /*
  1351. * our prealloc extent may be smaller than
  1352. * write_bytes, so scale down.
  1353. */
  1354. num_pages = (write_bytes + offset +
  1355. PAGE_CACHE_SIZE - 1) >>
  1356. PAGE_CACHE_SHIFT;
  1357. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1358. ret = 0;
  1359. } else {
  1360. ret = -ENOSPC;
  1361. }
  1362. }
  1363. if (ret)
  1364. break;
  1365. ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
  1366. if (ret) {
  1367. if (!only_release_metadata)
  1368. btrfs_free_reserved_data_space(inode,
  1369. reserve_bytes);
  1370. else
  1371. btrfs_end_nocow_write(root);
  1372. break;
  1373. }
  1374. release_bytes = reserve_bytes;
  1375. need_unlock = false;
  1376. again:
  1377. /*
  1378. * This is going to setup the pages array with the number of
  1379. * pages we want, so we don't really need to worry about the
  1380. * contents of pages from loop to loop
  1381. */
  1382. ret = prepare_pages(inode, pages, num_pages,
  1383. pos, write_bytes,
  1384. force_page_uptodate);
  1385. if (ret)
  1386. break;
  1387. ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
  1388. pos, &lockstart, &lockend,
  1389. &cached_state);
  1390. if (ret < 0) {
  1391. if (ret == -EAGAIN)
  1392. goto again;
  1393. break;
  1394. } else if (ret > 0) {
  1395. need_unlock = true;
  1396. ret = 0;
  1397. }
  1398. copied = btrfs_copy_from_user(pos, num_pages,
  1399. write_bytes, pages, i);
  1400. /*
  1401. * if we have trouble faulting in the pages, fall
  1402. * back to one page at a time
  1403. */
  1404. if (copied < write_bytes)
  1405. nrptrs = 1;
  1406. if (copied == 0) {
  1407. force_page_uptodate = true;
  1408. dirty_pages = 0;
  1409. } else {
  1410. force_page_uptodate = false;
  1411. dirty_pages = (copied + offset +
  1412. PAGE_CACHE_SIZE - 1) >>
  1413. PAGE_CACHE_SHIFT;
  1414. }
  1415. /*
  1416. * If we had a short copy we need to release the excess delaloc
  1417. * bytes we reserved. We need to increment outstanding_extents
  1418. * because btrfs_delalloc_release_space will decrement it, but
  1419. * we still have an outstanding extent for the chunk we actually
  1420. * managed to copy.
  1421. */
  1422. if (num_pages > dirty_pages) {
  1423. release_bytes = (num_pages - dirty_pages) <<
  1424. PAGE_CACHE_SHIFT;
  1425. if (copied > 0) {
  1426. spin_lock(&BTRFS_I(inode)->lock);
  1427. BTRFS_I(inode)->outstanding_extents++;
  1428. spin_unlock(&BTRFS_I(inode)->lock);
  1429. }
  1430. if (only_release_metadata)
  1431. btrfs_delalloc_release_metadata(inode,
  1432. release_bytes);
  1433. else
  1434. btrfs_delalloc_release_space(inode,
  1435. release_bytes);
  1436. }
  1437. release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
  1438. if (copied > 0)
  1439. ret = btrfs_dirty_pages(root, inode, pages,
  1440. dirty_pages, pos, copied,
  1441. NULL);
  1442. if (need_unlock)
  1443. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1444. lockstart, lockend, &cached_state,
  1445. GFP_NOFS);
  1446. if (ret) {
  1447. btrfs_drop_pages(pages, num_pages);
  1448. break;
  1449. }
  1450. release_bytes = 0;
  1451. if (only_release_metadata)
  1452. btrfs_end_nocow_write(root);
  1453. if (only_release_metadata && copied > 0) {
  1454. u64 lockstart = round_down(pos, root->sectorsize);
  1455. u64 lockend = lockstart +
  1456. (dirty_pages << PAGE_CACHE_SHIFT) - 1;
  1457. set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1458. lockend, EXTENT_NORESERVE, NULL,
  1459. NULL, GFP_NOFS);
  1460. only_release_metadata = false;
  1461. }
  1462. btrfs_drop_pages(pages, num_pages);
  1463. cond_resched();
  1464. balance_dirty_pages_ratelimited(inode->i_mapping);
  1465. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1466. btrfs_btree_balance_dirty(root);
  1467. pos += copied;
  1468. num_written += copied;
  1469. }
  1470. kfree(pages);
  1471. if (release_bytes) {
  1472. if (only_release_metadata) {
  1473. btrfs_end_nocow_write(root);
  1474. btrfs_delalloc_release_metadata(inode, release_bytes);
  1475. } else {
  1476. btrfs_delalloc_release_space(inode, release_bytes);
  1477. }
  1478. }
  1479. return num_written ? num_written : ret;
  1480. }
  1481. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1482. const struct iovec *iov,
  1483. unsigned long nr_segs, loff_t pos,
  1484. size_t count, size_t ocount)
  1485. {
  1486. struct file *file = iocb->ki_filp;
  1487. struct iov_iter i;
  1488. ssize_t written;
  1489. ssize_t written_buffered;
  1490. loff_t endbyte;
  1491. int err;
  1492. written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
  1493. count, ocount);
  1494. if (written < 0 || written == count)
  1495. return written;
  1496. pos += written;
  1497. count -= written;
  1498. iov_iter_init(&i, iov, nr_segs, count, written);
  1499. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1500. if (written_buffered < 0) {
  1501. err = written_buffered;
  1502. goto out;
  1503. }
  1504. endbyte = pos + written_buffered - 1;
  1505. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1506. if (err)
  1507. goto out;
  1508. written += written_buffered;
  1509. iocb->ki_pos = pos + written_buffered;
  1510. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1511. endbyte >> PAGE_CACHE_SHIFT);
  1512. out:
  1513. return written ? written : err;
  1514. }
  1515. static void update_time_for_write(struct inode *inode)
  1516. {
  1517. struct timespec now;
  1518. if (IS_NOCMTIME(inode))
  1519. return;
  1520. now = current_fs_time(inode->i_sb);
  1521. if (!timespec_equal(&inode->i_mtime, &now))
  1522. inode->i_mtime = now;
  1523. if (!timespec_equal(&inode->i_ctime, &now))
  1524. inode->i_ctime = now;
  1525. if (IS_I_VERSION(inode))
  1526. inode_inc_iversion(inode);
  1527. }
  1528. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1529. const struct iovec *iov,
  1530. unsigned long nr_segs, loff_t pos)
  1531. {
  1532. struct file *file = iocb->ki_filp;
  1533. struct inode *inode = file_inode(file);
  1534. struct btrfs_root *root = BTRFS_I(inode)->root;
  1535. u64 start_pos;
  1536. u64 end_pos;
  1537. ssize_t num_written = 0;
  1538. ssize_t err = 0;
  1539. size_t count, ocount;
  1540. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1541. mutex_lock(&inode->i_mutex);
  1542. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1543. if (err) {
  1544. mutex_unlock(&inode->i_mutex);
  1545. goto out;
  1546. }
  1547. count = ocount;
  1548. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1549. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1550. if (err) {
  1551. mutex_unlock(&inode->i_mutex);
  1552. goto out;
  1553. }
  1554. if (count == 0) {
  1555. mutex_unlock(&inode->i_mutex);
  1556. goto out;
  1557. }
  1558. err = file_remove_suid(file);
  1559. if (err) {
  1560. mutex_unlock(&inode->i_mutex);
  1561. goto out;
  1562. }
  1563. /*
  1564. * If BTRFS flips readonly due to some impossible error
  1565. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1566. * although we have opened a file as writable, we have
  1567. * to stop this write operation to ensure FS consistency.
  1568. */
  1569. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
  1570. mutex_unlock(&inode->i_mutex);
  1571. err = -EROFS;
  1572. goto out;
  1573. }
  1574. /*
  1575. * We reserve space for updating the inode when we reserve space for the
  1576. * extent we are going to write, so we will enospc out there. We don't
  1577. * need to start yet another transaction to update the inode as we will
  1578. * update the inode when we finish writing whatever data we write.
  1579. */
  1580. update_time_for_write(inode);
  1581. start_pos = round_down(pos, root->sectorsize);
  1582. if (start_pos > i_size_read(inode)) {
  1583. /* Expand hole size to cover write data, preventing empty gap */
  1584. end_pos = round_up(pos + count, root->sectorsize);
  1585. err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
  1586. if (err) {
  1587. mutex_unlock(&inode->i_mutex);
  1588. goto out;
  1589. }
  1590. }
  1591. if (sync)
  1592. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1593. if (unlikely(file->f_flags & O_DIRECT)) {
  1594. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1595. pos, count, ocount);
  1596. } else {
  1597. struct iov_iter i;
  1598. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1599. num_written = __btrfs_buffered_write(file, &i, pos);
  1600. if (num_written > 0)
  1601. iocb->ki_pos = pos + num_written;
  1602. }
  1603. mutex_unlock(&inode->i_mutex);
  1604. /*
  1605. * we want to make sure fsync finds this change
  1606. * but we haven't joined a transaction running right now.
  1607. *
  1608. * Later on, someone is sure to update the inode and get the
  1609. * real transid recorded.
  1610. *
  1611. * We set last_trans now to the fs_info generation + 1,
  1612. * this will either be one more than the running transaction
  1613. * or the generation used for the next transaction if there isn't
  1614. * one running right now.
  1615. *
  1616. * We also have to set last_sub_trans to the current log transid,
  1617. * otherwise subsequent syncs to a file that's been synced in this
  1618. * transaction will appear to have already occured.
  1619. */
  1620. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1621. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1622. if (num_written > 0) {
  1623. err = generic_write_sync(file, pos, num_written);
  1624. if (err < 0)
  1625. num_written = err;
  1626. }
  1627. if (sync)
  1628. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1629. out:
  1630. current->backing_dev_info = NULL;
  1631. return num_written ? num_written : err;
  1632. }
  1633. int btrfs_release_file(struct inode *inode, struct file *filp)
  1634. {
  1635. /*
  1636. * ordered_data_close is set by settattr when we are about to truncate
  1637. * a file from a non-zero size to a zero size. This tries to
  1638. * flush down new bytes that may have been written if the
  1639. * application were using truncate to replace a file in place.
  1640. */
  1641. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1642. &BTRFS_I(inode)->runtime_flags)) {
  1643. struct btrfs_trans_handle *trans;
  1644. struct btrfs_root *root = BTRFS_I(inode)->root;
  1645. /*
  1646. * We need to block on a committing transaction to keep us from
  1647. * throwing a ordered operation on to the list and causing
  1648. * something like sync to deadlock trying to flush out this
  1649. * inode.
  1650. */
  1651. trans = btrfs_start_transaction(root, 0);
  1652. if (IS_ERR(trans))
  1653. return PTR_ERR(trans);
  1654. btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
  1655. btrfs_end_transaction(trans, root);
  1656. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1657. filemap_flush(inode->i_mapping);
  1658. }
  1659. if (filp->private_data)
  1660. btrfs_ioctl_trans_end(filp);
  1661. return 0;
  1662. }
  1663. /*
  1664. * fsync call for both files and directories. This logs the inode into
  1665. * the tree log instead of forcing full commits whenever possible.
  1666. *
  1667. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1668. * in the metadata btree are up to date for copying to the log.
  1669. *
  1670. * It drops the inode mutex before doing the tree log commit. This is an
  1671. * important optimization for directories because holding the mutex prevents
  1672. * new operations on the dir while we write to disk.
  1673. */
  1674. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1675. {
  1676. struct dentry *dentry = file->f_path.dentry;
  1677. struct inode *inode = dentry->d_inode;
  1678. struct btrfs_root *root = BTRFS_I(inode)->root;
  1679. struct btrfs_trans_handle *trans;
  1680. struct btrfs_log_ctx ctx;
  1681. int ret = 0;
  1682. bool full_sync = 0;
  1683. trace_btrfs_sync_file(file, datasync);
  1684. /*
  1685. * We write the dirty pages in the range and wait until they complete
  1686. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1687. * multi-task, and make the performance up. See
  1688. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1689. */
  1690. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1691. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1692. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1693. &BTRFS_I(inode)->runtime_flags))
  1694. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1695. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1696. if (ret)
  1697. return ret;
  1698. mutex_lock(&inode->i_mutex);
  1699. /*
  1700. * We flush the dirty pages again to avoid some dirty pages in the
  1701. * range being left.
  1702. */
  1703. atomic_inc(&root->log_batch);
  1704. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1705. &BTRFS_I(inode)->runtime_flags);
  1706. if (full_sync) {
  1707. ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
  1708. if (ret) {
  1709. mutex_unlock(&inode->i_mutex);
  1710. goto out;
  1711. }
  1712. }
  1713. atomic_inc(&root->log_batch);
  1714. /*
  1715. * check the transaction that last modified this inode
  1716. * and see if its already been committed
  1717. */
  1718. if (!BTRFS_I(inode)->last_trans) {
  1719. mutex_unlock(&inode->i_mutex);
  1720. goto out;
  1721. }
  1722. /*
  1723. * if the last transaction that changed this file was before
  1724. * the current transaction, we can bail out now without any
  1725. * syncing
  1726. */
  1727. smp_mb();
  1728. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1729. BTRFS_I(inode)->last_trans <=
  1730. root->fs_info->last_trans_committed) {
  1731. BTRFS_I(inode)->last_trans = 0;
  1732. /*
  1733. * We'v had everything committed since the last time we were
  1734. * modified so clear this flag in case it was set for whatever
  1735. * reason, it's no longer relevant.
  1736. */
  1737. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1738. &BTRFS_I(inode)->runtime_flags);
  1739. mutex_unlock(&inode->i_mutex);
  1740. goto out;
  1741. }
  1742. /*
  1743. * ok we haven't committed the transaction yet, lets do a commit
  1744. */
  1745. if (file->private_data)
  1746. btrfs_ioctl_trans_end(file);
  1747. /*
  1748. * We use start here because we will need to wait on the IO to complete
  1749. * in btrfs_sync_log, which could require joining a transaction (for
  1750. * example checking cross references in the nocow path). If we use join
  1751. * here we could get into a situation where we're waiting on IO to
  1752. * happen that is blocked on a transaction trying to commit. With start
  1753. * we inc the extwriter counter, so we wait for all extwriters to exit
  1754. * before we start blocking join'ers. This comment is to keep somebody
  1755. * from thinking they are super smart and changing this to
  1756. * btrfs_join_transaction *cough*Josef*cough*.
  1757. */
  1758. trans = btrfs_start_transaction(root, 0);
  1759. if (IS_ERR(trans)) {
  1760. ret = PTR_ERR(trans);
  1761. mutex_unlock(&inode->i_mutex);
  1762. goto out;
  1763. }
  1764. trans->sync = true;
  1765. btrfs_init_log_ctx(&ctx);
  1766. ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
  1767. if (ret < 0) {
  1768. /* Fallthrough and commit/free transaction. */
  1769. ret = 1;
  1770. }
  1771. /* we've logged all the items and now have a consistent
  1772. * version of the file in the log. It is possible that
  1773. * someone will come in and modify the file, but that's
  1774. * fine because the log is consistent on disk, and we
  1775. * have references to all of the file's extents
  1776. *
  1777. * It is possible that someone will come in and log the
  1778. * file again, but that will end up using the synchronization
  1779. * inside btrfs_sync_log to keep things safe.
  1780. */
  1781. mutex_unlock(&inode->i_mutex);
  1782. if (ret != BTRFS_NO_LOG_SYNC) {
  1783. if (!ret) {
  1784. ret = btrfs_sync_log(trans, root, &ctx);
  1785. if (!ret) {
  1786. ret = btrfs_end_transaction(trans, root);
  1787. goto out;
  1788. }
  1789. }
  1790. if (!full_sync) {
  1791. ret = btrfs_wait_ordered_range(inode, start,
  1792. end - start + 1);
  1793. if (ret)
  1794. goto out;
  1795. }
  1796. ret = btrfs_commit_transaction(trans, root);
  1797. } else {
  1798. ret = btrfs_end_transaction(trans, root);
  1799. }
  1800. out:
  1801. return ret > 0 ? -EIO : ret;
  1802. }
  1803. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1804. .fault = filemap_fault,
  1805. .map_pages = filemap_map_pages,
  1806. .page_mkwrite = btrfs_page_mkwrite,
  1807. .remap_pages = generic_file_remap_pages,
  1808. };
  1809. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1810. {
  1811. struct address_space *mapping = filp->f_mapping;
  1812. if (!mapping->a_ops->readpage)
  1813. return -ENOEXEC;
  1814. file_accessed(filp);
  1815. vma->vm_ops = &btrfs_file_vm_ops;
  1816. return 0;
  1817. }
  1818. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1819. int slot, u64 start, u64 end)
  1820. {
  1821. struct btrfs_file_extent_item *fi;
  1822. struct btrfs_key key;
  1823. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1824. return 0;
  1825. btrfs_item_key_to_cpu(leaf, &key, slot);
  1826. if (key.objectid != btrfs_ino(inode) ||
  1827. key.type != BTRFS_EXTENT_DATA_KEY)
  1828. return 0;
  1829. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1830. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1831. return 0;
  1832. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1833. return 0;
  1834. if (key.offset == end)
  1835. return 1;
  1836. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1837. return 1;
  1838. return 0;
  1839. }
  1840. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1841. struct btrfs_path *path, u64 offset, u64 end)
  1842. {
  1843. struct btrfs_root *root = BTRFS_I(inode)->root;
  1844. struct extent_buffer *leaf;
  1845. struct btrfs_file_extent_item *fi;
  1846. struct extent_map *hole_em;
  1847. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1848. struct btrfs_key key;
  1849. int ret;
  1850. if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
  1851. goto out;
  1852. key.objectid = btrfs_ino(inode);
  1853. key.type = BTRFS_EXTENT_DATA_KEY;
  1854. key.offset = offset;
  1855. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1856. if (ret < 0)
  1857. return ret;
  1858. BUG_ON(!ret);
  1859. leaf = path->nodes[0];
  1860. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1861. u64 num_bytes;
  1862. path->slots[0]--;
  1863. fi = btrfs_item_ptr(leaf, path->slots[0],
  1864. struct btrfs_file_extent_item);
  1865. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1866. end - offset;
  1867. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1868. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1869. btrfs_set_file_extent_offset(leaf, fi, 0);
  1870. btrfs_mark_buffer_dirty(leaf);
  1871. goto out;
  1872. }
  1873. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1874. u64 num_bytes;
  1875. path->slots[0]++;
  1876. key.offset = offset;
  1877. btrfs_set_item_key_safe(root, path, &key);
  1878. fi = btrfs_item_ptr(leaf, path->slots[0],
  1879. struct btrfs_file_extent_item);
  1880. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1881. offset;
  1882. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1883. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1884. btrfs_set_file_extent_offset(leaf, fi, 0);
  1885. btrfs_mark_buffer_dirty(leaf);
  1886. goto out;
  1887. }
  1888. btrfs_release_path(path);
  1889. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1890. 0, 0, end - offset, 0, end - offset,
  1891. 0, 0, 0);
  1892. if (ret)
  1893. return ret;
  1894. out:
  1895. btrfs_release_path(path);
  1896. hole_em = alloc_extent_map();
  1897. if (!hole_em) {
  1898. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1899. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1900. &BTRFS_I(inode)->runtime_flags);
  1901. } else {
  1902. hole_em->start = offset;
  1903. hole_em->len = end - offset;
  1904. hole_em->ram_bytes = hole_em->len;
  1905. hole_em->orig_start = offset;
  1906. hole_em->block_start = EXTENT_MAP_HOLE;
  1907. hole_em->block_len = 0;
  1908. hole_em->orig_block_len = 0;
  1909. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1910. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1911. hole_em->generation = trans->transid;
  1912. do {
  1913. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1914. write_lock(&em_tree->lock);
  1915. ret = add_extent_mapping(em_tree, hole_em, 1);
  1916. write_unlock(&em_tree->lock);
  1917. } while (ret == -EEXIST);
  1918. free_extent_map(hole_em);
  1919. if (ret)
  1920. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1921. &BTRFS_I(inode)->runtime_flags);
  1922. }
  1923. return 0;
  1924. }
  1925. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1926. {
  1927. struct btrfs_root *root = BTRFS_I(inode)->root;
  1928. struct extent_state *cached_state = NULL;
  1929. struct btrfs_path *path;
  1930. struct btrfs_block_rsv *rsv;
  1931. struct btrfs_trans_handle *trans;
  1932. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1933. u64 lockend = round_down(offset + len,
  1934. BTRFS_I(inode)->root->sectorsize) - 1;
  1935. u64 cur_offset = lockstart;
  1936. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1937. u64 drop_end;
  1938. int ret = 0;
  1939. int err = 0;
  1940. int rsv_count;
  1941. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1942. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1943. bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
  1944. u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
  1945. ret = btrfs_wait_ordered_range(inode, offset, len);
  1946. if (ret)
  1947. return ret;
  1948. mutex_lock(&inode->i_mutex);
  1949. /*
  1950. * We needn't truncate any page which is beyond the end of the file
  1951. * because we are sure there is no data there.
  1952. */
  1953. /*
  1954. * Only do this if we are in the same page and we aren't doing the
  1955. * entire page.
  1956. */
  1957. if (same_page && len < PAGE_CACHE_SIZE) {
  1958. if (offset < ino_size)
  1959. ret = btrfs_truncate_page(inode, offset, len, 0);
  1960. mutex_unlock(&inode->i_mutex);
  1961. return ret;
  1962. }
  1963. /* zero back part of the first page */
  1964. if (offset < ino_size) {
  1965. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1966. if (ret) {
  1967. mutex_unlock(&inode->i_mutex);
  1968. return ret;
  1969. }
  1970. }
  1971. /* zero the front end of the last page */
  1972. if (offset + len < ino_size) {
  1973. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1974. if (ret) {
  1975. mutex_unlock(&inode->i_mutex);
  1976. return ret;
  1977. }
  1978. }
  1979. if (lockend < lockstart) {
  1980. mutex_unlock(&inode->i_mutex);
  1981. return 0;
  1982. }
  1983. while (1) {
  1984. struct btrfs_ordered_extent *ordered;
  1985. truncate_pagecache_range(inode, lockstart, lockend);
  1986. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1987. 0, &cached_state);
  1988. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1989. /*
  1990. * We need to make sure we have no ordered extents in this range
  1991. * and nobody raced in and read a page in this range, if we did
  1992. * we need to try again.
  1993. */
  1994. if ((!ordered ||
  1995. (ordered->file_offset + ordered->len <= lockstart ||
  1996. ordered->file_offset > lockend)) &&
  1997. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1998. lockend, EXTENT_UPTODATE, 0,
  1999. cached_state)) {
  2000. if (ordered)
  2001. btrfs_put_ordered_extent(ordered);
  2002. break;
  2003. }
  2004. if (ordered)
  2005. btrfs_put_ordered_extent(ordered);
  2006. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2007. lockend, &cached_state, GFP_NOFS);
  2008. ret = btrfs_wait_ordered_range(inode, lockstart,
  2009. lockend - lockstart + 1);
  2010. if (ret) {
  2011. mutex_unlock(&inode->i_mutex);
  2012. return ret;
  2013. }
  2014. }
  2015. path = btrfs_alloc_path();
  2016. if (!path) {
  2017. ret = -ENOMEM;
  2018. goto out;
  2019. }
  2020. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  2021. if (!rsv) {
  2022. ret = -ENOMEM;
  2023. goto out_free;
  2024. }
  2025. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  2026. rsv->failfast = 1;
  2027. /*
  2028. * 1 - update the inode
  2029. * 1 - removing the extents in the range
  2030. * 1 - adding the hole extent if no_holes isn't set
  2031. */
  2032. rsv_count = no_holes ? 2 : 3;
  2033. trans = btrfs_start_transaction(root, rsv_count);
  2034. if (IS_ERR(trans)) {
  2035. err = PTR_ERR(trans);
  2036. goto out_free;
  2037. }
  2038. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  2039. min_size);
  2040. BUG_ON(ret);
  2041. trans->block_rsv = rsv;
  2042. while (cur_offset < lockend) {
  2043. ret = __btrfs_drop_extents(trans, root, inode, path,
  2044. cur_offset, lockend + 1,
  2045. &drop_end, 1, 0, 0, NULL);
  2046. if (ret != -ENOSPC)
  2047. break;
  2048. trans->block_rsv = &root->fs_info->trans_block_rsv;
  2049. if (cur_offset < ino_size) {
  2050. ret = fill_holes(trans, inode, path, cur_offset,
  2051. drop_end);
  2052. if (ret) {
  2053. err = ret;
  2054. break;
  2055. }
  2056. }
  2057. cur_offset = drop_end;
  2058. ret = btrfs_update_inode(trans, root, inode);
  2059. if (ret) {
  2060. err = ret;
  2061. break;
  2062. }
  2063. btrfs_end_transaction(trans, root);
  2064. btrfs_btree_balance_dirty(root);
  2065. trans = btrfs_start_transaction(root, rsv_count);
  2066. if (IS_ERR(trans)) {
  2067. ret = PTR_ERR(trans);
  2068. trans = NULL;
  2069. break;
  2070. }
  2071. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  2072. rsv, min_size);
  2073. BUG_ON(ret); /* shouldn't happen */
  2074. trans->block_rsv = rsv;
  2075. }
  2076. if (ret) {
  2077. err = ret;
  2078. goto out_trans;
  2079. }
  2080. trans->block_rsv = &root->fs_info->trans_block_rsv;
  2081. if (cur_offset < ino_size) {
  2082. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  2083. if (ret) {
  2084. err = ret;
  2085. goto out_trans;
  2086. }
  2087. }
  2088. out_trans:
  2089. if (!trans)
  2090. goto out_free;
  2091. inode_inc_iversion(inode);
  2092. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  2093. trans->block_rsv = &root->fs_info->trans_block_rsv;
  2094. ret = btrfs_update_inode(trans, root, inode);
  2095. btrfs_end_transaction(trans, root);
  2096. btrfs_btree_balance_dirty(root);
  2097. out_free:
  2098. btrfs_free_path(path);
  2099. btrfs_free_block_rsv(root, rsv);
  2100. out:
  2101. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2102. &cached_state, GFP_NOFS);
  2103. mutex_unlock(&inode->i_mutex);
  2104. if (ret && !err)
  2105. err = ret;
  2106. return err;
  2107. }
  2108. static long btrfs_fallocate(struct file *file, int mode,
  2109. loff_t offset, loff_t len)
  2110. {
  2111. struct inode *inode = file_inode(file);
  2112. struct extent_state *cached_state = NULL;
  2113. struct btrfs_root *root = BTRFS_I(inode)->root;
  2114. u64 cur_offset;
  2115. u64 last_byte;
  2116. u64 alloc_start;
  2117. u64 alloc_end;
  2118. u64 alloc_hint = 0;
  2119. u64 locked_end;
  2120. struct extent_map *em;
  2121. int blocksize = BTRFS_I(inode)->root->sectorsize;
  2122. int ret;
  2123. alloc_start = round_down(offset, blocksize);
  2124. alloc_end = round_up(offset + len, blocksize);
  2125. /* Make sure we aren't being give some crap mode */
  2126. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  2127. return -EOPNOTSUPP;
  2128. if (mode & FALLOC_FL_PUNCH_HOLE)
  2129. return btrfs_punch_hole(inode, offset, len);
  2130. /*
  2131. * Make sure we have enough space before we do the
  2132. * allocation.
  2133. */
  2134. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  2135. if (ret)
  2136. return ret;
  2137. if (root->fs_info->quota_enabled) {
  2138. ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
  2139. if (ret)
  2140. goto out_reserve_fail;
  2141. }
  2142. mutex_lock(&inode->i_mutex);
  2143. ret = inode_newsize_ok(inode, alloc_end);
  2144. if (ret)
  2145. goto out;
  2146. if (alloc_start > inode->i_size) {
  2147. ret = btrfs_cont_expand(inode, i_size_read(inode),
  2148. alloc_start);
  2149. if (ret)
  2150. goto out;
  2151. } else {
  2152. /*
  2153. * If we are fallocating from the end of the file onward we
  2154. * need to zero out the end of the page if i_size lands in the
  2155. * middle of a page.
  2156. */
  2157. ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
  2158. if (ret)
  2159. goto out;
  2160. }
  2161. /*
  2162. * wait for ordered IO before we have any locks. We'll loop again
  2163. * below with the locks held.
  2164. */
  2165. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2166. alloc_end - alloc_start);
  2167. if (ret)
  2168. goto out;
  2169. locked_end = alloc_end - 1;
  2170. while (1) {
  2171. struct btrfs_ordered_extent *ordered;
  2172. /* the extent lock is ordered inside the running
  2173. * transaction
  2174. */
  2175. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  2176. locked_end, 0, &cached_state);
  2177. ordered = btrfs_lookup_first_ordered_extent(inode,
  2178. alloc_end - 1);
  2179. if (ordered &&
  2180. ordered->file_offset + ordered->len > alloc_start &&
  2181. ordered->file_offset < alloc_end) {
  2182. btrfs_put_ordered_extent(ordered);
  2183. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  2184. alloc_start, locked_end,
  2185. &cached_state, GFP_NOFS);
  2186. /*
  2187. * we can't wait on the range with the transaction
  2188. * running or with the extent lock held
  2189. */
  2190. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2191. alloc_end - alloc_start);
  2192. if (ret)
  2193. goto out;
  2194. } else {
  2195. if (ordered)
  2196. btrfs_put_ordered_extent(ordered);
  2197. break;
  2198. }
  2199. }
  2200. cur_offset = alloc_start;
  2201. while (1) {
  2202. u64 actual_end;
  2203. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  2204. alloc_end - cur_offset, 0);
  2205. if (IS_ERR_OR_NULL(em)) {
  2206. if (!em)
  2207. ret = -ENOMEM;
  2208. else
  2209. ret = PTR_ERR(em);
  2210. break;
  2211. }
  2212. last_byte = min(extent_map_end(em), alloc_end);
  2213. actual_end = min_t(u64, extent_map_end(em), offset + len);
  2214. last_byte = ALIGN(last_byte, blocksize);
  2215. if (em->block_start == EXTENT_MAP_HOLE ||
  2216. (cur_offset >= inode->i_size &&
  2217. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  2218. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  2219. last_byte - cur_offset,
  2220. 1 << inode->i_blkbits,
  2221. offset + len,
  2222. &alloc_hint);
  2223. if (ret < 0) {
  2224. free_extent_map(em);
  2225. break;
  2226. }
  2227. } else if (actual_end > inode->i_size &&
  2228. !(mode & FALLOC_FL_KEEP_SIZE)) {
  2229. /*
  2230. * We didn't need to allocate any more space, but we
  2231. * still extended the size of the file so we need to
  2232. * update i_size.
  2233. */
  2234. inode->i_ctime = CURRENT_TIME;
  2235. i_size_write(inode, actual_end);
  2236. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  2237. }
  2238. free_extent_map(em);
  2239. cur_offset = last_byte;
  2240. if (cur_offset >= alloc_end) {
  2241. ret = 0;
  2242. break;
  2243. }
  2244. }
  2245. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2246. &cached_state, GFP_NOFS);
  2247. out:
  2248. mutex_unlock(&inode->i_mutex);
  2249. if (root->fs_info->quota_enabled)
  2250. btrfs_qgroup_free(root, alloc_end - alloc_start);
  2251. out_reserve_fail:
  2252. /* Let go of our reservation. */
  2253. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  2254. return ret;
  2255. }
  2256. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2257. {
  2258. struct btrfs_root *root = BTRFS_I(inode)->root;
  2259. struct extent_map *em = NULL;
  2260. struct extent_state *cached_state = NULL;
  2261. u64 lockstart = *offset;
  2262. u64 lockend = i_size_read(inode);
  2263. u64 start = *offset;
  2264. u64 len = i_size_read(inode);
  2265. int ret = 0;
  2266. lockend = max_t(u64, root->sectorsize, lockend);
  2267. if (lockend <= lockstart)
  2268. lockend = lockstart + root->sectorsize;
  2269. lockend--;
  2270. len = lockend - lockstart + 1;
  2271. len = max_t(u64, len, root->sectorsize);
  2272. if (inode->i_size == 0)
  2273. return -ENXIO;
  2274. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  2275. &cached_state);
  2276. while (start < inode->i_size) {
  2277. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2278. if (IS_ERR(em)) {
  2279. ret = PTR_ERR(em);
  2280. em = NULL;
  2281. break;
  2282. }
  2283. if (whence == SEEK_HOLE &&
  2284. (em->block_start == EXTENT_MAP_HOLE ||
  2285. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2286. break;
  2287. else if (whence == SEEK_DATA &&
  2288. (em->block_start != EXTENT_MAP_HOLE &&
  2289. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2290. break;
  2291. start = em->start + em->len;
  2292. free_extent_map(em);
  2293. em = NULL;
  2294. cond_resched();
  2295. }
  2296. free_extent_map(em);
  2297. if (!ret) {
  2298. if (whence == SEEK_DATA && start >= inode->i_size)
  2299. ret = -ENXIO;
  2300. else
  2301. *offset = min_t(loff_t, start, inode->i_size);
  2302. }
  2303. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2304. &cached_state, GFP_NOFS);
  2305. return ret;
  2306. }
  2307. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2308. {
  2309. struct inode *inode = file->f_mapping->host;
  2310. int ret;
  2311. mutex_lock(&inode->i_mutex);
  2312. switch (whence) {
  2313. case SEEK_END:
  2314. case SEEK_CUR:
  2315. offset = generic_file_llseek(file, offset, whence);
  2316. goto out;
  2317. case SEEK_DATA:
  2318. case SEEK_HOLE:
  2319. if (offset >= i_size_read(inode)) {
  2320. mutex_unlock(&inode->i_mutex);
  2321. return -ENXIO;
  2322. }
  2323. ret = find_desired_extent(inode, &offset, whence);
  2324. if (ret) {
  2325. mutex_unlock(&inode->i_mutex);
  2326. return ret;
  2327. }
  2328. }
  2329. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  2330. out:
  2331. mutex_unlock(&inode->i_mutex);
  2332. return offset;
  2333. }
  2334. const struct file_operations btrfs_file_operations = {
  2335. .llseek = btrfs_file_llseek,
  2336. .read = do_sync_read,
  2337. .write = do_sync_write,
  2338. .aio_read = generic_file_aio_read,
  2339. .splice_read = generic_file_splice_read,
  2340. .aio_write = btrfs_file_aio_write,
  2341. .mmap = btrfs_file_mmap,
  2342. .open = generic_file_open,
  2343. .release = btrfs_release_file,
  2344. .fsync = btrfs_sync_file,
  2345. .fallocate = btrfs_fallocate,
  2346. .unlocked_ioctl = btrfs_ioctl,
  2347. #ifdef CONFIG_COMPAT
  2348. .compat_ioctl = btrfs_ioctl,
  2349. #endif
  2350. };
  2351. void btrfs_auto_defrag_exit(void)
  2352. {
  2353. if (btrfs_inode_defrag_cachep)
  2354. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2355. }
  2356. int btrfs_auto_defrag_init(void)
  2357. {
  2358. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2359. sizeof(struct inode_defrag), 0,
  2360. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2361. NULL);
  2362. if (!btrfs_inode_defrag_cachep)
  2363. return -ENOMEM;
  2364. return 0;
  2365. }