disk-io.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  153. { .id = 0, .name_stem = "tree" },
  154. };
  155. void __init btrfs_init_lockdep(void)
  156. {
  157. int i, j;
  158. /* initialize lockdep class names */
  159. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  160. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  161. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  162. snprintf(ks->names[j], sizeof(ks->names[j]),
  163. "btrfs-%s-%02d", ks->name_stem, j);
  164. }
  165. }
  166. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  167. int level)
  168. {
  169. struct btrfs_lockdep_keyset *ks;
  170. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  171. /* find the matching keyset, id 0 is the default entry */
  172. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  173. if (ks->id == objectid)
  174. break;
  175. lockdep_set_class_and_name(&eb->lock,
  176. &ks->keys[level], ks->names[level]);
  177. }
  178. #endif
  179. /*
  180. * extents on the btree inode are pretty simple, there's one extent
  181. * that covers the entire device
  182. */
  183. static struct extent_map *btree_get_extent(struct inode *inode,
  184. struct page *page, size_t pg_offset, u64 start, u64 len,
  185. int create)
  186. {
  187. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  188. struct extent_map *em;
  189. int ret;
  190. read_lock(&em_tree->lock);
  191. em = lookup_extent_mapping(em_tree, start, len);
  192. if (em) {
  193. em->bdev =
  194. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  195. read_unlock(&em_tree->lock);
  196. goto out;
  197. }
  198. read_unlock(&em_tree->lock);
  199. em = alloc_extent_map();
  200. if (!em) {
  201. em = ERR_PTR(-ENOMEM);
  202. goto out;
  203. }
  204. em->start = 0;
  205. em->len = (u64)-1;
  206. em->block_len = (u64)-1;
  207. em->block_start = 0;
  208. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  209. write_lock(&em_tree->lock);
  210. ret = add_extent_mapping(em_tree, em, 0);
  211. if (ret == -EEXIST) {
  212. free_extent_map(em);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (!em)
  215. em = ERR_PTR(-EIO);
  216. } else if (ret) {
  217. free_extent_map(em);
  218. em = ERR_PTR(ret);
  219. }
  220. write_unlock(&em_tree->lock);
  221. out:
  222. return em;
  223. }
  224. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  225. {
  226. return btrfs_crc32c(seed, data, len);
  227. }
  228. void btrfs_csum_final(u32 crc, char *result)
  229. {
  230. put_unaligned_le32(~crc, result);
  231. }
  232. /*
  233. * compute the csum for a btree block, and either verify it or write it
  234. * into the csum field of the block.
  235. */
  236. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  237. int verify)
  238. {
  239. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  240. char *result = NULL;
  241. unsigned long len;
  242. unsigned long cur_len;
  243. unsigned long offset = BTRFS_CSUM_SIZE;
  244. char *kaddr;
  245. unsigned long map_start;
  246. unsigned long map_len;
  247. int err;
  248. u32 crc = ~(u32)0;
  249. unsigned long inline_result;
  250. len = buf->len - offset;
  251. while (len > 0) {
  252. err = map_private_extent_buffer(buf, offset, 32,
  253. &kaddr, &map_start, &map_len);
  254. if (err)
  255. return 1;
  256. cur_len = min(len, map_len - (offset - map_start));
  257. crc = btrfs_csum_data(kaddr + offset - map_start,
  258. crc, cur_len);
  259. len -= cur_len;
  260. offset += cur_len;
  261. }
  262. if (csum_size > sizeof(inline_result)) {
  263. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  264. if (!result)
  265. return 1;
  266. } else {
  267. result = (char *)&inline_result;
  268. }
  269. btrfs_csum_final(crc, result);
  270. if (verify) {
  271. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  272. u32 val;
  273. u32 found = 0;
  274. memcpy(&found, result, csum_size);
  275. read_extent_buffer(buf, &val, 0, csum_size);
  276. printk_ratelimited(KERN_INFO
  277. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  278. "level %d\n",
  279. root->fs_info->sb->s_id, buf->start,
  280. val, found, btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. bool need_lock = (current->journal_info ==
  305. (void *)BTRFS_SEND_TRANS_STUB);
  306. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  307. return 0;
  308. if (atomic)
  309. return -EAGAIN;
  310. if (need_lock) {
  311. btrfs_tree_read_lock(eb);
  312. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  313. }
  314. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  315. 0, &cached_state);
  316. if (extent_buffer_uptodate(eb) &&
  317. btrfs_header_generation(eb) == parent_transid) {
  318. ret = 0;
  319. goto out;
  320. }
  321. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  322. "found %llu\n",
  323. eb->start, parent_transid, btrfs_header_generation(eb));
  324. ret = 1;
  325. /*
  326. * Things reading via commit roots that don't have normal protection,
  327. * like send, can have a really old block in cache that may point at a
  328. * block that has been free'd and re-allocated. So don't clear uptodate
  329. * if we find an eb that is under IO (dirty/writeback) because we could
  330. * end up reading in the stale data and then writing it back out and
  331. * making everybody very sad.
  332. */
  333. if (!extent_buffer_under_io(eb))
  334. clear_extent_buffer_uptodate(eb);
  335. out:
  336. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  337. &cached_state, GFP_NOFS);
  338. btrfs_tree_read_unlock_blocking(eb);
  339. return ret;
  340. }
  341. /*
  342. * Return 0 if the superblock checksum type matches the checksum value of that
  343. * algorithm. Pass the raw disk superblock data.
  344. */
  345. static int btrfs_check_super_csum(char *raw_disk_sb)
  346. {
  347. struct btrfs_super_block *disk_sb =
  348. (struct btrfs_super_block *)raw_disk_sb;
  349. u16 csum_type = btrfs_super_csum_type(disk_sb);
  350. int ret = 0;
  351. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  352. u32 crc = ~(u32)0;
  353. const int csum_size = sizeof(crc);
  354. char result[csum_size];
  355. /*
  356. * The super_block structure does not span the whole
  357. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  358. * is filled with zeros and is included in the checkum.
  359. */
  360. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  361. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  362. btrfs_csum_final(crc, result);
  363. if (memcmp(raw_disk_sb, result, csum_size))
  364. ret = 1;
  365. if (ret && btrfs_super_generation(disk_sb) < 10) {
  366. printk(KERN_WARNING
  367. "BTRFS: super block crcs don't match, older mkfs detected\n");
  368. ret = 0;
  369. }
  370. }
  371. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  372. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  373. csum_type);
  374. ret = 1;
  375. }
  376. return ret;
  377. }
  378. /*
  379. * helper to read a given tree block, doing retries as required when
  380. * the checksums don't match and we have alternate mirrors to try.
  381. */
  382. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  383. struct extent_buffer *eb,
  384. u64 start, u64 parent_transid)
  385. {
  386. struct extent_io_tree *io_tree;
  387. int failed = 0;
  388. int ret;
  389. int num_copies = 0;
  390. int mirror_num = 0;
  391. int failed_mirror = 0;
  392. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  393. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  394. while (1) {
  395. ret = read_extent_buffer_pages(io_tree, eb, start,
  396. WAIT_COMPLETE,
  397. btree_get_extent, mirror_num);
  398. if (!ret) {
  399. if (!verify_parent_transid(io_tree, eb,
  400. parent_transid, 0))
  401. break;
  402. else
  403. ret = -EIO;
  404. }
  405. /*
  406. * This buffer's crc is fine, but its contents are corrupted, so
  407. * there is no reason to read the other copies, they won't be
  408. * any less wrong.
  409. */
  410. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  411. break;
  412. num_copies = btrfs_num_copies(root->fs_info,
  413. eb->start, eb->len);
  414. if (num_copies == 1)
  415. break;
  416. if (!failed_mirror) {
  417. failed = 1;
  418. failed_mirror = eb->read_mirror;
  419. }
  420. mirror_num++;
  421. if (mirror_num == failed_mirror)
  422. mirror_num++;
  423. if (mirror_num > num_copies)
  424. break;
  425. }
  426. if (failed && !ret && failed_mirror)
  427. repair_eb_io_failure(root, eb, failed_mirror);
  428. return ret;
  429. }
  430. /*
  431. * checksum a dirty tree block before IO. This has extra checks to make sure
  432. * we only fill in the checksum field in the first page of a multi-page block
  433. */
  434. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  435. {
  436. u64 start = page_offset(page);
  437. u64 found_start;
  438. struct extent_buffer *eb;
  439. eb = (struct extent_buffer *)page->private;
  440. if (page != eb->pages[0])
  441. return 0;
  442. found_start = btrfs_header_bytenr(eb);
  443. if (WARN_ON(found_start != start || !PageUptodate(page)))
  444. return 0;
  445. csum_tree_block(root, eb, 0);
  446. return 0;
  447. }
  448. static int check_tree_block_fsid(struct btrfs_root *root,
  449. struct extent_buffer *eb)
  450. {
  451. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  452. u8 fsid[BTRFS_UUID_SIZE];
  453. int ret = 1;
  454. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  455. while (fs_devices) {
  456. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  457. ret = 0;
  458. break;
  459. }
  460. fs_devices = fs_devices->seed;
  461. }
  462. return ret;
  463. }
  464. #define CORRUPT(reason, eb, root, slot) \
  465. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  466. "root=%llu, slot=%d", reason, \
  467. btrfs_header_bytenr(eb), root->objectid, slot)
  468. static noinline int check_leaf(struct btrfs_root *root,
  469. struct extent_buffer *leaf)
  470. {
  471. struct btrfs_key key;
  472. struct btrfs_key leaf_key;
  473. u32 nritems = btrfs_header_nritems(leaf);
  474. int slot;
  475. if (nritems == 0)
  476. return 0;
  477. /* Check the 0 item */
  478. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  479. BTRFS_LEAF_DATA_SIZE(root)) {
  480. CORRUPT("invalid item offset size pair", leaf, root, 0);
  481. return -EIO;
  482. }
  483. /*
  484. * Check to make sure each items keys are in the correct order and their
  485. * offsets make sense. We only have to loop through nritems-1 because
  486. * we check the current slot against the next slot, which verifies the
  487. * next slot's offset+size makes sense and that the current's slot
  488. * offset is correct.
  489. */
  490. for (slot = 0; slot < nritems - 1; slot++) {
  491. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  492. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  493. /* Make sure the keys are in the right order */
  494. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  495. CORRUPT("bad key order", leaf, root, slot);
  496. return -EIO;
  497. }
  498. /*
  499. * Make sure the offset and ends are right, remember that the
  500. * item data starts at the end of the leaf and grows towards the
  501. * front.
  502. */
  503. if (btrfs_item_offset_nr(leaf, slot) !=
  504. btrfs_item_end_nr(leaf, slot + 1)) {
  505. CORRUPT("slot offset bad", leaf, root, slot);
  506. return -EIO;
  507. }
  508. /*
  509. * Check to make sure that we don't point outside of the leaf,
  510. * just incase all the items are consistent to eachother, but
  511. * all point outside of the leaf.
  512. */
  513. if (btrfs_item_end_nr(leaf, slot) >
  514. BTRFS_LEAF_DATA_SIZE(root)) {
  515. CORRUPT("slot end outside of leaf", leaf, root, slot);
  516. return -EIO;
  517. }
  518. }
  519. return 0;
  520. }
  521. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  522. u64 phy_offset, struct page *page,
  523. u64 start, u64 end, int mirror)
  524. {
  525. u64 found_start;
  526. int found_level;
  527. struct extent_buffer *eb;
  528. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  529. int ret = 0;
  530. int reads_done;
  531. if (!page->private)
  532. goto out;
  533. eb = (struct extent_buffer *)page->private;
  534. /* the pending IO might have been the only thing that kept this buffer
  535. * in memory. Make sure we have a ref for all this other checks
  536. */
  537. extent_buffer_get(eb);
  538. reads_done = atomic_dec_and_test(&eb->io_pages);
  539. if (!reads_done)
  540. goto err;
  541. eb->read_mirror = mirror;
  542. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  543. ret = -EIO;
  544. goto err;
  545. }
  546. found_start = btrfs_header_bytenr(eb);
  547. if (found_start != eb->start) {
  548. printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
  549. "%llu %llu\n",
  550. found_start, eb->start);
  551. ret = -EIO;
  552. goto err;
  553. }
  554. if (check_tree_block_fsid(root, eb)) {
  555. printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
  556. eb->start);
  557. ret = -EIO;
  558. goto err;
  559. }
  560. found_level = btrfs_header_level(eb);
  561. if (found_level >= BTRFS_MAX_LEVEL) {
  562. btrfs_info(root->fs_info, "bad tree block level %d",
  563. (int)btrfs_header_level(eb));
  564. ret = -EIO;
  565. goto err;
  566. }
  567. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  568. eb, found_level);
  569. ret = csum_tree_block(root, eb, 1);
  570. if (ret) {
  571. ret = -EIO;
  572. goto err;
  573. }
  574. /*
  575. * If this is a leaf block and it is corrupt, set the corrupt bit so
  576. * that we don't try and read the other copies of this block, just
  577. * return -EIO.
  578. */
  579. if (found_level == 0 && check_leaf(root, eb)) {
  580. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  581. ret = -EIO;
  582. }
  583. if (!ret)
  584. set_extent_buffer_uptodate(eb);
  585. err:
  586. if (reads_done &&
  587. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  588. btree_readahead_hook(root, eb, eb->start, ret);
  589. if (ret) {
  590. /*
  591. * our io error hook is going to dec the io pages
  592. * again, we have to make sure it has something
  593. * to decrement
  594. */
  595. atomic_inc(&eb->io_pages);
  596. clear_extent_buffer_uptodate(eb);
  597. }
  598. free_extent_buffer(eb);
  599. out:
  600. return ret;
  601. }
  602. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  603. {
  604. struct extent_buffer *eb;
  605. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  606. eb = (struct extent_buffer *)page->private;
  607. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  608. eb->read_mirror = failed_mirror;
  609. atomic_dec(&eb->io_pages);
  610. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  611. btree_readahead_hook(root, eb, eb->start, -EIO);
  612. return -EIO; /* we fixed nothing */
  613. }
  614. static void end_workqueue_bio(struct bio *bio, int err)
  615. {
  616. struct end_io_wq *end_io_wq = bio->bi_private;
  617. struct btrfs_fs_info *fs_info;
  618. fs_info = end_io_wq->info;
  619. end_io_wq->error = err;
  620. btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
  621. if (bio->bi_rw & REQ_WRITE) {
  622. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  623. btrfs_queue_work(fs_info->endio_meta_write_workers,
  624. &end_io_wq->work);
  625. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  626. btrfs_queue_work(fs_info->endio_freespace_worker,
  627. &end_io_wq->work);
  628. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  629. btrfs_queue_work(fs_info->endio_raid56_workers,
  630. &end_io_wq->work);
  631. else
  632. btrfs_queue_work(fs_info->endio_write_workers,
  633. &end_io_wq->work);
  634. } else {
  635. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  636. btrfs_queue_work(fs_info->endio_raid56_workers,
  637. &end_io_wq->work);
  638. else if (end_io_wq->metadata)
  639. btrfs_queue_work(fs_info->endio_meta_workers,
  640. &end_io_wq->work);
  641. else
  642. btrfs_queue_work(fs_info->endio_workers,
  643. &end_io_wq->work);
  644. }
  645. }
  646. /*
  647. * For the metadata arg you want
  648. *
  649. * 0 - if data
  650. * 1 - if normal metadta
  651. * 2 - if writing to the free space cache area
  652. * 3 - raid parity work
  653. */
  654. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  655. int metadata)
  656. {
  657. struct end_io_wq *end_io_wq;
  658. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  659. if (!end_io_wq)
  660. return -ENOMEM;
  661. end_io_wq->private = bio->bi_private;
  662. end_io_wq->end_io = bio->bi_end_io;
  663. end_io_wq->info = info;
  664. end_io_wq->error = 0;
  665. end_io_wq->bio = bio;
  666. end_io_wq->metadata = metadata;
  667. bio->bi_private = end_io_wq;
  668. bio->bi_end_io = end_workqueue_bio;
  669. return 0;
  670. }
  671. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  672. {
  673. unsigned long limit = min_t(unsigned long,
  674. info->thread_pool_size,
  675. info->fs_devices->open_devices);
  676. return 256 * limit;
  677. }
  678. static void run_one_async_start(struct btrfs_work *work)
  679. {
  680. struct async_submit_bio *async;
  681. int ret;
  682. async = container_of(work, struct async_submit_bio, work);
  683. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  684. async->mirror_num, async->bio_flags,
  685. async->bio_offset);
  686. if (ret)
  687. async->error = ret;
  688. }
  689. static void run_one_async_done(struct btrfs_work *work)
  690. {
  691. struct btrfs_fs_info *fs_info;
  692. struct async_submit_bio *async;
  693. int limit;
  694. async = container_of(work, struct async_submit_bio, work);
  695. fs_info = BTRFS_I(async->inode)->root->fs_info;
  696. limit = btrfs_async_submit_limit(fs_info);
  697. limit = limit * 2 / 3;
  698. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  699. waitqueue_active(&fs_info->async_submit_wait))
  700. wake_up(&fs_info->async_submit_wait);
  701. /* If an error occured we just want to clean up the bio and move on */
  702. if (async->error) {
  703. bio_endio(async->bio, async->error);
  704. return;
  705. }
  706. async->submit_bio_done(async->inode, async->rw, async->bio,
  707. async->mirror_num, async->bio_flags,
  708. async->bio_offset);
  709. }
  710. static void run_one_async_free(struct btrfs_work *work)
  711. {
  712. struct async_submit_bio *async;
  713. async = container_of(work, struct async_submit_bio, work);
  714. kfree(async);
  715. }
  716. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  717. int rw, struct bio *bio, int mirror_num,
  718. unsigned long bio_flags,
  719. u64 bio_offset,
  720. extent_submit_bio_hook_t *submit_bio_start,
  721. extent_submit_bio_hook_t *submit_bio_done)
  722. {
  723. struct async_submit_bio *async;
  724. async = kmalloc(sizeof(*async), GFP_NOFS);
  725. if (!async)
  726. return -ENOMEM;
  727. async->inode = inode;
  728. async->rw = rw;
  729. async->bio = bio;
  730. async->mirror_num = mirror_num;
  731. async->submit_bio_start = submit_bio_start;
  732. async->submit_bio_done = submit_bio_done;
  733. btrfs_init_work(&async->work, run_one_async_start,
  734. run_one_async_done, run_one_async_free);
  735. async->bio_flags = bio_flags;
  736. async->bio_offset = bio_offset;
  737. async->error = 0;
  738. atomic_inc(&fs_info->nr_async_submits);
  739. if (rw & REQ_SYNC)
  740. btrfs_set_work_high_priority(&async->work);
  741. btrfs_queue_work(fs_info->workers, &async->work);
  742. while (atomic_read(&fs_info->async_submit_draining) &&
  743. atomic_read(&fs_info->nr_async_submits)) {
  744. wait_event(fs_info->async_submit_wait,
  745. (atomic_read(&fs_info->nr_async_submits) == 0));
  746. }
  747. return 0;
  748. }
  749. static int btree_csum_one_bio(struct bio *bio)
  750. {
  751. struct bio_vec *bvec;
  752. struct btrfs_root *root;
  753. int i, ret = 0;
  754. bio_for_each_segment_all(bvec, bio, i) {
  755. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  756. ret = csum_dirty_buffer(root, bvec->bv_page);
  757. if (ret)
  758. break;
  759. }
  760. return ret;
  761. }
  762. static int __btree_submit_bio_start(struct inode *inode, int rw,
  763. struct bio *bio, int mirror_num,
  764. unsigned long bio_flags,
  765. u64 bio_offset)
  766. {
  767. /*
  768. * when we're called for a write, we're already in the async
  769. * submission context. Just jump into btrfs_map_bio
  770. */
  771. return btree_csum_one_bio(bio);
  772. }
  773. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  774. int mirror_num, unsigned long bio_flags,
  775. u64 bio_offset)
  776. {
  777. int ret;
  778. /*
  779. * when we're called for a write, we're already in the async
  780. * submission context. Just jump into btrfs_map_bio
  781. */
  782. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  783. if (ret)
  784. bio_endio(bio, ret);
  785. return ret;
  786. }
  787. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  788. {
  789. if (bio_flags & EXTENT_BIO_TREE_LOG)
  790. return 0;
  791. #ifdef CONFIG_X86
  792. if (cpu_has_xmm4_2)
  793. return 0;
  794. #endif
  795. return 1;
  796. }
  797. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  798. int mirror_num, unsigned long bio_flags,
  799. u64 bio_offset)
  800. {
  801. int async = check_async_write(inode, bio_flags);
  802. int ret;
  803. if (!(rw & REQ_WRITE)) {
  804. /*
  805. * called for a read, do the setup so that checksum validation
  806. * can happen in the async kernel threads
  807. */
  808. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  809. bio, 1);
  810. if (ret)
  811. goto out_w_error;
  812. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  813. mirror_num, 0);
  814. } else if (!async) {
  815. ret = btree_csum_one_bio(bio);
  816. if (ret)
  817. goto out_w_error;
  818. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  819. mirror_num, 0);
  820. } else {
  821. /*
  822. * kthread helpers are used to submit writes so that
  823. * checksumming can happen in parallel across all CPUs
  824. */
  825. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  826. inode, rw, bio, mirror_num, 0,
  827. bio_offset,
  828. __btree_submit_bio_start,
  829. __btree_submit_bio_done);
  830. }
  831. if (ret) {
  832. out_w_error:
  833. bio_endio(bio, ret);
  834. }
  835. return ret;
  836. }
  837. #ifdef CONFIG_MIGRATION
  838. static int btree_migratepage(struct address_space *mapping,
  839. struct page *newpage, struct page *page,
  840. enum migrate_mode mode)
  841. {
  842. /*
  843. * we can't safely write a btree page from here,
  844. * we haven't done the locking hook
  845. */
  846. if (PageDirty(page))
  847. return -EAGAIN;
  848. /*
  849. * Buffers may be managed in a filesystem specific way.
  850. * We must have no buffers or drop them.
  851. */
  852. if (page_has_private(page) &&
  853. !try_to_release_page(page, GFP_KERNEL))
  854. return -EAGAIN;
  855. return migrate_page(mapping, newpage, page, mode);
  856. }
  857. #endif
  858. static int btree_writepages(struct address_space *mapping,
  859. struct writeback_control *wbc)
  860. {
  861. struct btrfs_fs_info *fs_info;
  862. int ret;
  863. if (wbc->sync_mode == WB_SYNC_NONE) {
  864. if (wbc->for_kupdate)
  865. return 0;
  866. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  867. /* this is a bit racy, but that's ok */
  868. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  869. BTRFS_DIRTY_METADATA_THRESH);
  870. if (ret < 0)
  871. return 0;
  872. }
  873. return btree_write_cache_pages(mapping, wbc);
  874. }
  875. static int btree_readpage(struct file *file, struct page *page)
  876. {
  877. struct extent_io_tree *tree;
  878. tree = &BTRFS_I(page->mapping->host)->io_tree;
  879. return extent_read_full_page(tree, page, btree_get_extent, 0);
  880. }
  881. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  882. {
  883. if (PageWriteback(page) || PageDirty(page))
  884. return 0;
  885. return try_release_extent_buffer(page);
  886. }
  887. static void btree_invalidatepage(struct page *page, unsigned int offset,
  888. unsigned int length)
  889. {
  890. struct extent_io_tree *tree;
  891. tree = &BTRFS_I(page->mapping->host)->io_tree;
  892. extent_invalidatepage(tree, page, offset);
  893. btree_releasepage(page, GFP_NOFS);
  894. if (PagePrivate(page)) {
  895. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  896. "page private not zero on page %llu",
  897. (unsigned long long)page_offset(page));
  898. ClearPagePrivate(page);
  899. set_page_private(page, 0);
  900. page_cache_release(page);
  901. }
  902. }
  903. static int btree_set_page_dirty(struct page *page)
  904. {
  905. #ifdef DEBUG
  906. struct extent_buffer *eb;
  907. BUG_ON(!PagePrivate(page));
  908. eb = (struct extent_buffer *)page->private;
  909. BUG_ON(!eb);
  910. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  911. BUG_ON(!atomic_read(&eb->refs));
  912. btrfs_assert_tree_locked(eb);
  913. #endif
  914. return __set_page_dirty_nobuffers(page);
  915. }
  916. static const struct address_space_operations btree_aops = {
  917. .readpage = btree_readpage,
  918. .writepages = btree_writepages,
  919. .releasepage = btree_releasepage,
  920. .invalidatepage = btree_invalidatepage,
  921. #ifdef CONFIG_MIGRATION
  922. .migratepage = btree_migratepage,
  923. #endif
  924. .set_page_dirty = btree_set_page_dirty,
  925. };
  926. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  927. u64 parent_transid)
  928. {
  929. struct extent_buffer *buf = NULL;
  930. struct inode *btree_inode = root->fs_info->btree_inode;
  931. int ret = 0;
  932. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  933. if (!buf)
  934. return 0;
  935. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  936. buf, 0, WAIT_NONE, btree_get_extent, 0);
  937. free_extent_buffer(buf);
  938. return ret;
  939. }
  940. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  941. int mirror_num, struct extent_buffer **eb)
  942. {
  943. struct extent_buffer *buf = NULL;
  944. struct inode *btree_inode = root->fs_info->btree_inode;
  945. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  946. int ret;
  947. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  948. if (!buf)
  949. return 0;
  950. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  951. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  952. btree_get_extent, mirror_num);
  953. if (ret) {
  954. free_extent_buffer(buf);
  955. return ret;
  956. }
  957. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  958. free_extent_buffer(buf);
  959. return -EIO;
  960. } else if (extent_buffer_uptodate(buf)) {
  961. *eb = buf;
  962. } else {
  963. free_extent_buffer(buf);
  964. }
  965. return 0;
  966. }
  967. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  968. u64 bytenr, u32 blocksize)
  969. {
  970. return find_extent_buffer(root->fs_info, bytenr);
  971. }
  972. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  973. u64 bytenr, u32 blocksize)
  974. {
  975. return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
  976. }
  977. int btrfs_write_tree_block(struct extent_buffer *buf)
  978. {
  979. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  980. buf->start + buf->len - 1);
  981. }
  982. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  983. {
  984. return filemap_fdatawait_range(buf->pages[0]->mapping,
  985. buf->start, buf->start + buf->len - 1);
  986. }
  987. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  988. u32 blocksize, u64 parent_transid)
  989. {
  990. struct extent_buffer *buf = NULL;
  991. int ret;
  992. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  993. if (!buf)
  994. return NULL;
  995. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  996. if (ret) {
  997. free_extent_buffer(buf);
  998. return NULL;
  999. }
  1000. return buf;
  1001. }
  1002. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1003. struct extent_buffer *buf)
  1004. {
  1005. struct btrfs_fs_info *fs_info = root->fs_info;
  1006. if (btrfs_header_generation(buf) ==
  1007. fs_info->running_transaction->transid) {
  1008. btrfs_assert_tree_locked(buf);
  1009. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1010. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1011. -buf->len,
  1012. fs_info->dirty_metadata_batch);
  1013. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1014. btrfs_set_lock_blocking(buf);
  1015. clear_extent_buffer_dirty(buf);
  1016. }
  1017. }
  1018. }
  1019. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1020. {
  1021. struct btrfs_subvolume_writers *writers;
  1022. int ret;
  1023. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1024. if (!writers)
  1025. return ERR_PTR(-ENOMEM);
  1026. ret = percpu_counter_init(&writers->counter, 0);
  1027. if (ret < 0) {
  1028. kfree(writers);
  1029. return ERR_PTR(ret);
  1030. }
  1031. init_waitqueue_head(&writers->wait);
  1032. return writers;
  1033. }
  1034. static void
  1035. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1036. {
  1037. percpu_counter_destroy(&writers->counter);
  1038. kfree(writers);
  1039. }
  1040. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1041. u32 stripesize, struct btrfs_root *root,
  1042. struct btrfs_fs_info *fs_info,
  1043. u64 objectid)
  1044. {
  1045. root->node = NULL;
  1046. root->commit_root = NULL;
  1047. root->sectorsize = sectorsize;
  1048. root->nodesize = nodesize;
  1049. root->leafsize = leafsize;
  1050. root->stripesize = stripesize;
  1051. root->ref_cows = 0;
  1052. root->track_dirty = 0;
  1053. root->in_radix = 0;
  1054. root->orphan_item_inserted = 0;
  1055. root->orphan_cleanup_state = 0;
  1056. root->objectid = objectid;
  1057. root->last_trans = 0;
  1058. root->highest_objectid = 0;
  1059. root->nr_delalloc_inodes = 0;
  1060. root->nr_ordered_extents = 0;
  1061. root->name = NULL;
  1062. root->inode_tree = RB_ROOT;
  1063. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1064. root->block_rsv = NULL;
  1065. root->orphan_block_rsv = NULL;
  1066. INIT_LIST_HEAD(&root->dirty_list);
  1067. INIT_LIST_HEAD(&root->root_list);
  1068. INIT_LIST_HEAD(&root->delalloc_inodes);
  1069. INIT_LIST_HEAD(&root->delalloc_root);
  1070. INIT_LIST_HEAD(&root->ordered_extents);
  1071. INIT_LIST_HEAD(&root->ordered_root);
  1072. INIT_LIST_HEAD(&root->logged_list[0]);
  1073. INIT_LIST_HEAD(&root->logged_list[1]);
  1074. spin_lock_init(&root->orphan_lock);
  1075. spin_lock_init(&root->inode_lock);
  1076. spin_lock_init(&root->delalloc_lock);
  1077. spin_lock_init(&root->ordered_extent_lock);
  1078. spin_lock_init(&root->accounting_lock);
  1079. spin_lock_init(&root->log_extents_lock[0]);
  1080. spin_lock_init(&root->log_extents_lock[1]);
  1081. mutex_init(&root->objectid_mutex);
  1082. mutex_init(&root->log_mutex);
  1083. mutex_init(&root->ordered_extent_mutex);
  1084. mutex_init(&root->delalloc_mutex);
  1085. init_waitqueue_head(&root->log_writer_wait);
  1086. init_waitqueue_head(&root->log_commit_wait[0]);
  1087. init_waitqueue_head(&root->log_commit_wait[1]);
  1088. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1089. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1090. atomic_set(&root->log_commit[0], 0);
  1091. atomic_set(&root->log_commit[1], 0);
  1092. atomic_set(&root->log_writers, 0);
  1093. atomic_set(&root->log_batch, 0);
  1094. atomic_set(&root->orphan_inodes, 0);
  1095. atomic_set(&root->refs, 1);
  1096. atomic_set(&root->will_be_snapshoted, 0);
  1097. root->log_transid = 0;
  1098. root->log_transid_committed = -1;
  1099. root->last_log_commit = 0;
  1100. if (fs_info)
  1101. extent_io_tree_init(&root->dirty_log_pages,
  1102. fs_info->btree_inode->i_mapping);
  1103. memset(&root->root_key, 0, sizeof(root->root_key));
  1104. memset(&root->root_item, 0, sizeof(root->root_item));
  1105. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1106. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1107. if (fs_info)
  1108. root->defrag_trans_start = fs_info->generation;
  1109. else
  1110. root->defrag_trans_start = 0;
  1111. init_completion(&root->kobj_unregister);
  1112. root->defrag_running = 0;
  1113. root->root_key.objectid = objectid;
  1114. root->anon_dev = 0;
  1115. spin_lock_init(&root->root_item_lock);
  1116. }
  1117. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1118. {
  1119. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1120. if (root)
  1121. root->fs_info = fs_info;
  1122. return root;
  1123. }
  1124. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1125. /* Should only be used by the testing infrastructure */
  1126. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1127. {
  1128. struct btrfs_root *root;
  1129. root = btrfs_alloc_root(NULL);
  1130. if (!root)
  1131. return ERR_PTR(-ENOMEM);
  1132. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1133. root->dummy_root = 1;
  1134. return root;
  1135. }
  1136. #endif
  1137. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1138. struct btrfs_fs_info *fs_info,
  1139. u64 objectid)
  1140. {
  1141. struct extent_buffer *leaf;
  1142. struct btrfs_root *tree_root = fs_info->tree_root;
  1143. struct btrfs_root *root;
  1144. struct btrfs_key key;
  1145. int ret = 0;
  1146. uuid_le uuid;
  1147. root = btrfs_alloc_root(fs_info);
  1148. if (!root)
  1149. return ERR_PTR(-ENOMEM);
  1150. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1151. tree_root->sectorsize, tree_root->stripesize,
  1152. root, fs_info, objectid);
  1153. root->root_key.objectid = objectid;
  1154. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1155. root->root_key.offset = 0;
  1156. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1157. 0, objectid, NULL, 0, 0, 0);
  1158. if (IS_ERR(leaf)) {
  1159. ret = PTR_ERR(leaf);
  1160. leaf = NULL;
  1161. goto fail;
  1162. }
  1163. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1164. btrfs_set_header_bytenr(leaf, leaf->start);
  1165. btrfs_set_header_generation(leaf, trans->transid);
  1166. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1167. btrfs_set_header_owner(leaf, objectid);
  1168. root->node = leaf;
  1169. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1170. BTRFS_FSID_SIZE);
  1171. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1172. btrfs_header_chunk_tree_uuid(leaf),
  1173. BTRFS_UUID_SIZE);
  1174. btrfs_mark_buffer_dirty(leaf);
  1175. root->commit_root = btrfs_root_node(root);
  1176. root->track_dirty = 1;
  1177. root->root_item.flags = 0;
  1178. root->root_item.byte_limit = 0;
  1179. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1180. btrfs_set_root_generation(&root->root_item, trans->transid);
  1181. btrfs_set_root_level(&root->root_item, 0);
  1182. btrfs_set_root_refs(&root->root_item, 1);
  1183. btrfs_set_root_used(&root->root_item, leaf->len);
  1184. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1185. btrfs_set_root_dirid(&root->root_item, 0);
  1186. uuid_le_gen(&uuid);
  1187. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1188. root->root_item.drop_level = 0;
  1189. key.objectid = objectid;
  1190. key.type = BTRFS_ROOT_ITEM_KEY;
  1191. key.offset = 0;
  1192. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1193. if (ret)
  1194. goto fail;
  1195. btrfs_tree_unlock(leaf);
  1196. return root;
  1197. fail:
  1198. if (leaf) {
  1199. btrfs_tree_unlock(leaf);
  1200. free_extent_buffer(leaf);
  1201. }
  1202. kfree(root);
  1203. return ERR_PTR(ret);
  1204. }
  1205. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1206. struct btrfs_fs_info *fs_info)
  1207. {
  1208. struct btrfs_root *root;
  1209. struct btrfs_root *tree_root = fs_info->tree_root;
  1210. struct extent_buffer *leaf;
  1211. root = btrfs_alloc_root(fs_info);
  1212. if (!root)
  1213. return ERR_PTR(-ENOMEM);
  1214. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1215. tree_root->sectorsize, tree_root->stripesize,
  1216. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1217. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1218. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1219. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1220. /*
  1221. * log trees do not get reference counted because they go away
  1222. * before a real commit is actually done. They do store pointers
  1223. * to file data extents, and those reference counts still get
  1224. * updated (along with back refs to the log tree).
  1225. */
  1226. root->ref_cows = 0;
  1227. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1228. BTRFS_TREE_LOG_OBJECTID, NULL,
  1229. 0, 0, 0);
  1230. if (IS_ERR(leaf)) {
  1231. kfree(root);
  1232. return ERR_CAST(leaf);
  1233. }
  1234. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1235. btrfs_set_header_bytenr(leaf, leaf->start);
  1236. btrfs_set_header_generation(leaf, trans->transid);
  1237. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1238. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1239. root->node = leaf;
  1240. write_extent_buffer(root->node, root->fs_info->fsid,
  1241. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1242. btrfs_mark_buffer_dirty(root->node);
  1243. btrfs_tree_unlock(root->node);
  1244. return root;
  1245. }
  1246. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1247. struct btrfs_fs_info *fs_info)
  1248. {
  1249. struct btrfs_root *log_root;
  1250. log_root = alloc_log_tree(trans, fs_info);
  1251. if (IS_ERR(log_root))
  1252. return PTR_ERR(log_root);
  1253. WARN_ON(fs_info->log_root_tree);
  1254. fs_info->log_root_tree = log_root;
  1255. return 0;
  1256. }
  1257. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1258. struct btrfs_root *root)
  1259. {
  1260. struct btrfs_root *log_root;
  1261. struct btrfs_inode_item *inode_item;
  1262. log_root = alloc_log_tree(trans, root->fs_info);
  1263. if (IS_ERR(log_root))
  1264. return PTR_ERR(log_root);
  1265. log_root->last_trans = trans->transid;
  1266. log_root->root_key.offset = root->root_key.objectid;
  1267. inode_item = &log_root->root_item.inode;
  1268. btrfs_set_stack_inode_generation(inode_item, 1);
  1269. btrfs_set_stack_inode_size(inode_item, 3);
  1270. btrfs_set_stack_inode_nlink(inode_item, 1);
  1271. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1272. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1273. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1274. WARN_ON(root->log_root);
  1275. root->log_root = log_root;
  1276. root->log_transid = 0;
  1277. root->log_transid_committed = -1;
  1278. root->last_log_commit = 0;
  1279. return 0;
  1280. }
  1281. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1282. struct btrfs_key *key)
  1283. {
  1284. struct btrfs_root *root;
  1285. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1286. struct btrfs_path *path;
  1287. u64 generation;
  1288. u32 blocksize;
  1289. int ret;
  1290. path = btrfs_alloc_path();
  1291. if (!path)
  1292. return ERR_PTR(-ENOMEM);
  1293. root = btrfs_alloc_root(fs_info);
  1294. if (!root) {
  1295. ret = -ENOMEM;
  1296. goto alloc_fail;
  1297. }
  1298. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1299. tree_root->sectorsize, tree_root->stripesize,
  1300. root, fs_info, key->objectid);
  1301. ret = btrfs_find_root(tree_root, key, path,
  1302. &root->root_item, &root->root_key);
  1303. if (ret) {
  1304. if (ret > 0)
  1305. ret = -ENOENT;
  1306. goto find_fail;
  1307. }
  1308. generation = btrfs_root_generation(&root->root_item);
  1309. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1310. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1311. blocksize, generation);
  1312. if (!root->node) {
  1313. ret = -ENOMEM;
  1314. goto find_fail;
  1315. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1316. ret = -EIO;
  1317. goto read_fail;
  1318. }
  1319. root->commit_root = btrfs_root_node(root);
  1320. out:
  1321. btrfs_free_path(path);
  1322. return root;
  1323. read_fail:
  1324. free_extent_buffer(root->node);
  1325. find_fail:
  1326. kfree(root);
  1327. alloc_fail:
  1328. root = ERR_PTR(ret);
  1329. goto out;
  1330. }
  1331. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1332. struct btrfs_key *location)
  1333. {
  1334. struct btrfs_root *root;
  1335. root = btrfs_read_tree_root(tree_root, location);
  1336. if (IS_ERR(root))
  1337. return root;
  1338. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1339. root->ref_cows = 1;
  1340. btrfs_check_and_init_root_item(&root->root_item);
  1341. }
  1342. return root;
  1343. }
  1344. int btrfs_init_fs_root(struct btrfs_root *root)
  1345. {
  1346. int ret;
  1347. struct btrfs_subvolume_writers *writers;
  1348. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1349. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1350. GFP_NOFS);
  1351. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1352. ret = -ENOMEM;
  1353. goto fail;
  1354. }
  1355. writers = btrfs_alloc_subvolume_writers();
  1356. if (IS_ERR(writers)) {
  1357. ret = PTR_ERR(writers);
  1358. goto fail;
  1359. }
  1360. root->subv_writers = writers;
  1361. btrfs_init_free_ino_ctl(root);
  1362. spin_lock_init(&root->cache_lock);
  1363. init_waitqueue_head(&root->cache_wait);
  1364. ret = get_anon_bdev(&root->anon_dev);
  1365. if (ret)
  1366. goto free_writers;
  1367. return 0;
  1368. free_writers:
  1369. btrfs_free_subvolume_writers(root->subv_writers);
  1370. fail:
  1371. kfree(root->free_ino_ctl);
  1372. kfree(root->free_ino_pinned);
  1373. return ret;
  1374. }
  1375. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1376. u64 root_id)
  1377. {
  1378. struct btrfs_root *root;
  1379. spin_lock(&fs_info->fs_roots_radix_lock);
  1380. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1381. (unsigned long)root_id);
  1382. spin_unlock(&fs_info->fs_roots_radix_lock);
  1383. return root;
  1384. }
  1385. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1386. struct btrfs_root *root)
  1387. {
  1388. int ret;
  1389. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1390. if (ret)
  1391. return ret;
  1392. spin_lock(&fs_info->fs_roots_radix_lock);
  1393. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1394. (unsigned long)root->root_key.objectid,
  1395. root);
  1396. if (ret == 0)
  1397. root->in_radix = 1;
  1398. spin_unlock(&fs_info->fs_roots_radix_lock);
  1399. radix_tree_preload_end();
  1400. return ret;
  1401. }
  1402. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1403. struct btrfs_key *location,
  1404. bool check_ref)
  1405. {
  1406. struct btrfs_root *root;
  1407. int ret;
  1408. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1409. return fs_info->tree_root;
  1410. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1411. return fs_info->extent_root;
  1412. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1413. return fs_info->chunk_root;
  1414. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1415. return fs_info->dev_root;
  1416. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1417. return fs_info->csum_root;
  1418. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1419. return fs_info->quota_root ? fs_info->quota_root :
  1420. ERR_PTR(-ENOENT);
  1421. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1422. return fs_info->uuid_root ? fs_info->uuid_root :
  1423. ERR_PTR(-ENOENT);
  1424. again:
  1425. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1426. if (root) {
  1427. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1428. return ERR_PTR(-ENOENT);
  1429. return root;
  1430. }
  1431. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1432. if (IS_ERR(root))
  1433. return root;
  1434. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1435. ret = -ENOENT;
  1436. goto fail;
  1437. }
  1438. ret = btrfs_init_fs_root(root);
  1439. if (ret)
  1440. goto fail;
  1441. ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
  1442. location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
  1443. if (ret < 0)
  1444. goto fail;
  1445. if (ret == 0)
  1446. root->orphan_item_inserted = 1;
  1447. ret = btrfs_insert_fs_root(fs_info, root);
  1448. if (ret) {
  1449. if (ret == -EEXIST) {
  1450. free_fs_root(root);
  1451. goto again;
  1452. }
  1453. goto fail;
  1454. }
  1455. return root;
  1456. fail:
  1457. free_fs_root(root);
  1458. return ERR_PTR(ret);
  1459. }
  1460. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1461. {
  1462. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1463. int ret = 0;
  1464. struct btrfs_device *device;
  1465. struct backing_dev_info *bdi;
  1466. rcu_read_lock();
  1467. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1468. if (!device->bdev)
  1469. continue;
  1470. bdi = blk_get_backing_dev_info(device->bdev);
  1471. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1472. ret = 1;
  1473. break;
  1474. }
  1475. }
  1476. rcu_read_unlock();
  1477. return ret;
  1478. }
  1479. /*
  1480. * If this fails, caller must call bdi_destroy() to get rid of the
  1481. * bdi again.
  1482. */
  1483. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1484. {
  1485. int err;
  1486. bdi->capabilities = BDI_CAP_MAP_COPY;
  1487. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1488. if (err)
  1489. return err;
  1490. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1491. bdi->congested_fn = btrfs_congested_fn;
  1492. bdi->congested_data = info;
  1493. return 0;
  1494. }
  1495. /*
  1496. * called by the kthread helper functions to finally call the bio end_io
  1497. * functions. This is where read checksum verification actually happens
  1498. */
  1499. static void end_workqueue_fn(struct btrfs_work *work)
  1500. {
  1501. struct bio *bio;
  1502. struct end_io_wq *end_io_wq;
  1503. int error;
  1504. end_io_wq = container_of(work, struct end_io_wq, work);
  1505. bio = end_io_wq->bio;
  1506. error = end_io_wq->error;
  1507. bio->bi_private = end_io_wq->private;
  1508. bio->bi_end_io = end_io_wq->end_io;
  1509. kfree(end_io_wq);
  1510. bio_endio_nodec(bio, error);
  1511. }
  1512. static int cleaner_kthread(void *arg)
  1513. {
  1514. struct btrfs_root *root = arg;
  1515. int again;
  1516. do {
  1517. again = 0;
  1518. /* Make the cleaner go to sleep early. */
  1519. if (btrfs_need_cleaner_sleep(root))
  1520. goto sleep;
  1521. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1522. goto sleep;
  1523. /*
  1524. * Avoid the problem that we change the status of the fs
  1525. * during the above check and trylock.
  1526. */
  1527. if (btrfs_need_cleaner_sleep(root)) {
  1528. mutex_unlock(&root->fs_info->cleaner_mutex);
  1529. goto sleep;
  1530. }
  1531. btrfs_run_delayed_iputs(root);
  1532. again = btrfs_clean_one_deleted_snapshot(root);
  1533. mutex_unlock(&root->fs_info->cleaner_mutex);
  1534. /*
  1535. * The defragger has dealt with the R/O remount and umount,
  1536. * needn't do anything special here.
  1537. */
  1538. btrfs_run_defrag_inodes(root->fs_info);
  1539. sleep:
  1540. if (!try_to_freeze() && !again) {
  1541. set_current_state(TASK_INTERRUPTIBLE);
  1542. if (!kthread_should_stop())
  1543. schedule();
  1544. __set_current_state(TASK_RUNNING);
  1545. }
  1546. } while (!kthread_should_stop());
  1547. return 0;
  1548. }
  1549. static int transaction_kthread(void *arg)
  1550. {
  1551. struct btrfs_root *root = arg;
  1552. struct btrfs_trans_handle *trans;
  1553. struct btrfs_transaction *cur;
  1554. u64 transid;
  1555. unsigned long now;
  1556. unsigned long delay;
  1557. bool cannot_commit;
  1558. do {
  1559. cannot_commit = false;
  1560. delay = HZ * root->fs_info->commit_interval;
  1561. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1562. spin_lock(&root->fs_info->trans_lock);
  1563. cur = root->fs_info->running_transaction;
  1564. if (!cur) {
  1565. spin_unlock(&root->fs_info->trans_lock);
  1566. goto sleep;
  1567. }
  1568. now = get_seconds();
  1569. if (cur->state < TRANS_STATE_BLOCKED &&
  1570. (now < cur->start_time ||
  1571. now - cur->start_time < root->fs_info->commit_interval)) {
  1572. spin_unlock(&root->fs_info->trans_lock);
  1573. delay = HZ * 5;
  1574. goto sleep;
  1575. }
  1576. transid = cur->transid;
  1577. spin_unlock(&root->fs_info->trans_lock);
  1578. /* If the file system is aborted, this will always fail. */
  1579. trans = btrfs_attach_transaction(root);
  1580. if (IS_ERR(trans)) {
  1581. if (PTR_ERR(trans) != -ENOENT)
  1582. cannot_commit = true;
  1583. goto sleep;
  1584. }
  1585. if (transid == trans->transid) {
  1586. btrfs_commit_transaction(trans, root);
  1587. } else {
  1588. btrfs_end_transaction(trans, root);
  1589. }
  1590. sleep:
  1591. wake_up_process(root->fs_info->cleaner_kthread);
  1592. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1593. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1594. &root->fs_info->fs_state)))
  1595. btrfs_cleanup_transaction(root);
  1596. if (!try_to_freeze()) {
  1597. set_current_state(TASK_INTERRUPTIBLE);
  1598. if (!kthread_should_stop() &&
  1599. (!btrfs_transaction_blocked(root->fs_info) ||
  1600. cannot_commit))
  1601. schedule_timeout(delay);
  1602. __set_current_state(TASK_RUNNING);
  1603. }
  1604. } while (!kthread_should_stop());
  1605. return 0;
  1606. }
  1607. /*
  1608. * this will find the highest generation in the array of
  1609. * root backups. The index of the highest array is returned,
  1610. * or -1 if we can't find anything.
  1611. *
  1612. * We check to make sure the array is valid by comparing the
  1613. * generation of the latest root in the array with the generation
  1614. * in the super block. If they don't match we pitch it.
  1615. */
  1616. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1617. {
  1618. u64 cur;
  1619. int newest_index = -1;
  1620. struct btrfs_root_backup *root_backup;
  1621. int i;
  1622. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1623. root_backup = info->super_copy->super_roots + i;
  1624. cur = btrfs_backup_tree_root_gen(root_backup);
  1625. if (cur == newest_gen)
  1626. newest_index = i;
  1627. }
  1628. /* check to see if we actually wrapped around */
  1629. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1630. root_backup = info->super_copy->super_roots;
  1631. cur = btrfs_backup_tree_root_gen(root_backup);
  1632. if (cur == newest_gen)
  1633. newest_index = 0;
  1634. }
  1635. return newest_index;
  1636. }
  1637. /*
  1638. * find the oldest backup so we know where to store new entries
  1639. * in the backup array. This will set the backup_root_index
  1640. * field in the fs_info struct
  1641. */
  1642. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1643. u64 newest_gen)
  1644. {
  1645. int newest_index = -1;
  1646. newest_index = find_newest_super_backup(info, newest_gen);
  1647. /* if there was garbage in there, just move along */
  1648. if (newest_index == -1) {
  1649. info->backup_root_index = 0;
  1650. } else {
  1651. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1652. }
  1653. }
  1654. /*
  1655. * copy all the root pointers into the super backup array.
  1656. * this will bump the backup pointer by one when it is
  1657. * done
  1658. */
  1659. static void backup_super_roots(struct btrfs_fs_info *info)
  1660. {
  1661. int next_backup;
  1662. struct btrfs_root_backup *root_backup;
  1663. int last_backup;
  1664. next_backup = info->backup_root_index;
  1665. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1666. BTRFS_NUM_BACKUP_ROOTS;
  1667. /*
  1668. * just overwrite the last backup if we're at the same generation
  1669. * this happens only at umount
  1670. */
  1671. root_backup = info->super_for_commit->super_roots + last_backup;
  1672. if (btrfs_backup_tree_root_gen(root_backup) ==
  1673. btrfs_header_generation(info->tree_root->node))
  1674. next_backup = last_backup;
  1675. root_backup = info->super_for_commit->super_roots + next_backup;
  1676. /*
  1677. * make sure all of our padding and empty slots get zero filled
  1678. * regardless of which ones we use today
  1679. */
  1680. memset(root_backup, 0, sizeof(*root_backup));
  1681. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1682. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1683. btrfs_set_backup_tree_root_gen(root_backup,
  1684. btrfs_header_generation(info->tree_root->node));
  1685. btrfs_set_backup_tree_root_level(root_backup,
  1686. btrfs_header_level(info->tree_root->node));
  1687. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1688. btrfs_set_backup_chunk_root_gen(root_backup,
  1689. btrfs_header_generation(info->chunk_root->node));
  1690. btrfs_set_backup_chunk_root_level(root_backup,
  1691. btrfs_header_level(info->chunk_root->node));
  1692. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1693. btrfs_set_backup_extent_root_gen(root_backup,
  1694. btrfs_header_generation(info->extent_root->node));
  1695. btrfs_set_backup_extent_root_level(root_backup,
  1696. btrfs_header_level(info->extent_root->node));
  1697. /*
  1698. * we might commit during log recovery, which happens before we set
  1699. * the fs_root. Make sure it is valid before we fill it in.
  1700. */
  1701. if (info->fs_root && info->fs_root->node) {
  1702. btrfs_set_backup_fs_root(root_backup,
  1703. info->fs_root->node->start);
  1704. btrfs_set_backup_fs_root_gen(root_backup,
  1705. btrfs_header_generation(info->fs_root->node));
  1706. btrfs_set_backup_fs_root_level(root_backup,
  1707. btrfs_header_level(info->fs_root->node));
  1708. }
  1709. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1710. btrfs_set_backup_dev_root_gen(root_backup,
  1711. btrfs_header_generation(info->dev_root->node));
  1712. btrfs_set_backup_dev_root_level(root_backup,
  1713. btrfs_header_level(info->dev_root->node));
  1714. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1715. btrfs_set_backup_csum_root_gen(root_backup,
  1716. btrfs_header_generation(info->csum_root->node));
  1717. btrfs_set_backup_csum_root_level(root_backup,
  1718. btrfs_header_level(info->csum_root->node));
  1719. btrfs_set_backup_total_bytes(root_backup,
  1720. btrfs_super_total_bytes(info->super_copy));
  1721. btrfs_set_backup_bytes_used(root_backup,
  1722. btrfs_super_bytes_used(info->super_copy));
  1723. btrfs_set_backup_num_devices(root_backup,
  1724. btrfs_super_num_devices(info->super_copy));
  1725. /*
  1726. * if we don't copy this out to the super_copy, it won't get remembered
  1727. * for the next commit
  1728. */
  1729. memcpy(&info->super_copy->super_roots,
  1730. &info->super_for_commit->super_roots,
  1731. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1732. }
  1733. /*
  1734. * this copies info out of the root backup array and back into
  1735. * the in-memory super block. It is meant to help iterate through
  1736. * the array, so you send it the number of backups you've already
  1737. * tried and the last backup index you used.
  1738. *
  1739. * this returns -1 when it has tried all the backups
  1740. */
  1741. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1742. struct btrfs_super_block *super,
  1743. int *num_backups_tried, int *backup_index)
  1744. {
  1745. struct btrfs_root_backup *root_backup;
  1746. int newest = *backup_index;
  1747. if (*num_backups_tried == 0) {
  1748. u64 gen = btrfs_super_generation(super);
  1749. newest = find_newest_super_backup(info, gen);
  1750. if (newest == -1)
  1751. return -1;
  1752. *backup_index = newest;
  1753. *num_backups_tried = 1;
  1754. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1755. /* we've tried all the backups, all done */
  1756. return -1;
  1757. } else {
  1758. /* jump to the next oldest backup */
  1759. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1760. BTRFS_NUM_BACKUP_ROOTS;
  1761. *backup_index = newest;
  1762. *num_backups_tried += 1;
  1763. }
  1764. root_backup = super->super_roots + newest;
  1765. btrfs_set_super_generation(super,
  1766. btrfs_backup_tree_root_gen(root_backup));
  1767. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1768. btrfs_set_super_root_level(super,
  1769. btrfs_backup_tree_root_level(root_backup));
  1770. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1771. /*
  1772. * fixme: the total bytes and num_devices need to match or we should
  1773. * need a fsck
  1774. */
  1775. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1776. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1777. return 0;
  1778. }
  1779. /* helper to cleanup workers */
  1780. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1781. {
  1782. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1783. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1784. btrfs_destroy_workqueue(fs_info->workers);
  1785. btrfs_destroy_workqueue(fs_info->endio_workers);
  1786. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1787. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1788. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1789. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1790. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1791. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1792. btrfs_destroy_workqueue(fs_info->submit_workers);
  1793. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1794. btrfs_destroy_workqueue(fs_info->caching_workers);
  1795. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1796. btrfs_destroy_workqueue(fs_info->flush_workers);
  1797. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1798. }
  1799. static void free_root_extent_buffers(struct btrfs_root *root)
  1800. {
  1801. if (root) {
  1802. free_extent_buffer(root->node);
  1803. free_extent_buffer(root->commit_root);
  1804. root->node = NULL;
  1805. root->commit_root = NULL;
  1806. }
  1807. }
  1808. /* helper to cleanup tree roots */
  1809. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1810. {
  1811. free_root_extent_buffers(info->tree_root);
  1812. free_root_extent_buffers(info->dev_root);
  1813. free_root_extent_buffers(info->extent_root);
  1814. free_root_extent_buffers(info->csum_root);
  1815. free_root_extent_buffers(info->quota_root);
  1816. free_root_extent_buffers(info->uuid_root);
  1817. if (chunk_root)
  1818. free_root_extent_buffers(info->chunk_root);
  1819. }
  1820. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1821. {
  1822. int ret;
  1823. struct btrfs_root *gang[8];
  1824. int i;
  1825. while (!list_empty(&fs_info->dead_roots)) {
  1826. gang[0] = list_entry(fs_info->dead_roots.next,
  1827. struct btrfs_root, root_list);
  1828. list_del(&gang[0]->root_list);
  1829. if (gang[0]->in_radix) {
  1830. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1831. } else {
  1832. free_extent_buffer(gang[0]->node);
  1833. free_extent_buffer(gang[0]->commit_root);
  1834. btrfs_put_fs_root(gang[0]);
  1835. }
  1836. }
  1837. while (1) {
  1838. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1839. (void **)gang, 0,
  1840. ARRAY_SIZE(gang));
  1841. if (!ret)
  1842. break;
  1843. for (i = 0; i < ret; i++)
  1844. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1845. }
  1846. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1847. btrfs_free_log_root_tree(NULL, fs_info);
  1848. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1849. fs_info->pinned_extents);
  1850. }
  1851. }
  1852. int open_ctree(struct super_block *sb,
  1853. struct btrfs_fs_devices *fs_devices,
  1854. char *options)
  1855. {
  1856. u32 sectorsize;
  1857. u32 nodesize;
  1858. u32 leafsize;
  1859. u32 blocksize;
  1860. u32 stripesize;
  1861. u64 generation;
  1862. u64 features;
  1863. struct btrfs_key location;
  1864. struct buffer_head *bh;
  1865. struct btrfs_super_block *disk_super;
  1866. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1867. struct btrfs_root *tree_root;
  1868. struct btrfs_root *extent_root;
  1869. struct btrfs_root *csum_root;
  1870. struct btrfs_root *chunk_root;
  1871. struct btrfs_root *dev_root;
  1872. struct btrfs_root *quota_root;
  1873. struct btrfs_root *uuid_root;
  1874. struct btrfs_root *log_tree_root;
  1875. int ret;
  1876. int err = -EINVAL;
  1877. int num_backups_tried = 0;
  1878. int backup_index = 0;
  1879. int max_active;
  1880. int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1881. bool create_uuid_tree;
  1882. bool check_uuid_tree;
  1883. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1884. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1885. if (!tree_root || !chunk_root) {
  1886. err = -ENOMEM;
  1887. goto fail;
  1888. }
  1889. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1890. if (ret) {
  1891. err = ret;
  1892. goto fail;
  1893. }
  1894. ret = setup_bdi(fs_info, &fs_info->bdi);
  1895. if (ret) {
  1896. err = ret;
  1897. goto fail_srcu;
  1898. }
  1899. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1900. if (ret) {
  1901. err = ret;
  1902. goto fail_bdi;
  1903. }
  1904. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1905. (1 + ilog2(nr_cpu_ids));
  1906. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1907. if (ret) {
  1908. err = ret;
  1909. goto fail_dirty_metadata_bytes;
  1910. }
  1911. ret = percpu_counter_init(&fs_info->bio_counter, 0);
  1912. if (ret) {
  1913. err = ret;
  1914. goto fail_delalloc_bytes;
  1915. }
  1916. fs_info->btree_inode = new_inode(sb);
  1917. if (!fs_info->btree_inode) {
  1918. err = -ENOMEM;
  1919. goto fail_bio_counter;
  1920. }
  1921. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1922. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1923. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  1924. INIT_LIST_HEAD(&fs_info->trans_list);
  1925. INIT_LIST_HEAD(&fs_info->dead_roots);
  1926. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1927. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1928. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1929. spin_lock_init(&fs_info->delalloc_root_lock);
  1930. spin_lock_init(&fs_info->trans_lock);
  1931. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1932. spin_lock_init(&fs_info->delayed_iput_lock);
  1933. spin_lock_init(&fs_info->defrag_inodes_lock);
  1934. spin_lock_init(&fs_info->free_chunk_lock);
  1935. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1936. spin_lock_init(&fs_info->super_lock);
  1937. spin_lock_init(&fs_info->buffer_lock);
  1938. rwlock_init(&fs_info->tree_mod_log_lock);
  1939. mutex_init(&fs_info->reloc_mutex);
  1940. mutex_init(&fs_info->delalloc_root_mutex);
  1941. seqlock_init(&fs_info->profiles_lock);
  1942. init_completion(&fs_info->kobj_unregister);
  1943. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1944. INIT_LIST_HEAD(&fs_info->space_info);
  1945. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1946. btrfs_mapping_init(&fs_info->mapping_tree);
  1947. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1948. BTRFS_BLOCK_RSV_GLOBAL);
  1949. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1950. BTRFS_BLOCK_RSV_DELALLOC);
  1951. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1952. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1953. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1954. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1955. BTRFS_BLOCK_RSV_DELOPS);
  1956. atomic_set(&fs_info->nr_async_submits, 0);
  1957. atomic_set(&fs_info->async_delalloc_pages, 0);
  1958. atomic_set(&fs_info->async_submit_draining, 0);
  1959. atomic_set(&fs_info->nr_async_bios, 0);
  1960. atomic_set(&fs_info->defrag_running, 0);
  1961. atomic64_set(&fs_info->tree_mod_seq, 0);
  1962. fs_info->sb = sb;
  1963. fs_info->max_inline = 8192 * 1024;
  1964. fs_info->metadata_ratio = 0;
  1965. fs_info->defrag_inodes = RB_ROOT;
  1966. fs_info->free_chunk_space = 0;
  1967. fs_info->tree_mod_log = RB_ROOT;
  1968. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1969. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  1970. /* readahead state */
  1971. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1972. spin_lock_init(&fs_info->reada_lock);
  1973. fs_info->thread_pool_size = min_t(unsigned long,
  1974. num_online_cpus() + 2, 8);
  1975. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1976. spin_lock_init(&fs_info->ordered_root_lock);
  1977. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1978. GFP_NOFS);
  1979. if (!fs_info->delayed_root) {
  1980. err = -ENOMEM;
  1981. goto fail_iput;
  1982. }
  1983. btrfs_init_delayed_root(fs_info->delayed_root);
  1984. mutex_init(&fs_info->scrub_lock);
  1985. atomic_set(&fs_info->scrubs_running, 0);
  1986. atomic_set(&fs_info->scrub_pause_req, 0);
  1987. atomic_set(&fs_info->scrubs_paused, 0);
  1988. atomic_set(&fs_info->scrub_cancel_req, 0);
  1989. init_waitqueue_head(&fs_info->replace_wait);
  1990. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1991. fs_info->scrub_workers_refcnt = 0;
  1992. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1993. fs_info->check_integrity_print_mask = 0;
  1994. #endif
  1995. spin_lock_init(&fs_info->balance_lock);
  1996. mutex_init(&fs_info->balance_mutex);
  1997. atomic_set(&fs_info->balance_running, 0);
  1998. atomic_set(&fs_info->balance_pause_req, 0);
  1999. atomic_set(&fs_info->balance_cancel_req, 0);
  2000. fs_info->balance_ctl = NULL;
  2001. init_waitqueue_head(&fs_info->balance_wait_q);
  2002. sb->s_blocksize = 4096;
  2003. sb->s_blocksize_bits = blksize_bits(4096);
  2004. sb->s_bdi = &fs_info->bdi;
  2005. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  2006. set_nlink(fs_info->btree_inode, 1);
  2007. /*
  2008. * we set the i_size on the btree inode to the max possible int.
  2009. * the real end of the address space is determined by all of
  2010. * the devices in the system
  2011. */
  2012. fs_info->btree_inode->i_size = OFFSET_MAX;
  2013. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  2014. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  2015. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  2016. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  2017. fs_info->btree_inode->i_mapping);
  2018. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2019. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2020. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2021. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2022. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2023. sizeof(struct btrfs_key));
  2024. set_bit(BTRFS_INODE_DUMMY,
  2025. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2026. btrfs_insert_inode_hash(fs_info->btree_inode);
  2027. spin_lock_init(&fs_info->block_group_cache_lock);
  2028. fs_info->block_group_cache_tree = RB_ROOT;
  2029. fs_info->first_logical_byte = (u64)-1;
  2030. extent_io_tree_init(&fs_info->freed_extents[0],
  2031. fs_info->btree_inode->i_mapping);
  2032. extent_io_tree_init(&fs_info->freed_extents[1],
  2033. fs_info->btree_inode->i_mapping);
  2034. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2035. fs_info->do_barriers = 1;
  2036. mutex_init(&fs_info->ordered_operations_mutex);
  2037. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2038. mutex_init(&fs_info->tree_log_mutex);
  2039. mutex_init(&fs_info->chunk_mutex);
  2040. mutex_init(&fs_info->transaction_kthread_mutex);
  2041. mutex_init(&fs_info->cleaner_mutex);
  2042. mutex_init(&fs_info->volume_mutex);
  2043. init_rwsem(&fs_info->commit_root_sem);
  2044. init_rwsem(&fs_info->cleanup_work_sem);
  2045. init_rwsem(&fs_info->subvol_sem);
  2046. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2047. fs_info->dev_replace.lock_owner = 0;
  2048. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2049. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2050. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2051. mutex_init(&fs_info->dev_replace.lock);
  2052. spin_lock_init(&fs_info->qgroup_lock);
  2053. mutex_init(&fs_info->qgroup_ioctl_lock);
  2054. fs_info->qgroup_tree = RB_ROOT;
  2055. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2056. fs_info->qgroup_seq = 1;
  2057. fs_info->quota_enabled = 0;
  2058. fs_info->pending_quota_state = 0;
  2059. fs_info->qgroup_ulist = NULL;
  2060. mutex_init(&fs_info->qgroup_rescan_lock);
  2061. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2062. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2063. init_waitqueue_head(&fs_info->transaction_throttle);
  2064. init_waitqueue_head(&fs_info->transaction_wait);
  2065. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2066. init_waitqueue_head(&fs_info->async_submit_wait);
  2067. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2068. if (ret) {
  2069. err = ret;
  2070. goto fail_alloc;
  2071. }
  2072. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2073. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2074. invalidate_bdev(fs_devices->latest_bdev);
  2075. /*
  2076. * Read super block and check the signature bytes only
  2077. */
  2078. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2079. if (!bh) {
  2080. err = -EINVAL;
  2081. goto fail_alloc;
  2082. }
  2083. /*
  2084. * We want to check superblock checksum, the type is stored inside.
  2085. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2086. */
  2087. if (btrfs_check_super_csum(bh->b_data)) {
  2088. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2089. err = -EINVAL;
  2090. goto fail_alloc;
  2091. }
  2092. /*
  2093. * super_copy is zeroed at allocation time and we never touch the
  2094. * following bytes up to INFO_SIZE, the checksum is calculated from
  2095. * the whole block of INFO_SIZE
  2096. */
  2097. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2098. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2099. sizeof(*fs_info->super_for_commit));
  2100. brelse(bh);
  2101. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2102. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2103. if (ret) {
  2104. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2105. err = -EINVAL;
  2106. goto fail_alloc;
  2107. }
  2108. disk_super = fs_info->super_copy;
  2109. if (!btrfs_super_root(disk_super))
  2110. goto fail_alloc;
  2111. /* check FS state, whether FS is broken. */
  2112. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2113. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2114. /*
  2115. * run through our array of backup supers and setup
  2116. * our ring pointer to the oldest one
  2117. */
  2118. generation = btrfs_super_generation(disk_super);
  2119. find_oldest_super_backup(fs_info, generation);
  2120. /*
  2121. * In the long term, we'll store the compression type in the super
  2122. * block, and it'll be used for per file compression control.
  2123. */
  2124. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2125. ret = btrfs_parse_options(tree_root, options);
  2126. if (ret) {
  2127. err = ret;
  2128. goto fail_alloc;
  2129. }
  2130. features = btrfs_super_incompat_flags(disk_super) &
  2131. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2132. if (features) {
  2133. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2134. "unsupported optional features (%Lx).\n",
  2135. features);
  2136. err = -EINVAL;
  2137. goto fail_alloc;
  2138. }
  2139. if (btrfs_super_leafsize(disk_super) !=
  2140. btrfs_super_nodesize(disk_super)) {
  2141. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2142. "blocksizes don't match. node %d leaf %d\n",
  2143. btrfs_super_nodesize(disk_super),
  2144. btrfs_super_leafsize(disk_super));
  2145. err = -EINVAL;
  2146. goto fail_alloc;
  2147. }
  2148. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2149. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2150. "blocksize (%d) was too large\n",
  2151. btrfs_super_leafsize(disk_super));
  2152. err = -EINVAL;
  2153. goto fail_alloc;
  2154. }
  2155. features = btrfs_super_incompat_flags(disk_super);
  2156. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2157. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2158. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2159. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2160. printk(KERN_ERR "BTRFS: has skinny extents\n");
  2161. /*
  2162. * flag our filesystem as having big metadata blocks if
  2163. * they are bigger than the page size
  2164. */
  2165. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2166. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2167. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2168. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2169. }
  2170. nodesize = btrfs_super_nodesize(disk_super);
  2171. leafsize = btrfs_super_leafsize(disk_super);
  2172. sectorsize = btrfs_super_sectorsize(disk_super);
  2173. stripesize = btrfs_super_stripesize(disk_super);
  2174. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2175. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2176. /*
  2177. * mixed block groups end up with duplicate but slightly offset
  2178. * extent buffers for the same range. It leads to corruptions
  2179. */
  2180. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2181. (sectorsize != leafsize)) {
  2182. printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
  2183. "are not allowed for mixed block groups on %s\n",
  2184. sb->s_id);
  2185. goto fail_alloc;
  2186. }
  2187. /*
  2188. * Needn't use the lock because there is no other task which will
  2189. * update the flag.
  2190. */
  2191. btrfs_set_super_incompat_flags(disk_super, features);
  2192. features = btrfs_super_compat_ro_flags(disk_super) &
  2193. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2194. if (!(sb->s_flags & MS_RDONLY) && features) {
  2195. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2196. "unsupported option features (%Lx).\n",
  2197. features);
  2198. err = -EINVAL;
  2199. goto fail_alloc;
  2200. }
  2201. max_active = fs_info->thread_pool_size;
  2202. fs_info->workers =
  2203. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2204. max_active, 16);
  2205. fs_info->delalloc_workers =
  2206. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2207. fs_info->flush_workers =
  2208. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2209. fs_info->caching_workers =
  2210. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2211. /*
  2212. * a higher idle thresh on the submit workers makes it much more
  2213. * likely that bios will be send down in a sane order to the
  2214. * devices
  2215. */
  2216. fs_info->submit_workers =
  2217. btrfs_alloc_workqueue("submit", flags,
  2218. min_t(u64, fs_devices->num_devices,
  2219. max_active), 64);
  2220. fs_info->fixup_workers =
  2221. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2222. /*
  2223. * endios are largely parallel and should have a very
  2224. * low idle thresh
  2225. */
  2226. fs_info->endio_workers =
  2227. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2228. fs_info->endio_meta_workers =
  2229. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2230. fs_info->endio_meta_write_workers =
  2231. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2232. fs_info->endio_raid56_workers =
  2233. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2234. fs_info->rmw_workers =
  2235. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2236. fs_info->endio_write_workers =
  2237. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2238. fs_info->endio_freespace_worker =
  2239. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2240. fs_info->delayed_workers =
  2241. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2242. fs_info->readahead_workers =
  2243. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2244. fs_info->qgroup_rescan_workers =
  2245. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2246. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2247. fs_info->submit_workers && fs_info->flush_workers &&
  2248. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2249. fs_info->endio_meta_write_workers &&
  2250. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2251. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2252. fs_info->caching_workers && fs_info->readahead_workers &&
  2253. fs_info->fixup_workers && fs_info->delayed_workers &&
  2254. fs_info->qgroup_rescan_workers)) {
  2255. err = -ENOMEM;
  2256. goto fail_sb_buffer;
  2257. }
  2258. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2259. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2260. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2261. tree_root->nodesize = nodesize;
  2262. tree_root->leafsize = leafsize;
  2263. tree_root->sectorsize = sectorsize;
  2264. tree_root->stripesize = stripesize;
  2265. sb->s_blocksize = sectorsize;
  2266. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2267. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2268. printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
  2269. goto fail_sb_buffer;
  2270. }
  2271. if (sectorsize != PAGE_SIZE) {
  2272. printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
  2273. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2274. goto fail_sb_buffer;
  2275. }
  2276. mutex_lock(&fs_info->chunk_mutex);
  2277. ret = btrfs_read_sys_array(tree_root);
  2278. mutex_unlock(&fs_info->chunk_mutex);
  2279. if (ret) {
  2280. printk(KERN_WARNING "BTRFS: failed to read the system "
  2281. "array on %s\n", sb->s_id);
  2282. goto fail_sb_buffer;
  2283. }
  2284. blocksize = btrfs_level_size(tree_root,
  2285. btrfs_super_chunk_root_level(disk_super));
  2286. generation = btrfs_super_chunk_root_generation(disk_super);
  2287. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2288. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2289. chunk_root->node = read_tree_block(chunk_root,
  2290. btrfs_super_chunk_root(disk_super),
  2291. blocksize, generation);
  2292. if (!chunk_root->node ||
  2293. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2294. printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
  2295. sb->s_id);
  2296. goto fail_tree_roots;
  2297. }
  2298. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2299. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2300. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2301. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2302. ret = btrfs_read_chunk_tree(chunk_root);
  2303. if (ret) {
  2304. printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
  2305. sb->s_id);
  2306. goto fail_tree_roots;
  2307. }
  2308. /*
  2309. * keep the device that is marked to be the target device for the
  2310. * dev_replace procedure
  2311. */
  2312. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2313. if (!fs_devices->latest_bdev) {
  2314. printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
  2315. sb->s_id);
  2316. goto fail_tree_roots;
  2317. }
  2318. retry_root_backup:
  2319. blocksize = btrfs_level_size(tree_root,
  2320. btrfs_super_root_level(disk_super));
  2321. generation = btrfs_super_generation(disk_super);
  2322. tree_root->node = read_tree_block(tree_root,
  2323. btrfs_super_root(disk_super),
  2324. blocksize, generation);
  2325. if (!tree_root->node ||
  2326. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2327. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2328. sb->s_id);
  2329. goto recovery_tree_root;
  2330. }
  2331. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2332. tree_root->commit_root = btrfs_root_node(tree_root);
  2333. btrfs_set_root_refs(&tree_root->root_item, 1);
  2334. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2335. location.type = BTRFS_ROOT_ITEM_KEY;
  2336. location.offset = 0;
  2337. extent_root = btrfs_read_tree_root(tree_root, &location);
  2338. if (IS_ERR(extent_root)) {
  2339. ret = PTR_ERR(extent_root);
  2340. goto recovery_tree_root;
  2341. }
  2342. extent_root->track_dirty = 1;
  2343. fs_info->extent_root = extent_root;
  2344. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2345. dev_root = btrfs_read_tree_root(tree_root, &location);
  2346. if (IS_ERR(dev_root)) {
  2347. ret = PTR_ERR(dev_root);
  2348. goto recovery_tree_root;
  2349. }
  2350. dev_root->track_dirty = 1;
  2351. fs_info->dev_root = dev_root;
  2352. btrfs_init_devices_late(fs_info);
  2353. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2354. csum_root = btrfs_read_tree_root(tree_root, &location);
  2355. if (IS_ERR(csum_root)) {
  2356. ret = PTR_ERR(csum_root);
  2357. goto recovery_tree_root;
  2358. }
  2359. csum_root->track_dirty = 1;
  2360. fs_info->csum_root = csum_root;
  2361. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2362. quota_root = btrfs_read_tree_root(tree_root, &location);
  2363. if (!IS_ERR(quota_root)) {
  2364. quota_root->track_dirty = 1;
  2365. fs_info->quota_enabled = 1;
  2366. fs_info->pending_quota_state = 1;
  2367. fs_info->quota_root = quota_root;
  2368. }
  2369. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2370. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2371. if (IS_ERR(uuid_root)) {
  2372. ret = PTR_ERR(uuid_root);
  2373. if (ret != -ENOENT)
  2374. goto recovery_tree_root;
  2375. create_uuid_tree = true;
  2376. check_uuid_tree = false;
  2377. } else {
  2378. uuid_root->track_dirty = 1;
  2379. fs_info->uuid_root = uuid_root;
  2380. create_uuid_tree = false;
  2381. check_uuid_tree =
  2382. generation != btrfs_super_uuid_tree_generation(disk_super);
  2383. }
  2384. fs_info->generation = generation;
  2385. fs_info->last_trans_committed = generation;
  2386. ret = btrfs_recover_balance(fs_info);
  2387. if (ret) {
  2388. printk(KERN_WARNING "BTRFS: failed to recover balance\n");
  2389. goto fail_block_groups;
  2390. }
  2391. ret = btrfs_init_dev_stats(fs_info);
  2392. if (ret) {
  2393. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2394. ret);
  2395. goto fail_block_groups;
  2396. }
  2397. ret = btrfs_init_dev_replace(fs_info);
  2398. if (ret) {
  2399. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2400. goto fail_block_groups;
  2401. }
  2402. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2403. ret = btrfs_sysfs_add_one(fs_info);
  2404. if (ret) {
  2405. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2406. goto fail_block_groups;
  2407. }
  2408. ret = btrfs_init_space_info(fs_info);
  2409. if (ret) {
  2410. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2411. goto fail_sysfs;
  2412. }
  2413. ret = btrfs_read_block_groups(extent_root);
  2414. if (ret) {
  2415. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2416. goto fail_sysfs;
  2417. }
  2418. fs_info->num_tolerated_disk_barrier_failures =
  2419. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2420. if (fs_info->fs_devices->missing_devices >
  2421. fs_info->num_tolerated_disk_barrier_failures &&
  2422. !(sb->s_flags & MS_RDONLY)) {
  2423. printk(KERN_WARNING "BTRFS: "
  2424. "too many missing devices, writeable mount is not allowed\n");
  2425. goto fail_sysfs;
  2426. }
  2427. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2428. "btrfs-cleaner");
  2429. if (IS_ERR(fs_info->cleaner_kthread))
  2430. goto fail_sysfs;
  2431. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2432. tree_root,
  2433. "btrfs-transaction");
  2434. if (IS_ERR(fs_info->transaction_kthread))
  2435. goto fail_cleaner;
  2436. if (!btrfs_test_opt(tree_root, SSD) &&
  2437. !btrfs_test_opt(tree_root, NOSSD) &&
  2438. !fs_info->fs_devices->rotating) {
  2439. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2440. "mode\n");
  2441. btrfs_set_opt(fs_info->mount_opt, SSD);
  2442. }
  2443. /* Set the real inode map cache flag */
  2444. if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
  2445. btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
  2446. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2447. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2448. ret = btrfsic_mount(tree_root, fs_devices,
  2449. btrfs_test_opt(tree_root,
  2450. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2451. 1 : 0,
  2452. fs_info->check_integrity_print_mask);
  2453. if (ret)
  2454. printk(KERN_WARNING "BTRFS: failed to initialize"
  2455. " integrity check module %s\n", sb->s_id);
  2456. }
  2457. #endif
  2458. ret = btrfs_read_qgroup_config(fs_info);
  2459. if (ret)
  2460. goto fail_trans_kthread;
  2461. /* do not make disk changes in broken FS */
  2462. if (btrfs_super_log_root(disk_super) != 0) {
  2463. u64 bytenr = btrfs_super_log_root(disk_super);
  2464. if (fs_devices->rw_devices == 0) {
  2465. printk(KERN_WARNING "BTRFS: log replay required "
  2466. "on RO media\n");
  2467. err = -EIO;
  2468. goto fail_qgroup;
  2469. }
  2470. blocksize =
  2471. btrfs_level_size(tree_root,
  2472. btrfs_super_log_root_level(disk_super));
  2473. log_tree_root = btrfs_alloc_root(fs_info);
  2474. if (!log_tree_root) {
  2475. err = -ENOMEM;
  2476. goto fail_qgroup;
  2477. }
  2478. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2479. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2480. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2481. blocksize,
  2482. generation + 1);
  2483. if (!log_tree_root->node ||
  2484. !extent_buffer_uptodate(log_tree_root->node)) {
  2485. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2486. free_extent_buffer(log_tree_root->node);
  2487. kfree(log_tree_root);
  2488. goto fail_qgroup;
  2489. }
  2490. /* returns with log_tree_root freed on success */
  2491. ret = btrfs_recover_log_trees(log_tree_root);
  2492. if (ret) {
  2493. btrfs_error(tree_root->fs_info, ret,
  2494. "Failed to recover log tree");
  2495. free_extent_buffer(log_tree_root->node);
  2496. kfree(log_tree_root);
  2497. goto fail_qgroup;
  2498. }
  2499. if (sb->s_flags & MS_RDONLY) {
  2500. ret = btrfs_commit_super(tree_root);
  2501. if (ret)
  2502. goto fail_qgroup;
  2503. }
  2504. }
  2505. ret = btrfs_find_orphan_roots(tree_root);
  2506. if (ret)
  2507. goto fail_qgroup;
  2508. if (!(sb->s_flags & MS_RDONLY)) {
  2509. ret = btrfs_cleanup_fs_roots(fs_info);
  2510. if (ret)
  2511. goto fail_qgroup;
  2512. ret = btrfs_recover_relocation(tree_root);
  2513. if (ret < 0) {
  2514. printk(KERN_WARNING
  2515. "BTRFS: failed to recover relocation\n");
  2516. err = -EINVAL;
  2517. goto fail_qgroup;
  2518. }
  2519. }
  2520. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2521. location.type = BTRFS_ROOT_ITEM_KEY;
  2522. location.offset = 0;
  2523. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2524. if (IS_ERR(fs_info->fs_root)) {
  2525. err = PTR_ERR(fs_info->fs_root);
  2526. goto fail_qgroup;
  2527. }
  2528. if (sb->s_flags & MS_RDONLY)
  2529. return 0;
  2530. down_read(&fs_info->cleanup_work_sem);
  2531. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2532. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2533. up_read(&fs_info->cleanup_work_sem);
  2534. close_ctree(tree_root);
  2535. return ret;
  2536. }
  2537. up_read(&fs_info->cleanup_work_sem);
  2538. ret = btrfs_resume_balance_async(fs_info);
  2539. if (ret) {
  2540. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2541. close_ctree(tree_root);
  2542. return ret;
  2543. }
  2544. ret = btrfs_resume_dev_replace_async(fs_info);
  2545. if (ret) {
  2546. pr_warn("BTRFS: failed to resume dev_replace\n");
  2547. close_ctree(tree_root);
  2548. return ret;
  2549. }
  2550. btrfs_qgroup_rescan_resume(fs_info);
  2551. if (create_uuid_tree) {
  2552. pr_info("BTRFS: creating UUID tree\n");
  2553. ret = btrfs_create_uuid_tree(fs_info);
  2554. if (ret) {
  2555. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2556. ret);
  2557. close_ctree(tree_root);
  2558. return ret;
  2559. }
  2560. } else if (check_uuid_tree ||
  2561. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2562. pr_info("BTRFS: checking UUID tree\n");
  2563. ret = btrfs_check_uuid_tree(fs_info);
  2564. if (ret) {
  2565. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2566. ret);
  2567. close_ctree(tree_root);
  2568. return ret;
  2569. }
  2570. } else {
  2571. fs_info->update_uuid_tree_gen = 1;
  2572. }
  2573. return 0;
  2574. fail_qgroup:
  2575. btrfs_free_qgroup_config(fs_info);
  2576. fail_trans_kthread:
  2577. kthread_stop(fs_info->transaction_kthread);
  2578. btrfs_cleanup_transaction(fs_info->tree_root);
  2579. del_fs_roots(fs_info);
  2580. fail_cleaner:
  2581. kthread_stop(fs_info->cleaner_kthread);
  2582. /*
  2583. * make sure we're done with the btree inode before we stop our
  2584. * kthreads
  2585. */
  2586. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2587. fail_sysfs:
  2588. btrfs_sysfs_remove_one(fs_info);
  2589. fail_block_groups:
  2590. btrfs_put_block_group_cache(fs_info);
  2591. btrfs_free_block_groups(fs_info);
  2592. fail_tree_roots:
  2593. free_root_pointers(fs_info, 1);
  2594. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2595. fail_sb_buffer:
  2596. btrfs_stop_all_workers(fs_info);
  2597. fail_alloc:
  2598. fail_iput:
  2599. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2600. iput(fs_info->btree_inode);
  2601. fail_bio_counter:
  2602. percpu_counter_destroy(&fs_info->bio_counter);
  2603. fail_delalloc_bytes:
  2604. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2605. fail_dirty_metadata_bytes:
  2606. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2607. fail_bdi:
  2608. bdi_destroy(&fs_info->bdi);
  2609. fail_srcu:
  2610. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2611. fail:
  2612. btrfs_free_stripe_hash_table(fs_info);
  2613. btrfs_close_devices(fs_info->fs_devices);
  2614. return err;
  2615. recovery_tree_root:
  2616. if (!btrfs_test_opt(tree_root, RECOVERY))
  2617. goto fail_tree_roots;
  2618. free_root_pointers(fs_info, 0);
  2619. /* don't use the log in recovery mode, it won't be valid */
  2620. btrfs_set_super_log_root(disk_super, 0);
  2621. /* we can't trust the free space cache either */
  2622. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2623. ret = next_root_backup(fs_info, fs_info->super_copy,
  2624. &num_backups_tried, &backup_index);
  2625. if (ret == -1)
  2626. goto fail_block_groups;
  2627. goto retry_root_backup;
  2628. }
  2629. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2630. {
  2631. if (uptodate) {
  2632. set_buffer_uptodate(bh);
  2633. } else {
  2634. struct btrfs_device *device = (struct btrfs_device *)
  2635. bh->b_private;
  2636. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2637. "I/O error on %s\n",
  2638. rcu_str_deref(device->name));
  2639. /* note, we dont' set_buffer_write_io_error because we have
  2640. * our own ways of dealing with the IO errors
  2641. */
  2642. clear_buffer_uptodate(bh);
  2643. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2644. }
  2645. unlock_buffer(bh);
  2646. put_bh(bh);
  2647. }
  2648. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2649. {
  2650. struct buffer_head *bh;
  2651. struct buffer_head *latest = NULL;
  2652. struct btrfs_super_block *super;
  2653. int i;
  2654. u64 transid = 0;
  2655. u64 bytenr;
  2656. /* we would like to check all the supers, but that would make
  2657. * a btrfs mount succeed after a mkfs from a different FS.
  2658. * So, we need to add a special mount option to scan for
  2659. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2660. */
  2661. for (i = 0; i < 1; i++) {
  2662. bytenr = btrfs_sb_offset(i);
  2663. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2664. i_size_read(bdev->bd_inode))
  2665. break;
  2666. bh = __bread(bdev, bytenr / 4096,
  2667. BTRFS_SUPER_INFO_SIZE);
  2668. if (!bh)
  2669. continue;
  2670. super = (struct btrfs_super_block *)bh->b_data;
  2671. if (btrfs_super_bytenr(super) != bytenr ||
  2672. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2673. brelse(bh);
  2674. continue;
  2675. }
  2676. if (!latest || btrfs_super_generation(super) > transid) {
  2677. brelse(latest);
  2678. latest = bh;
  2679. transid = btrfs_super_generation(super);
  2680. } else {
  2681. brelse(bh);
  2682. }
  2683. }
  2684. return latest;
  2685. }
  2686. /*
  2687. * this should be called twice, once with wait == 0 and
  2688. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2689. * we write are pinned.
  2690. *
  2691. * They are released when wait == 1 is done.
  2692. * max_mirrors must be the same for both runs, and it indicates how
  2693. * many supers on this one device should be written.
  2694. *
  2695. * max_mirrors == 0 means to write them all.
  2696. */
  2697. static int write_dev_supers(struct btrfs_device *device,
  2698. struct btrfs_super_block *sb,
  2699. int do_barriers, int wait, int max_mirrors)
  2700. {
  2701. struct buffer_head *bh;
  2702. int i;
  2703. int ret;
  2704. int errors = 0;
  2705. u32 crc;
  2706. u64 bytenr;
  2707. if (max_mirrors == 0)
  2708. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2709. for (i = 0; i < max_mirrors; i++) {
  2710. bytenr = btrfs_sb_offset(i);
  2711. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2712. break;
  2713. if (wait) {
  2714. bh = __find_get_block(device->bdev, bytenr / 4096,
  2715. BTRFS_SUPER_INFO_SIZE);
  2716. if (!bh) {
  2717. errors++;
  2718. continue;
  2719. }
  2720. wait_on_buffer(bh);
  2721. if (!buffer_uptodate(bh))
  2722. errors++;
  2723. /* drop our reference */
  2724. brelse(bh);
  2725. /* drop the reference from the wait == 0 run */
  2726. brelse(bh);
  2727. continue;
  2728. } else {
  2729. btrfs_set_super_bytenr(sb, bytenr);
  2730. crc = ~(u32)0;
  2731. crc = btrfs_csum_data((char *)sb +
  2732. BTRFS_CSUM_SIZE, crc,
  2733. BTRFS_SUPER_INFO_SIZE -
  2734. BTRFS_CSUM_SIZE);
  2735. btrfs_csum_final(crc, sb->csum);
  2736. /*
  2737. * one reference for us, and we leave it for the
  2738. * caller
  2739. */
  2740. bh = __getblk(device->bdev, bytenr / 4096,
  2741. BTRFS_SUPER_INFO_SIZE);
  2742. if (!bh) {
  2743. printk(KERN_ERR "BTRFS: couldn't get super "
  2744. "buffer head for bytenr %Lu\n", bytenr);
  2745. errors++;
  2746. continue;
  2747. }
  2748. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2749. /* one reference for submit_bh */
  2750. get_bh(bh);
  2751. set_buffer_uptodate(bh);
  2752. lock_buffer(bh);
  2753. bh->b_end_io = btrfs_end_buffer_write_sync;
  2754. bh->b_private = device;
  2755. }
  2756. /*
  2757. * we fua the first super. The others we allow
  2758. * to go down lazy.
  2759. */
  2760. if (i == 0)
  2761. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2762. else
  2763. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2764. if (ret)
  2765. errors++;
  2766. }
  2767. return errors < i ? 0 : -1;
  2768. }
  2769. /*
  2770. * endio for the write_dev_flush, this will wake anyone waiting
  2771. * for the barrier when it is done
  2772. */
  2773. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2774. {
  2775. if (err) {
  2776. if (err == -EOPNOTSUPP)
  2777. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2778. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2779. }
  2780. if (bio->bi_private)
  2781. complete(bio->bi_private);
  2782. bio_put(bio);
  2783. }
  2784. /*
  2785. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2786. * sent down. With wait == 1, it waits for the previous flush.
  2787. *
  2788. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2789. * capable
  2790. */
  2791. static int write_dev_flush(struct btrfs_device *device, int wait)
  2792. {
  2793. struct bio *bio;
  2794. int ret = 0;
  2795. if (device->nobarriers)
  2796. return 0;
  2797. if (wait) {
  2798. bio = device->flush_bio;
  2799. if (!bio)
  2800. return 0;
  2801. wait_for_completion(&device->flush_wait);
  2802. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2803. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2804. rcu_str_deref(device->name));
  2805. device->nobarriers = 1;
  2806. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2807. ret = -EIO;
  2808. btrfs_dev_stat_inc_and_print(device,
  2809. BTRFS_DEV_STAT_FLUSH_ERRS);
  2810. }
  2811. /* drop the reference from the wait == 0 run */
  2812. bio_put(bio);
  2813. device->flush_bio = NULL;
  2814. return ret;
  2815. }
  2816. /*
  2817. * one reference for us, and we leave it for the
  2818. * caller
  2819. */
  2820. device->flush_bio = NULL;
  2821. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2822. if (!bio)
  2823. return -ENOMEM;
  2824. bio->bi_end_io = btrfs_end_empty_barrier;
  2825. bio->bi_bdev = device->bdev;
  2826. init_completion(&device->flush_wait);
  2827. bio->bi_private = &device->flush_wait;
  2828. device->flush_bio = bio;
  2829. bio_get(bio);
  2830. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2831. return 0;
  2832. }
  2833. /*
  2834. * send an empty flush down to each device in parallel,
  2835. * then wait for them
  2836. */
  2837. static int barrier_all_devices(struct btrfs_fs_info *info)
  2838. {
  2839. struct list_head *head;
  2840. struct btrfs_device *dev;
  2841. int errors_send = 0;
  2842. int errors_wait = 0;
  2843. int ret;
  2844. /* send down all the barriers */
  2845. head = &info->fs_devices->devices;
  2846. list_for_each_entry_rcu(dev, head, dev_list) {
  2847. if (dev->missing)
  2848. continue;
  2849. if (!dev->bdev) {
  2850. errors_send++;
  2851. continue;
  2852. }
  2853. if (!dev->in_fs_metadata || !dev->writeable)
  2854. continue;
  2855. ret = write_dev_flush(dev, 0);
  2856. if (ret)
  2857. errors_send++;
  2858. }
  2859. /* wait for all the barriers */
  2860. list_for_each_entry_rcu(dev, head, dev_list) {
  2861. if (dev->missing)
  2862. continue;
  2863. if (!dev->bdev) {
  2864. errors_wait++;
  2865. continue;
  2866. }
  2867. if (!dev->in_fs_metadata || !dev->writeable)
  2868. continue;
  2869. ret = write_dev_flush(dev, 1);
  2870. if (ret)
  2871. errors_wait++;
  2872. }
  2873. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2874. errors_wait > info->num_tolerated_disk_barrier_failures)
  2875. return -EIO;
  2876. return 0;
  2877. }
  2878. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2879. struct btrfs_fs_info *fs_info)
  2880. {
  2881. struct btrfs_ioctl_space_info space;
  2882. struct btrfs_space_info *sinfo;
  2883. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2884. BTRFS_BLOCK_GROUP_SYSTEM,
  2885. BTRFS_BLOCK_GROUP_METADATA,
  2886. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2887. int num_types = 4;
  2888. int i;
  2889. int c;
  2890. int num_tolerated_disk_barrier_failures =
  2891. (int)fs_info->fs_devices->num_devices;
  2892. for (i = 0; i < num_types; i++) {
  2893. struct btrfs_space_info *tmp;
  2894. sinfo = NULL;
  2895. rcu_read_lock();
  2896. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2897. if (tmp->flags == types[i]) {
  2898. sinfo = tmp;
  2899. break;
  2900. }
  2901. }
  2902. rcu_read_unlock();
  2903. if (!sinfo)
  2904. continue;
  2905. down_read(&sinfo->groups_sem);
  2906. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2907. if (!list_empty(&sinfo->block_groups[c])) {
  2908. u64 flags;
  2909. btrfs_get_block_group_info(
  2910. &sinfo->block_groups[c], &space);
  2911. if (space.total_bytes == 0 ||
  2912. space.used_bytes == 0)
  2913. continue;
  2914. flags = space.flags;
  2915. /*
  2916. * return
  2917. * 0: if dup, single or RAID0 is configured for
  2918. * any of metadata, system or data, else
  2919. * 1: if RAID5 is configured, or if RAID1 or
  2920. * RAID10 is configured and only two mirrors
  2921. * are used, else
  2922. * 2: if RAID6 is configured, else
  2923. * num_mirrors - 1: if RAID1 or RAID10 is
  2924. * configured and more than
  2925. * 2 mirrors are used.
  2926. */
  2927. if (num_tolerated_disk_barrier_failures > 0 &&
  2928. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2929. BTRFS_BLOCK_GROUP_RAID0)) ||
  2930. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2931. == 0)))
  2932. num_tolerated_disk_barrier_failures = 0;
  2933. else if (num_tolerated_disk_barrier_failures > 1) {
  2934. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2935. BTRFS_BLOCK_GROUP_RAID5 |
  2936. BTRFS_BLOCK_GROUP_RAID10)) {
  2937. num_tolerated_disk_barrier_failures = 1;
  2938. } else if (flags &
  2939. BTRFS_BLOCK_GROUP_RAID6) {
  2940. num_tolerated_disk_barrier_failures = 2;
  2941. }
  2942. }
  2943. }
  2944. }
  2945. up_read(&sinfo->groups_sem);
  2946. }
  2947. return num_tolerated_disk_barrier_failures;
  2948. }
  2949. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2950. {
  2951. struct list_head *head;
  2952. struct btrfs_device *dev;
  2953. struct btrfs_super_block *sb;
  2954. struct btrfs_dev_item *dev_item;
  2955. int ret;
  2956. int do_barriers;
  2957. int max_errors;
  2958. int total_errors = 0;
  2959. u64 flags;
  2960. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2961. backup_super_roots(root->fs_info);
  2962. sb = root->fs_info->super_for_commit;
  2963. dev_item = &sb->dev_item;
  2964. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2965. head = &root->fs_info->fs_devices->devices;
  2966. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2967. if (do_barriers) {
  2968. ret = barrier_all_devices(root->fs_info);
  2969. if (ret) {
  2970. mutex_unlock(
  2971. &root->fs_info->fs_devices->device_list_mutex);
  2972. btrfs_error(root->fs_info, ret,
  2973. "errors while submitting device barriers.");
  2974. return ret;
  2975. }
  2976. }
  2977. list_for_each_entry_rcu(dev, head, dev_list) {
  2978. if (!dev->bdev) {
  2979. total_errors++;
  2980. continue;
  2981. }
  2982. if (!dev->in_fs_metadata || !dev->writeable)
  2983. continue;
  2984. btrfs_set_stack_device_generation(dev_item, 0);
  2985. btrfs_set_stack_device_type(dev_item, dev->type);
  2986. btrfs_set_stack_device_id(dev_item, dev->devid);
  2987. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2988. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2989. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2990. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2991. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2992. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2993. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2994. flags = btrfs_super_flags(sb);
  2995. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2996. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2997. if (ret)
  2998. total_errors++;
  2999. }
  3000. if (total_errors > max_errors) {
  3001. btrfs_err(root->fs_info, "%d errors while writing supers",
  3002. total_errors);
  3003. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3004. /* FUA is masked off if unsupported and can't be the reason */
  3005. btrfs_error(root->fs_info, -EIO,
  3006. "%d errors while writing supers", total_errors);
  3007. return -EIO;
  3008. }
  3009. total_errors = 0;
  3010. list_for_each_entry_rcu(dev, head, dev_list) {
  3011. if (!dev->bdev)
  3012. continue;
  3013. if (!dev->in_fs_metadata || !dev->writeable)
  3014. continue;
  3015. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3016. if (ret)
  3017. total_errors++;
  3018. }
  3019. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3020. if (total_errors > max_errors) {
  3021. btrfs_error(root->fs_info, -EIO,
  3022. "%d errors while writing supers", total_errors);
  3023. return -EIO;
  3024. }
  3025. return 0;
  3026. }
  3027. int write_ctree_super(struct btrfs_trans_handle *trans,
  3028. struct btrfs_root *root, int max_mirrors)
  3029. {
  3030. return write_all_supers(root, max_mirrors);
  3031. }
  3032. /* Drop a fs root from the radix tree and free it. */
  3033. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3034. struct btrfs_root *root)
  3035. {
  3036. spin_lock(&fs_info->fs_roots_radix_lock);
  3037. radix_tree_delete(&fs_info->fs_roots_radix,
  3038. (unsigned long)root->root_key.objectid);
  3039. spin_unlock(&fs_info->fs_roots_radix_lock);
  3040. if (btrfs_root_refs(&root->root_item) == 0)
  3041. synchronize_srcu(&fs_info->subvol_srcu);
  3042. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3043. btrfs_free_log(NULL, root);
  3044. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3045. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3046. free_fs_root(root);
  3047. }
  3048. static void free_fs_root(struct btrfs_root *root)
  3049. {
  3050. iput(root->cache_inode);
  3051. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3052. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3053. root->orphan_block_rsv = NULL;
  3054. if (root->anon_dev)
  3055. free_anon_bdev(root->anon_dev);
  3056. if (root->subv_writers)
  3057. btrfs_free_subvolume_writers(root->subv_writers);
  3058. free_extent_buffer(root->node);
  3059. free_extent_buffer(root->commit_root);
  3060. kfree(root->free_ino_ctl);
  3061. kfree(root->free_ino_pinned);
  3062. kfree(root->name);
  3063. btrfs_put_fs_root(root);
  3064. }
  3065. void btrfs_free_fs_root(struct btrfs_root *root)
  3066. {
  3067. free_fs_root(root);
  3068. }
  3069. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3070. {
  3071. u64 root_objectid = 0;
  3072. struct btrfs_root *gang[8];
  3073. int i;
  3074. int ret;
  3075. while (1) {
  3076. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3077. (void **)gang, root_objectid,
  3078. ARRAY_SIZE(gang));
  3079. if (!ret)
  3080. break;
  3081. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3082. for (i = 0; i < ret; i++) {
  3083. int err;
  3084. root_objectid = gang[i]->root_key.objectid;
  3085. err = btrfs_orphan_cleanup(gang[i]);
  3086. if (err)
  3087. return err;
  3088. }
  3089. root_objectid++;
  3090. }
  3091. return 0;
  3092. }
  3093. int btrfs_commit_super(struct btrfs_root *root)
  3094. {
  3095. struct btrfs_trans_handle *trans;
  3096. mutex_lock(&root->fs_info->cleaner_mutex);
  3097. btrfs_run_delayed_iputs(root);
  3098. mutex_unlock(&root->fs_info->cleaner_mutex);
  3099. wake_up_process(root->fs_info->cleaner_kthread);
  3100. /* wait until ongoing cleanup work done */
  3101. down_write(&root->fs_info->cleanup_work_sem);
  3102. up_write(&root->fs_info->cleanup_work_sem);
  3103. trans = btrfs_join_transaction(root);
  3104. if (IS_ERR(trans))
  3105. return PTR_ERR(trans);
  3106. return btrfs_commit_transaction(trans, root);
  3107. }
  3108. int close_ctree(struct btrfs_root *root)
  3109. {
  3110. struct btrfs_fs_info *fs_info = root->fs_info;
  3111. int ret;
  3112. fs_info->closing = 1;
  3113. smp_mb();
  3114. /* wait for the uuid_scan task to finish */
  3115. down(&fs_info->uuid_tree_rescan_sem);
  3116. /* avoid complains from lockdep et al., set sem back to initial state */
  3117. up(&fs_info->uuid_tree_rescan_sem);
  3118. /* pause restriper - we want to resume on mount */
  3119. btrfs_pause_balance(fs_info);
  3120. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3121. btrfs_scrub_cancel(fs_info);
  3122. /* wait for any defraggers to finish */
  3123. wait_event(fs_info->transaction_wait,
  3124. (atomic_read(&fs_info->defrag_running) == 0));
  3125. /* clear out the rbtree of defraggable inodes */
  3126. btrfs_cleanup_defrag_inodes(fs_info);
  3127. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3128. ret = btrfs_commit_super(root);
  3129. if (ret)
  3130. btrfs_err(root->fs_info, "commit super ret %d", ret);
  3131. }
  3132. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3133. btrfs_error_commit_super(root);
  3134. kthread_stop(fs_info->transaction_kthread);
  3135. kthread_stop(fs_info->cleaner_kthread);
  3136. fs_info->closing = 2;
  3137. smp_mb();
  3138. btrfs_free_qgroup_config(root->fs_info);
  3139. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3140. btrfs_info(root->fs_info, "at unmount delalloc count %lld",
  3141. percpu_counter_sum(&fs_info->delalloc_bytes));
  3142. }
  3143. btrfs_sysfs_remove_one(fs_info);
  3144. del_fs_roots(fs_info);
  3145. btrfs_put_block_group_cache(fs_info);
  3146. btrfs_free_block_groups(fs_info);
  3147. btrfs_stop_all_workers(fs_info);
  3148. free_root_pointers(fs_info, 1);
  3149. iput(fs_info->btree_inode);
  3150. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3151. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3152. btrfsic_unmount(root, fs_info->fs_devices);
  3153. #endif
  3154. btrfs_close_devices(fs_info->fs_devices);
  3155. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3156. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3157. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3158. percpu_counter_destroy(&fs_info->bio_counter);
  3159. bdi_destroy(&fs_info->bdi);
  3160. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3161. btrfs_free_stripe_hash_table(fs_info);
  3162. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3163. root->orphan_block_rsv = NULL;
  3164. return 0;
  3165. }
  3166. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3167. int atomic)
  3168. {
  3169. int ret;
  3170. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3171. ret = extent_buffer_uptodate(buf);
  3172. if (!ret)
  3173. return ret;
  3174. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3175. parent_transid, atomic);
  3176. if (ret == -EAGAIN)
  3177. return ret;
  3178. return !ret;
  3179. }
  3180. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3181. {
  3182. return set_extent_buffer_uptodate(buf);
  3183. }
  3184. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3185. {
  3186. struct btrfs_root *root;
  3187. u64 transid = btrfs_header_generation(buf);
  3188. int was_dirty;
  3189. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3190. /*
  3191. * This is a fast path so only do this check if we have sanity tests
  3192. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3193. * outside of the sanity tests.
  3194. */
  3195. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3196. return;
  3197. #endif
  3198. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3199. btrfs_assert_tree_locked(buf);
  3200. if (transid != root->fs_info->generation)
  3201. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3202. "found %llu running %llu\n",
  3203. buf->start, transid, root->fs_info->generation);
  3204. was_dirty = set_extent_buffer_dirty(buf);
  3205. if (!was_dirty)
  3206. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3207. buf->len,
  3208. root->fs_info->dirty_metadata_batch);
  3209. }
  3210. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3211. int flush_delayed)
  3212. {
  3213. /*
  3214. * looks as though older kernels can get into trouble with
  3215. * this code, they end up stuck in balance_dirty_pages forever
  3216. */
  3217. int ret;
  3218. if (current->flags & PF_MEMALLOC)
  3219. return;
  3220. if (flush_delayed)
  3221. btrfs_balance_delayed_items(root);
  3222. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3223. BTRFS_DIRTY_METADATA_THRESH);
  3224. if (ret > 0) {
  3225. balance_dirty_pages_ratelimited(
  3226. root->fs_info->btree_inode->i_mapping);
  3227. }
  3228. return;
  3229. }
  3230. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3231. {
  3232. __btrfs_btree_balance_dirty(root, 1);
  3233. }
  3234. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3235. {
  3236. __btrfs_btree_balance_dirty(root, 0);
  3237. }
  3238. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3239. {
  3240. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3241. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3242. }
  3243. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3244. int read_only)
  3245. {
  3246. /*
  3247. * Placeholder for checks
  3248. */
  3249. return 0;
  3250. }
  3251. static void btrfs_error_commit_super(struct btrfs_root *root)
  3252. {
  3253. mutex_lock(&root->fs_info->cleaner_mutex);
  3254. btrfs_run_delayed_iputs(root);
  3255. mutex_unlock(&root->fs_info->cleaner_mutex);
  3256. down_write(&root->fs_info->cleanup_work_sem);
  3257. up_write(&root->fs_info->cleanup_work_sem);
  3258. /* cleanup FS via transaction */
  3259. btrfs_cleanup_transaction(root);
  3260. }
  3261. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3262. struct btrfs_root *root)
  3263. {
  3264. struct btrfs_inode *btrfs_inode;
  3265. struct list_head splice;
  3266. INIT_LIST_HEAD(&splice);
  3267. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3268. spin_lock(&root->fs_info->ordered_root_lock);
  3269. list_splice_init(&t->ordered_operations, &splice);
  3270. while (!list_empty(&splice)) {
  3271. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3272. ordered_operations);
  3273. list_del_init(&btrfs_inode->ordered_operations);
  3274. spin_unlock(&root->fs_info->ordered_root_lock);
  3275. btrfs_invalidate_inodes(btrfs_inode->root);
  3276. spin_lock(&root->fs_info->ordered_root_lock);
  3277. }
  3278. spin_unlock(&root->fs_info->ordered_root_lock);
  3279. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3280. }
  3281. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3282. {
  3283. struct btrfs_ordered_extent *ordered;
  3284. spin_lock(&root->ordered_extent_lock);
  3285. /*
  3286. * This will just short circuit the ordered completion stuff which will
  3287. * make sure the ordered extent gets properly cleaned up.
  3288. */
  3289. list_for_each_entry(ordered, &root->ordered_extents,
  3290. root_extent_list)
  3291. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3292. spin_unlock(&root->ordered_extent_lock);
  3293. }
  3294. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3295. {
  3296. struct btrfs_root *root;
  3297. struct list_head splice;
  3298. INIT_LIST_HEAD(&splice);
  3299. spin_lock(&fs_info->ordered_root_lock);
  3300. list_splice_init(&fs_info->ordered_roots, &splice);
  3301. while (!list_empty(&splice)) {
  3302. root = list_first_entry(&splice, struct btrfs_root,
  3303. ordered_root);
  3304. list_move_tail(&root->ordered_root,
  3305. &fs_info->ordered_roots);
  3306. spin_unlock(&fs_info->ordered_root_lock);
  3307. btrfs_destroy_ordered_extents(root);
  3308. cond_resched();
  3309. spin_lock(&fs_info->ordered_root_lock);
  3310. }
  3311. spin_unlock(&fs_info->ordered_root_lock);
  3312. }
  3313. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3314. struct btrfs_root *root)
  3315. {
  3316. struct rb_node *node;
  3317. struct btrfs_delayed_ref_root *delayed_refs;
  3318. struct btrfs_delayed_ref_node *ref;
  3319. int ret = 0;
  3320. delayed_refs = &trans->delayed_refs;
  3321. spin_lock(&delayed_refs->lock);
  3322. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3323. spin_unlock(&delayed_refs->lock);
  3324. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3325. return ret;
  3326. }
  3327. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3328. struct btrfs_delayed_ref_head *head;
  3329. bool pin_bytes = false;
  3330. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3331. href_node);
  3332. if (!mutex_trylock(&head->mutex)) {
  3333. atomic_inc(&head->node.refs);
  3334. spin_unlock(&delayed_refs->lock);
  3335. mutex_lock(&head->mutex);
  3336. mutex_unlock(&head->mutex);
  3337. btrfs_put_delayed_ref(&head->node);
  3338. spin_lock(&delayed_refs->lock);
  3339. continue;
  3340. }
  3341. spin_lock(&head->lock);
  3342. while ((node = rb_first(&head->ref_root)) != NULL) {
  3343. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3344. rb_node);
  3345. ref->in_tree = 0;
  3346. rb_erase(&ref->rb_node, &head->ref_root);
  3347. atomic_dec(&delayed_refs->num_entries);
  3348. btrfs_put_delayed_ref(ref);
  3349. }
  3350. if (head->must_insert_reserved)
  3351. pin_bytes = true;
  3352. btrfs_free_delayed_extent_op(head->extent_op);
  3353. delayed_refs->num_heads--;
  3354. if (head->processing == 0)
  3355. delayed_refs->num_heads_ready--;
  3356. atomic_dec(&delayed_refs->num_entries);
  3357. head->node.in_tree = 0;
  3358. rb_erase(&head->href_node, &delayed_refs->href_root);
  3359. spin_unlock(&head->lock);
  3360. spin_unlock(&delayed_refs->lock);
  3361. mutex_unlock(&head->mutex);
  3362. if (pin_bytes)
  3363. btrfs_pin_extent(root, head->node.bytenr,
  3364. head->node.num_bytes, 1);
  3365. btrfs_put_delayed_ref(&head->node);
  3366. cond_resched();
  3367. spin_lock(&delayed_refs->lock);
  3368. }
  3369. spin_unlock(&delayed_refs->lock);
  3370. return ret;
  3371. }
  3372. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3373. {
  3374. struct btrfs_inode *btrfs_inode;
  3375. struct list_head splice;
  3376. INIT_LIST_HEAD(&splice);
  3377. spin_lock(&root->delalloc_lock);
  3378. list_splice_init(&root->delalloc_inodes, &splice);
  3379. while (!list_empty(&splice)) {
  3380. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3381. delalloc_inodes);
  3382. list_del_init(&btrfs_inode->delalloc_inodes);
  3383. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3384. &btrfs_inode->runtime_flags);
  3385. spin_unlock(&root->delalloc_lock);
  3386. btrfs_invalidate_inodes(btrfs_inode->root);
  3387. spin_lock(&root->delalloc_lock);
  3388. }
  3389. spin_unlock(&root->delalloc_lock);
  3390. }
  3391. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3392. {
  3393. struct btrfs_root *root;
  3394. struct list_head splice;
  3395. INIT_LIST_HEAD(&splice);
  3396. spin_lock(&fs_info->delalloc_root_lock);
  3397. list_splice_init(&fs_info->delalloc_roots, &splice);
  3398. while (!list_empty(&splice)) {
  3399. root = list_first_entry(&splice, struct btrfs_root,
  3400. delalloc_root);
  3401. list_del_init(&root->delalloc_root);
  3402. root = btrfs_grab_fs_root(root);
  3403. BUG_ON(!root);
  3404. spin_unlock(&fs_info->delalloc_root_lock);
  3405. btrfs_destroy_delalloc_inodes(root);
  3406. btrfs_put_fs_root(root);
  3407. spin_lock(&fs_info->delalloc_root_lock);
  3408. }
  3409. spin_unlock(&fs_info->delalloc_root_lock);
  3410. }
  3411. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3412. struct extent_io_tree *dirty_pages,
  3413. int mark)
  3414. {
  3415. int ret;
  3416. struct extent_buffer *eb;
  3417. u64 start = 0;
  3418. u64 end;
  3419. while (1) {
  3420. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3421. mark, NULL);
  3422. if (ret)
  3423. break;
  3424. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3425. while (start <= end) {
  3426. eb = btrfs_find_tree_block(root, start,
  3427. root->leafsize);
  3428. start += root->leafsize;
  3429. if (!eb)
  3430. continue;
  3431. wait_on_extent_buffer_writeback(eb);
  3432. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3433. &eb->bflags))
  3434. clear_extent_buffer_dirty(eb);
  3435. free_extent_buffer_stale(eb);
  3436. }
  3437. }
  3438. return ret;
  3439. }
  3440. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3441. struct extent_io_tree *pinned_extents)
  3442. {
  3443. struct extent_io_tree *unpin;
  3444. u64 start;
  3445. u64 end;
  3446. int ret;
  3447. bool loop = true;
  3448. unpin = pinned_extents;
  3449. again:
  3450. while (1) {
  3451. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3452. EXTENT_DIRTY, NULL);
  3453. if (ret)
  3454. break;
  3455. /* opt_discard */
  3456. if (btrfs_test_opt(root, DISCARD))
  3457. ret = btrfs_error_discard_extent(root, start,
  3458. end + 1 - start,
  3459. NULL);
  3460. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3461. btrfs_error_unpin_extent_range(root, start, end);
  3462. cond_resched();
  3463. }
  3464. if (loop) {
  3465. if (unpin == &root->fs_info->freed_extents[0])
  3466. unpin = &root->fs_info->freed_extents[1];
  3467. else
  3468. unpin = &root->fs_info->freed_extents[0];
  3469. loop = false;
  3470. goto again;
  3471. }
  3472. return 0;
  3473. }
  3474. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3475. struct btrfs_root *root)
  3476. {
  3477. btrfs_destroy_ordered_operations(cur_trans, root);
  3478. btrfs_destroy_delayed_refs(cur_trans, root);
  3479. cur_trans->state = TRANS_STATE_COMMIT_START;
  3480. wake_up(&root->fs_info->transaction_blocked_wait);
  3481. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3482. wake_up(&root->fs_info->transaction_wait);
  3483. btrfs_destroy_delayed_inodes(root);
  3484. btrfs_assert_delayed_root_empty(root);
  3485. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3486. EXTENT_DIRTY);
  3487. btrfs_destroy_pinned_extent(root,
  3488. root->fs_info->pinned_extents);
  3489. cur_trans->state =TRANS_STATE_COMPLETED;
  3490. wake_up(&cur_trans->commit_wait);
  3491. /*
  3492. memset(cur_trans, 0, sizeof(*cur_trans));
  3493. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3494. */
  3495. }
  3496. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3497. {
  3498. struct btrfs_transaction *t;
  3499. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3500. spin_lock(&root->fs_info->trans_lock);
  3501. while (!list_empty(&root->fs_info->trans_list)) {
  3502. t = list_first_entry(&root->fs_info->trans_list,
  3503. struct btrfs_transaction, list);
  3504. if (t->state >= TRANS_STATE_COMMIT_START) {
  3505. atomic_inc(&t->use_count);
  3506. spin_unlock(&root->fs_info->trans_lock);
  3507. btrfs_wait_for_commit(root, t->transid);
  3508. btrfs_put_transaction(t);
  3509. spin_lock(&root->fs_info->trans_lock);
  3510. continue;
  3511. }
  3512. if (t == root->fs_info->running_transaction) {
  3513. t->state = TRANS_STATE_COMMIT_DOING;
  3514. spin_unlock(&root->fs_info->trans_lock);
  3515. /*
  3516. * We wait for 0 num_writers since we don't hold a trans
  3517. * handle open currently for this transaction.
  3518. */
  3519. wait_event(t->writer_wait,
  3520. atomic_read(&t->num_writers) == 0);
  3521. } else {
  3522. spin_unlock(&root->fs_info->trans_lock);
  3523. }
  3524. btrfs_cleanup_one_transaction(t, root);
  3525. spin_lock(&root->fs_info->trans_lock);
  3526. if (t == root->fs_info->running_transaction)
  3527. root->fs_info->running_transaction = NULL;
  3528. list_del_init(&t->list);
  3529. spin_unlock(&root->fs_info->trans_lock);
  3530. btrfs_put_transaction(t);
  3531. trace_btrfs_transaction_commit(root);
  3532. spin_lock(&root->fs_info->trans_lock);
  3533. }
  3534. spin_unlock(&root->fs_info->trans_lock);
  3535. btrfs_destroy_all_ordered_extents(root->fs_info);
  3536. btrfs_destroy_delayed_inodes(root);
  3537. btrfs_assert_delayed_root_empty(root);
  3538. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3539. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3540. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3541. return 0;
  3542. }
  3543. static struct extent_io_ops btree_extent_io_ops = {
  3544. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3545. .readpage_io_failed_hook = btree_io_failed_hook,
  3546. .submit_bio_hook = btree_submit_bio_hook,
  3547. /* note we're sharing with inode.c for the merge bio hook */
  3548. .merge_bio_hook = btrfs_merge_bio_hook,
  3549. };