delayed-inode.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. if (delayed_node_cache)
  42. kmem_cache_destroy(delayed_node_cache);
  43. }
  44. static inline void btrfs_init_delayed_node(
  45. struct btrfs_delayed_node *delayed_node,
  46. struct btrfs_root *root, u64 inode_id)
  47. {
  48. delayed_node->root = root;
  49. delayed_node->inode_id = inode_id;
  50. atomic_set(&delayed_node->refs, 0);
  51. delayed_node->count = 0;
  52. delayed_node->flags = 0;
  53. delayed_node->ins_root = RB_ROOT;
  54. delayed_node->del_root = RB_ROOT;
  55. mutex_init(&delayed_node->mutex);
  56. delayed_node->index_cnt = 0;
  57. INIT_LIST_HEAD(&delayed_node->n_list);
  58. INIT_LIST_HEAD(&delayed_node->p_list);
  59. delayed_node->bytes_reserved = 0;
  60. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  61. }
  62. static inline int btrfs_is_continuous_delayed_item(
  63. struct btrfs_delayed_item *item1,
  64. struct btrfs_delayed_item *item2)
  65. {
  66. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  67. item1->key.objectid == item2->key.objectid &&
  68. item1->key.type == item2->key.type &&
  69. item1->key.offset + 1 == item2->key.offset)
  70. return 1;
  71. return 0;
  72. }
  73. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  74. struct btrfs_root *root)
  75. {
  76. return root->fs_info->delayed_root;
  77. }
  78. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  79. {
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. u64 ino = btrfs_ino(inode);
  83. struct btrfs_delayed_node *node;
  84. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  85. if (node) {
  86. atomic_inc(&node->refs);
  87. return node;
  88. }
  89. spin_lock(&root->inode_lock);
  90. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  91. if (node) {
  92. if (btrfs_inode->delayed_node) {
  93. atomic_inc(&node->refs); /* can be accessed */
  94. BUG_ON(btrfs_inode->delayed_node != node);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. btrfs_inode->delayed_node = node;
  99. /* can be accessed and cached in the inode */
  100. atomic_add(2, &node->refs);
  101. spin_unlock(&root->inode_lock);
  102. return node;
  103. }
  104. spin_unlock(&root->inode_lock);
  105. return NULL;
  106. }
  107. /* Will return either the node or PTR_ERR(-ENOMEM) */
  108. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  109. struct inode *inode)
  110. {
  111. struct btrfs_delayed_node *node;
  112. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  113. struct btrfs_root *root = btrfs_inode->root;
  114. u64 ino = btrfs_ino(inode);
  115. int ret;
  116. again:
  117. node = btrfs_get_delayed_node(inode);
  118. if (node)
  119. return node;
  120. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  121. if (!node)
  122. return ERR_PTR(-ENOMEM);
  123. btrfs_init_delayed_node(node, root, ino);
  124. /* cached in the btrfs inode and can be accessed */
  125. atomic_add(2, &node->refs);
  126. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  127. if (ret) {
  128. kmem_cache_free(delayed_node_cache, node);
  129. return ERR_PTR(ret);
  130. }
  131. spin_lock(&root->inode_lock);
  132. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  133. if (ret == -EEXIST) {
  134. kmem_cache_free(delayed_node_cache, node);
  135. spin_unlock(&root->inode_lock);
  136. radix_tree_preload_end();
  137. goto again;
  138. }
  139. btrfs_inode->delayed_node = node;
  140. spin_unlock(&root->inode_lock);
  141. radix_tree_preload_end();
  142. return node;
  143. }
  144. /*
  145. * Call it when holding delayed_node->mutex
  146. *
  147. * If mod = 1, add this node into the prepared list.
  148. */
  149. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  150. struct btrfs_delayed_node *node,
  151. int mod)
  152. {
  153. spin_lock(&root->lock);
  154. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  155. if (!list_empty(&node->p_list))
  156. list_move_tail(&node->p_list, &root->prepare_list);
  157. else if (mod)
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. } else {
  160. list_add_tail(&node->n_list, &root->node_list);
  161. list_add_tail(&node->p_list, &root->prepare_list);
  162. atomic_inc(&node->refs); /* inserted into list */
  163. root->nodes++;
  164. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  165. }
  166. spin_unlock(&root->lock);
  167. }
  168. /* Call it when holding delayed_node->mutex */
  169. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  170. struct btrfs_delayed_node *node)
  171. {
  172. spin_lock(&root->lock);
  173. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  174. root->nodes--;
  175. atomic_dec(&node->refs); /* not in the list */
  176. list_del_init(&node->n_list);
  177. if (!list_empty(&node->p_list))
  178. list_del_init(&node->p_list);
  179. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  180. }
  181. spin_unlock(&root->lock);
  182. }
  183. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  184. struct btrfs_delayed_root *delayed_root)
  185. {
  186. struct list_head *p;
  187. struct btrfs_delayed_node *node = NULL;
  188. spin_lock(&delayed_root->lock);
  189. if (list_empty(&delayed_root->node_list))
  190. goto out;
  191. p = delayed_root->node_list.next;
  192. node = list_entry(p, struct btrfs_delayed_node, n_list);
  193. atomic_inc(&node->refs);
  194. out:
  195. spin_unlock(&delayed_root->lock);
  196. return node;
  197. }
  198. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  199. struct btrfs_delayed_node *node)
  200. {
  201. struct btrfs_delayed_root *delayed_root;
  202. struct list_head *p;
  203. struct btrfs_delayed_node *next = NULL;
  204. delayed_root = node->root->fs_info->delayed_root;
  205. spin_lock(&delayed_root->lock);
  206. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  207. /* not in the list */
  208. if (list_empty(&delayed_root->node_list))
  209. goto out;
  210. p = delayed_root->node_list.next;
  211. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  212. goto out;
  213. else
  214. p = node->n_list.next;
  215. next = list_entry(p, struct btrfs_delayed_node, n_list);
  216. atomic_inc(&next->refs);
  217. out:
  218. spin_unlock(&delayed_root->lock);
  219. return next;
  220. }
  221. static void __btrfs_release_delayed_node(
  222. struct btrfs_delayed_node *delayed_node,
  223. int mod)
  224. {
  225. struct btrfs_delayed_root *delayed_root;
  226. if (!delayed_node)
  227. return;
  228. delayed_root = delayed_node->root->fs_info->delayed_root;
  229. mutex_lock(&delayed_node->mutex);
  230. if (delayed_node->count)
  231. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  232. else
  233. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  234. mutex_unlock(&delayed_node->mutex);
  235. if (atomic_dec_and_test(&delayed_node->refs)) {
  236. struct btrfs_root *root = delayed_node->root;
  237. spin_lock(&root->inode_lock);
  238. if (atomic_read(&delayed_node->refs) == 0) {
  239. radix_tree_delete(&root->delayed_nodes_tree,
  240. delayed_node->inode_id);
  241. kmem_cache_free(delayed_node_cache, delayed_node);
  242. }
  243. spin_unlock(&root->inode_lock);
  244. }
  245. }
  246. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  247. {
  248. __btrfs_release_delayed_node(node, 0);
  249. }
  250. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  251. struct btrfs_delayed_root *delayed_root)
  252. {
  253. struct list_head *p;
  254. struct btrfs_delayed_node *node = NULL;
  255. spin_lock(&delayed_root->lock);
  256. if (list_empty(&delayed_root->prepare_list))
  257. goto out;
  258. p = delayed_root->prepare_list.next;
  259. list_del_init(p);
  260. node = list_entry(p, struct btrfs_delayed_node, p_list);
  261. atomic_inc(&node->refs);
  262. out:
  263. spin_unlock(&delayed_root->lock);
  264. return node;
  265. }
  266. static inline void btrfs_release_prepared_delayed_node(
  267. struct btrfs_delayed_node *node)
  268. {
  269. __btrfs_release_delayed_node(node, 1);
  270. }
  271. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  272. {
  273. struct btrfs_delayed_item *item;
  274. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  275. if (item) {
  276. item->data_len = data_len;
  277. item->ins_or_del = 0;
  278. item->bytes_reserved = 0;
  279. item->delayed_node = NULL;
  280. atomic_set(&item->refs, 1);
  281. }
  282. return item;
  283. }
  284. /*
  285. * __btrfs_lookup_delayed_item - look up the delayed item by key
  286. * @delayed_node: pointer to the delayed node
  287. * @key: the key to look up
  288. * @prev: used to store the prev item if the right item isn't found
  289. * @next: used to store the next item if the right item isn't found
  290. *
  291. * Note: if we don't find the right item, we will return the prev item and
  292. * the next item.
  293. */
  294. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  295. struct rb_root *root,
  296. struct btrfs_key *key,
  297. struct btrfs_delayed_item **prev,
  298. struct btrfs_delayed_item **next)
  299. {
  300. struct rb_node *node, *prev_node = NULL;
  301. struct btrfs_delayed_item *delayed_item = NULL;
  302. int ret = 0;
  303. node = root->rb_node;
  304. while (node) {
  305. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  306. rb_node);
  307. prev_node = node;
  308. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  309. if (ret < 0)
  310. node = node->rb_right;
  311. else if (ret > 0)
  312. node = node->rb_left;
  313. else
  314. return delayed_item;
  315. }
  316. if (prev) {
  317. if (!prev_node)
  318. *prev = NULL;
  319. else if (ret < 0)
  320. *prev = delayed_item;
  321. else if ((node = rb_prev(prev_node)) != NULL) {
  322. *prev = rb_entry(node, struct btrfs_delayed_item,
  323. rb_node);
  324. } else
  325. *prev = NULL;
  326. }
  327. if (next) {
  328. if (!prev_node)
  329. *next = NULL;
  330. else if (ret > 0)
  331. *next = delayed_item;
  332. else if ((node = rb_next(prev_node)) != NULL) {
  333. *next = rb_entry(node, struct btrfs_delayed_item,
  334. rb_node);
  335. } else
  336. *next = NULL;
  337. }
  338. return NULL;
  339. }
  340. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  341. struct btrfs_delayed_node *delayed_node,
  342. struct btrfs_key *key)
  343. {
  344. struct btrfs_delayed_item *item;
  345. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  346. NULL, NULL);
  347. return item;
  348. }
  349. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  350. struct btrfs_delayed_item *ins,
  351. int action)
  352. {
  353. struct rb_node **p, *node;
  354. struct rb_node *parent_node = NULL;
  355. struct rb_root *root;
  356. struct btrfs_delayed_item *item;
  357. int cmp;
  358. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  359. root = &delayed_node->ins_root;
  360. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  361. root = &delayed_node->del_root;
  362. else
  363. BUG();
  364. p = &root->rb_node;
  365. node = &ins->rb_node;
  366. while (*p) {
  367. parent_node = *p;
  368. item = rb_entry(parent_node, struct btrfs_delayed_item,
  369. rb_node);
  370. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  371. if (cmp < 0)
  372. p = &(*p)->rb_right;
  373. else if (cmp > 0)
  374. p = &(*p)->rb_left;
  375. else
  376. return -EEXIST;
  377. }
  378. rb_link_node(node, parent_node, p);
  379. rb_insert_color(node, root);
  380. ins->delayed_node = delayed_node;
  381. ins->ins_or_del = action;
  382. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  383. action == BTRFS_DELAYED_INSERTION_ITEM &&
  384. ins->key.offset >= delayed_node->index_cnt)
  385. delayed_node->index_cnt = ins->key.offset + 1;
  386. delayed_node->count++;
  387. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  388. return 0;
  389. }
  390. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  391. struct btrfs_delayed_item *item)
  392. {
  393. return __btrfs_add_delayed_item(node, item,
  394. BTRFS_DELAYED_INSERTION_ITEM);
  395. }
  396. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  397. struct btrfs_delayed_item *item)
  398. {
  399. return __btrfs_add_delayed_item(node, item,
  400. BTRFS_DELAYED_DELETION_ITEM);
  401. }
  402. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  403. {
  404. int seq = atomic_inc_return(&delayed_root->items_seq);
  405. if ((atomic_dec_return(&delayed_root->items) <
  406. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  407. waitqueue_active(&delayed_root->wait))
  408. wake_up(&delayed_root->wait);
  409. }
  410. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  411. {
  412. struct rb_root *root;
  413. struct btrfs_delayed_root *delayed_root;
  414. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  415. BUG_ON(!delayed_root);
  416. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  417. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  418. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  419. root = &delayed_item->delayed_node->ins_root;
  420. else
  421. root = &delayed_item->delayed_node->del_root;
  422. rb_erase(&delayed_item->rb_node, root);
  423. delayed_item->delayed_node->count--;
  424. finish_one_item(delayed_root);
  425. }
  426. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  427. {
  428. if (item) {
  429. __btrfs_remove_delayed_item(item);
  430. if (atomic_dec_and_test(&item->refs))
  431. kfree(item);
  432. }
  433. }
  434. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  435. struct btrfs_delayed_node *delayed_node)
  436. {
  437. struct rb_node *p;
  438. struct btrfs_delayed_item *item = NULL;
  439. p = rb_first(&delayed_node->ins_root);
  440. if (p)
  441. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  442. return item;
  443. }
  444. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  445. struct btrfs_delayed_node *delayed_node)
  446. {
  447. struct rb_node *p;
  448. struct btrfs_delayed_item *item = NULL;
  449. p = rb_first(&delayed_node->del_root);
  450. if (p)
  451. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  452. return item;
  453. }
  454. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  455. struct btrfs_delayed_item *item)
  456. {
  457. struct rb_node *p;
  458. struct btrfs_delayed_item *next = NULL;
  459. p = rb_next(&item->rb_node);
  460. if (p)
  461. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  462. return next;
  463. }
  464. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  465. struct btrfs_root *root,
  466. struct btrfs_delayed_item *item)
  467. {
  468. struct btrfs_block_rsv *src_rsv;
  469. struct btrfs_block_rsv *dst_rsv;
  470. u64 num_bytes;
  471. int ret;
  472. if (!trans->bytes_reserved)
  473. return 0;
  474. src_rsv = trans->block_rsv;
  475. dst_rsv = &root->fs_info->delayed_block_rsv;
  476. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  477. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  478. if (!ret) {
  479. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  480. item->key.objectid,
  481. num_bytes, 1);
  482. item->bytes_reserved = num_bytes;
  483. }
  484. return ret;
  485. }
  486. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  487. struct btrfs_delayed_item *item)
  488. {
  489. struct btrfs_block_rsv *rsv;
  490. if (!item->bytes_reserved)
  491. return;
  492. rsv = &root->fs_info->delayed_block_rsv;
  493. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  494. item->key.objectid, item->bytes_reserved,
  495. 0);
  496. btrfs_block_rsv_release(root, rsv,
  497. item->bytes_reserved);
  498. }
  499. static int btrfs_delayed_inode_reserve_metadata(
  500. struct btrfs_trans_handle *trans,
  501. struct btrfs_root *root,
  502. struct inode *inode,
  503. struct btrfs_delayed_node *node)
  504. {
  505. struct btrfs_block_rsv *src_rsv;
  506. struct btrfs_block_rsv *dst_rsv;
  507. u64 num_bytes;
  508. int ret;
  509. bool release = false;
  510. src_rsv = trans->block_rsv;
  511. dst_rsv = &root->fs_info->delayed_block_rsv;
  512. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  513. /*
  514. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  515. * which doesn't reserve space for speed. This is a problem since we
  516. * still need to reserve space for this update, so try to reserve the
  517. * space.
  518. *
  519. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  520. * we're accounted for.
  521. */
  522. if (!src_rsv || (!trans->bytes_reserved &&
  523. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  524. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  525. BTRFS_RESERVE_NO_FLUSH);
  526. /*
  527. * Since we're under a transaction reserve_metadata_bytes could
  528. * try to commit the transaction which will make it return
  529. * EAGAIN to make us stop the transaction we have, so return
  530. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  531. */
  532. if (ret == -EAGAIN)
  533. ret = -ENOSPC;
  534. if (!ret) {
  535. node->bytes_reserved = num_bytes;
  536. trace_btrfs_space_reservation(root->fs_info,
  537. "delayed_inode",
  538. btrfs_ino(inode),
  539. num_bytes, 1);
  540. }
  541. return ret;
  542. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  543. spin_lock(&BTRFS_I(inode)->lock);
  544. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  545. &BTRFS_I(inode)->runtime_flags)) {
  546. spin_unlock(&BTRFS_I(inode)->lock);
  547. release = true;
  548. goto migrate;
  549. }
  550. spin_unlock(&BTRFS_I(inode)->lock);
  551. /* Ok we didn't have space pre-reserved. This shouldn't happen
  552. * too often but it can happen if we do delalloc to an existing
  553. * inode which gets dirtied because of the time update, and then
  554. * isn't touched again until after the transaction commits and
  555. * then we try to write out the data. First try to be nice and
  556. * reserve something strictly for us. If not be a pain and try
  557. * to steal from the delalloc block rsv.
  558. */
  559. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  560. BTRFS_RESERVE_NO_FLUSH);
  561. if (!ret)
  562. goto out;
  563. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  564. if (!WARN_ON(ret))
  565. goto out;
  566. /*
  567. * Ok this is a problem, let's just steal from the global rsv
  568. * since this really shouldn't happen that often.
  569. */
  570. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  571. dst_rsv, num_bytes);
  572. goto out;
  573. }
  574. migrate:
  575. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  576. out:
  577. /*
  578. * Migrate only takes a reservation, it doesn't touch the size of the
  579. * block_rsv. This is to simplify people who don't normally have things
  580. * migrated from their block rsv. If they go to release their
  581. * reservation, that will decrease the size as well, so if migrate
  582. * reduced size we'd end up with a negative size. But for the
  583. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  584. * but we could in fact do this reserve/migrate dance several times
  585. * between the time we did the original reservation and we'd clean it
  586. * up. So to take care of this, release the space for the meta
  587. * reservation here. I think it may be time for a documentation page on
  588. * how block rsvs. work.
  589. */
  590. if (!ret) {
  591. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  592. btrfs_ino(inode), num_bytes, 1);
  593. node->bytes_reserved = num_bytes;
  594. }
  595. if (release) {
  596. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  597. btrfs_ino(inode), num_bytes, 0);
  598. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  599. }
  600. return ret;
  601. }
  602. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  603. struct btrfs_delayed_node *node)
  604. {
  605. struct btrfs_block_rsv *rsv;
  606. if (!node->bytes_reserved)
  607. return;
  608. rsv = &root->fs_info->delayed_block_rsv;
  609. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  610. node->inode_id, node->bytes_reserved, 0);
  611. btrfs_block_rsv_release(root, rsv,
  612. node->bytes_reserved);
  613. node->bytes_reserved = 0;
  614. }
  615. /*
  616. * This helper will insert some continuous items into the same leaf according
  617. * to the free space of the leaf.
  618. */
  619. static int btrfs_batch_insert_items(struct btrfs_root *root,
  620. struct btrfs_path *path,
  621. struct btrfs_delayed_item *item)
  622. {
  623. struct btrfs_delayed_item *curr, *next;
  624. int free_space;
  625. int total_data_size = 0, total_size = 0;
  626. struct extent_buffer *leaf;
  627. char *data_ptr;
  628. struct btrfs_key *keys;
  629. u32 *data_size;
  630. struct list_head head;
  631. int slot;
  632. int nitems;
  633. int i;
  634. int ret = 0;
  635. BUG_ON(!path->nodes[0]);
  636. leaf = path->nodes[0];
  637. free_space = btrfs_leaf_free_space(root, leaf);
  638. INIT_LIST_HEAD(&head);
  639. next = item;
  640. nitems = 0;
  641. /*
  642. * count the number of the continuous items that we can insert in batch
  643. */
  644. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  645. free_space) {
  646. total_data_size += next->data_len;
  647. total_size += next->data_len + sizeof(struct btrfs_item);
  648. list_add_tail(&next->tree_list, &head);
  649. nitems++;
  650. curr = next;
  651. next = __btrfs_next_delayed_item(curr);
  652. if (!next)
  653. break;
  654. if (!btrfs_is_continuous_delayed_item(curr, next))
  655. break;
  656. }
  657. if (!nitems) {
  658. ret = 0;
  659. goto out;
  660. }
  661. /*
  662. * we need allocate some memory space, but it might cause the task
  663. * to sleep, so we set all locked nodes in the path to blocking locks
  664. * first.
  665. */
  666. btrfs_set_path_blocking(path);
  667. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  668. if (!keys) {
  669. ret = -ENOMEM;
  670. goto out;
  671. }
  672. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  673. if (!data_size) {
  674. ret = -ENOMEM;
  675. goto error;
  676. }
  677. /* get keys of all the delayed items */
  678. i = 0;
  679. list_for_each_entry(next, &head, tree_list) {
  680. keys[i] = next->key;
  681. data_size[i] = next->data_len;
  682. i++;
  683. }
  684. /* reset all the locked nodes in the patch to spinning locks. */
  685. btrfs_clear_path_blocking(path, NULL, 0);
  686. /* insert the keys of the items */
  687. setup_items_for_insert(root, path, keys, data_size,
  688. total_data_size, total_size, nitems);
  689. /* insert the dir index items */
  690. slot = path->slots[0];
  691. list_for_each_entry_safe(curr, next, &head, tree_list) {
  692. data_ptr = btrfs_item_ptr(leaf, slot, char);
  693. write_extent_buffer(leaf, &curr->data,
  694. (unsigned long)data_ptr,
  695. curr->data_len);
  696. slot++;
  697. btrfs_delayed_item_release_metadata(root, curr);
  698. list_del(&curr->tree_list);
  699. btrfs_release_delayed_item(curr);
  700. }
  701. error:
  702. kfree(data_size);
  703. kfree(keys);
  704. out:
  705. return ret;
  706. }
  707. /*
  708. * This helper can just do simple insertion that needn't extend item for new
  709. * data, such as directory name index insertion, inode insertion.
  710. */
  711. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  712. struct btrfs_root *root,
  713. struct btrfs_path *path,
  714. struct btrfs_delayed_item *delayed_item)
  715. {
  716. struct extent_buffer *leaf;
  717. char *ptr;
  718. int ret;
  719. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  720. delayed_item->data_len);
  721. if (ret < 0 && ret != -EEXIST)
  722. return ret;
  723. leaf = path->nodes[0];
  724. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  725. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  726. delayed_item->data_len);
  727. btrfs_mark_buffer_dirty(leaf);
  728. btrfs_delayed_item_release_metadata(root, delayed_item);
  729. return 0;
  730. }
  731. /*
  732. * we insert an item first, then if there are some continuous items, we try
  733. * to insert those items into the same leaf.
  734. */
  735. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  736. struct btrfs_path *path,
  737. struct btrfs_root *root,
  738. struct btrfs_delayed_node *node)
  739. {
  740. struct btrfs_delayed_item *curr, *prev;
  741. int ret = 0;
  742. do_again:
  743. mutex_lock(&node->mutex);
  744. curr = __btrfs_first_delayed_insertion_item(node);
  745. if (!curr)
  746. goto insert_end;
  747. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  748. if (ret < 0) {
  749. btrfs_release_path(path);
  750. goto insert_end;
  751. }
  752. prev = curr;
  753. curr = __btrfs_next_delayed_item(prev);
  754. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  755. /* insert the continuous items into the same leaf */
  756. path->slots[0]++;
  757. btrfs_batch_insert_items(root, path, curr);
  758. }
  759. btrfs_release_delayed_item(prev);
  760. btrfs_mark_buffer_dirty(path->nodes[0]);
  761. btrfs_release_path(path);
  762. mutex_unlock(&node->mutex);
  763. goto do_again;
  764. insert_end:
  765. mutex_unlock(&node->mutex);
  766. return ret;
  767. }
  768. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  769. struct btrfs_root *root,
  770. struct btrfs_path *path,
  771. struct btrfs_delayed_item *item)
  772. {
  773. struct btrfs_delayed_item *curr, *next;
  774. struct extent_buffer *leaf;
  775. struct btrfs_key key;
  776. struct list_head head;
  777. int nitems, i, last_item;
  778. int ret = 0;
  779. BUG_ON(!path->nodes[0]);
  780. leaf = path->nodes[0];
  781. i = path->slots[0];
  782. last_item = btrfs_header_nritems(leaf) - 1;
  783. if (i > last_item)
  784. return -ENOENT; /* FIXME: Is errno suitable? */
  785. next = item;
  786. INIT_LIST_HEAD(&head);
  787. btrfs_item_key_to_cpu(leaf, &key, i);
  788. nitems = 0;
  789. /*
  790. * count the number of the dir index items that we can delete in batch
  791. */
  792. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  793. list_add_tail(&next->tree_list, &head);
  794. nitems++;
  795. curr = next;
  796. next = __btrfs_next_delayed_item(curr);
  797. if (!next)
  798. break;
  799. if (!btrfs_is_continuous_delayed_item(curr, next))
  800. break;
  801. i++;
  802. if (i > last_item)
  803. break;
  804. btrfs_item_key_to_cpu(leaf, &key, i);
  805. }
  806. if (!nitems)
  807. return 0;
  808. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  809. if (ret)
  810. goto out;
  811. list_for_each_entry_safe(curr, next, &head, tree_list) {
  812. btrfs_delayed_item_release_metadata(root, curr);
  813. list_del(&curr->tree_list);
  814. btrfs_release_delayed_item(curr);
  815. }
  816. out:
  817. return ret;
  818. }
  819. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  820. struct btrfs_path *path,
  821. struct btrfs_root *root,
  822. struct btrfs_delayed_node *node)
  823. {
  824. struct btrfs_delayed_item *curr, *prev;
  825. int ret = 0;
  826. do_again:
  827. mutex_lock(&node->mutex);
  828. curr = __btrfs_first_delayed_deletion_item(node);
  829. if (!curr)
  830. goto delete_fail;
  831. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  832. if (ret < 0)
  833. goto delete_fail;
  834. else if (ret > 0) {
  835. /*
  836. * can't find the item which the node points to, so this node
  837. * is invalid, just drop it.
  838. */
  839. prev = curr;
  840. curr = __btrfs_next_delayed_item(prev);
  841. btrfs_release_delayed_item(prev);
  842. ret = 0;
  843. btrfs_release_path(path);
  844. if (curr) {
  845. mutex_unlock(&node->mutex);
  846. goto do_again;
  847. } else
  848. goto delete_fail;
  849. }
  850. btrfs_batch_delete_items(trans, root, path, curr);
  851. btrfs_release_path(path);
  852. mutex_unlock(&node->mutex);
  853. goto do_again;
  854. delete_fail:
  855. btrfs_release_path(path);
  856. mutex_unlock(&node->mutex);
  857. return ret;
  858. }
  859. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  860. {
  861. struct btrfs_delayed_root *delayed_root;
  862. if (delayed_node &&
  863. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  864. BUG_ON(!delayed_node->root);
  865. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  866. delayed_node->count--;
  867. delayed_root = delayed_node->root->fs_info->delayed_root;
  868. finish_one_item(delayed_root);
  869. }
  870. }
  871. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  872. {
  873. struct btrfs_delayed_root *delayed_root;
  874. ASSERT(delayed_node->root);
  875. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  876. delayed_node->count--;
  877. delayed_root = delayed_node->root->fs_info->delayed_root;
  878. finish_one_item(delayed_root);
  879. }
  880. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  881. struct btrfs_root *root,
  882. struct btrfs_path *path,
  883. struct btrfs_delayed_node *node)
  884. {
  885. struct btrfs_key key;
  886. struct btrfs_inode_item *inode_item;
  887. struct extent_buffer *leaf;
  888. int mod;
  889. int ret;
  890. key.objectid = node->inode_id;
  891. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  892. key.offset = 0;
  893. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  894. mod = -1;
  895. else
  896. mod = 1;
  897. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  898. if (ret > 0) {
  899. btrfs_release_path(path);
  900. return -ENOENT;
  901. } else if (ret < 0) {
  902. return ret;
  903. }
  904. leaf = path->nodes[0];
  905. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  906. struct btrfs_inode_item);
  907. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  908. sizeof(struct btrfs_inode_item));
  909. btrfs_mark_buffer_dirty(leaf);
  910. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  911. goto no_iref;
  912. path->slots[0]++;
  913. if (path->slots[0] >= btrfs_header_nritems(leaf))
  914. goto search;
  915. again:
  916. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  917. if (key.objectid != node->inode_id)
  918. goto out;
  919. if (key.type != BTRFS_INODE_REF_KEY &&
  920. key.type != BTRFS_INODE_EXTREF_KEY)
  921. goto out;
  922. /*
  923. * Delayed iref deletion is for the inode who has only one link,
  924. * so there is only one iref. The case that several irefs are
  925. * in the same item doesn't exist.
  926. */
  927. btrfs_del_item(trans, root, path);
  928. out:
  929. btrfs_release_delayed_iref(node);
  930. no_iref:
  931. btrfs_release_path(path);
  932. err_out:
  933. btrfs_delayed_inode_release_metadata(root, node);
  934. btrfs_release_delayed_inode(node);
  935. return ret;
  936. search:
  937. btrfs_release_path(path);
  938. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  939. key.offset = -1;
  940. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  941. if (ret < 0)
  942. goto err_out;
  943. ASSERT(ret);
  944. ret = 0;
  945. leaf = path->nodes[0];
  946. path->slots[0]--;
  947. goto again;
  948. }
  949. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  950. struct btrfs_root *root,
  951. struct btrfs_path *path,
  952. struct btrfs_delayed_node *node)
  953. {
  954. int ret;
  955. mutex_lock(&node->mutex);
  956. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  957. mutex_unlock(&node->mutex);
  958. return 0;
  959. }
  960. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  961. mutex_unlock(&node->mutex);
  962. return ret;
  963. }
  964. static inline int
  965. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  966. struct btrfs_path *path,
  967. struct btrfs_delayed_node *node)
  968. {
  969. int ret;
  970. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  971. if (ret)
  972. return ret;
  973. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  974. if (ret)
  975. return ret;
  976. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  977. return ret;
  978. }
  979. /*
  980. * Called when committing the transaction.
  981. * Returns 0 on success.
  982. * Returns < 0 on error and returns with an aborted transaction with any
  983. * outstanding delayed items cleaned up.
  984. */
  985. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  986. struct btrfs_root *root, int nr)
  987. {
  988. struct btrfs_delayed_root *delayed_root;
  989. struct btrfs_delayed_node *curr_node, *prev_node;
  990. struct btrfs_path *path;
  991. struct btrfs_block_rsv *block_rsv;
  992. int ret = 0;
  993. bool count = (nr > 0);
  994. if (trans->aborted)
  995. return -EIO;
  996. path = btrfs_alloc_path();
  997. if (!path)
  998. return -ENOMEM;
  999. path->leave_spinning = 1;
  1000. block_rsv = trans->block_rsv;
  1001. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1002. delayed_root = btrfs_get_delayed_root(root);
  1003. curr_node = btrfs_first_delayed_node(delayed_root);
  1004. while (curr_node && (!count || (count && nr--))) {
  1005. ret = __btrfs_commit_inode_delayed_items(trans, path,
  1006. curr_node);
  1007. if (ret) {
  1008. btrfs_release_delayed_node(curr_node);
  1009. curr_node = NULL;
  1010. btrfs_abort_transaction(trans, root, ret);
  1011. break;
  1012. }
  1013. prev_node = curr_node;
  1014. curr_node = btrfs_next_delayed_node(curr_node);
  1015. btrfs_release_delayed_node(prev_node);
  1016. }
  1017. if (curr_node)
  1018. btrfs_release_delayed_node(curr_node);
  1019. btrfs_free_path(path);
  1020. trans->block_rsv = block_rsv;
  1021. return ret;
  1022. }
  1023. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1024. struct btrfs_root *root)
  1025. {
  1026. return __btrfs_run_delayed_items(trans, root, -1);
  1027. }
  1028. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1029. struct btrfs_root *root, int nr)
  1030. {
  1031. return __btrfs_run_delayed_items(trans, root, nr);
  1032. }
  1033. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1034. struct inode *inode)
  1035. {
  1036. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1037. struct btrfs_path *path;
  1038. struct btrfs_block_rsv *block_rsv;
  1039. int ret;
  1040. if (!delayed_node)
  1041. return 0;
  1042. mutex_lock(&delayed_node->mutex);
  1043. if (!delayed_node->count) {
  1044. mutex_unlock(&delayed_node->mutex);
  1045. btrfs_release_delayed_node(delayed_node);
  1046. return 0;
  1047. }
  1048. mutex_unlock(&delayed_node->mutex);
  1049. path = btrfs_alloc_path();
  1050. if (!path) {
  1051. btrfs_release_delayed_node(delayed_node);
  1052. return -ENOMEM;
  1053. }
  1054. path->leave_spinning = 1;
  1055. block_rsv = trans->block_rsv;
  1056. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1057. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1058. btrfs_release_delayed_node(delayed_node);
  1059. btrfs_free_path(path);
  1060. trans->block_rsv = block_rsv;
  1061. return ret;
  1062. }
  1063. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1064. {
  1065. struct btrfs_trans_handle *trans;
  1066. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1067. struct btrfs_path *path;
  1068. struct btrfs_block_rsv *block_rsv;
  1069. int ret;
  1070. if (!delayed_node)
  1071. return 0;
  1072. mutex_lock(&delayed_node->mutex);
  1073. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1074. mutex_unlock(&delayed_node->mutex);
  1075. btrfs_release_delayed_node(delayed_node);
  1076. return 0;
  1077. }
  1078. mutex_unlock(&delayed_node->mutex);
  1079. trans = btrfs_join_transaction(delayed_node->root);
  1080. if (IS_ERR(trans)) {
  1081. ret = PTR_ERR(trans);
  1082. goto out;
  1083. }
  1084. path = btrfs_alloc_path();
  1085. if (!path) {
  1086. ret = -ENOMEM;
  1087. goto trans_out;
  1088. }
  1089. path->leave_spinning = 1;
  1090. block_rsv = trans->block_rsv;
  1091. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1092. mutex_lock(&delayed_node->mutex);
  1093. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1094. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1095. path, delayed_node);
  1096. else
  1097. ret = 0;
  1098. mutex_unlock(&delayed_node->mutex);
  1099. btrfs_free_path(path);
  1100. trans->block_rsv = block_rsv;
  1101. trans_out:
  1102. btrfs_end_transaction(trans, delayed_node->root);
  1103. btrfs_btree_balance_dirty(delayed_node->root);
  1104. out:
  1105. btrfs_release_delayed_node(delayed_node);
  1106. return ret;
  1107. }
  1108. void btrfs_remove_delayed_node(struct inode *inode)
  1109. {
  1110. struct btrfs_delayed_node *delayed_node;
  1111. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1112. if (!delayed_node)
  1113. return;
  1114. BTRFS_I(inode)->delayed_node = NULL;
  1115. btrfs_release_delayed_node(delayed_node);
  1116. }
  1117. struct btrfs_async_delayed_work {
  1118. struct btrfs_delayed_root *delayed_root;
  1119. int nr;
  1120. struct btrfs_work work;
  1121. };
  1122. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1123. {
  1124. struct btrfs_async_delayed_work *async_work;
  1125. struct btrfs_delayed_root *delayed_root;
  1126. struct btrfs_trans_handle *trans;
  1127. struct btrfs_path *path;
  1128. struct btrfs_delayed_node *delayed_node = NULL;
  1129. struct btrfs_root *root;
  1130. struct btrfs_block_rsv *block_rsv;
  1131. int total_done = 0;
  1132. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1133. delayed_root = async_work->delayed_root;
  1134. path = btrfs_alloc_path();
  1135. if (!path)
  1136. goto out;
  1137. again:
  1138. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1139. goto free_path;
  1140. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1141. if (!delayed_node)
  1142. goto free_path;
  1143. path->leave_spinning = 1;
  1144. root = delayed_node->root;
  1145. trans = btrfs_join_transaction(root);
  1146. if (IS_ERR(trans))
  1147. goto release_path;
  1148. block_rsv = trans->block_rsv;
  1149. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1150. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1151. trans->block_rsv = block_rsv;
  1152. btrfs_end_transaction(trans, root);
  1153. btrfs_btree_balance_dirty_nodelay(root);
  1154. release_path:
  1155. btrfs_release_path(path);
  1156. total_done++;
  1157. btrfs_release_prepared_delayed_node(delayed_node);
  1158. if (async_work->nr == 0 || total_done < async_work->nr)
  1159. goto again;
  1160. free_path:
  1161. btrfs_free_path(path);
  1162. out:
  1163. wake_up(&delayed_root->wait);
  1164. kfree(async_work);
  1165. }
  1166. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1167. struct btrfs_root *root, int nr)
  1168. {
  1169. struct btrfs_async_delayed_work *async_work;
  1170. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1171. return 0;
  1172. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1173. if (!async_work)
  1174. return -ENOMEM;
  1175. async_work->delayed_root = delayed_root;
  1176. btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root,
  1177. NULL, NULL);
  1178. async_work->nr = nr;
  1179. btrfs_queue_work(root->fs_info->delayed_workers, &async_work->work);
  1180. return 0;
  1181. }
  1182. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1183. {
  1184. struct btrfs_delayed_root *delayed_root;
  1185. delayed_root = btrfs_get_delayed_root(root);
  1186. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1187. }
  1188. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1189. {
  1190. int val = atomic_read(&delayed_root->items_seq);
  1191. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1192. return 1;
  1193. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1194. return 1;
  1195. return 0;
  1196. }
  1197. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1198. {
  1199. struct btrfs_delayed_root *delayed_root;
  1200. delayed_root = btrfs_get_delayed_root(root);
  1201. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1202. return;
  1203. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1204. int seq;
  1205. int ret;
  1206. seq = atomic_read(&delayed_root->items_seq);
  1207. ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1208. if (ret)
  1209. return;
  1210. wait_event_interruptible(delayed_root->wait,
  1211. could_end_wait(delayed_root, seq));
  1212. return;
  1213. }
  1214. btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
  1215. }
  1216. /* Will return 0 or -ENOMEM */
  1217. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1218. struct btrfs_root *root, const char *name,
  1219. int name_len, struct inode *dir,
  1220. struct btrfs_disk_key *disk_key, u8 type,
  1221. u64 index)
  1222. {
  1223. struct btrfs_delayed_node *delayed_node;
  1224. struct btrfs_delayed_item *delayed_item;
  1225. struct btrfs_dir_item *dir_item;
  1226. int ret;
  1227. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1228. if (IS_ERR(delayed_node))
  1229. return PTR_ERR(delayed_node);
  1230. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1231. if (!delayed_item) {
  1232. ret = -ENOMEM;
  1233. goto release_node;
  1234. }
  1235. delayed_item->key.objectid = btrfs_ino(dir);
  1236. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1237. delayed_item->key.offset = index;
  1238. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1239. dir_item->location = *disk_key;
  1240. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1241. btrfs_set_stack_dir_data_len(dir_item, 0);
  1242. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1243. btrfs_set_stack_dir_type(dir_item, type);
  1244. memcpy((char *)(dir_item + 1), name, name_len);
  1245. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1246. /*
  1247. * we have reserved enough space when we start a new transaction,
  1248. * so reserving metadata failure is impossible
  1249. */
  1250. BUG_ON(ret);
  1251. mutex_lock(&delayed_node->mutex);
  1252. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1253. if (unlikely(ret)) {
  1254. btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
  1255. "into the insertion tree of the delayed node"
  1256. "(root id: %llu, inode id: %llu, errno: %d)",
  1257. name_len, name, delayed_node->root->objectid,
  1258. delayed_node->inode_id, ret);
  1259. BUG();
  1260. }
  1261. mutex_unlock(&delayed_node->mutex);
  1262. release_node:
  1263. btrfs_release_delayed_node(delayed_node);
  1264. return ret;
  1265. }
  1266. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1267. struct btrfs_delayed_node *node,
  1268. struct btrfs_key *key)
  1269. {
  1270. struct btrfs_delayed_item *item;
  1271. mutex_lock(&node->mutex);
  1272. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1273. if (!item) {
  1274. mutex_unlock(&node->mutex);
  1275. return 1;
  1276. }
  1277. btrfs_delayed_item_release_metadata(root, item);
  1278. btrfs_release_delayed_item(item);
  1279. mutex_unlock(&node->mutex);
  1280. return 0;
  1281. }
  1282. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1283. struct btrfs_root *root, struct inode *dir,
  1284. u64 index)
  1285. {
  1286. struct btrfs_delayed_node *node;
  1287. struct btrfs_delayed_item *item;
  1288. struct btrfs_key item_key;
  1289. int ret;
  1290. node = btrfs_get_or_create_delayed_node(dir);
  1291. if (IS_ERR(node))
  1292. return PTR_ERR(node);
  1293. item_key.objectid = btrfs_ino(dir);
  1294. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1295. item_key.offset = index;
  1296. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1297. if (!ret)
  1298. goto end;
  1299. item = btrfs_alloc_delayed_item(0);
  1300. if (!item) {
  1301. ret = -ENOMEM;
  1302. goto end;
  1303. }
  1304. item->key = item_key;
  1305. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1306. /*
  1307. * we have reserved enough space when we start a new transaction,
  1308. * so reserving metadata failure is impossible.
  1309. */
  1310. BUG_ON(ret);
  1311. mutex_lock(&node->mutex);
  1312. ret = __btrfs_add_delayed_deletion_item(node, item);
  1313. if (unlikely(ret)) {
  1314. btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
  1315. "into the deletion tree of the delayed node"
  1316. "(root id: %llu, inode id: %llu, errno: %d)",
  1317. index, node->root->objectid, node->inode_id,
  1318. ret);
  1319. BUG();
  1320. }
  1321. mutex_unlock(&node->mutex);
  1322. end:
  1323. btrfs_release_delayed_node(node);
  1324. return ret;
  1325. }
  1326. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1327. {
  1328. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1329. if (!delayed_node)
  1330. return -ENOENT;
  1331. /*
  1332. * Since we have held i_mutex of this directory, it is impossible that
  1333. * a new directory index is added into the delayed node and index_cnt
  1334. * is updated now. So we needn't lock the delayed node.
  1335. */
  1336. if (!delayed_node->index_cnt) {
  1337. btrfs_release_delayed_node(delayed_node);
  1338. return -EINVAL;
  1339. }
  1340. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1341. btrfs_release_delayed_node(delayed_node);
  1342. return 0;
  1343. }
  1344. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1345. struct list_head *del_list)
  1346. {
  1347. struct btrfs_delayed_node *delayed_node;
  1348. struct btrfs_delayed_item *item;
  1349. delayed_node = btrfs_get_delayed_node(inode);
  1350. if (!delayed_node)
  1351. return;
  1352. mutex_lock(&delayed_node->mutex);
  1353. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1354. while (item) {
  1355. atomic_inc(&item->refs);
  1356. list_add_tail(&item->readdir_list, ins_list);
  1357. item = __btrfs_next_delayed_item(item);
  1358. }
  1359. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1360. while (item) {
  1361. atomic_inc(&item->refs);
  1362. list_add_tail(&item->readdir_list, del_list);
  1363. item = __btrfs_next_delayed_item(item);
  1364. }
  1365. mutex_unlock(&delayed_node->mutex);
  1366. /*
  1367. * This delayed node is still cached in the btrfs inode, so refs
  1368. * must be > 1 now, and we needn't check it is going to be freed
  1369. * or not.
  1370. *
  1371. * Besides that, this function is used to read dir, we do not
  1372. * insert/delete delayed items in this period. So we also needn't
  1373. * requeue or dequeue this delayed node.
  1374. */
  1375. atomic_dec(&delayed_node->refs);
  1376. }
  1377. void btrfs_put_delayed_items(struct list_head *ins_list,
  1378. struct list_head *del_list)
  1379. {
  1380. struct btrfs_delayed_item *curr, *next;
  1381. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1382. list_del(&curr->readdir_list);
  1383. if (atomic_dec_and_test(&curr->refs))
  1384. kfree(curr);
  1385. }
  1386. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1387. list_del(&curr->readdir_list);
  1388. if (atomic_dec_and_test(&curr->refs))
  1389. kfree(curr);
  1390. }
  1391. }
  1392. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1393. u64 index)
  1394. {
  1395. struct btrfs_delayed_item *curr, *next;
  1396. int ret;
  1397. if (list_empty(del_list))
  1398. return 0;
  1399. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1400. if (curr->key.offset > index)
  1401. break;
  1402. list_del(&curr->readdir_list);
  1403. ret = (curr->key.offset == index);
  1404. if (atomic_dec_and_test(&curr->refs))
  1405. kfree(curr);
  1406. if (ret)
  1407. return 1;
  1408. else
  1409. continue;
  1410. }
  1411. return 0;
  1412. }
  1413. /*
  1414. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1415. *
  1416. */
  1417. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1418. struct list_head *ins_list)
  1419. {
  1420. struct btrfs_dir_item *di;
  1421. struct btrfs_delayed_item *curr, *next;
  1422. struct btrfs_key location;
  1423. char *name;
  1424. int name_len;
  1425. int over = 0;
  1426. unsigned char d_type;
  1427. if (list_empty(ins_list))
  1428. return 0;
  1429. /*
  1430. * Changing the data of the delayed item is impossible. So
  1431. * we needn't lock them. And we have held i_mutex of the
  1432. * directory, nobody can delete any directory indexes now.
  1433. */
  1434. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1435. list_del(&curr->readdir_list);
  1436. if (curr->key.offset < ctx->pos) {
  1437. if (atomic_dec_and_test(&curr->refs))
  1438. kfree(curr);
  1439. continue;
  1440. }
  1441. ctx->pos = curr->key.offset;
  1442. di = (struct btrfs_dir_item *)curr->data;
  1443. name = (char *)(di + 1);
  1444. name_len = btrfs_stack_dir_name_len(di);
  1445. d_type = btrfs_filetype_table[di->type];
  1446. btrfs_disk_key_to_cpu(&location, &di->location);
  1447. over = !dir_emit(ctx, name, name_len,
  1448. location.objectid, d_type);
  1449. if (atomic_dec_and_test(&curr->refs))
  1450. kfree(curr);
  1451. if (over)
  1452. return 1;
  1453. }
  1454. return 0;
  1455. }
  1456. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1457. struct btrfs_inode_item *inode_item,
  1458. struct inode *inode)
  1459. {
  1460. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1461. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1462. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1463. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1464. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1465. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1466. btrfs_set_stack_inode_generation(inode_item,
  1467. BTRFS_I(inode)->generation);
  1468. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1469. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1470. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1471. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1472. btrfs_set_stack_inode_block_group(inode_item, 0);
  1473. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1474. inode->i_atime.tv_sec);
  1475. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1476. inode->i_atime.tv_nsec);
  1477. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1478. inode->i_mtime.tv_sec);
  1479. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1480. inode->i_mtime.tv_nsec);
  1481. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1482. inode->i_ctime.tv_sec);
  1483. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1484. inode->i_ctime.tv_nsec);
  1485. }
  1486. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1487. {
  1488. struct btrfs_delayed_node *delayed_node;
  1489. struct btrfs_inode_item *inode_item;
  1490. struct btrfs_timespec *tspec;
  1491. delayed_node = btrfs_get_delayed_node(inode);
  1492. if (!delayed_node)
  1493. return -ENOENT;
  1494. mutex_lock(&delayed_node->mutex);
  1495. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1496. mutex_unlock(&delayed_node->mutex);
  1497. btrfs_release_delayed_node(delayed_node);
  1498. return -ENOENT;
  1499. }
  1500. inode_item = &delayed_node->inode_item;
  1501. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1502. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1503. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1504. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1505. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1506. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1507. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1508. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1509. inode->i_rdev = 0;
  1510. *rdev = btrfs_stack_inode_rdev(inode_item);
  1511. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1512. tspec = btrfs_inode_atime(inode_item);
  1513. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1514. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1515. tspec = btrfs_inode_mtime(inode_item);
  1516. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1517. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1518. tspec = btrfs_inode_ctime(inode_item);
  1519. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1520. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1521. inode->i_generation = BTRFS_I(inode)->generation;
  1522. BTRFS_I(inode)->index_cnt = (u64)-1;
  1523. mutex_unlock(&delayed_node->mutex);
  1524. btrfs_release_delayed_node(delayed_node);
  1525. return 0;
  1526. }
  1527. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1528. struct btrfs_root *root, struct inode *inode)
  1529. {
  1530. struct btrfs_delayed_node *delayed_node;
  1531. int ret = 0;
  1532. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1533. if (IS_ERR(delayed_node))
  1534. return PTR_ERR(delayed_node);
  1535. mutex_lock(&delayed_node->mutex);
  1536. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1537. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1538. goto release_node;
  1539. }
  1540. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1541. delayed_node);
  1542. if (ret)
  1543. goto release_node;
  1544. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1545. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1546. delayed_node->count++;
  1547. atomic_inc(&root->fs_info->delayed_root->items);
  1548. release_node:
  1549. mutex_unlock(&delayed_node->mutex);
  1550. btrfs_release_delayed_node(delayed_node);
  1551. return ret;
  1552. }
  1553. int btrfs_delayed_delete_inode_ref(struct inode *inode)
  1554. {
  1555. struct btrfs_delayed_node *delayed_node;
  1556. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1557. if (IS_ERR(delayed_node))
  1558. return PTR_ERR(delayed_node);
  1559. /*
  1560. * We don't reserve space for inode ref deletion is because:
  1561. * - We ONLY do async inode ref deletion for the inode who has only
  1562. * one link(i_nlink == 1), it means there is only one inode ref.
  1563. * And in most case, the inode ref and the inode item are in the
  1564. * same leaf, and we will deal with them at the same time.
  1565. * Since we are sure we will reserve the space for the inode item,
  1566. * it is unnecessary to reserve space for inode ref deletion.
  1567. * - If the inode ref and the inode item are not in the same leaf,
  1568. * We also needn't worry about enospc problem, because we reserve
  1569. * much more space for the inode update than it needs.
  1570. * - At the worst, we can steal some space from the global reservation.
  1571. * It is very rare.
  1572. */
  1573. mutex_lock(&delayed_node->mutex);
  1574. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1575. goto release_node;
  1576. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1577. delayed_node->count++;
  1578. atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
  1579. release_node:
  1580. mutex_unlock(&delayed_node->mutex);
  1581. btrfs_release_delayed_node(delayed_node);
  1582. return 0;
  1583. }
  1584. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1585. {
  1586. struct btrfs_root *root = delayed_node->root;
  1587. struct btrfs_delayed_item *curr_item, *prev_item;
  1588. mutex_lock(&delayed_node->mutex);
  1589. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1590. while (curr_item) {
  1591. btrfs_delayed_item_release_metadata(root, curr_item);
  1592. prev_item = curr_item;
  1593. curr_item = __btrfs_next_delayed_item(prev_item);
  1594. btrfs_release_delayed_item(prev_item);
  1595. }
  1596. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1597. while (curr_item) {
  1598. btrfs_delayed_item_release_metadata(root, curr_item);
  1599. prev_item = curr_item;
  1600. curr_item = __btrfs_next_delayed_item(prev_item);
  1601. btrfs_release_delayed_item(prev_item);
  1602. }
  1603. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1604. btrfs_release_delayed_iref(delayed_node);
  1605. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1606. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1607. btrfs_release_delayed_inode(delayed_node);
  1608. }
  1609. mutex_unlock(&delayed_node->mutex);
  1610. }
  1611. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1612. {
  1613. struct btrfs_delayed_node *delayed_node;
  1614. delayed_node = btrfs_get_delayed_node(inode);
  1615. if (!delayed_node)
  1616. return;
  1617. __btrfs_kill_delayed_node(delayed_node);
  1618. btrfs_release_delayed_node(delayed_node);
  1619. }
  1620. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1621. {
  1622. u64 inode_id = 0;
  1623. struct btrfs_delayed_node *delayed_nodes[8];
  1624. int i, n;
  1625. while (1) {
  1626. spin_lock(&root->inode_lock);
  1627. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1628. (void **)delayed_nodes, inode_id,
  1629. ARRAY_SIZE(delayed_nodes));
  1630. if (!n) {
  1631. spin_unlock(&root->inode_lock);
  1632. break;
  1633. }
  1634. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1635. for (i = 0; i < n; i++)
  1636. atomic_inc(&delayed_nodes[i]->refs);
  1637. spin_unlock(&root->inode_lock);
  1638. for (i = 0; i < n; i++) {
  1639. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1640. btrfs_release_delayed_node(delayed_nodes[i]);
  1641. }
  1642. }
  1643. }
  1644. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1645. {
  1646. struct btrfs_delayed_root *delayed_root;
  1647. struct btrfs_delayed_node *curr_node, *prev_node;
  1648. delayed_root = btrfs_get_delayed_root(root);
  1649. curr_node = btrfs_first_delayed_node(delayed_root);
  1650. while (curr_node) {
  1651. __btrfs_kill_delayed_node(curr_node);
  1652. prev_node = curr_node;
  1653. curr_node = btrfs_next_delayed_node(curr_node);
  1654. btrfs_release_delayed_node(prev_node);
  1655. }
  1656. }