mtdpart.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include <linux/kconfig.h>
  33. #include "mtdcore.h"
  34. /* Our partition linked list */
  35. static LIST_HEAD(mtd_partitions);
  36. static DEFINE_MUTEX(mtd_partitions_mutex);
  37. /* Our partition node structure */
  38. struct mtd_part {
  39. struct mtd_info mtd;
  40. struct mtd_info *master;
  41. uint64_t offset;
  42. struct list_head list;
  43. };
  44. /*
  45. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  46. * the pointer to that structure.
  47. */
  48. static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  49. {
  50. return container_of(mtd, struct mtd_part, mtd);
  51. }
  52. /*
  53. * MTD methods which simply translate the effective address and pass through
  54. * to the _real_ device.
  55. */
  56. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  57. size_t *retlen, u_char *buf)
  58. {
  59. struct mtd_part *part = mtd_to_part(mtd);
  60. struct mtd_ecc_stats stats;
  61. int res;
  62. stats = part->master->ecc_stats;
  63. res = part->master->_read(part->master, from + part->offset, len,
  64. retlen, buf);
  65. if (unlikely(mtd_is_eccerr(res)))
  66. mtd->ecc_stats.failed +=
  67. part->master->ecc_stats.failed - stats.failed;
  68. else
  69. mtd->ecc_stats.corrected +=
  70. part->master->ecc_stats.corrected - stats.corrected;
  71. return res;
  72. }
  73. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  74. size_t *retlen, void **virt, resource_size_t *phys)
  75. {
  76. struct mtd_part *part = mtd_to_part(mtd);
  77. return part->master->_point(part->master, from + part->offset, len,
  78. retlen, virt, phys);
  79. }
  80. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  81. {
  82. struct mtd_part *part = mtd_to_part(mtd);
  83. return part->master->_unpoint(part->master, from + part->offset, len);
  84. }
  85. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  86. unsigned long len,
  87. unsigned long offset,
  88. unsigned long flags)
  89. {
  90. struct mtd_part *part = mtd_to_part(mtd);
  91. offset += part->offset;
  92. return part->master->_get_unmapped_area(part->master, len, offset,
  93. flags);
  94. }
  95. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  96. struct mtd_oob_ops *ops)
  97. {
  98. struct mtd_part *part = mtd_to_part(mtd);
  99. int res;
  100. if (from >= mtd->size)
  101. return -EINVAL;
  102. if (ops->datbuf && from + ops->len > mtd->size)
  103. return -EINVAL;
  104. /*
  105. * If OOB is also requested, make sure that we do not read past the end
  106. * of this partition.
  107. */
  108. if (ops->oobbuf) {
  109. size_t len, pages;
  110. if (ops->mode == MTD_OPS_AUTO_OOB)
  111. len = mtd->oobavail;
  112. else
  113. len = mtd->oobsize;
  114. pages = mtd_div_by_ws(mtd->size, mtd);
  115. pages -= mtd_div_by_ws(from, mtd);
  116. if (ops->ooboffs + ops->ooblen > pages * len)
  117. return -EINVAL;
  118. }
  119. res = part->master->_read_oob(part->master, from + part->offset, ops);
  120. if (unlikely(res)) {
  121. if (mtd_is_bitflip(res))
  122. mtd->ecc_stats.corrected++;
  123. if (mtd_is_eccerr(res))
  124. mtd->ecc_stats.failed++;
  125. }
  126. return res;
  127. }
  128. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  129. size_t len, size_t *retlen, u_char *buf)
  130. {
  131. struct mtd_part *part = mtd_to_part(mtd);
  132. return part->master->_read_user_prot_reg(part->master, from, len,
  133. retlen, buf);
  134. }
  135. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  136. size_t *retlen, struct otp_info *buf)
  137. {
  138. struct mtd_part *part = mtd_to_part(mtd);
  139. return part->master->_get_user_prot_info(part->master, len, retlen,
  140. buf);
  141. }
  142. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  143. size_t len, size_t *retlen, u_char *buf)
  144. {
  145. struct mtd_part *part = mtd_to_part(mtd);
  146. return part->master->_read_fact_prot_reg(part->master, from, len,
  147. retlen, buf);
  148. }
  149. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  150. size_t *retlen, struct otp_info *buf)
  151. {
  152. struct mtd_part *part = mtd_to_part(mtd);
  153. return part->master->_get_fact_prot_info(part->master, len, retlen,
  154. buf);
  155. }
  156. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  157. size_t *retlen, const u_char *buf)
  158. {
  159. struct mtd_part *part = mtd_to_part(mtd);
  160. return part->master->_write(part->master, to + part->offset, len,
  161. retlen, buf);
  162. }
  163. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  164. size_t *retlen, const u_char *buf)
  165. {
  166. struct mtd_part *part = mtd_to_part(mtd);
  167. return part->master->_panic_write(part->master, to + part->offset, len,
  168. retlen, buf);
  169. }
  170. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  171. struct mtd_oob_ops *ops)
  172. {
  173. struct mtd_part *part = mtd_to_part(mtd);
  174. if (to >= mtd->size)
  175. return -EINVAL;
  176. if (ops->datbuf && to + ops->len > mtd->size)
  177. return -EINVAL;
  178. return part->master->_write_oob(part->master, to + part->offset, ops);
  179. }
  180. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  181. size_t len, size_t *retlen, u_char *buf)
  182. {
  183. struct mtd_part *part = mtd_to_part(mtd);
  184. return part->master->_write_user_prot_reg(part->master, from, len,
  185. retlen, buf);
  186. }
  187. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  188. size_t len)
  189. {
  190. struct mtd_part *part = mtd_to_part(mtd);
  191. return part->master->_lock_user_prot_reg(part->master, from, len);
  192. }
  193. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  194. unsigned long count, loff_t to, size_t *retlen)
  195. {
  196. struct mtd_part *part = mtd_to_part(mtd);
  197. return part->master->_writev(part->master, vecs, count,
  198. to + part->offset, retlen);
  199. }
  200. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  201. {
  202. struct mtd_part *part = mtd_to_part(mtd);
  203. int ret;
  204. instr->addr += part->offset;
  205. ret = part->master->_erase(part->master, instr);
  206. if (ret) {
  207. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  208. instr->fail_addr -= part->offset;
  209. instr->addr -= part->offset;
  210. }
  211. return ret;
  212. }
  213. void mtd_erase_callback(struct erase_info *instr)
  214. {
  215. if (instr->mtd->_erase == part_erase) {
  216. struct mtd_part *part = mtd_to_part(instr->mtd);
  217. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  218. instr->fail_addr -= part->offset;
  219. instr->addr -= part->offset;
  220. }
  221. if (instr->callback)
  222. instr->callback(instr);
  223. }
  224. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  225. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  226. {
  227. struct mtd_part *part = mtd_to_part(mtd);
  228. return part->master->_lock(part->master, ofs + part->offset, len);
  229. }
  230. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  231. {
  232. struct mtd_part *part = mtd_to_part(mtd);
  233. return part->master->_unlock(part->master, ofs + part->offset, len);
  234. }
  235. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  236. {
  237. struct mtd_part *part = mtd_to_part(mtd);
  238. return part->master->_is_locked(part->master, ofs + part->offset, len);
  239. }
  240. static void part_sync(struct mtd_info *mtd)
  241. {
  242. struct mtd_part *part = mtd_to_part(mtd);
  243. part->master->_sync(part->master);
  244. }
  245. static int part_suspend(struct mtd_info *mtd)
  246. {
  247. struct mtd_part *part = mtd_to_part(mtd);
  248. return part->master->_suspend(part->master);
  249. }
  250. static void part_resume(struct mtd_info *mtd)
  251. {
  252. struct mtd_part *part = mtd_to_part(mtd);
  253. part->master->_resume(part->master);
  254. }
  255. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  256. {
  257. struct mtd_part *part = mtd_to_part(mtd);
  258. ofs += part->offset;
  259. return part->master->_block_isreserved(part->master, ofs);
  260. }
  261. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  262. {
  263. struct mtd_part *part = mtd_to_part(mtd);
  264. ofs += part->offset;
  265. return part->master->_block_isbad(part->master, ofs);
  266. }
  267. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  268. {
  269. struct mtd_part *part = mtd_to_part(mtd);
  270. int res;
  271. ofs += part->offset;
  272. res = part->master->_block_markbad(part->master, ofs);
  273. if (!res)
  274. mtd->ecc_stats.badblocks++;
  275. return res;
  276. }
  277. static inline void free_partition(struct mtd_part *p)
  278. {
  279. kfree(p->mtd.name);
  280. kfree(p);
  281. }
  282. /*
  283. * This function unregisters and destroy all slave MTD objects which are
  284. * attached to the given master MTD object.
  285. */
  286. int del_mtd_partitions(struct mtd_info *master)
  287. {
  288. struct mtd_part *slave, *next;
  289. int ret, err = 0;
  290. mutex_lock(&mtd_partitions_mutex);
  291. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  292. if (slave->master == master) {
  293. ret = del_mtd_device(&slave->mtd);
  294. if (ret < 0) {
  295. err = ret;
  296. continue;
  297. }
  298. list_del(&slave->list);
  299. free_partition(slave);
  300. }
  301. mutex_unlock(&mtd_partitions_mutex);
  302. return err;
  303. }
  304. static struct mtd_part *allocate_partition(struct mtd_info *master,
  305. const struct mtd_partition *part, int partno,
  306. uint64_t cur_offset)
  307. {
  308. struct mtd_part *slave;
  309. char *name;
  310. /* allocate the partition structure */
  311. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  312. name = kstrdup(part->name, GFP_KERNEL);
  313. if (!name || !slave) {
  314. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  315. master->name);
  316. kfree(name);
  317. kfree(slave);
  318. return ERR_PTR(-ENOMEM);
  319. }
  320. /* set up the MTD object for this partition */
  321. slave->mtd.type = master->type;
  322. slave->mtd.flags = master->flags & ~part->mask_flags;
  323. slave->mtd.size = part->size;
  324. slave->mtd.writesize = master->writesize;
  325. slave->mtd.writebufsize = master->writebufsize;
  326. slave->mtd.oobsize = master->oobsize;
  327. slave->mtd.oobavail = master->oobavail;
  328. slave->mtd.subpage_sft = master->subpage_sft;
  329. slave->mtd.name = name;
  330. slave->mtd.owner = master->owner;
  331. /* NOTE: Historically, we didn't arrange MTDs as a tree out of
  332. * concern for showing the same data in multiple partitions.
  333. * However, it is very useful to have the master node present,
  334. * so the MTD_PARTITIONED_MASTER option allows that. The master
  335. * will have device nodes etc only if this is set, so make the
  336. * parent conditional on that option. Note, this is a way to
  337. * distinguish between the master and the partition in sysfs.
  338. */
  339. slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
  340. &master->dev :
  341. master->dev.parent;
  342. slave->mtd._read = part_read;
  343. slave->mtd._write = part_write;
  344. if (master->_panic_write)
  345. slave->mtd._panic_write = part_panic_write;
  346. if (master->_point && master->_unpoint) {
  347. slave->mtd._point = part_point;
  348. slave->mtd._unpoint = part_unpoint;
  349. }
  350. if (master->_get_unmapped_area)
  351. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  352. if (master->_read_oob)
  353. slave->mtd._read_oob = part_read_oob;
  354. if (master->_write_oob)
  355. slave->mtd._write_oob = part_write_oob;
  356. if (master->_read_user_prot_reg)
  357. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  358. if (master->_read_fact_prot_reg)
  359. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  360. if (master->_write_user_prot_reg)
  361. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  362. if (master->_lock_user_prot_reg)
  363. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  364. if (master->_get_user_prot_info)
  365. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  366. if (master->_get_fact_prot_info)
  367. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  368. if (master->_sync)
  369. slave->mtd._sync = part_sync;
  370. if (!partno && !master->dev.class && master->_suspend &&
  371. master->_resume) {
  372. slave->mtd._suspend = part_suspend;
  373. slave->mtd._resume = part_resume;
  374. }
  375. if (master->_writev)
  376. slave->mtd._writev = part_writev;
  377. if (master->_lock)
  378. slave->mtd._lock = part_lock;
  379. if (master->_unlock)
  380. slave->mtd._unlock = part_unlock;
  381. if (master->_is_locked)
  382. slave->mtd._is_locked = part_is_locked;
  383. if (master->_block_isreserved)
  384. slave->mtd._block_isreserved = part_block_isreserved;
  385. if (master->_block_isbad)
  386. slave->mtd._block_isbad = part_block_isbad;
  387. if (master->_block_markbad)
  388. slave->mtd._block_markbad = part_block_markbad;
  389. slave->mtd._erase = part_erase;
  390. slave->master = master;
  391. slave->offset = part->offset;
  392. if (slave->offset == MTDPART_OFS_APPEND)
  393. slave->offset = cur_offset;
  394. if (slave->offset == MTDPART_OFS_NXTBLK) {
  395. slave->offset = cur_offset;
  396. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  397. /* Round up to next erasesize */
  398. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  399. printk(KERN_NOTICE "Moving partition %d: "
  400. "0x%012llx -> 0x%012llx\n", partno,
  401. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  402. }
  403. }
  404. if (slave->offset == MTDPART_OFS_RETAIN) {
  405. slave->offset = cur_offset;
  406. if (master->size - slave->offset >= slave->mtd.size) {
  407. slave->mtd.size = master->size - slave->offset
  408. - slave->mtd.size;
  409. } else {
  410. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  411. part->name, master->size - slave->offset,
  412. slave->mtd.size);
  413. /* register to preserve ordering */
  414. goto out_register;
  415. }
  416. }
  417. if (slave->mtd.size == MTDPART_SIZ_FULL)
  418. slave->mtd.size = master->size - slave->offset;
  419. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  420. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  421. /* let's do some sanity checks */
  422. if (slave->offset >= master->size) {
  423. /* let's register it anyway to preserve ordering */
  424. slave->offset = 0;
  425. slave->mtd.size = 0;
  426. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  427. part->name);
  428. goto out_register;
  429. }
  430. if (slave->offset + slave->mtd.size > master->size) {
  431. slave->mtd.size = master->size - slave->offset;
  432. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  433. part->name, master->name, (unsigned long long)slave->mtd.size);
  434. }
  435. if (master->numeraseregions > 1) {
  436. /* Deal with variable erase size stuff */
  437. int i, max = master->numeraseregions;
  438. u64 end = slave->offset + slave->mtd.size;
  439. struct mtd_erase_region_info *regions = master->eraseregions;
  440. /* Find the first erase regions which is part of this
  441. * partition. */
  442. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  443. ;
  444. /* The loop searched for the region _behind_ the first one */
  445. if (i > 0)
  446. i--;
  447. /* Pick biggest erasesize */
  448. for (; i < max && regions[i].offset < end; i++) {
  449. if (slave->mtd.erasesize < regions[i].erasesize) {
  450. slave->mtd.erasesize = regions[i].erasesize;
  451. }
  452. }
  453. BUG_ON(slave->mtd.erasesize == 0);
  454. } else {
  455. /* Single erase size */
  456. slave->mtd.erasesize = master->erasesize;
  457. }
  458. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  459. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  460. /* Doesn't start on a boundary of major erase size */
  461. /* FIXME: Let it be writable if it is on a boundary of
  462. * _minor_ erase size though */
  463. slave->mtd.flags &= ~MTD_WRITEABLE;
  464. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  465. part->name);
  466. }
  467. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  468. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  469. slave->mtd.flags &= ~MTD_WRITEABLE;
  470. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  471. part->name);
  472. }
  473. slave->mtd.ecclayout = master->ecclayout;
  474. slave->mtd.ecc_step_size = master->ecc_step_size;
  475. slave->mtd.ecc_strength = master->ecc_strength;
  476. slave->mtd.bitflip_threshold = master->bitflip_threshold;
  477. if (master->_block_isbad) {
  478. uint64_t offs = 0;
  479. while (offs < slave->mtd.size) {
  480. if (mtd_block_isreserved(master, offs + slave->offset))
  481. slave->mtd.ecc_stats.bbtblocks++;
  482. else if (mtd_block_isbad(master, offs + slave->offset))
  483. slave->mtd.ecc_stats.badblocks++;
  484. offs += slave->mtd.erasesize;
  485. }
  486. }
  487. out_register:
  488. return slave;
  489. }
  490. static ssize_t mtd_partition_offset_show(struct device *dev,
  491. struct device_attribute *attr, char *buf)
  492. {
  493. struct mtd_info *mtd = dev_get_drvdata(dev);
  494. struct mtd_part *part = mtd_to_part(mtd);
  495. return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
  496. }
  497. static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
  498. static const struct attribute *mtd_partition_attrs[] = {
  499. &dev_attr_offset.attr,
  500. NULL
  501. };
  502. static int mtd_add_partition_attrs(struct mtd_part *new)
  503. {
  504. int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
  505. if (ret)
  506. printk(KERN_WARNING
  507. "mtd: failed to create partition attrs, err=%d\n", ret);
  508. return ret;
  509. }
  510. int mtd_add_partition(struct mtd_info *master, const char *name,
  511. long long offset, long long length)
  512. {
  513. struct mtd_partition part;
  514. struct mtd_part *new;
  515. int ret = 0;
  516. /* the direct offset is expected */
  517. if (offset == MTDPART_OFS_APPEND ||
  518. offset == MTDPART_OFS_NXTBLK)
  519. return -EINVAL;
  520. if (length == MTDPART_SIZ_FULL)
  521. length = master->size - offset;
  522. if (length <= 0)
  523. return -EINVAL;
  524. memset(&part, 0, sizeof(part));
  525. part.name = name;
  526. part.size = length;
  527. part.offset = offset;
  528. new = allocate_partition(master, &part, -1, offset);
  529. if (IS_ERR(new))
  530. return PTR_ERR(new);
  531. mutex_lock(&mtd_partitions_mutex);
  532. list_add(&new->list, &mtd_partitions);
  533. mutex_unlock(&mtd_partitions_mutex);
  534. add_mtd_device(&new->mtd);
  535. mtd_add_partition_attrs(new);
  536. return ret;
  537. }
  538. EXPORT_SYMBOL_GPL(mtd_add_partition);
  539. int mtd_del_partition(struct mtd_info *master, int partno)
  540. {
  541. struct mtd_part *slave, *next;
  542. int ret = -EINVAL;
  543. mutex_lock(&mtd_partitions_mutex);
  544. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  545. if ((slave->master == master) &&
  546. (slave->mtd.index == partno)) {
  547. sysfs_remove_files(&slave->mtd.dev.kobj,
  548. mtd_partition_attrs);
  549. ret = del_mtd_device(&slave->mtd);
  550. if (ret < 0)
  551. break;
  552. list_del(&slave->list);
  553. free_partition(slave);
  554. break;
  555. }
  556. mutex_unlock(&mtd_partitions_mutex);
  557. return ret;
  558. }
  559. EXPORT_SYMBOL_GPL(mtd_del_partition);
  560. /*
  561. * This function, given a master MTD object and a partition table, creates
  562. * and registers slave MTD objects which are bound to the master according to
  563. * the partition definitions.
  564. *
  565. * For historical reasons, this function's caller only registers the master
  566. * if the MTD_PARTITIONED_MASTER config option is set.
  567. */
  568. int add_mtd_partitions(struct mtd_info *master,
  569. const struct mtd_partition *parts,
  570. int nbparts)
  571. {
  572. struct mtd_part *slave;
  573. uint64_t cur_offset = 0;
  574. int i;
  575. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  576. for (i = 0; i < nbparts; i++) {
  577. slave = allocate_partition(master, parts + i, i, cur_offset);
  578. if (IS_ERR(slave)) {
  579. del_mtd_partitions(master);
  580. return PTR_ERR(slave);
  581. }
  582. mutex_lock(&mtd_partitions_mutex);
  583. list_add(&slave->list, &mtd_partitions);
  584. mutex_unlock(&mtd_partitions_mutex);
  585. add_mtd_device(&slave->mtd);
  586. mtd_add_partition_attrs(slave);
  587. cur_offset = slave->offset + slave->mtd.size;
  588. }
  589. return 0;
  590. }
  591. static DEFINE_SPINLOCK(part_parser_lock);
  592. static LIST_HEAD(part_parsers);
  593. static struct mtd_part_parser *mtd_part_parser_get(const char *name)
  594. {
  595. struct mtd_part_parser *p, *ret = NULL;
  596. spin_lock(&part_parser_lock);
  597. list_for_each_entry(p, &part_parsers, list)
  598. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  599. ret = p;
  600. break;
  601. }
  602. spin_unlock(&part_parser_lock);
  603. return ret;
  604. }
  605. static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
  606. {
  607. module_put(p->owner);
  608. }
  609. /*
  610. * Many partition parsers just expected the core to kfree() all their data in
  611. * one chunk. Do that by default.
  612. */
  613. static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
  614. int nr_parts)
  615. {
  616. kfree(pparts);
  617. }
  618. int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
  619. {
  620. p->owner = owner;
  621. if (!p->cleanup)
  622. p->cleanup = &mtd_part_parser_cleanup_default;
  623. spin_lock(&part_parser_lock);
  624. list_add(&p->list, &part_parsers);
  625. spin_unlock(&part_parser_lock);
  626. return 0;
  627. }
  628. EXPORT_SYMBOL_GPL(__register_mtd_parser);
  629. void deregister_mtd_parser(struct mtd_part_parser *p)
  630. {
  631. spin_lock(&part_parser_lock);
  632. list_del(&p->list);
  633. spin_unlock(&part_parser_lock);
  634. }
  635. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  636. /*
  637. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  638. * are changing this array!
  639. */
  640. static const char * const default_mtd_part_types[] = {
  641. "cmdlinepart",
  642. "ofpart",
  643. NULL
  644. };
  645. /**
  646. * parse_mtd_partitions - parse MTD partitions
  647. * @master: the master partition (describes whole MTD device)
  648. * @types: names of partition parsers to try or %NULL
  649. * @pparts: info about partitions found is returned here
  650. * @data: MTD partition parser-specific data
  651. *
  652. * This function tries to find partition on MTD device @master. It uses MTD
  653. * partition parsers, specified in @types. However, if @types is %NULL, then
  654. * the default list of parsers is used. The default list contains only the
  655. * "cmdlinepart" and "ofpart" parsers ATM.
  656. * Note: If there are more then one parser in @types, the kernel only takes the
  657. * partitions parsed out by the first parser.
  658. *
  659. * This function may return:
  660. * o a negative error code in case of failure
  661. * o zero otherwise, and @pparts will describe the partitions, number of
  662. * partitions, and the parser which parsed them. Caller must release
  663. * resources with mtd_part_parser_cleanup() when finished with the returned
  664. * data.
  665. */
  666. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  667. struct mtd_partitions *pparts,
  668. struct mtd_part_parser_data *data)
  669. {
  670. struct mtd_part_parser *parser;
  671. int ret, err = 0;
  672. if (!types)
  673. types = default_mtd_part_types;
  674. for ( ; *types; types++) {
  675. pr_debug("%s: parsing partitions %s\n", master->name, *types);
  676. parser = mtd_part_parser_get(*types);
  677. if (!parser && !request_module("%s", *types))
  678. parser = mtd_part_parser_get(*types);
  679. pr_debug("%s: got parser %s\n", master->name,
  680. parser ? parser->name : NULL);
  681. if (!parser)
  682. continue;
  683. ret = (*parser->parse_fn)(master, &pparts->parts, data);
  684. pr_debug("%s: parser %s: %i\n",
  685. master->name, parser->name, ret);
  686. if (ret > 0) {
  687. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  688. ret, parser->name, master->name);
  689. pparts->nr_parts = ret;
  690. pparts->parser = parser;
  691. return 0;
  692. }
  693. mtd_part_parser_put(parser);
  694. /*
  695. * Stash the first error we see; only report it if no parser
  696. * succeeds
  697. */
  698. if (ret < 0 && !err)
  699. err = ret;
  700. }
  701. return err;
  702. }
  703. void mtd_part_parser_cleanup(struct mtd_partitions *parts)
  704. {
  705. const struct mtd_part_parser *parser;
  706. if (!parts)
  707. return;
  708. parser = parts->parser;
  709. if (parser) {
  710. if (parser->cleanup)
  711. parser->cleanup(parts->parts, parts->nr_parts);
  712. mtd_part_parser_put(parser);
  713. }
  714. }
  715. int mtd_is_partition(const struct mtd_info *mtd)
  716. {
  717. struct mtd_part *part;
  718. int ispart = 0;
  719. mutex_lock(&mtd_partitions_mutex);
  720. list_for_each_entry(part, &mtd_partitions, list)
  721. if (&part->mtd == mtd) {
  722. ispart = 1;
  723. break;
  724. }
  725. mutex_unlock(&mtd_partitions_mutex);
  726. return ispart;
  727. }
  728. EXPORT_SYMBOL_GPL(mtd_is_partition);
  729. /* Returns the size of the entire flash chip */
  730. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  731. {
  732. if (!mtd_is_partition(mtd))
  733. return mtd->size;
  734. return mtd_to_part(mtd)->master->size;
  735. }
  736. EXPORT_SYMBOL_GPL(mtd_get_device_size);