gss_krb5_crypto.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088
  1. /*
  2. * linux/net/sunrpc/gss_krb5_crypto.c
  3. *
  4. * Copyright (c) 2000-2008 The Regents of the University of Michigan.
  5. * All rights reserved.
  6. *
  7. * Andy Adamson <andros@umich.edu>
  8. * Bruce Fields <bfields@umich.edu>
  9. */
  10. /*
  11. * Copyright (C) 1998 by the FundsXpress, INC.
  12. *
  13. * All rights reserved.
  14. *
  15. * Export of this software from the United States of America may require
  16. * a specific license from the United States Government. It is the
  17. * responsibility of any person or organization contemplating export to
  18. * obtain such a license before exporting.
  19. *
  20. * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  21. * distribute this software and its documentation for any purpose and
  22. * without fee is hereby granted, provided that the above copyright
  23. * notice appear in all copies and that both that copyright notice and
  24. * this permission notice appear in supporting documentation, and that
  25. * the name of FundsXpress. not be used in advertising or publicity pertaining
  26. * to distribution of the software without specific, written prior
  27. * permission. FundsXpress makes no representations about the suitability of
  28. * this software for any purpose. It is provided "as is" without express
  29. * or implied warranty.
  30. *
  31. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  32. * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  33. * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  34. */
  35. #include <crypto/algapi.h>
  36. #include <crypto/hash.h>
  37. #include <crypto/skcipher.h>
  38. #include <linux/err.h>
  39. #include <linux/types.h>
  40. #include <linux/mm.h>
  41. #include <linux/scatterlist.h>
  42. #include <linux/highmem.h>
  43. #include <linux/pagemap.h>
  44. #include <linux/random.h>
  45. #include <linux/sunrpc/gss_krb5.h>
  46. #include <linux/sunrpc/xdr.h>
  47. #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  48. # define RPCDBG_FACILITY RPCDBG_AUTH
  49. #endif
  50. u32
  51. krb5_encrypt(
  52. struct crypto_sync_skcipher *tfm,
  53. void * iv,
  54. void * in,
  55. void * out,
  56. int length)
  57. {
  58. u32 ret = -EINVAL;
  59. struct scatterlist sg[1];
  60. u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  61. SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
  62. if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
  63. goto out;
  64. if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  65. dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
  66. crypto_sync_skcipher_ivsize(tfm));
  67. goto out;
  68. }
  69. if (iv)
  70. memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
  71. memcpy(out, in, length);
  72. sg_init_one(sg, out, length);
  73. skcipher_request_set_sync_tfm(req, tfm);
  74. skcipher_request_set_callback(req, 0, NULL, NULL);
  75. skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  76. ret = crypto_skcipher_encrypt(req);
  77. skcipher_request_zero(req);
  78. out:
  79. dprintk("RPC: krb5_encrypt returns %d\n", ret);
  80. return ret;
  81. }
  82. u32
  83. krb5_decrypt(
  84. struct crypto_sync_skcipher *tfm,
  85. void * iv,
  86. void * in,
  87. void * out,
  88. int length)
  89. {
  90. u32 ret = -EINVAL;
  91. struct scatterlist sg[1];
  92. u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  93. SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
  94. if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
  95. goto out;
  96. if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  97. dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
  98. crypto_sync_skcipher_ivsize(tfm));
  99. goto out;
  100. }
  101. if (iv)
  102. memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
  103. memcpy(out, in, length);
  104. sg_init_one(sg, out, length);
  105. skcipher_request_set_sync_tfm(req, tfm);
  106. skcipher_request_set_callback(req, 0, NULL, NULL);
  107. skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  108. ret = crypto_skcipher_decrypt(req);
  109. skcipher_request_zero(req);
  110. out:
  111. dprintk("RPC: gss_k5decrypt returns %d\n",ret);
  112. return ret;
  113. }
  114. static int
  115. checksummer(struct scatterlist *sg, void *data)
  116. {
  117. struct ahash_request *req = data;
  118. ahash_request_set_crypt(req, sg, NULL, sg->length);
  119. return crypto_ahash_update(req);
  120. }
  121. static int
  122. arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
  123. {
  124. unsigned int ms_usage;
  125. switch (usage) {
  126. case KG_USAGE_SIGN:
  127. ms_usage = 15;
  128. break;
  129. case KG_USAGE_SEAL:
  130. ms_usage = 13;
  131. break;
  132. default:
  133. return -EINVAL;
  134. }
  135. salt[0] = (ms_usage >> 0) & 0xff;
  136. salt[1] = (ms_usage >> 8) & 0xff;
  137. salt[2] = (ms_usage >> 16) & 0xff;
  138. salt[3] = (ms_usage >> 24) & 0xff;
  139. return 0;
  140. }
  141. static u32
  142. make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
  143. struct xdr_buf *body, int body_offset, u8 *cksumkey,
  144. unsigned int usage, struct xdr_netobj *cksumout)
  145. {
  146. struct scatterlist sg[1];
  147. int err = -1;
  148. u8 *checksumdata;
  149. u8 *rc4salt;
  150. struct crypto_ahash *md5;
  151. struct crypto_ahash *hmac_md5;
  152. struct ahash_request *req;
  153. if (cksumkey == NULL)
  154. return GSS_S_FAILURE;
  155. if (cksumout->len < kctx->gk5e->cksumlength) {
  156. dprintk("%s: checksum buffer length, %u, too small for %s\n",
  157. __func__, cksumout->len, kctx->gk5e->name);
  158. return GSS_S_FAILURE;
  159. }
  160. rc4salt = kmalloc_array(4, sizeof(*rc4salt), GFP_NOFS);
  161. if (!rc4salt)
  162. return GSS_S_FAILURE;
  163. if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
  164. dprintk("%s: invalid usage value %u\n", __func__, usage);
  165. goto out_free_rc4salt;
  166. }
  167. checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
  168. if (!checksumdata)
  169. goto out_free_rc4salt;
  170. md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
  171. if (IS_ERR(md5))
  172. goto out_free_cksum;
  173. hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
  174. CRYPTO_ALG_ASYNC);
  175. if (IS_ERR(hmac_md5))
  176. goto out_free_md5;
  177. req = ahash_request_alloc(md5, GFP_NOFS);
  178. if (!req)
  179. goto out_free_hmac_md5;
  180. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  181. err = crypto_ahash_init(req);
  182. if (err)
  183. goto out;
  184. sg_init_one(sg, rc4salt, 4);
  185. ahash_request_set_crypt(req, sg, NULL, 4);
  186. err = crypto_ahash_update(req);
  187. if (err)
  188. goto out;
  189. sg_init_one(sg, header, hdrlen);
  190. ahash_request_set_crypt(req, sg, NULL, hdrlen);
  191. err = crypto_ahash_update(req);
  192. if (err)
  193. goto out;
  194. err = xdr_process_buf(body, body_offset, body->len - body_offset,
  195. checksummer, req);
  196. if (err)
  197. goto out;
  198. ahash_request_set_crypt(req, NULL, checksumdata, 0);
  199. err = crypto_ahash_final(req);
  200. if (err)
  201. goto out;
  202. ahash_request_free(req);
  203. req = ahash_request_alloc(hmac_md5, GFP_NOFS);
  204. if (!req)
  205. goto out_free_hmac_md5;
  206. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  207. err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
  208. if (err)
  209. goto out;
  210. sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
  211. ahash_request_set_crypt(req, sg, checksumdata,
  212. crypto_ahash_digestsize(md5));
  213. err = crypto_ahash_digest(req);
  214. if (err)
  215. goto out;
  216. memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
  217. cksumout->len = kctx->gk5e->cksumlength;
  218. out:
  219. ahash_request_free(req);
  220. out_free_hmac_md5:
  221. crypto_free_ahash(hmac_md5);
  222. out_free_md5:
  223. crypto_free_ahash(md5);
  224. out_free_cksum:
  225. kfree(checksumdata);
  226. out_free_rc4salt:
  227. kfree(rc4salt);
  228. return err ? GSS_S_FAILURE : 0;
  229. }
  230. /*
  231. * checksum the plaintext data and hdrlen bytes of the token header
  232. * The checksum is performed over the first 8 bytes of the
  233. * gss token header and then over the data body
  234. */
  235. u32
  236. make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
  237. struct xdr_buf *body, int body_offset, u8 *cksumkey,
  238. unsigned int usage, struct xdr_netobj *cksumout)
  239. {
  240. struct crypto_ahash *tfm;
  241. struct ahash_request *req;
  242. struct scatterlist sg[1];
  243. int err = -1;
  244. u8 *checksumdata;
  245. unsigned int checksumlen;
  246. if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
  247. return make_checksum_hmac_md5(kctx, header, hdrlen,
  248. body, body_offset,
  249. cksumkey, usage, cksumout);
  250. if (cksumout->len < kctx->gk5e->cksumlength) {
  251. dprintk("%s: checksum buffer length, %u, too small for %s\n",
  252. __func__, cksumout->len, kctx->gk5e->name);
  253. return GSS_S_FAILURE;
  254. }
  255. checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
  256. if (checksumdata == NULL)
  257. return GSS_S_FAILURE;
  258. tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
  259. if (IS_ERR(tfm))
  260. goto out_free_cksum;
  261. req = ahash_request_alloc(tfm, GFP_NOFS);
  262. if (!req)
  263. goto out_free_ahash;
  264. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  265. checksumlen = crypto_ahash_digestsize(tfm);
  266. if (cksumkey != NULL) {
  267. err = crypto_ahash_setkey(tfm, cksumkey,
  268. kctx->gk5e->keylength);
  269. if (err)
  270. goto out;
  271. }
  272. err = crypto_ahash_init(req);
  273. if (err)
  274. goto out;
  275. sg_init_one(sg, header, hdrlen);
  276. ahash_request_set_crypt(req, sg, NULL, hdrlen);
  277. err = crypto_ahash_update(req);
  278. if (err)
  279. goto out;
  280. err = xdr_process_buf(body, body_offset, body->len - body_offset,
  281. checksummer, req);
  282. if (err)
  283. goto out;
  284. ahash_request_set_crypt(req, NULL, checksumdata, 0);
  285. err = crypto_ahash_final(req);
  286. if (err)
  287. goto out;
  288. switch (kctx->gk5e->ctype) {
  289. case CKSUMTYPE_RSA_MD5:
  290. err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
  291. checksumdata, checksumlen);
  292. if (err)
  293. goto out;
  294. memcpy(cksumout->data,
  295. checksumdata + checksumlen - kctx->gk5e->cksumlength,
  296. kctx->gk5e->cksumlength);
  297. break;
  298. case CKSUMTYPE_HMAC_SHA1_DES3:
  299. memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
  300. break;
  301. default:
  302. BUG();
  303. break;
  304. }
  305. cksumout->len = kctx->gk5e->cksumlength;
  306. out:
  307. ahash_request_free(req);
  308. out_free_ahash:
  309. crypto_free_ahash(tfm);
  310. out_free_cksum:
  311. kfree(checksumdata);
  312. return err ? GSS_S_FAILURE : 0;
  313. }
  314. /*
  315. * checksum the plaintext data and hdrlen bytes of the token header
  316. * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
  317. * body then over the first 16 octets of the MIC token
  318. * Inclusion of the header data in the calculation of the
  319. * checksum is optional.
  320. */
  321. u32
  322. make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
  323. struct xdr_buf *body, int body_offset, u8 *cksumkey,
  324. unsigned int usage, struct xdr_netobj *cksumout)
  325. {
  326. struct crypto_ahash *tfm;
  327. struct ahash_request *req;
  328. struct scatterlist sg[1];
  329. int err = -1;
  330. u8 *checksumdata;
  331. if (kctx->gk5e->keyed_cksum == 0) {
  332. dprintk("%s: expected keyed hash for %s\n",
  333. __func__, kctx->gk5e->name);
  334. return GSS_S_FAILURE;
  335. }
  336. if (cksumkey == NULL) {
  337. dprintk("%s: no key supplied for %s\n",
  338. __func__, kctx->gk5e->name);
  339. return GSS_S_FAILURE;
  340. }
  341. checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
  342. if (!checksumdata)
  343. return GSS_S_FAILURE;
  344. tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
  345. if (IS_ERR(tfm))
  346. goto out_free_cksum;
  347. req = ahash_request_alloc(tfm, GFP_NOFS);
  348. if (!req)
  349. goto out_free_ahash;
  350. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  351. err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
  352. if (err)
  353. goto out;
  354. err = crypto_ahash_init(req);
  355. if (err)
  356. goto out;
  357. err = xdr_process_buf(body, body_offset, body->len - body_offset,
  358. checksummer, req);
  359. if (err)
  360. goto out;
  361. if (header != NULL) {
  362. sg_init_one(sg, header, hdrlen);
  363. ahash_request_set_crypt(req, sg, NULL, hdrlen);
  364. err = crypto_ahash_update(req);
  365. if (err)
  366. goto out;
  367. }
  368. ahash_request_set_crypt(req, NULL, checksumdata, 0);
  369. err = crypto_ahash_final(req);
  370. if (err)
  371. goto out;
  372. cksumout->len = kctx->gk5e->cksumlength;
  373. switch (kctx->gk5e->ctype) {
  374. case CKSUMTYPE_HMAC_SHA1_96_AES128:
  375. case CKSUMTYPE_HMAC_SHA1_96_AES256:
  376. /* note that this truncates the hash */
  377. memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
  378. break;
  379. default:
  380. BUG();
  381. break;
  382. }
  383. out:
  384. ahash_request_free(req);
  385. out_free_ahash:
  386. crypto_free_ahash(tfm);
  387. out_free_cksum:
  388. kfree(checksumdata);
  389. return err ? GSS_S_FAILURE : 0;
  390. }
  391. struct encryptor_desc {
  392. u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
  393. struct skcipher_request *req;
  394. int pos;
  395. struct xdr_buf *outbuf;
  396. struct page **pages;
  397. struct scatterlist infrags[4];
  398. struct scatterlist outfrags[4];
  399. int fragno;
  400. int fraglen;
  401. };
  402. static int
  403. encryptor(struct scatterlist *sg, void *data)
  404. {
  405. struct encryptor_desc *desc = data;
  406. struct xdr_buf *outbuf = desc->outbuf;
  407. struct crypto_sync_skcipher *tfm =
  408. crypto_sync_skcipher_reqtfm(desc->req);
  409. struct page *in_page;
  410. int thislen = desc->fraglen + sg->length;
  411. int fraglen, ret;
  412. int page_pos;
  413. /* Worst case is 4 fragments: head, end of page 1, start
  414. * of page 2, tail. Anything more is a bug. */
  415. BUG_ON(desc->fragno > 3);
  416. page_pos = desc->pos - outbuf->head[0].iov_len;
  417. if (page_pos >= 0 && page_pos < outbuf->page_len) {
  418. /* pages are not in place: */
  419. int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
  420. in_page = desc->pages[i];
  421. } else {
  422. in_page = sg_page(sg);
  423. }
  424. sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
  425. sg->offset);
  426. sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
  427. sg->offset);
  428. desc->fragno++;
  429. desc->fraglen += sg->length;
  430. desc->pos += sg->length;
  431. fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
  432. thislen -= fraglen;
  433. if (thislen == 0)
  434. return 0;
  435. sg_mark_end(&desc->infrags[desc->fragno - 1]);
  436. sg_mark_end(&desc->outfrags[desc->fragno - 1]);
  437. skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
  438. thislen, desc->iv);
  439. ret = crypto_skcipher_encrypt(desc->req);
  440. if (ret)
  441. return ret;
  442. sg_init_table(desc->infrags, 4);
  443. sg_init_table(desc->outfrags, 4);
  444. if (fraglen) {
  445. sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
  446. sg->offset + sg->length - fraglen);
  447. desc->infrags[0] = desc->outfrags[0];
  448. sg_assign_page(&desc->infrags[0], in_page);
  449. desc->fragno = 1;
  450. desc->fraglen = fraglen;
  451. } else {
  452. desc->fragno = 0;
  453. desc->fraglen = 0;
  454. }
  455. return 0;
  456. }
  457. int
  458. gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
  459. int offset, struct page **pages)
  460. {
  461. int ret;
  462. struct encryptor_desc desc;
  463. SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
  464. BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
  465. skcipher_request_set_sync_tfm(req, tfm);
  466. skcipher_request_set_callback(req, 0, NULL, NULL);
  467. memset(desc.iv, 0, sizeof(desc.iv));
  468. desc.req = req;
  469. desc.pos = offset;
  470. desc.outbuf = buf;
  471. desc.pages = pages;
  472. desc.fragno = 0;
  473. desc.fraglen = 0;
  474. sg_init_table(desc.infrags, 4);
  475. sg_init_table(desc.outfrags, 4);
  476. ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
  477. skcipher_request_zero(req);
  478. return ret;
  479. }
  480. struct decryptor_desc {
  481. u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
  482. struct skcipher_request *req;
  483. struct scatterlist frags[4];
  484. int fragno;
  485. int fraglen;
  486. };
  487. static int
  488. decryptor(struct scatterlist *sg, void *data)
  489. {
  490. struct decryptor_desc *desc = data;
  491. int thislen = desc->fraglen + sg->length;
  492. struct crypto_sync_skcipher *tfm =
  493. crypto_sync_skcipher_reqtfm(desc->req);
  494. int fraglen, ret;
  495. /* Worst case is 4 fragments: head, end of page 1, start
  496. * of page 2, tail. Anything more is a bug. */
  497. BUG_ON(desc->fragno > 3);
  498. sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
  499. sg->offset);
  500. desc->fragno++;
  501. desc->fraglen += sg->length;
  502. fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
  503. thislen -= fraglen;
  504. if (thislen == 0)
  505. return 0;
  506. sg_mark_end(&desc->frags[desc->fragno - 1]);
  507. skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
  508. thislen, desc->iv);
  509. ret = crypto_skcipher_decrypt(desc->req);
  510. if (ret)
  511. return ret;
  512. sg_init_table(desc->frags, 4);
  513. if (fraglen) {
  514. sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
  515. sg->offset + sg->length - fraglen);
  516. desc->fragno = 1;
  517. desc->fraglen = fraglen;
  518. } else {
  519. desc->fragno = 0;
  520. desc->fraglen = 0;
  521. }
  522. return 0;
  523. }
  524. int
  525. gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
  526. int offset)
  527. {
  528. int ret;
  529. struct decryptor_desc desc;
  530. SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
  531. /* XXXJBF: */
  532. BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
  533. skcipher_request_set_sync_tfm(req, tfm);
  534. skcipher_request_set_callback(req, 0, NULL, NULL);
  535. memset(desc.iv, 0, sizeof(desc.iv));
  536. desc.req = req;
  537. desc.fragno = 0;
  538. desc.fraglen = 0;
  539. sg_init_table(desc.frags, 4);
  540. ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
  541. skcipher_request_zero(req);
  542. return ret;
  543. }
  544. /*
  545. * This function makes the assumption that it was ultimately called
  546. * from gss_wrap().
  547. *
  548. * The client auth_gss code moves any existing tail data into a
  549. * separate page before calling gss_wrap.
  550. * The server svcauth_gss code ensures that both the head and the
  551. * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
  552. *
  553. * Even with that guarantee, this function may be called more than
  554. * once in the processing of gss_wrap(). The best we can do is
  555. * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
  556. * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
  557. * At run-time we can verify that a single invocation of this
  558. * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
  559. */
  560. int
  561. xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
  562. {
  563. u8 *p;
  564. if (shiftlen == 0)
  565. return 0;
  566. BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
  567. BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
  568. p = buf->head[0].iov_base + base;
  569. memmove(p + shiftlen, p, buf->head[0].iov_len - base);
  570. buf->head[0].iov_len += shiftlen;
  571. buf->len += shiftlen;
  572. return 0;
  573. }
  574. static u32
  575. gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
  576. u32 offset, u8 *iv, struct page **pages, int encrypt)
  577. {
  578. u32 ret;
  579. struct scatterlist sg[1];
  580. SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
  581. u8 *data;
  582. struct page **save_pages;
  583. u32 len = buf->len - offset;
  584. if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
  585. WARN_ON(0);
  586. return -ENOMEM;
  587. }
  588. data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
  589. if (!data)
  590. return -ENOMEM;
  591. /*
  592. * For encryption, we want to read from the cleartext
  593. * page cache pages, and write the encrypted data to
  594. * the supplied xdr_buf pages.
  595. */
  596. save_pages = buf->pages;
  597. if (encrypt)
  598. buf->pages = pages;
  599. ret = read_bytes_from_xdr_buf(buf, offset, data, len);
  600. buf->pages = save_pages;
  601. if (ret)
  602. goto out;
  603. sg_init_one(sg, data, len);
  604. skcipher_request_set_sync_tfm(req, cipher);
  605. skcipher_request_set_callback(req, 0, NULL, NULL);
  606. skcipher_request_set_crypt(req, sg, sg, len, iv);
  607. if (encrypt)
  608. ret = crypto_skcipher_encrypt(req);
  609. else
  610. ret = crypto_skcipher_decrypt(req);
  611. skcipher_request_zero(req);
  612. if (ret)
  613. goto out;
  614. ret = write_bytes_to_xdr_buf(buf, offset, data, len);
  615. out:
  616. kfree(data);
  617. return ret;
  618. }
  619. u32
  620. gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
  621. struct xdr_buf *buf, struct page **pages)
  622. {
  623. u32 err;
  624. struct xdr_netobj hmac;
  625. u8 *cksumkey;
  626. u8 *ecptr;
  627. struct crypto_sync_skcipher *cipher, *aux_cipher;
  628. int blocksize;
  629. struct page **save_pages;
  630. int nblocks, nbytes;
  631. struct encryptor_desc desc;
  632. u32 cbcbytes;
  633. unsigned int usage;
  634. if (kctx->initiate) {
  635. cipher = kctx->initiator_enc;
  636. aux_cipher = kctx->initiator_enc_aux;
  637. cksumkey = kctx->initiator_integ;
  638. usage = KG_USAGE_INITIATOR_SEAL;
  639. } else {
  640. cipher = kctx->acceptor_enc;
  641. aux_cipher = kctx->acceptor_enc_aux;
  642. cksumkey = kctx->acceptor_integ;
  643. usage = KG_USAGE_ACCEPTOR_SEAL;
  644. }
  645. blocksize = crypto_sync_skcipher_blocksize(cipher);
  646. /* hide the gss token header and insert the confounder */
  647. offset += GSS_KRB5_TOK_HDR_LEN;
  648. if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
  649. return GSS_S_FAILURE;
  650. gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
  651. offset -= GSS_KRB5_TOK_HDR_LEN;
  652. if (buf->tail[0].iov_base != NULL) {
  653. ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
  654. } else {
  655. buf->tail[0].iov_base = buf->head[0].iov_base
  656. + buf->head[0].iov_len;
  657. buf->tail[0].iov_len = 0;
  658. ecptr = buf->tail[0].iov_base;
  659. }
  660. /* copy plaintext gss token header after filler (if any) */
  661. memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
  662. buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
  663. buf->len += GSS_KRB5_TOK_HDR_LEN;
  664. /* Do the HMAC */
  665. hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
  666. hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
  667. /*
  668. * When we are called, pages points to the real page cache
  669. * data -- which we can't go and encrypt! buf->pages points
  670. * to scratch pages which we are going to send off to the
  671. * client/server. Swap in the plaintext pages to calculate
  672. * the hmac.
  673. */
  674. save_pages = buf->pages;
  675. buf->pages = pages;
  676. err = make_checksum_v2(kctx, NULL, 0, buf,
  677. offset + GSS_KRB5_TOK_HDR_LEN,
  678. cksumkey, usage, &hmac);
  679. buf->pages = save_pages;
  680. if (err)
  681. return GSS_S_FAILURE;
  682. nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
  683. nblocks = (nbytes + blocksize - 1) / blocksize;
  684. cbcbytes = 0;
  685. if (nblocks > 2)
  686. cbcbytes = (nblocks - 2) * blocksize;
  687. memset(desc.iv, 0, sizeof(desc.iv));
  688. if (cbcbytes) {
  689. SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
  690. desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
  691. desc.fragno = 0;
  692. desc.fraglen = 0;
  693. desc.pages = pages;
  694. desc.outbuf = buf;
  695. desc.req = req;
  696. skcipher_request_set_sync_tfm(req, aux_cipher);
  697. skcipher_request_set_callback(req, 0, NULL, NULL);
  698. sg_init_table(desc.infrags, 4);
  699. sg_init_table(desc.outfrags, 4);
  700. err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
  701. cbcbytes, encryptor, &desc);
  702. skcipher_request_zero(req);
  703. if (err)
  704. goto out_err;
  705. }
  706. /* Make sure IV carries forward from any CBC results. */
  707. err = gss_krb5_cts_crypt(cipher, buf,
  708. offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
  709. desc.iv, pages, 1);
  710. if (err) {
  711. err = GSS_S_FAILURE;
  712. goto out_err;
  713. }
  714. /* Now update buf to account for HMAC */
  715. buf->tail[0].iov_len += kctx->gk5e->cksumlength;
  716. buf->len += kctx->gk5e->cksumlength;
  717. out_err:
  718. if (err)
  719. err = GSS_S_FAILURE;
  720. return err;
  721. }
  722. u32
  723. gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
  724. u32 *headskip, u32 *tailskip)
  725. {
  726. struct xdr_buf subbuf;
  727. u32 ret = 0;
  728. u8 *cksum_key;
  729. struct crypto_sync_skcipher *cipher, *aux_cipher;
  730. struct xdr_netobj our_hmac_obj;
  731. u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
  732. u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
  733. int nblocks, blocksize, cbcbytes;
  734. struct decryptor_desc desc;
  735. unsigned int usage;
  736. if (kctx->initiate) {
  737. cipher = kctx->acceptor_enc;
  738. aux_cipher = kctx->acceptor_enc_aux;
  739. cksum_key = kctx->acceptor_integ;
  740. usage = KG_USAGE_ACCEPTOR_SEAL;
  741. } else {
  742. cipher = kctx->initiator_enc;
  743. aux_cipher = kctx->initiator_enc_aux;
  744. cksum_key = kctx->initiator_integ;
  745. usage = KG_USAGE_INITIATOR_SEAL;
  746. }
  747. blocksize = crypto_sync_skcipher_blocksize(cipher);
  748. /* create a segment skipping the header and leaving out the checksum */
  749. xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
  750. (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
  751. kctx->gk5e->cksumlength));
  752. nblocks = (subbuf.len + blocksize - 1) / blocksize;
  753. cbcbytes = 0;
  754. if (nblocks > 2)
  755. cbcbytes = (nblocks - 2) * blocksize;
  756. memset(desc.iv, 0, sizeof(desc.iv));
  757. if (cbcbytes) {
  758. SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
  759. desc.fragno = 0;
  760. desc.fraglen = 0;
  761. desc.req = req;
  762. skcipher_request_set_sync_tfm(req, aux_cipher);
  763. skcipher_request_set_callback(req, 0, NULL, NULL);
  764. sg_init_table(desc.frags, 4);
  765. ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
  766. skcipher_request_zero(req);
  767. if (ret)
  768. goto out_err;
  769. }
  770. /* Make sure IV carries forward from any CBC results. */
  771. ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
  772. if (ret)
  773. goto out_err;
  774. /* Calculate our hmac over the plaintext data */
  775. our_hmac_obj.len = sizeof(our_hmac);
  776. our_hmac_obj.data = our_hmac;
  777. ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
  778. cksum_key, usage, &our_hmac_obj);
  779. if (ret)
  780. goto out_err;
  781. /* Get the packet's hmac value */
  782. ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
  783. pkt_hmac, kctx->gk5e->cksumlength);
  784. if (ret)
  785. goto out_err;
  786. if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
  787. ret = GSS_S_BAD_SIG;
  788. goto out_err;
  789. }
  790. *headskip = kctx->gk5e->conflen;
  791. *tailskip = kctx->gk5e->cksumlength;
  792. out_err:
  793. if (ret && ret != GSS_S_BAD_SIG)
  794. ret = GSS_S_FAILURE;
  795. return ret;
  796. }
  797. /*
  798. * Compute Kseq given the initial session key and the checksum.
  799. * Set the key of the given cipher.
  800. */
  801. int
  802. krb5_rc4_setup_seq_key(struct krb5_ctx *kctx,
  803. struct crypto_sync_skcipher *cipher,
  804. unsigned char *cksum)
  805. {
  806. struct crypto_shash *hmac;
  807. struct shash_desc *desc;
  808. u8 Kseq[GSS_KRB5_MAX_KEYLEN];
  809. u32 zeroconstant = 0;
  810. int err;
  811. dprintk("%s: entered\n", __func__);
  812. hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
  813. if (IS_ERR(hmac)) {
  814. dprintk("%s: error %ld, allocating hash '%s'\n",
  815. __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
  816. return PTR_ERR(hmac);
  817. }
  818. desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
  819. GFP_NOFS);
  820. if (!desc) {
  821. dprintk("%s: failed to allocate shash descriptor for '%s'\n",
  822. __func__, kctx->gk5e->cksum_name);
  823. crypto_free_shash(hmac);
  824. return -ENOMEM;
  825. }
  826. desc->tfm = hmac;
  827. desc->flags = 0;
  828. /* Compute intermediate Kseq from session key */
  829. err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
  830. if (err)
  831. goto out_err;
  832. err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
  833. if (err)
  834. goto out_err;
  835. /* Compute final Kseq from the checksum and intermediate Kseq */
  836. err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
  837. if (err)
  838. goto out_err;
  839. err = crypto_shash_digest(desc, cksum, 8, Kseq);
  840. if (err)
  841. goto out_err;
  842. err = crypto_sync_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
  843. if (err)
  844. goto out_err;
  845. err = 0;
  846. out_err:
  847. kzfree(desc);
  848. crypto_free_shash(hmac);
  849. dprintk("%s: returning %d\n", __func__, err);
  850. return err;
  851. }
  852. /*
  853. * Compute Kcrypt given the initial session key and the plaintext seqnum.
  854. * Set the key of cipher kctx->enc.
  855. */
  856. int
  857. krb5_rc4_setup_enc_key(struct krb5_ctx *kctx,
  858. struct crypto_sync_skcipher *cipher,
  859. s32 seqnum)
  860. {
  861. struct crypto_shash *hmac;
  862. struct shash_desc *desc;
  863. u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
  864. u8 zeroconstant[4] = {0};
  865. u8 seqnumarray[4];
  866. int err, i;
  867. dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
  868. hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
  869. if (IS_ERR(hmac)) {
  870. dprintk("%s: error %ld, allocating hash '%s'\n",
  871. __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
  872. return PTR_ERR(hmac);
  873. }
  874. desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
  875. GFP_NOFS);
  876. if (!desc) {
  877. dprintk("%s: failed to allocate shash descriptor for '%s'\n",
  878. __func__, kctx->gk5e->cksum_name);
  879. crypto_free_shash(hmac);
  880. return -ENOMEM;
  881. }
  882. desc->tfm = hmac;
  883. desc->flags = 0;
  884. /* Compute intermediate Kcrypt from session key */
  885. for (i = 0; i < kctx->gk5e->keylength; i++)
  886. Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
  887. err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
  888. if (err)
  889. goto out_err;
  890. err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
  891. if (err)
  892. goto out_err;
  893. /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
  894. err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
  895. if (err)
  896. goto out_err;
  897. seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
  898. seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
  899. seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
  900. seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
  901. err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
  902. if (err)
  903. goto out_err;
  904. err = crypto_sync_skcipher_setkey(cipher, Kcrypt,
  905. kctx->gk5e->keylength);
  906. if (err)
  907. goto out_err;
  908. err = 0;
  909. out_err:
  910. kzfree(desc);
  911. crypto_free_shash(hmac);
  912. dprintk("%s: returning %d\n", __func__, err);
  913. return err;
  914. }