spi-ti-qspi.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843
  1. /*
  2. * TI QSPI driver
  3. *
  4. * Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
  5. * Author: Sourav Poddar <sourav.poddar@ti.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GPLv2.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/omap-dma.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/err.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/slab.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/of.h>
  31. #include <linux/of_device.h>
  32. #include <linux/pinctrl/consumer.h>
  33. #include <linux/mfd/syscon.h>
  34. #include <linux/regmap.h>
  35. #include <linux/sizes.h>
  36. #include <linux/spi/spi.h>
  37. struct ti_qspi_regs {
  38. u32 clkctrl;
  39. };
  40. struct ti_qspi {
  41. struct completion transfer_complete;
  42. /* list synchronization */
  43. struct mutex list_lock;
  44. struct spi_master *master;
  45. void __iomem *base;
  46. void __iomem *mmap_base;
  47. struct regmap *ctrl_base;
  48. unsigned int ctrl_reg;
  49. struct clk *fclk;
  50. struct device *dev;
  51. struct ti_qspi_regs ctx_reg;
  52. dma_addr_t mmap_phys_base;
  53. dma_addr_t rx_bb_dma_addr;
  54. void *rx_bb_addr;
  55. struct dma_chan *rx_chan;
  56. u32 spi_max_frequency;
  57. u32 cmd;
  58. u32 dc;
  59. bool mmap_enabled;
  60. };
  61. #define QSPI_PID (0x0)
  62. #define QSPI_SYSCONFIG (0x10)
  63. #define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
  64. #define QSPI_SPI_DC_REG (0x44)
  65. #define QSPI_SPI_CMD_REG (0x48)
  66. #define QSPI_SPI_STATUS_REG (0x4c)
  67. #define QSPI_SPI_DATA_REG (0x50)
  68. #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
  69. #define QSPI_SPI_SWITCH_REG (0x64)
  70. #define QSPI_SPI_DATA_REG_1 (0x68)
  71. #define QSPI_SPI_DATA_REG_2 (0x6c)
  72. #define QSPI_SPI_DATA_REG_3 (0x70)
  73. #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
  74. #define QSPI_FCLK 192000000
  75. /* Clock Control */
  76. #define QSPI_CLK_EN (1 << 31)
  77. #define QSPI_CLK_DIV_MAX 0xffff
  78. /* Command */
  79. #define QSPI_EN_CS(n) (n << 28)
  80. #define QSPI_WLEN(n) ((n - 1) << 19)
  81. #define QSPI_3_PIN (1 << 18)
  82. #define QSPI_RD_SNGL (1 << 16)
  83. #define QSPI_WR_SNGL (2 << 16)
  84. #define QSPI_RD_DUAL (3 << 16)
  85. #define QSPI_RD_QUAD (7 << 16)
  86. #define QSPI_INVAL (4 << 16)
  87. #define QSPI_FLEN(n) ((n - 1) << 0)
  88. #define QSPI_WLEN_MAX_BITS 128
  89. #define QSPI_WLEN_MAX_BYTES 16
  90. #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
  91. /* STATUS REGISTER */
  92. #define BUSY 0x01
  93. #define WC 0x02
  94. /* Device Control */
  95. #define QSPI_DD(m, n) (m << (3 + n * 8))
  96. #define QSPI_CKPHA(n) (1 << (2 + n * 8))
  97. #define QSPI_CSPOL(n) (1 << (1 + n * 8))
  98. #define QSPI_CKPOL(n) (1 << (n * 8))
  99. #define QSPI_FRAME 4096
  100. #define QSPI_AUTOSUSPEND_TIMEOUT 2000
  101. #define MEM_CS_EN(n) ((n + 1) << 8)
  102. #define MEM_CS_MASK (7 << 8)
  103. #define MM_SWITCH 0x1
  104. #define QSPI_SETUP_RD_NORMAL (0x0 << 12)
  105. #define QSPI_SETUP_RD_DUAL (0x1 << 12)
  106. #define QSPI_SETUP_RD_QUAD (0x3 << 12)
  107. #define QSPI_SETUP_ADDR_SHIFT 8
  108. #define QSPI_SETUP_DUMMY_SHIFT 10
  109. #define QSPI_DMA_BUFFER_SIZE SZ_64K
  110. static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
  111. unsigned long reg)
  112. {
  113. return readl(qspi->base + reg);
  114. }
  115. static inline void ti_qspi_write(struct ti_qspi *qspi,
  116. unsigned long val, unsigned long reg)
  117. {
  118. writel(val, qspi->base + reg);
  119. }
  120. static int ti_qspi_setup(struct spi_device *spi)
  121. {
  122. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  123. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  124. int clk_div = 0, ret;
  125. u32 clk_ctrl_reg, clk_rate, clk_mask;
  126. if (spi->master->busy) {
  127. dev_dbg(qspi->dev, "master busy doing other transfers\n");
  128. return -EBUSY;
  129. }
  130. if (!qspi->spi_max_frequency) {
  131. dev_err(qspi->dev, "spi max frequency not defined\n");
  132. return -EINVAL;
  133. }
  134. clk_rate = clk_get_rate(qspi->fclk);
  135. clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
  136. if (clk_div < 0) {
  137. dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
  138. return -EINVAL;
  139. }
  140. if (clk_div > QSPI_CLK_DIV_MAX) {
  141. dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
  142. QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
  143. return -EINVAL;
  144. }
  145. dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
  146. qspi->spi_max_frequency, clk_div);
  147. ret = pm_runtime_get_sync(qspi->dev);
  148. if (ret < 0) {
  149. dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
  150. return ret;
  151. }
  152. clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
  153. clk_ctrl_reg &= ~QSPI_CLK_EN;
  154. /* disable SCLK */
  155. ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
  156. /* enable SCLK */
  157. clk_mask = QSPI_CLK_EN | clk_div;
  158. ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
  159. ctx_reg->clkctrl = clk_mask;
  160. pm_runtime_mark_last_busy(qspi->dev);
  161. ret = pm_runtime_put_autosuspend(qspi->dev);
  162. if (ret < 0) {
  163. dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
  164. return ret;
  165. }
  166. return 0;
  167. }
  168. static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
  169. {
  170. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  171. ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
  172. }
  173. static inline u32 qspi_is_busy(struct ti_qspi *qspi)
  174. {
  175. u32 stat;
  176. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  177. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  178. while ((stat & BUSY) && time_after(timeout, jiffies)) {
  179. cpu_relax();
  180. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  181. }
  182. WARN(stat & BUSY, "qspi busy\n");
  183. return stat & BUSY;
  184. }
  185. static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
  186. {
  187. u32 stat;
  188. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  189. do {
  190. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  191. if (stat & WC)
  192. return 0;
  193. cpu_relax();
  194. } while (time_after(timeout, jiffies));
  195. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  196. if (stat & WC)
  197. return 0;
  198. return -ETIMEDOUT;
  199. }
  200. static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  201. int count)
  202. {
  203. int wlen, xfer_len;
  204. unsigned int cmd;
  205. const u8 *txbuf;
  206. u32 data;
  207. txbuf = t->tx_buf;
  208. cmd = qspi->cmd | QSPI_WR_SNGL;
  209. wlen = t->bits_per_word >> 3; /* in bytes */
  210. xfer_len = wlen;
  211. while (count) {
  212. if (qspi_is_busy(qspi))
  213. return -EBUSY;
  214. switch (wlen) {
  215. case 1:
  216. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
  217. cmd, qspi->dc, *txbuf);
  218. if (count >= QSPI_WLEN_MAX_BYTES) {
  219. u32 *txp = (u32 *)txbuf;
  220. data = cpu_to_be32(*txp++);
  221. writel(data, qspi->base +
  222. QSPI_SPI_DATA_REG_3);
  223. data = cpu_to_be32(*txp++);
  224. writel(data, qspi->base +
  225. QSPI_SPI_DATA_REG_2);
  226. data = cpu_to_be32(*txp++);
  227. writel(data, qspi->base +
  228. QSPI_SPI_DATA_REG_1);
  229. data = cpu_to_be32(*txp++);
  230. writel(data, qspi->base +
  231. QSPI_SPI_DATA_REG);
  232. xfer_len = QSPI_WLEN_MAX_BYTES;
  233. cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
  234. } else {
  235. writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
  236. cmd = qspi->cmd | QSPI_WR_SNGL;
  237. xfer_len = wlen;
  238. cmd |= QSPI_WLEN(wlen);
  239. }
  240. break;
  241. case 2:
  242. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
  243. cmd, qspi->dc, *txbuf);
  244. writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  245. break;
  246. case 4:
  247. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
  248. cmd, qspi->dc, *txbuf);
  249. writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  250. break;
  251. }
  252. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  253. if (ti_qspi_poll_wc(qspi)) {
  254. dev_err(qspi->dev, "write timed out\n");
  255. return -ETIMEDOUT;
  256. }
  257. txbuf += xfer_len;
  258. count -= xfer_len;
  259. }
  260. return 0;
  261. }
  262. static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  263. int count)
  264. {
  265. int wlen;
  266. unsigned int cmd;
  267. u8 *rxbuf;
  268. rxbuf = t->rx_buf;
  269. cmd = qspi->cmd;
  270. switch (t->rx_nbits) {
  271. case SPI_NBITS_DUAL:
  272. cmd |= QSPI_RD_DUAL;
  273. break;
  274. case SPI_NBITS_QUAD:
  275. cmd |= QSPI_RD_QUAD;
  276. break;
  277. default:
  278. cmd |= QSPI_RD_SNGL;
  279. break;
  280. }
  281. wlen = t->bits_per_word >> 3; /* in bytes */
  282. while (count) {
  283. dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
  284. if (qspi_is_busy(qspi))
  285. return -EBUSY;
  286. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  287. if (ti_qspi_poll_wc(qspi)) {
  288. dev_err(qspi->dev, "read timed out\n");
  289. return -ETIMEDOUT;
  290. }
  291. switch (wlen) {
  292. case 1:
  293. *rxbuf = readb(qspi->base + QSPI_SPI_DATA_REG);
  294. break;
  295. case 2:
  296. *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
  297. break;
  298. case 4:
  299. *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
  300. break;
  301. }
  302. rxbuf += wlen;
  303. count -= wlen;
  304. }
  305. return 0;
  306. }
  307. static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  308. int count)
  309. {
  310. int ret;
  311. if (t->tx_buf) {
  312. ret = qspi_write_msg(qspi, t, count);
  313. if (ret) {
  314. dev_dbg(qspi->dev, "Error while writing\n");
  315. return ret;
  316. }
  317. }
  318. if (t->rx_buf) {
  319. ret = qspi_read_msg(qspi, t, count);
  320. if (ret) {
  321. dev_dbg(qspi->dev, "Error while reading\n");
  322. return ret;
  323. }
  324. }
  325. return 0;
  326. }
  327. static void ti_qspi_dma_callback(void *param)
  328. {
  329. struct ti_qspi *qspi = param;
  330. complete(&qspi->transfer_complete);
  331. }
  332. static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
  333. dma_addr_t dma_src, size_t len)
  334. {
  335. struct dma_chan *chan = qspi->rx_chan;
  336. dma_cookie_t cookie;
  337. enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
  338. struct dma_async_tx_descriptor *tx;
  339. int ret;
  340. tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags);
  341. if (!tx) {
  342. dev_err(qspi->dev, "device_prep_dma_memcpy error\n");
  343. return -EIO;
  344. }
  345. tx->callback = ti_qspi_dma_callback;
  346. tx->callback_param = qspi;
  347. cookie = tx->tx_submit(tx);
  348. reinit_completion(&qspi->transfer_complete);
  349. ret = dma_submit_error(cookie);
  350. if (ret) {
  351. dev_err(qspi->dev, "dma_submit_error %d\n", cookie);
  352. return -EIO;
  353. }
  354. dma_async_issue_pending(chan);
  355. ret = wait_for_completion_timeout(&qspi->transfer_complete,
  356. msecs_to_jiffies(len));
  357. if (ret <= 0) {
  358. dmaengine_terminate_sync(chan);
  359. dev_err(qspi->dev, "DMA wait_for_completion_timeout\n");
  360. return -ETIMEDOUT;
  361. }
  362. return 0;
  363. }
  364. static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi,
  365. struct spi_flash_read_message *msg)
  366. {
  367. size_t readsize = msg->len;
  368. void *to = msg->buf;
  369. dma_addr_t dma_src = qspi->mmap_phys_base + msg->from;
  370. int ret = 0;
  371. /*
  372. * Use bounce buffer as FS like jffs2, ubifs may pass
  373. * buffers that does not belong to kernel lowmem region.
  374. */
  375. while (readsize != 0) {
  376. size_t xfer_len = min_t(size_t, QSPI_DMA_BUFFER_SIZE,
  377. readsize);
  378. ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr,
  379. dma_src, xfer_len);
  380. if (ret != 0)
  381. return ret;
  382. memcpy(to, qspi->rx_bb_addr, xfer_len);
  383. readsize -= xfer_len;
  384. dma_src += xfer_len;
  385. to += xfer_len;
  386. }
  387. return ret;
  388. }
  389. static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg,
  390. loff_t from)
  391. {
  392. struct scatterlist *sg;
  393. dma_addr_t dma_src = qspi->mmap_phys_base + from;
  394. dma_addr_t dma_dst;
  395. int i, len, ret;
  396. for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) {
  397. dma_dst = sg_dma_address(sg);
  398. len = sg_dma_len(sg);
  399. ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len);
  400. if (ret)
  401. return ret;
  402. dma_src += len;
  403. }
  404. return 0;
  405. }
  406. static void ti_qspi_enable_memory_map(struct spi_device *spi)
  407. {
  408. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  409. ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
  410. if (qspi->ctrl_base) {
  411. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  412. MEM_CS_EN(spi->chip_select),
  413. MEM_CS_MASK);
  414. }
  415. qspi->mmap_enabled = true;
  416. }
  417. static void ti_qspi_disable_memory_map(struct spi_device *spi)
  418. {
  419. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  420. ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
  421. if (qspi->ctrl_base)
  422. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  423. 0, MEM_CS_MASK);
  424. qspi->mmap_enabled = false;
  425. }
  426. static void ti_qspi_setup_mmap_read(struct spi_device *spi,
  427. struct spi_flash_read_message *msg)
  428. {
  429. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  430. u32 memval = msg->read_opcode;
  431. switch (msg->data_nbits) {
  432. case SPI_NBITS_QUAD:
  433. memval |= QSPI_SETUP_RD_QUAD;
  434. break;
  435. case SPI_NBITS_DUAL:
  436. memval |= QSPI_SETUP_RD_DUAL;
  437. break;
  438. default:
  439. memval |= QSPI_SETUP_RD_NORMAL;
  440. break;
  441. }
  442. memval |= ((msg->addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
  443. msg->dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
  444. ti_qspi_write(qspi, memval,
  445. QSPI_SPI_SETUP_REG(spi->chip_select));
  446. }
  447. static bool ti_qspi_spi_flash_can_dma(struct spi_device *spi,
  448. struct spi_flash_read_message *msg)
  449. {
  450. return virt_addr_valid(msg->buf);
  451. }
  452. static int ti_qspi_spi_flash_read(struct spi_device *spi,
  453. struct spi_flash_read_message *msg)
  454. {
  455. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  456. int ret = 0;
  457. mutex_lock(&qspi->list_lock);
  458. if (!qspi->mmap_enabled)
  459. ti_qspi_enable_memory_map(spi);
  460. ti_qspi_setup_mmap_read(spi, msg);
  461. if (qspi->rx_chan) {
  462. if (msg->cur_msg_mapped)
  463. ret = ti_qspi_dma_xfer_sg(qspi, msg->rx_sg, msg->from);
  464. else
  465. ret = ti_qspi_dma_bounce_buffer(qspi, msg);
  466. if (ret)
  467. goto err_unlock;
  468. } else {
  469. memcpy_fromio(msg->buf, qspi->mmap_base + msg->from, msg->len);
  470. }
  471. msg->retlen = msg->len;
  472. err_unlock:
  473. mutex_unlock(&qspi->list_lock);
  474. return ret;
  475. }
  476. static int ti_qspi_start_transfer_one(struct spi_master *master,
  477. struct spi_message *m)
  478. {
  479. struct ti_qspi *qspi = spi_master_get_devdata(master);
  480. struct spi_device *spi = m->spi;
  481. struct spi_transfer *t;
  482. int status = 0, ret;
  483. unsigned int frame_len_words, transfer_len_words;
  484. int wlen;
  485. /* setup device control reg */
  486. qspi->dc = 0;
  487. if (spi->mode & SPI_CPHA)
  488. qspi->dc |= QSPI_CKPHA(spi->chip_select);
  489. if (spi->mode & SPI_CPOL)
  490. qspi->dc |= QSPI_CKPOL(spi->chip_select);
  491. if (spi->mode & SPI_CS_HIGH)
  492. qspi->dc |= QSPI_CSPOL(spi->chip_select);
  493. frame_len_words = 0;
  494. list_for_each_entry(t, &m->transfers, transfer_list)
  495. frame_len_words += t->len / (t->bits_per_word >> 3);
  496. frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME);
  497. /* setup command reg */
  498. qspi->cmd = 0;
  499. qspi->cmd |= QSPI_EN_CS(spi->chip_select);
  500. qspi->cmd |= QSPI_FLEN(frame_len_words);
  501. ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
  502. mutex_lock(&qspi->list_lock);
  503. if (qspi->mmap_enabled)
  504. ti_qspi_disable_memory_map(spi);
  505. list_for_each_entry(t, &m->transfers, transfer_list) {
  506. qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) |
  507. QSPI_WLEN(t->bits_per_word));
  508. wlen = t->bits_per_word >> 3;
  509. transfer_len_words = min(t->len / wlen, frame_len_words);
  510. ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen);
  511. if (ret) {
  512. dev_dbg(qspi->dev, "transfer message failed\n");
  513. mutex_unlock(&qspi->list_lock);
  514. return -EINVAL;
  515. }
  516. m->actual_length += transfer_len_words * wlen;
  517. frame_len_words -= transfer_len_words;
  518. if (frame_len_words == 0)
  519. break;
  520. }
  521. mutex_unlock(&qspi->list_lock);
  522. ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
  523. m->status = status;
  524. spi_finalize_current_message(master);
  525. return status;
  526. }
  527. static int ti_qspi_runtime_resume(struct device *dev)
  528. {
  529. struct ti_qspi *qspi;
  530. qspi = dev_get_drvdata(dev);
  531. ti_qspi_restore_ctx(qspi);
  532. return 0;
  533. }
  534. static const struct of_device_id ti_qspi_match[] = {
  535. {.compatible = "ti,dra7xxx-qspi" },
  536. {.compatible = "ti,am4372-qspi" },
  537. {},
  538. };
  539. MODULE_DEVICE_TABLE(of, ti_qspi_match);
  540. static int ti_qspi_probe(struct platform_device *pdev)
  541. {
  542. struct ti_qspi *qspi;
  543. struct spi_master *master;
  544. struct resource *r, *res_mmap;
  545. struct device_node *np = pdev->dev.of_node;
  546. u32 max_freq;
  547. int ret = 0, num_cs, irq;
  548. dma_cap_mask_t mask;
  549. master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
  550. if (!master)
  551. return -ENOMEM;
  552. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
  553. master->flags = SPI_MASTER_HALF_DUPLEX;
  554. master->setup = ti_qspi_setup;
  555. master->auto_runtime_pm = true;
  556. master->transfer_one_message = ti_qspi_start_transfer_one;
  557. master->dev.of_node = pdev->dev.of_node;
  558. master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
  559. SPI_BPW_MASK(8);
  560. master->spi_flash_read = ti_qspi_spi_flash_read;
  561. if (!of_property_read_u32(np, "num-cs", &num_cs))
  562. master->num_chipselect = num_cs;
  563. qspi = spi_master_get_devdata(master);
  564. qspi->master = master;
  565. qspi->dev = &pdev->dev;
  566. platform_set_drvdata(pdev, qspi);
  567. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
  568. if (r == NULL) {
  569. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  570. if (r == NULL) {
  571. dev_err(&pdev->dev, "missing platform data\n");
  572. ret = -ENODEV;
  573. goto free_master;
  574. }
  575. }
  576. res_mmap = platform_get_resource_byname(pdev,
  577. IORESOURCE_MEM, "qspi_mmap");
  578. if (res_mmap == NULL) {
  579. res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  580. if (res_mmap == NULL) {
  581. dev_err(&pdev->dev,
  582. "memory mapped resource not required\n");
  583. }
  584. }
  585. irq = platform_get_irq(pdev, 0);
  586. if (irq < 0) {
  587. dev_err(&pdev->dev, "no irq resource?\n");
  588. ret = irq;
  589. goto free_master;
  590. }
  591. mutex_init(&qspi->list_lock);
  592. qspi->base = devm_ioremap_resource(&pdev->dev, r);
  593. if (IS_ERR(qspi->base)) {
  594. ret = PTR_ERR(qspi->base);
  595. goto free_master;
  596. }
  597. if (of_property_read_bool(np, "syscon-chipselects")) {
  598. qspi->ctrl_base =
  599. syscon_regmap_lookup_by_phandle(np,
  600. "syscon-chipselects");
  601. if (IS_ERR(qspi->ctrl_base)) {
  602. ret = PTR_ERR(qspi->ctrl_base);
  603. goto free_master;
  604. }
  605. ret = of_property_read_u32_index(np,
  606. "syscon-chipselects",
  607. 1, &qspi->ctrl_reg);
  608. if (ret) {
  609. dev_err(&pdev->dev,
  610. "couldn't get ctrl_mod reg index\n");
  611. goto free_master;
  612. }
  613. }
  614. qspi->fclk = devm_clk_get(&pdev->dev, "fck");
  615. if (IS_ERR(qspi->fclk)) {
  616. ret = PTR_ERR(qspi->fclk);
  617. dev_err(&pdev->dev, "could not get clk: %d\n", ret);
  618. }
  619. pm_runtime_use_autosuspend(&pdev->dev);
  620. pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
  621. pm_runtime_enable(&pdev->dev);
  622. if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
  623. qspi->spi_max_frequency = max_freq;
  624. dma_cap_zero(mask);
  625. dma_cap_set(DMA_MEMCPY, mask);
  626. qspi->rx_chan = dma_request_chan_by_mask(&mask);
  627. if (IS_ERR(qspi->rx_chan)) {
  628. dev_err(qspi->dev,
  629. "No Rx DMA available, trying mmap mode\n");
  630. qspi->rx_chan = NULL;
  631. ret = 0;
  632. goto no_dma;
  633. }
  634. qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev,
  635. QSPI_DMA_BUFFER_SIZE,
  636. &qspi->rx_bb_dma_addr,
  637. GFP_KERNEL | GFP_DMA);
  638. if (!qspi->rx_bb_addr) {
  639. dev_err(qspi->dev,
  640. "dma_alloc_coherent failed, using PIO mode\n");
  641. dma_release_channel(qspi->rx_chan);
  642. goto no_dma;
  643. }
  644. master->spi_flash_can_dma = ti_qspi_spi_flash_can_dma;
  645. master->dma_rx = qspi->rx_chan;
  646. init_completion(&qspi->transfer_complete);
  647. if (res_mmap)
  648. qspi->mmap_phys_base = (dma_addr_t)res_mmap->start;
  649. no_dma:
  650. if (!qspi->rx_chan && res_mmap) {
  651. qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap);
  652. if (IS_ERR(qspi->mmap_base)) {
  653. dev_info(&pdev->dev,
  654. "mmap failed with error %ld using PIO mode\n",
  655. PTR_ERR(qspi->mmap_base));
  656. qspi->mmap_base = NULL;
  657. master->spi_flash_read = NULL;
  658. }
  659. }
  660. qspi->mmap_enabled = false;
  661. ret = devm_spi_register_master(&pdev->dev, master);
  662. if (!ret)
  663. return 0;
  664. pm_runtime_disable(&pdev->dev);
  665. free_master:
  666. spi_master_put(master);
  667. return ret;
  668. }
  669. static int ti_qspi_remove(struct platform_device *pdev)
  670. {
  671. struct ti_qspi *qspi = platform_get_drvdata(pdev);
  672. int rc;
  673. rc = spi_master_suspend(qspi->master);
  674. if (rc)
  675. return rc;
  676. pm_runtime_put_sync(&pdev->dev);
  677. pm_runtime_disable(&pdev->dev);
  678. if (qspi->rx_bb_addr)
  679. dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE,
  680. qspi->rx_bb_addr,
  681. qspi->rx_bb_dma_addr);
  682. if (qspi->rx_chan)
  683. dma_release_channel(qspi->rx_chan);
  684. return 0;
  685. }
  686. static const struct dev_pm_ops ti_qspi_pm_ops = {
  687. .runtime_resume = ti_qspi_runtime_resume,
  688. };
  689. static struct platform_driver ti_qspi_driver = {
  690. .probe = ti_qspi_probe,
  691. .remove = ti_qspi_remove,
  692. .driver = {
  693. .name = "ti-qspi",
  694. .pm = &ti_qspi_pm_ops,
  695. .of_match_table = ti_qspi_match,
  696. }
  697. };
  698. module_platform_driver(ti_qspi_driver);
  699. MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
  700. MODULE_LICENSE("GPL v2");
  701. MODULE_DESCRIPTION("TI QSPI controller driver");
  702. MODULE_ALIAS("platform:ti-qspi");