spi-sh-msiof.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352
  1. /*
  2. * SuperH MSIOF SPI Master Interface
  3. *
  4. * Copyright (c) 2009 Magnus Damm
  5. * Copyright (C) 2014 Renesas Electronics Corporation
  6. * Copyright (C) 2014-2017 Glider bvba
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. */
  13. #include <linux/bitmap.h>
  14. #include <linux/clk.h>
  15. #include <linux/completion.h>
  16. #include <linux/delay.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/dmaengine.h>
  19. #include <linux/err.h>
  20. #include <linux/gpio.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/sh_dma.h>
  30. #include <linux/spi/sh_msiof.h>
  31. #include <linux/spi/spi.h>
  32. #include <asm/unaligned.h>
  33. struct sh_msiof_chipdata {
  34. u16 tx_fifo_size;
  35. u16 rx_fifo_size;
  36. u16 master_flags;
  37. u16 min_div;
  38. };
  39. struct sh_msiof_spi_priv {
  40. struct spi_master *master;
  41. void __iomem *mapbase;
  42. struct clk *clk;
  43. struct platform_device *pdev;
  44. struct sh_msiof_spi_info *info;
  45. struct completion done;
  46. unsigned int tx_fifo_size;
  47. unsigned int rx_fifo_size;
  48. unsigned int min_div;
  49. void *tx_dma_page;
  50. void *rx_dma_page;
  51. dma_addr_t tx_dma_addr;
  52. dma_addr_t rx_dma_addr;
  53. bool slave_aborted;
  54. };
  55. #define TMDR1 0x00 /* Transmit Mode Register 1 */
  56. #define TMDR2 0x04 /* Transmit Mode Register 2 */
  57. #define TMDR3 0x08 /* Transmit Mode Register 3 */
  58. #define RMDR1 0x10 /* Receive Mode Register 1 */
  59. #define RMDR2 0x14 /* Receive Mode Register 2 */
  60. #define RMDR3 0x18 /* Receive Mode Register 3 */
  61. #define TSCR 0x20 /* Transmit Clock Select Register */
  62. #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
  63. #define CTR 0x28 /* Control Register */
  64. #define FCTR 0x30 /* FIFO Control Register */
  65. #define STR 0x40 /* Status Register */
  66. #define IER 0x44 /* Interrupt Enable Register */
  67. #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
  68. #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
  69. #define TFDR 0x50 /* Transmit FIFO Data Register */
  70. #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
  71. #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
  72. #define RFDR 0x60 /* Receive FIFO Data Register */
  73. /* TMDR1 and RMDR1 */
  74. #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
  75. #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  76. #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
  77. #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
  78. #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
  79. #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
  80. #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  81. #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
  82. #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
  83. #define MDR1_FLD_SHIFT 2
  84. #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
  85. /* TMDR1 */
  86. #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
  87. /* TMDR2 and RMDR2 */
  88. #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
  89. #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  90. #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
  91. /* TSCR and RSCR */
  92. #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
  93. #define SCR_BRPS(i) (((i) - 1) << 8)
  94. #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
  95. #define SCR_BRDV_DIV_2 0x0000
  96. #define SCR_BRDV_DIV_4 0x0001
  97. #define SCR_BRDV_DIV_8 0x0002
  98. #define SCR_BRDV_DIV_16 0x0003
  99. #define SCR_BRDV_DIV_32 0x0004
  100. #define SCR_BRDV_DIV_1 0x0007
  101. /* CTR */
  102. #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
  103. #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
  104. #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
  105. #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
  106. #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
  107. #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
  108. #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
  109. #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
  110. #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
  111. #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
  112. #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
  113. #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
  114. #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
  115. #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
  116. #define CTR_TXE 0x00000200 /* Transmit Enable */
  117. #define CTR_RXE 0x00000100 /* Receive Enable */
  118. /* FCTR */
  119. #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
  120. #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
  121. #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
  122. #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
  123. #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
  124. #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
  125. #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
  126. #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
  127. #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
  128. #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
  129. #define FCTR_TFUA_SHIFT 20
  130. #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
  131. #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
  132. #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
  133. #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
  134. #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
  135. #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
  136. #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
  137. #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
  138. #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
  139. #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
  140. #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
  141. #define FCTR_RFUA_SHIFT 4
  142. #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
  143. /* STR */
  144. #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
  145. #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
  146. #define STR_TEOF 0x00800000 /* Frame Transmission End */
  147. #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
  148. #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
  149. #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
  150. #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
  151. #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
  152. #define STR_REOF 0x00000080 /* Frame Reception End */
  153. #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
  154. #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
  155. #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
  156. /* IER */
  157. #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
  158. #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
  159. #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
  160. #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
  161. #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
  162. #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
  163. #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
  164. #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
  165. #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
  166. #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
  167. #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
  168. #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
  169. #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
  170. #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
  171. static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
  172. {
  173. switch (reg_offs) {
  174. case TSCR:
  175. case RSCR:
  176. return ioread16(p->mapbase + reg_offs);
  177. default:
  178. return ioread32(p->mapbase + reg_offs);
  179. }
  180. }
  181. static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
  182. u32 value)
  183. {
  184. switch (reg_offs) {
  185. case TSCR:
  186. case RSCR:
  187. iowrite16(value, p->mapbase + reg_offs);
  188. break;
  189. default:
  190. iowrite32(value, p->mapbase + reg_offs);
  191. break;
  192. }
  193. }
  194. static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
  195. u32 clr, u32 set)
  196. {
  197. u32 mask = clr | set;
  198. u32 data;
  199. int k;
  200. data = sh_msiof_read(p, CTR);
  201. data &= ~clr;
  202. data |= set;
  203. sh_msiof_write(p, CTR, data);
  204. for (k = 100; k > 0; k--) {
  205. if ((sh_msiof_read(p, CTR) & mask) == set)
  206. break;
  207. udelay(10);
  208. }
  209. return k > 0 ? 0 : -ETIMEDOUT;
  210. }
  211. static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
  212. {
  213. struct sh_msiof_spi_priv *p = data;
  214. /* just disable the interrupt and wake up */
  215. sh_msiof_write(p, IER, 0);
  216. complete(&p->done);
  217. return IRQ_HANDLED;
  218. }
  219. static struct {
  220. unsigned short div;
  221. unsigned short brdv;
  222. } const sh_msiof_spi_div_table[] = {
  223. { 1, SCR_BRDV_DIV_1 },
  224. { 2, SCR_BRDV_DIV_2 },
  225. { 4, SCR_BRDV_DIV_4 },
  226. { 8, SCR_BRDV_DIV_8 },
  227. { 16, SCR_BRDV_DIV_16 },
  228. { 32, SCR_BRDV_DIV_32 },
  229. };
  230. static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
  231. unsigned long parent_rate, u32 spi_hz)
  232. {
  233. unsigned long div = 1024;
  234. u32 brps, scr;
  235. size_t k;
  236. if (!WARN_ON(!spi_hz || !parent_rate))
  237. div = DIV_ROUND_UP(parent_rate, spi_hz);
  238. div = max_t(unsigned long, div, p->min_div);
  239. for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
  240. brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
  241. /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
  242. if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
  243. continue;
  244. if (brps <= 32) /* max of brdv is 32 */
  245. break;
  246. }
  247. k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
  248. scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
  249. sh_msiof_write(p, TSCR, scr);
  250. if (!(p->master->flags & SPI_MASTER_MUST_TX))
  251. sh_msiof_write(p, RSCR, scr);
  252. }
  253. static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
  254. {
  255. /*
  256. * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
  257. * b'000 : 0
  258. * b'001 : 100
  259. * b'010 : 200
  260. * b'011 (SYNCDL only) : 300
  261. * b'101 : 50
  262. * b'110 : 150
  263. */
  264. if (dtdl_or_syncdl % 100)
  265. return dtdl_or_syncdl / 100 + 5;
  266. else
  267. return dtdl_or_syncdl / 100;
  268. }
  269. static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
  270. {
  271. u32 val;
  272. if (!p->info)
  273. return 0;
  274. /* check if DTDL and SYNCDL is allowed value */
  275. if (p->info->dtdl > 200 || p->info->syncdl > 300) {
  276. dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
  277. return 0;
  278. }
  279. /* check if the sum of DTDL and SYNCDL becomes an integer value */
  280. if ((p->info->dtdl + p->info->syncdl) % 100) {
  281. dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
  282. return 0;
  283. }
  284. val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
  285. val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
  286. return val;
  287. }
  288. static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
  289. u32 cpol, u32 cpha,
  290. u32 tx_hi_z, u32 lsb_first, u32 cs_high)
  291. {
  292. u32 tmp;
  293. int edge;
  294. /*
  295. * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
  296. * 0 0 10 10 1 1
  297. * 0 1 10 10 0 0
  298. * 1 0 11 11 0 0
  299. * 1 1 11 11 1 1
  300. */
  301. tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
  302. tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
  303. tmp |= lsb_first << MDR1_BITLSB_SHIFT;
  304. tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
  305. if (spi_controller_is_slave(p->master))
  306. sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
  307. else
  308. sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
  309. if (p->master->flags & SPI_MASTER_MUST_TX) {
  310. /* These bits are reserved if RX needs TX */
  311. tmp &= ~0x0000ffff;
  312. }
  313. sh_msiof_write(p, RMDR1, tmp);
  314. tmp = 0;
  315. tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
  316. tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
  317. edge = cpol ^ !cpha;
  318. tmp |= edge << CTR_TEDG_SHIFT;
  319. tmp |= edge << CTR_REDG_SHIFT;
  320. tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
  321. sh_msiof_write(p, CTR, tmp);
  322. }
  323. static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
  324. const void *tx_buf, void *rx_buf,
  325. u32 bits, u32 words)
  326. {
  327. u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
  328. if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
  329. sh_msiof_write(p, TMDR2, dr2);
  330. else
  331. sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
  332. if (rx_buf)
  333. sh_msiof_write(p, RMDR2, dr2);
  334. }
  335. static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
  336. {
  337. sh_msiof_write(p, STR, sh_msiof_read(p, STR));
  338. }
  339. static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
  340. const void *tx_buf, int words, int fs)
  341. {
  342. const u8 *buf_8 = tx_buf;
  343. int k;
  344. for (k = 0; k < words; k++)
  345. sh_msiof_write(p, TFDR, buf_8[k] << fs);
  346. }
  347. static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
  348. const void *tx_buf, int words, int fs)
  349. {
  350. const u16 *buf_16 = tx_buf;
  351. int k;
  352. for (k = 0; k < words; k++)
  353. sh_msiof_write(p, TFDR, buf_16[k] << fs);
  354. }
  355. static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
  356. const void *tx_buf, int words, int fs)
  357. {
  358. const u16 *buf_16 = tx_buf;
  359. int k;
  360. for (k = 0; k < words; k++)
  361. sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
  362. }
  363. static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
  364. const void *tx_buf, int words, int fs)
  365. {
  366. const u32 *buf_32 = tx_buf;
  367. int k;
  368. for (k = 0; k < words; k++)
  369. sh_msiof_write(p, TFDR, buf_32[k] << fs);
  370. }
  371. static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
  372. const void *tx_buf, int words, int fs)
  373. {
  374. const u32 *buf_32 = tx_buf;
  375. int k;
  376. for (k = 0; k < words; k++)
  377. sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
  378. }
  379. static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
  380. const void *tx_buf, int words, int fs)
  381. {
  382. const u32 *buf_32 = tx_buf;
  383. int k;
  384. for (k = 0; k < words; k++)
  385. sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
  386. }
  387. static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
  388. const void *tx_buf, int words, int fs)
  389. {
  390. const u32 *buf_32 = tx_buf;
  391. int k;
  392. for (k = 0; k < words; k++)
  393. sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
  394. }
  395. static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
  396. void *rx_buf, int words, int fs)
  397. {
  398. u8 *buf_8 = rx_buf;
  399. int k;
  400. for (k = 0; k < words; k++)
  401. buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
  402. }
  403. static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
  404. void *rx_buf, int words, int fs)
  405. {
  406. u16 *buf_16 = rx_buf;
  407. int k;
  408. for (k = 0; k < words; k++)
  409. buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
  410. }
  411. static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
  412. void *rx_buf, int words, int fs)
  413. {
  414. u16 *buf_16 = rx_buf;
  415. int k;
  416. for (k = 0; k < words; k++)
  417. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
  418. }
  419. static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
  420. void *rx_buf, int words, int fs)
  421. {
  422. u32 *buf_32 = rx_buf;
  423. int k;
  424. for (k = 0; k < words; k++)
  425. buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
  426. }
  427. static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
  428. void *rx_buf, int words, int fs)
  429. {
  430. u32 *buf_32 = rx_buf;
  431. int k;
  432. for (k = 0; k < words; k++)
  433. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
  434. }
  435. static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
  436. void *rx_buf, int words, int fs)
  437. {
  438. u32 *buf_32 = rx_buf;
  439. int k;
  440. for (k = 0; k < words; k++)
  441. buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
  442. }
  443. static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
  444. void *rx_buf, int words, int fs)
  445. {
  446. u32 *buf_32 = rx_buf;
  447. int k;
  448. for (k = 0; k < words; k++)
  449. put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
  450. }
  451. static int sh_msiof_spi_setup(struct spi_device *spi)
  452. {
  453. struct device_node *np = spi->master->dev.of_node;
  454. struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
  455. pm_runtime_get_sync(&p->pdev->dev);
  456. if (!np) {
  457. /*
  458. * Use spi->controller_data for CS (same strategy as spi_gpio),
  459. * if any. otherwise let HW control CS
  460. */
  461. spi->cs_gpio = (uintptr_t)spi->controller_data;
  462. }
  463. /* Configure pins before deasserting CS */
  464. sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
  465. !!(spi->mode & SPI_CPHA),
  466. !!(spi->mode & SPI_3WIRE),
  467. !!(spi->mode & SPI_LSB_FIRST),
  468. !!(spi->mode & SPI_CS_HIGH));
  469. if (spi->cs_gpio >= 0)
  470. gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
  471. pm_runtime_put(&p->pdev->dev);
  472. return 0;
  473. }
  474. static int sh_msiof_prepare_message(struct spi_master *master,
  475. struct spi_message *msg)
  476. {
  477. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  478. const struct spi_device *spi = msg->spi;
  479. /* Configure pins before asserting CS */
  480. sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
  481. !!(spi->mode & SPI_CPHA),
  482. !!(spi->mode & SPI_3WIRE),
  483. !!(spi->mode & SPI_LSB_FIRST),
  484. !!(spi->mode & SPI_CS_HIGH));
  485. return 0;
  486. }
  487. static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
  488. {
  489. bool slave = spi_controller_is_slave(p->master);
  490. int ret = 0;
  491. /* setup clock and rx/tx signals */
  492. if (!slave)
  493. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
  494. if (rx_buf && !ret)
  495. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
  496. if (!ret)
  497. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
  498. /* start by setting frame bit */
  499. if (!ret && !slave)
  500. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
  501. return ret;
  502. }
  503. static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
  504. {
  505. bool slave = spi_controller_is_slave(p->master);
  506. int ret = 0;
  507. /* shut down frame, rx/tx and clock signals */
  508. if (!slave)
  509. ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
  510. if (!ret)
  511. ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
  512. if (rx_buf && !ret)
  513. ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
  514. if (!ret && !slave)
  515. ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
  516. return ret;
  517. }
  518. static int sh_msiof_slave_abort(struct spi_master *master)
  519. {
  520. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  521. p->slave_aborted = true;
  522. complete(&p->done);
  523. return 0;
  524. }
  525. static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
  526. {
  527. if (spi_controller_is_slave(p->master)) {
  528. if (wait_for_completion_interruptible(&p->done) ||
  529. p->slave_aborted) {
  530. dev_dbg(&p->pdev->dev, "interrupted\n");
  531. return -EINTR;
  532. }
  533. } else {
  534. if (!wait_for_completion_timeout(&p->done, HZ)) {
  535. dev_err(&p->pdev->dev, "timeout\n");
  536. return -ETIMEDOUT;
  537. }
  538. }
  539. return 0;
  540. }
  541. static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
  542. void (*tx_fifo)(struct sh_msiof_spi_priv *,
  543. const void *, int, int),
  544. void (*rx_fifo)(struct sh_msiof_spi_priv *,
  545. void *, int, int),
  546. const void *tx_buf, void *rx_buf,
  547. int words, int bits)
  548. {
  549. int fifo_shift;
  550. int ret;
  551. /* limit maximum word transfer to rx/tx fifo size */
  552. if (tx_buf)
  553. words = min_t(int, words, p->tx_fifo_size);
  554. if (rx_buf)
  555. words = min_t(int, words, p->rx_fifo_size);
  556. /* the fifo contents need shifting */
  557. fifo_shift = 32 - bits;
  558. /* default FIFO watermarks for PIO */
  559. sh_msiof_write(p, FCTR, 0);
  560. /* setup msiof transfer mode registers */
  561. sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
  562. sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
  563. /* write tx fifo */
  564. if (tx_buf)
  565. tx_fifo(p, tx_buf, words, fifo_shift);
  566. reinit_completion(&p->done);
  567. p->slave_aborted = false;
  568. ret = sh_msiof_spi_start(p, rx_buf);
  569. if (ret) {
  570. dev_err(&p->pdev->dev, "failed to start hardware\n");
  571. goto stop_ier;
  572. }
  573. /* wait for tx fifo to be emptied / rx fifo to be filled */
  574. ret = sh_msiof_wait_for_completion(p);
  575. if (ret)
  576. goto stop_reset;
  577. /* read rx fifo */
  578. if (rx_buf)
  579. rx_fifo(p, rx_buf, words, fifo_shift);
  580. /* clear status bits */
  581. sh_msiof_reset_str(p);
  582. ret = sh_msiof_spi_stop(p, rx_buf);
  583. if (ret) {
  584. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  585. return ret;
  586. }
  587. return words;
  588. stop_reset:
  589. sh_msiof_reset_str(p);
  590. sh_msiof_spi_stop(p, rx_buf);
  591. stop_ier:
  592. sh_msiof_write(p, IER, 0);
  593. return ret;
  594. }
  595. static void sh_msiof_dma_complete(void *arg)
  596. {
  597. struct sh_msiof_spi_priv *p = arg;
  598. sh_msiof_write(p, IER, 0);
  599. complete(&p->done);
  600. }
  601. static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
  602. void *rx, unsigned int len)
  603. {
  604. u32 ier_bits = 0;
  605. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  606. dma_cookie_t cookie;
  607. int ret;
  608. /* First prepare and submit the DMA request(s), as this may fail */
  609. if (rx) {
  610. ier_bits |= IER_RDREQE | IER_RDMAE;
  611. desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
  612. p->rx_dma_addr, len, DMA_FROM_DEVICE,
  613. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  614. if (!desc_rx)
  615. return -EAGAIN;
  616. desc_rx->callback = sh_msiof_dma_complete;
  617. desc_rx->callback_param = p;
  618. cookie = dmaengine_submit(desc_rx);
  619. if (dma_submit_error(cookie))
  620. return cookie;
  621. }
  622. if (tx) {
  623. ier_bits |= IER_TDREQE | IER_TDMAE;
  624. dma_sync_single_for_device(p->master->dma_tx->device->dev,
  625. p->tx_dma_addr, len, DMA_TO_DEVICE);
  626. desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
  627. p->tx_dma_addr, len, DMA_TO_DEVICE,
  628. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  629. if (!desc_tx) {
  630. ret = -EAGAIN;
  631. goto no_dma_tx;
  632. }
  633. if (rx) {
  634. /* No callback */
  635. desc_tx->callback = NULL;
  636. } else {
  637. desc_tx->callback = sh_msiof_dma_complete;
  638. desc_tx->callback_param = p;
  639. }
  640. cookie = dmaengine_submit(desc_tx);
  641. if (dma_submit_error(cookie)) {
  642. ret = cookie;
  643. goto no_dma_tx;
  644. }
  645. }
  646. /* 1 stage FIFO watermarks for DMA */
  647. sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
  648. /* setup msiof transfer mode registers (32-bit words) */
  649. sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
  650. sh_msiof_write(p, IER, ier_bits);
  651. reinit_completion(&p->done);
  652. p->slave_aborted = false;
  653. /* Now start DMA */
  654. if (rx)
  655. dma_async_issue_pending(p->master->dma_rx);
  656. if (tx)
  657. dma_async_issue_pending(p->master->dma_tx);
  658. ret = sh_msiof_spi_start(p, rx);
  659. if (ret) {
  660. dev_err(&p->pdev->dev, "failed to start hardware\n");
  661. goto stop_dma;
  662. }
  663. /* wait for tx fifo to be emptied / rx fifo to be filled */
  664. ret = sh_msiof_wait_for_completion(p);
  665. if (ret)
  666. goto stop_reset;
  667. /* clear status bits */
  668. sh_msiof_reset_str(p);
  669. ret = sh_msiof_spi_stop(p, rx);
  670. if (ret) {
  671. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  672. return ret;
  673. }
  674. if (rx)
  675. dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
  676. p->rx_dma_addr, len,
  677. DMA_FROM_DEVICE);
  678. return 0;
  679. stop_reset:
  680. sh_msiof_reset_str(p);
  681. sh_msiof_spi_stop(p, rx);
  682. stop_dma:
  683. if (tx)
  684. dmaengine_terminate_all(p->master->dma_tx);
  685. no_dma_tx:
  686. if (rx)
  687. dmaengine_terminate_all(p->master->dma_rx);
  688. sh_msiof_write(p, IER, 0);
  689. return ret;
  690. }
  691. static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
  692. {
  693. /* src or dst can be unaligned, but not both */
  694. if ((unsigned long)src & 3) {
  695. while (words--) {
  696. *dst++ = swab32(get_unaligned(src));
  697. src++;
  698. }
  699. } else if ((unsigned long)dst & 3) {
  700. while (words--) {
  701. put_unaligned(swab32(*src++), dst);
  702. dst++;
  703. }
  704. } else {
  705. while (words--)
  706. *dst++ = swab32(*src++);
  707. }
  708. }
  709. static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
  710. {
  711. /* src or dst can be unaligned, but not both */
  712. if ((unsigned long)src & 3) {
  713. while (words--) {
  714. *dst++ = swahw32(get_unaligned(src));
  715. src++;
  716. }
  717. } else if ((unsigned long)dst & 3) {
  718. while (words--) {
  719. put_unaligned(swahw32(*src++), dst);
  720. dst++;
  721. }
  722. } else {
  723. while (words--)
  724. *dst++ = swahw32(*src++);
  725. }
  726. }
  727. static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
  728. {
  729. memcpy(dst, src, words * 4);
  730. }
  731. static int sh_msiof_transfer_one(struct spi_master *master,
  732. struct spi_device *spi,
  733. struct spi_transfer *t)
  734. {
  735. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  736. void (*copy32)(u32 *, const u32 *, unsigned int);
  737. void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
  738. void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
  739. const void *tx_buf = t->tx_buf;
  740. void *rx_buf = t->rx_buf;
  741. unsigned int len = t->len;
  742. unsigned int bits = t->bits_per_word;
  743. unsigned int bytes_per_word;
  744. unsigned int words;
  745. int n;
  746. bool swab;
  747. int ret;
  748. /* setup clocks (clock already enabled in chipselect()) */
  749. if (!spi_controller_is_slave(p->master))
  750. sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
  751. while (master->dma_tx && len > 15) {
  752. /*
  753. * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
  754. * words, with byte resp. word swapping.
  755. */
  756. unsigned int l = 0;
  757. if (tx_buf)
  758. l = min(len, p->tx_fifo_size * 4);
  759. if (rx_buf)
  760. l = min(len, p->rx_fifo_size * 4);
  761. if (bits <= 8) {
  762. if (l & 3)
  763. break;
  764. copy32 = copy_bswap32;
  765. } else if (bits <= 16) {
  766. if (l & 1)
  767. break;
  768. copy32 = copy_wswap32;
  769. } else {
  770. copy32 = copy_plain32;
  771. }
  772. if (tx_buf)
  773. copy32(p->tx_dma_page, tx_buf, l / 4);
  774. ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
  775. if (ret == -EAGAIN) {
  776. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  777. dev_driver_string(&p->pdev->dev),
  778. dev_name(&p->pdev->dev));
  779. break;
  780. }
  781. if (ret)
  782. return ret;
  783. if (rx_buf) {
  784. copy32(rx_buf, p->rx_dma_page, l / 4);
  785. rx_buf += l;
  786. }
  787. if (tx_buf)
  788. tx_buf += l;
  789. len -= l;
  790. if (!len)
  791. return 0;
  792. }
  793. if (bits <= 8 && len > 15 && !(len & 3)) {
  794. bits = 32;
  795. swab = true;
  796. } else {
  797. swab = false;
  798. }
  799. /* setup bytes per word and fifo read/write functions */
  800. if (bits <= 8) {
  801. bytes_per_word = 1;
  802. tx_fifo = sh_msiof_spi_write_fifo_8;
  803. rx_fifo = sh_msiof_spi_read_fifo_8;
  804. } else if (bits <= 16) {
  805. bytes_per_word = 2;
  806. if ((unsigned long)tx_buf & 0x01)
  807. tx_fifo = sh_msiof_spi_write_fifo_16u;
  808. else
  809. tx_fifo = sh_msiof_spi_write_fifo_16;
  810. if ((unsigned long)rx_buf & 0x01)
  811. rx_fifo = sh_msiof_spi_read_fifo_16u;
  812. else
  813. rx_fifo = sh_msiof_spi_read_fifo_16;
  814. } else if (swab) {
  815. bytes_per_word = 4;
  816. if ((unsigned long)tx_buf & 0x03)
  817. tx_fifo = sh_msiof_spi_write_fifo_s32u;
  818. else
  819. tx_fifo = sh_msiof_spi_write_fifo_s32;
  820. if ((unsigned long)rx_buf & 0x03)
  821. rx_fifo = sh_msiof_spi_read_fifo_s32u;
  822. else
  823. rx_fifo = sh_msiof_spi_read_fifo_s32;
  824. } else {
  825. bytes_per_word = 4;
  826. if ((unsigned long)tx_buf & 0x03)
  827. tx_fifo = sh_msiof_spi_write_fifo_32u;
  828. else
  829. tx_fifo = sh_msiof_spi_write_fifo_32;
  830. if ((unsigned long)rx_buf & 0x03)
  831. rx_fifo = sh_msiof_spi_read_fifo_32u;
  832. else
  833. rx_fifo = sh_msiof_spi_read_fifo_32;
  834. }
  835. /* transfer in fifo sized chunks */
  836. words = len / bytes_per_word;
  837. while (words > 0) {
  838. n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
  839. words, bits);
  840. if (n < 0)
  841. return n;
  842. if (tx_buf)
  843. tx_buf += n * bytes_per_word;
  844. if (rx_buf)
  845. rx_buf += n * bytes_per_word;
  846. words -= n;
  847. }
  848. return 0;
  849. }
  850. static const struct sh_msiof_chipdata sh_data = {
  851. .tx_fifo_size = 64,
  852. .rx_fifo_size = 64,
  853. .master_flags = 0,
  854. .min_div = 1,
  855. };
  856. static const struct sh_msiof_chipdata rcar_gen2_data = {
  857. .tx_fifo_size = 64,
  858. .rx_fifo_size = 64,
  859. .master_flags = SPI_MASTER_MUST_TX,
  860. .min_div = 1,
  861. };
  862. static const struct sh_msiof_chipdata rcar_gen3_data = {
  863. .tx_fifo_size = 64,
  864. .rx_fifo_size = 64,
  865. .master_flags = SPI_MASTER_MUST_TX,
  866. .min_div = 2,
  867. };
  868. static const struct of_device_id sh_msiof_match[] = {
  869. { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
  870. { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
  871. { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
  872. { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
  873. { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
  874. { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
  875. { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
  876. { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
  877. { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
  878. { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
  879. {},
  880. };
  881. MODULE_DEVICE_TABLE(of, sh_msiof_match);
  882. #ifdef CONFIG_OF
  883. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  884. {
  885. struct sh_msiof_spi_info *info;
  886. struct device_node *np = dev->of_node;
  887. u32 num_cs = 1;
  888. info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
  889. if (!info)
  890. return NULL;
  891. info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
  892. : MSIOF_SPI_MASTER;
  893. /* Parse the MSIOF properties */
  894. if (info->mode == MSIOF_SPI_MASTER)
  895. of_property_read_u32(np, "num-cs", &num_cs);
  896. of_property_read_u32(np, "renesas,tx-fifo-size",
  897. &info->tx_fifo_override);
  898. of_property_read_u32(np, "renesas,rx-fifo-size",
  899. &info->rx_fifo_override);
  900. of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
  901. of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
  902. info->num_chipselect = num_cs;
  903. return info;
  904. }
  905. #else
  906. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  907. {
  908. return NULL;
  909. }
  910. #endif
  911. static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
  912. enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
  913. {
  914. dma_cap_mask_t mask;
  915. struct dma_chan *chan;
  916. struct dma_slave_config cfg;
  917. int ret;
  918. dma_cap_zero(mask);
  919. dma_cap_set(DMA_SLAVE, mask);
  920. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  921. (void *)(unsigned long)id, dev,
  922. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  923. if (!chan) {
  924. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  925. return NULL;
  926. }
  927. memset(&cfg, 0, sizeof(cfg));
  928. cfg.direction = dir;
  929. if (dir == DMA_MEM_TO_DEV) {
  930. cfg.dst_addr = port_addr;
  931. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  932. } else {
  933. cfg.src_addr = port_addr;
  934. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  935. }
  936. ret = dmaengine_slave_config(chan, &cfg);
  937. if (ret) {
  938. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  939. dma_release_channel(chan);
  940. return NULL;
  941. }
  942. return chan;
  943. }
  944. static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
  945. {
  946. struct platform_device *pdev = p->pdev;
  947. struct device *dev = &pdev->dev;
  948. const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
  949. unsigned int dma_tx_id, dma_rx_id;
  950. const struct resource *res;
  951. struct spi_master *master;
  952. struct device *tx_dev, *rx_dev;
  953. if (dev->of_node) {
  954. /* In the OF case we will get the slave IDs from the DT */
  955. dma_tx_id = 0;
  956. dma_rx_id = 0;
  957. } else if (info && info->dma_tx_id && info->dma_rx_id) {
  958. dma_tx_id = info->dma_tx_id;
  959. dma_rx_id = info->dma_rx_id;
  960. } else {
  961. /* The driver assumes no error */
  962. return 0;
  963. }
  964. /* The DMA engine uses the second register set, if present */
  965. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  966. if (!res)
  967. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  968. master = p->master;
  969. master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
  970. dma_tx_id,
  971. res->start + TFDR);
  972. if (!master->dma_tx)
  973. return -ENODEV;
  974. master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
  975. dma_rx_id,
  976. res->start + RFDR);
  977. if (!master->dma_rx)
  978. goto free_tx_chan;
  979. p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  980. if (!p->tx_dma_page)
  981. goto free_rx_chan;
  982. p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  983. if (!p->rx_dma_page)
  984. goto free_tx_page;
  985. tx_dev = master->dma_tx->device->dev;
  986. p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
  987. DMA_TO_DEVICE);
  988. if (dma_mapping_error(tx_dev, p->tx_dma_addr))
  989. goto free_rx_page;
  990. rx_dev = master->dma_rx->device->dev;
  991. p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
  992. DMA_FROM_DEVICE);
  993. if (dma_mapping_error(rx_dev, p->rx_dma_addr))
  994. goto unmap_tx_page;
  995. dev_info(dev, "DMA available");
  996. return 0;
  997. unmap_tx_page:
  998. dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
  999. free_rx_page:
  1000. free_page((unsigned long)p->rx_dma_page);
  1001. free_tx_page:
  1002. free_page((unsigned long)p->tx_dma_page);
  1003. free_rx_chan:
  1004. dma_release_channel(master->dma_rx);
  1005. free_tx_chan:
  1006. dma_release_channel(master->dma_tx);
  1007. master->dma_tx = NULL;
  1008. return -ENODEV;
  1009. }
  1010. static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
  1011. {
  1012. struct spi_master *master = p->master;
  1013. struct device *dev;
  1014. if (!master->dma_tx)
  1015. return;
  1016. dev = &p->pdev->dev;
  1017. dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
  1018. PAGE_SIZE, DMA_FROM_DEVICE);
  1019. dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
  1020. PAGE_SIZE, DMA_TO_DEVICE);
  1021. free_page((unsigned long)p->rx_dma_page);
  1022. free_page((unsigned long)p->tx_dma_page);
  1023. dma_release_channel(master->dma_rx);
  1024. dma_release_channel(master->dma_tx);
  1025. }
  1026. static int sh_msiof_spi_probe(struct platform_device *pdev)
  1027. {
  1028. struct resource *r;
  1029. struct spi_master *master;
  1030. const struct sh_msiof_chipdata *chipdata;
  1031. const struct of_device_id *of_id;
  1032. struct sh_msiof_spi_info *info;
  1033. struct sh_msiof_spi_priv *p;
  1034. int i;
  1035. int ret;
  1036. of_id = of_match_device(sh_msiof_match, &pdev->dev);
  1037. if (of_id) {
  1038. chipdata = of_id->data;
  1039. info = sh_msiof_spi_parse_dt(&pdev->dev);
  1040. } else {
  1041. chipdata = (const void *)pdev->id_entry->driver_data;
  1042. info = dev_get_platdata(&pdev->dev);
  1043. }
  1044. if (!info) {
  1045. dev_err(&pdev->dev, "failed to obtain device info\n");
  1046. return -ENXIO;
  1047. }
  1048. if (info->mode == MSIOF_SPI_SLAVE)
  1049. master = spi_alloc_slave(&pdev->dev,
  1050. sizeof(struct sh_msiof_spi_priv));
  1051. else
  1052. master = spi_alloc_master(&pdev->dev,
  1053. sizeof(struct sh_msiof_spi_priv));
  1054. if (master == NULL)
  1055. return -ENOMEM;
  1056. p = spi_master_get_devdata(master);
  1057. platform_set_drvdata(pdev, p);
  1058. p->master = master;
  1059. p->info = info;
  1060. p->min_div = chipdata->min_div;
  1061. init_completion(&p->done);
  1062. p->clk = devm_clk_get(&pdev->dev, NULL);
  1063. if (IS_ERR(p->clk)) {
  1064. dev_err(&pdev->dev, "cannot get clock\n");
  1065. ret = PTR_ERR(p->clk);
  1066. goto err1;
  1067. }
  1068. i = platform_get_irq(pdev, 0);
  1069. if (i < 0) {
  1070. dev_err(&pdev->dev, "cannot get platform IRQ\n");
  1071. ret = -ENOENT;
  1072. goto err1;
  1073. }
  1074. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1075. p->mapbase = devm_ioremap_resource(&pdev->dev, r);
  1076. if (IS_ERR(p->mapbase)) {
  1077. ret = PTR_ERR(p->mapbase);
  1078. goto err1;
  1079. }
  1080. ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
  1081. dev_name(&pdev->dev), p);
  1082. if (ret) {
  1083. dev_err(&pdev->dev, "unable to request irq\n");
  1084. goto err1;
  1085. }
  1086. p->pdev = pdev;
  1087. pm_runtime_enable(&pdev->dev);
  1088. /* Platform data may override FIFO sizes */
  1089. p->tx_fifo_size = chipdata->tx_fifo_size;
  1090. p->rx_fifo_size = chipdata->rx_fifo_size;
  1091. if (p->info->tx_fifo_override)
  1092. p->tx_fifo_size = p->info->tx_fifo_override;
  1093. if (p->info->rx_fifo_override)
  1094. p->rx_fifo_size = p->info->rx_fifo_override;
  1095. /* init master code */
  1096. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1097. master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
  1098. master->flags = chipdata->master_flags;
  1099. master->bus_num = pdev->id;
  1100. master->dev.of_node = pdev->dev.of_node;
  1101. master->num_chipselect = p->info->num_chipselect;
  1102. master->setup = sh_msiof_spi_setup;
  1103. master->prepare_message = sh_msiof_prepare_message;
  1104. master->slave_abort = sh_msiof_slave_abort;
  1105. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
  1106. master->auto_runtime_pm = true;
  1107. master->transfer_one = sh_msiof_transfer_one;
  1108. ret = sh_msiof_request_dma(p);
  1109. if (ret < 0)
  1110. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1111. ret = devm_spi_register_master(&pdev->dev, master);
  1112. if (ret < 0) {
  1113. dev_err(&pdev->dev, "spi_register_master error.\n");
  1114. goto err2;
  1115. }
  1116. return 0;
  1117. err2:
  1118. sh_msiof_release_dma(p);
  1119. pm_runtime_disable(&pdev->dev);
  1120. err1:
  1121. spi_master_put(master);
  1122. return ret;
  1123. }
  1124. static int sh_msiof_spi_remove(struct platform_device *pdev)
  1125. {
  1126. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1127. sh_msiof_release_dma(p);
  1128. pm_runtime_disable(&pdev->dev);
  1129. return 0;
  1130. }
  1131. static const struct platform_device_id spi_driver_ids[] = {
  1132. { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
  1133. {},
  1134. };
  1135. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1136. static struct platform_driver sh_msiof_spi_drv = {
  1137. .probe = sh_msiof_spi_probe,
  1138. .remove = sh_msiof_spi_remove,
  1139. .id_table = spi_driver_ids,
  1140. .driver = {
  1141. .name = "spi_sh_msiof",
  1142. .of_match_table = of_match_ptr(sh_msiof_match),
  1143. },
  1144. };
  1145. module_platform_driver(sh_msiof_spi_drv);
  1146. MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
  1147. MODULE_AUTHOR("Magnus Damm");
  1148. MODULE_LICENSE("GPL v2");
  1149. MODULE_ALIAS("platform:spi_sh_msiof");