knav_qmss_queue.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838
  1. /*
  2. * Keystone Queue Manager subsystem driver
  3. *
  4. * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
  5. * Authors: Sandeep Nair <sandeep_n@ti.com>
  6. * Cyril Chemparathy <cyril@ti.com>
  7. * Santosh Shilimkar <santosh.shilimkar@ti.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * version 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. */
  18. #include <linux/debugfs.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/firmware.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/module.h>
  24. #include <linux/of_address.h>
  25. #include <linux/of_device.h>
  26. #include <linux/of_irq.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/slab.h>
  29. #include <linux/soc/ti/knav_qmss.h>
  30. #include "knav_qmss.h"
  31. static struct knav_device *kdev;
  32. static DEFINE_MUTEX(knav_dev_lock);
  33. /* Queue manager register indices in DTS */
  34. #define KNAV_QUEUE_PEEK_REG_INDEX 0
  35. #define KNAV_QUEUE_STATUS_REG_INDEX 1
  36. #define KNAV_QUEUE_CONFIG_REG_INDEX 2
  37. #define KNAV_QUEUE_REGION_REG_INDEX 3
  38. #define KNAV_QUEUE_PUSH_REG_INDEX 4
  39. #define KNAV_QUEUE_POP_REG_INDEX 5
  40. /* PDSP register indices in DTS */
  41. #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
  42. #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
  43. #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
  44. #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
  45. #define knav_queue_idx_to_inst(kdev, idx) \
  46. (kdev->instances + (idx << kdev->inst_shift))
  47. #define for_each_handle_rcu(qh, inst) \
  48. list_for_each_entry_rcu(qh, &inst->handles, list)
  49. #define for_each_instance(idx, inst, kdev) \
  50. for (idx = 0, inst = kdev->instances; \
  51. idx < (kdev)->num_queues_in_use; \
  52. idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  53. /* All firmware file names end up here. List the firmware file names below.
  54. * Newest followed by older ones. Search is done from start of the array
  55. * until a firmware file is found.
  56. */
  57. const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
  58. /**
  59. * knav_queue_notify: qmss queue notfier call
  60. *
  61. * @inst: qmss queue instance like accumulator
  62. */
  63. void knav_queue_notify(struct knav_queue_inst *inst)
  64. {
  65. struct knav_queue *qh;
  66. if (!inst)
  67. return;
  68. rcu_read_lock();
  69. for_each_handle_rcu(qh, inst) {
  70. if (atomic_read(&qh->notifier_enabled) <= 0)
  71. continue;
  72. if (WARN_ON(!qh->notifier_fn))
  73. continue;
  74. atomic_inc(&qh->stats.notifies);
  75. qh->notifier_fn(qh->notifier_fn_arg);
  76. }
  77. rcu_read_unlock();
  78. }
  79. EXPORT_SYMBOL_GPL(knav_queue_notify);
  80. static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
  81. {
  82. struct knav_queue_inst *inst = _instdata;
  83. knav_queue_notify(inst);
  84. return IRQ_HANDLED;
  85. }
  86. static int knav_queue_setup_irq(struct knav_range_info *range,
  87. struct knav_queue_inst *inst)
  88. {
  89. unsigned queue = inst->id - range->queue_base;
  90. unsigned long cpu_map;
  91. int ret = 0, irq;
  92. if (range->flags & RANGE_HAS_IRQ) {
  93. irq = range->irqs[queue].irq;
  94. cpu_map = range->irqs[queue].cpu_map;
  95. ret = request_irq(irq, knav_queue_int_handler, 0,
  96. inst->irq_name, inst);
  97. if (ret)
  98. return ret;
  99. disable_irq(irq);
  100. if (cpu_map) {
  101. ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
  102. if (ret) {
  103. dev_warn(range->kdev->dev,
  104. "Failed to set IRQ affinity\n");
  105. return ret;
  106. }
  107. }
  108. }
  109. return ret;
  110. }
  111. static void knav_queue_free_irq(struct knav_queue_inst *inst)
  112. {
  113. struct knav_range_info *range = inst->range;
  114. unsigned queue = inst->id - inst->range->queue_base;
  115. int irq;
  116. if (range->flags & RANGE_HAS_IRQ) {
  117. irq = range->irqs[queue].irq;
  118. irq_set_affinity_hint(irq, NULL);
  119. free_irq(irq, inst);
  120. }
  121. }
  122. static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
  123. {
  124. return !list_empty(&inst->handles);
  125. }
  126. static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
  127. {
  128. return inst->range->flags & RANGE_RESERVED;
  129. }
  130. static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
  131. {
  132. struct knav_queue *tmp;
  133. rcu_read_lock();
  134. for_each_handle_rcu(tmp, inst) {
  135. if (tmp->flags & KNAV_QUEUE_SHARED) {
  136. rcu_read_unlock();
  137. return true;
  138. }
  139. }
  140. rcu_read_unlock();
  141. return false;
  142. }
  143. static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
  144. unsigned type)
  145. {
  146. if ((type == KNAV_QUEUE_QPEND) &&
  147. (inst->range->flags & RANGE_HAS_IRQ)) {
  148. return true;
  149. } else if ((type == KNAV_QUEUE_ACC) &&
  150. (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
  151. return true;
  152. } else if ((type == KNAV_QUEUE_GP) &&
  153. !(inst->range->flags &
  154. (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
  155. return true;
  156. }
  157. return false;
  158. }
  159. static inline struct knav_queue_inst *
  160. knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
  161. {
  162. struct knav_queue_inst *inst;
  163. int idx;
  164. for_each_instance(idx, inst, kdev) {
  165. if (inst->id == id)
  166. return inst;
  167. }
  168. return NULL;
  169. }
  170. static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
  171. {
  172. if (kdev->base_id <= id &&
  173. kdev->base_id + kdev->num_queues > id) {
  174. id -= kdev->base_id;
  175. return knav_queue_match_id_to_inst(kdev, id);
  176. }
  177. return NULL;
  178. }
  179. static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
  180. const char *name, unsigned flags)
  181. {
  182. struct knav_queue *qh;
  183. unsigned id;
  184. int ret = 0;
  185. qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
  186. if (!qh)
  187. return ERR_PTR(-ENOMEM);
  188. qh->flags = flags;
  189. qh->inst = inst;
  190. id = inst->id - inst->qmgr->start_queue;
  191. qh->reg_push = &inst->qmgr->reg_push[id];
  192. qh->reg_pop = &inst->qmgr->reg_pop[id];
  193. qh->reg_peek = &inst->qmgr->reg_peek[id];
  194. /* first opener? */
  195. if (!knav_queue_is_busy(inst)) {
  196. struct knav_range_info *range = inst->range;
  197. inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
  198. if (range->ops && range->ops->open_queue)
  199. ret = range->ops->open_queue(range, inst, flags);
  200. if (ret) {
  201. devm_kfree(inst->kdev->dev, qh);
  202. return ERR_PTR(ret);
  203. }
  204. }
  205. list_add_tail_rcu(&qh->list, &inst->handles);
  206. return qh;
  207. }
  208. static struct knav_queue *
  209. knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
  210. {
  211. struct knav_queue_inst *inst;
  212. struct knav_queue *qh;
  213. mutex_lock(&knav_dev_lock);
  214. qh = ERR_PTR(-ENODEV);
  215. inst = knav_queue_find_by_id(id);
  216. if (!inst)
  217. goto unlock_ret;
  218. qh = ERR_PTR(-EEXIST);
  219. if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
  220. goto unlock_ret;
  221. qh = ERR_PTR(-EBUSY);
  222. if ((flags & KNAV_QUEUE_SHARED) &&
  223. (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
  224. goto unlock_ret;
  225. qh = __knav_queue_open(inst, name, flags);
  226. unlock_ret:
  227. mutex_unlock(&knav_dev_lock);
  228. return qh;
  229. }
  230. static struct knav_queue *knav_queue_open_by_type(const char *name,
  231. unsigned type, unsigned flags)
  232. {
  233. struct knav_queue_inst *inst;
  234. struct knav_queue *qh = ERR_PTR(-EINVAL);
  235. int idx;
  236. mutex_lock(&knav_dev_lock);
  237. for_each_instance(idx, inst, kdev) {
  238. if (knav_queue_is_reserved(inst))
  239. continue;
  240. if (!knav_queue_match_type(inst, type))
  241. continue;
  242. if (knav_queue_is_busy(inst))
  243. continue;
  244. qh = __knav_queue_open(inst, name, flags);
  245. goto unlock_ret;
  246. }
  247. unlock_ret:
  248. mutex_unlock(&knav_dev_lock);
  249. return qh;
  250. }
  251. static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
  252. {
  253. struct knav_range_info *range = inst->range;
  254. if (range->ops && range->ops->set_notify)
  255. range->ops->set_notify(range, inst, enabled);
  256. }
  257. static int knav_queue_enable_notifier(struct knav_queue *qh)
  258. {
  259. struct knav_queue_inst *inst = qh->inst;
  260. bool first;
  261. if (WARN_ON(!qh->notifier_fn))
  262. return -EINVAL;
  263. /* Adjust the per handle notifier count */
  264. first = (atomic_inc_return(&qh->notifier_enabled) == 1);
  265. if (!first)
  266. return 0; /* nothing to do */
  267. /* Now adjust the per instance notifier count */
  268. first = (atomic_inc_return(&inst->num_notifiers) == 1);
  269. if (first)
  270. knav_queue_set_notify(inst, true);
  271. return 0;
  272. }
  273. static int knav_queue_disable_notifier(struct knav_queue *qh)
  274. {
  275. struct knav_queue_inst *inst = qh->inst;
  276. bool last;
  277. last = (atomic_dec_return(&qh->notifier_enabled) == 0);
  278. if (!last)
  279. return 0; /* nothing to do */
  280. last = (atomic_dec_return(&inst->num_notifiers) == 0);
  281. if (last)
  282. knav_queue_set_notify(inst, false);
  283. return 0;
  284. }
  285. static int knav_queue_set_notifier(struct knav_queue *qh,
  286. struct knav_queue_notify_config *cfg)
  287. {
  288. knav_queue_notify_fn old_fn = qh->notifier_fn;
  289. if (!cfg)
  290. return -EINVAL;
  291. if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
  292. return -ENOTSUPP;
  293. if (!cfg->fn && old_fn)
  294. knav_queue_disable_notifier(qh);
  295. qh->notifier_fn = cfg->fn;
  296. qh->notifier_fn_arg = cfg->fn_arg;
  297. if (cfg->fn && !old_fn)
  298. knav_queue_enable_notifier(qh);
  299. return 0;
  300. }
  301. static int knav_gp_set_notify(struct knav_range_info *range,
  302. struct knav_queue_inst *inst,
  303. bool enabled)
  304. {
  305. unsigned queue;
  306. if (range->flags & RANGE_HAS_IRQ) {
  307. queue = inst->id - range->queue_base;
  308. if (enabled)
  309. enable_irq(range->irqs[queue].irq);
  310. else
  311. disable_irq_nosync(range->irqs[queue].irq);
  312. }
  313. return 0;
  314. }
  315. static int knav_gp_open_queue(struct knav_range_info *range,
  316. struct knav_queue_inst *inst, unsigned flags)
  317. {
  318. return knav_queue_setup_irq(range, inst);
  319. }
  320. static int knav_gp_close_queue(struct knav_range_info *range,
  321. struct knav_queue_inst *inst)
  322. {
  323. knav_queue_free_irq(inst);
  324. return 0;
  325. }
  326. struct knav_range_ops knav_gp_range_ops = {
  327. .set_notify = knav_gp_set_notify,
  328. .open_queue = knav_gp_open_queue,
  329. .close_queue = knav_gp_close_queue,
  330. };
  331. static int knav_queue_get_count(void *qhandle)
  332. {
  333. struct knav_queue *qh = qhandle;
  334. struct knav_queue_inst *inst = qh->inst;
  335. return readl_relaxed(&qh->reg_peek[0].entry_count) +
  336. atomic_read(&inst->desc_count);
  337. }
  338. static void knav_queue_debug_show_instance(struct seq_file *s,
  339. struct knav_queue_inst *inst)
  340. {
  341. struct knav_device *kdev = inst->kdev;
  342. struct knav_queue *qh;
  343. if (!knav_queue_is_busy(inst))
  344. return;
  345. seq_printf(s, "\tqueue id %d (%s)\n",
  346. kdev->base_id + inst->id, inst->name);
  347. for_each_handle_rcu(qh, inst) {
  348. seq_printf(s, "\t\thandle %p: ", qh);
  349. seq_printf(s, "pushes %8d, ",
  350. atomic_read(&qh->stats.pushes));
  351. seq_printf(s, "pops %8d, ",
  352. atomic_read(&qh->stats.pops));
  353. seq_printf(s, "count %8d, ",
  354. knav_queue_get_count(qh));
  355. seq_printf(s, "notifies %8d, ",
  356. atomic_read(&qh->stats.notifies));
  357. seq_printf(s, "push errors %8d, ",
  358. atomic_read(&qh->stats.push_errors));
  359. seq_printf(s, "pop errors %8d\n",
  360. atomic_read(&qh->stats.pop_errors));
  361. }
  362. }
  363. static int knav_queue_debug_show(struct seq_file *s, void *v)
  364. {
  365. struct knav_queue_inst *inst;
  366. int idx;
  367. mutex_lock(&knav_dev_lock);
  368. seq_printf(s, "%s: %u-%u\n",
  369. dev_name(kdev->dev), kdev->base_id,
  370. kdev->base_id + kdev->num_queues - 1);
  371. for_each_instance(idx, inst, kdev)
  372. knav_queue_debug_show_instance(s, inst);
  373. mutex_unlock(&knav_dev_lock);
  374. return 0;
  375. }
  376. static int knav_queue_debug_open(struct inode *inode, struct file *file)
  377. {
  378. return single_open(file, knav_queue_debug_show, NULL);
  379. }
  380. static const struct file_operations knav_queue_debug_ops = {
  381. .open = knav_queue_debug_open,
  382. .read = seq_read,
  383. .llseek = seq_lseek,
  384. .release = single_release,
  385. };
  386. static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
  387. u32 flags)
  388. {
  389. unsigned long end;
  390. u32 val = 0;
  391. end = jiffies + msecs_to_jiffies(timeout);
  392. while (time_after(end, jiffies)) {
  393. val = readl_relaxed(addr);
  394. if (flags)
  395. val &= flags;
  396. if (!val)
  397. break;
  398. cpu_relax();
  399. }
  400. return val ? -ETIMEDOUT : 0;
  401. }
  402. static int knav_queue_flush(struct knav_queue *qh)
  403. {
  404. struct knav_queue_inst *inst = qh->inst;
  405. unsigned id = inst->id - inst->qmgr->start_queue;
  406. atomic_set(&inst->desc_count, 0);
  407. writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
  408. return 0;
  409. }
  410. /**
  411. * knav_queue_open() - open a hardware queue
  412. * @name - name to give the queue handle
  413. * @id - desired queue number if any or specifes the type
  414. * of queue
  415. * @flags - the following flags are applicable to queues:
  416. * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
  417. * exclusive by default.
  418. * Subsequent attempts to open a shared queue should
  419. * also have this flag.
  420. *
  421. * Returns a handle to the open hardware queue if successful. Use IS_ERR()
  422. * to check the returned value for error codes.
  423. */
  424. void *knav_queue_open(const char *name, unsigned id,
  425. unsigned flags)
  426. {
  427. struct knav_queue *qh = ERR_PTR(-EINVAL);
  428. switch (id) {
  429. case KNAV_QUEUE_QPEND:
  430. case KNAV_QUEUE_ACC:
  431. case KNAV_QUEUE_GP:
  432. qh = knav_queue_open_by_type(name, id, flags);
  433. break;
  434. default:
  435. qh = knav_queue_open_by_id(name, id, flags);
  436. break;
  437. }
  438. return qh;
  439. }
  440. EXPORT_SYMBOL_GPL(knav_queue_open);
  441. /**
  442. * knav_queue_close() - close a hardware queue handle
  443. * @qh - handle to close
  444. */
  445. void knav_queue_close(void *qhandle)
  446. {
  447. struct knav_queue *qh = qhandle;
  448. struct knav_queue_inst *inst = qh->inst;
  449. while (atomic_read(&qh->notifier_enabled) > 0)
  450. knav_queue_disable_notifier(qh);
  451. mutex_lock(&knav_dev_lock);
  452. list_del_rcu(&qh->list);
  453. mutex_unlock(&knav_dev_lock);
  454. synchronize_rcu();
  455. if (!knav_queue_is_busy(inst)) {
  456. struct knav_range_info *range = inst->range;
  457. if (range->ops && range->ops->close_queue)
  458. range->ops->close_queue(range, inst);
  459. }
  460. devm_kfree(inst->kdev->dev, qh);
  461. }
  462. EXPORT_SYMBOL_GPL(knav_queue_close);
  463. /**
  464. * knav_queue_device_control() - Perform control operations on a queue
  465. * @qh - queue handle
  466. * @cmd - control commands
  467. * @arg - command argument
  468. *
  469. * Returns 0 on success, errno otherwise.
  470. */
  471. int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
  472. unsigned long arg)
  473. {
  474. struct knav_queue *qh = qhandle;
  475. struct knav_queue_notify_config *cfg;
  476. int ret;
  477. switch ((int)cmd) {
  478. case KNAV_QUEUE_GET_ID:
  479. ret = qh->inst->kdev->base_id + qh->inst->id;
  480. break;
  481. case KNAV_QUEUE_FLUSH:
  482. ret = knav_queue_flush(qh);
  483. break;
  484. case KNAV_QUEUE_SET_NOTIFIER:
  485. cfg = (void *)arg;
  486. ret = knav_queue_set_notifier(qh, cfg);
  487. break;
  488. case KNAV_QUEUE_ENABLE_NOTIFY:
  489. ret = knav_queue_enable_notifier(qh);
  490. break;
  491. case KNAV_QUEUE_DISABLE_NOTIFY:
  492. ret = knav_queue_disable_notifier(qh);
  493. break;
  494. case KNAV_QUEUE_GET_COUNT:
  495. ret = knav_queue_get_count(qh);
  496. break;
  497. default:
  498. ret = -ENOTSUPP;
  499. break;
  500. }
  501. return ret;
  502. }
  503. EXPORT_SYMBOL_GPL(knav_queue_device_control);
  504. /**
  505. * knav_queue_push() - push data (or descriptor) to the tail of a queue
  506. * @qh - hardware queue handle
  507. * @data - data to push
  508. * @size - size of data to push
  509. * @flags - can be used to pass additional information
  510. *
  511. * Returns 0 on success, errno otherwise.
  512. */
  513. int knav_queue_push(void *qhandle, dma_addr_t dma,
  514. unsigned size, unsigned flags)
  515. {
  516. struct knav_queue *qh = qhandle;
  517. u32 val;
  518. val = (u32)dma | ((size / 16) - 1);
  519. writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
  520. atomic_inc(&qh->stats.pushes);
  521. return 0;
  522. }
  523. EXPORT_SYMBOL_GPL(knav_queue_push);
  524. /**
  525. * knav_queue_pop() - pop data (or descriptor) from the head of a queue
  526. * @qh - hardware queue handle
  527. * @size - (optional) size of the data pop'ed.
  528. *
  529. * Returns a DMA address on success, 0 on failure.
  530. */
  531. dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
  532. {
  533. struct knav_queue *qh = qhandle;
  534. struct knav_queue_inst *inst = qh->inst;
  535. dma_addr_t dma;
  536. u32 val, idx;
  537. /* are we accumulated? */
  538. if (inst->descs) {
  539. if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
  540. atomic_inc(&inst->desc_count);
  541. return 0;
  542. }
  543. idx = atomic_inc_return(&inst->desc_head);
  544. idx &= ACC_DESCS_MASK;
  545. val = inst->descs[idx];
  546. } else {
  547. val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
  548. if (unlikely(!val))
  549. return 0;
  550. }
  551. dma = val & DESC_PTR_MASK;
  552. if (size)
  553. *size = ((val & DESC_SIZE_MASK) + 1) * 16;
  554. atomic_inc(&qh->stats.pops);
  555. return dma;
  556. }
  557. EXPORT_SYMBOL_GPL(knav_queue_pop);
  558. /* carve out descriptors and push into queue */
  559. static void kdesc_fill_pool(struct knav_pool *pool)
  560. {
  561. struct knav_region *region;
  562. int i;
  563. region = pool->region;
  564. pool->desc_size = region->desc_size;
  565. for (i = 0; i < pool->num_desc; i++) {
  566. int index = pool->region_offset + i;
  567. dma_addr_t dma_addr;
  568. unsigned dma_size;
  569. dma_addr = region->dma_start + (region->desc_size * index);
  570. dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
  571. dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
  572. DMA_TO_DEVICE);
  573. knav_queue_push(pool->queue, dma_addr, dma_size, 0);
  574. }
  575. }
  576. /* pop out descriptors and close the queue */
  577. static void kdesc_empty_pool(struct knav_pool *pool)
  578. {
  579. dma_addr_t dma;
  580. unsigned size;
  581. void *desc;
  582. int i;
  583. if (!pool->queue)
  584. return;
  585. for (i = 0;; i++) {
  586. dma = knav_queue_pop(pool->queue, &size);
  587. if (!dma)
  588. break;
  589. desc = knav_pool_desc_dma_to_virt(pool, dma);
  590. if (!desc) {
  591. dev_dbg(pool->kdev->dev,
  592. "couldn't unmap desc, continuing\n");
  593. continue;
  594. }
  595. }
  596. WARN_ON(i != pool->num_desc);
  597. knav_queue_close(pool->queue);
  598. }
  599. /* Get the DMA address of a descriptor */
  600. dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
  601. {
  602. struct knav_pool *pool = ph;
  603. return pool->region->dma_start + (virt - pool->region->virt_start);
  604. }
  605. EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
  606. void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
  607. {
  608. struct knav_pool *pool = ph;
  609. return pool->region->virt_start + (dma - pool->region->dma_start);
  610. }
  611. EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
  612. /**
  613. * knav_pool_create() - Create a pool of descriptors
  614. * @name - name to give the pool handle
  615. * @num_desc - numbers of descriptors in the pool
  616. * @region_id - QMSS region id from which the descriptors are to be
  617. * allocated.
  618. *
  619. * Returns a pool handle on success.
  620. * Use IS_ERR_OR_NULL() to identify error values on return.
  621. */
  622. void *knav_pool_create(const char *name,
  623. int num_desc, int region_id)
  624. {
  625. struct knav_region *reg_itr, *region = NULL;
  626. struct knav_pool *pool, *pi;
  627. struct list_head *node;
  628. unsigned last_offset;
  629. bool slot_found;
  630. int ret;
  631. if (!kdev)
  632. return ERR_PTR(-EPROBE_DEFER);
  633. if (!kdev->dev)
  634. return ERR_PTR(-ENODEV);
  635. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  636. if (!pool) {
  637. dev_err(kdev->dev, "out of memory allocating pool\n");
  638. return ERR_PTR(-ENOMEM);
  639. }
  640. for_each_region(kdev, reg_itr) {
  641. if (reg_itr->id != region_id)
  642. continue;
  643. region = reg_itr;
  644. break;
  645. }
  646. if (!region) {
  647. dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
  648. ret = -EINVAL;
  649. goto err;
  650. }
  651. pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
  652. if (IS_ERR_OR_NULL(pool->queue)) {
  653. dev_err(kdev->dev,
  654. "failed to open queue for pool(%s), error %ld\n",
  655. name, PTR_ERR(pool->queue));
  656. ret = PTR_ERR(pool->queue);
  657. goto err;
  658. }
  659. pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
  660. pool->kdev = kdev;
  661. pool->dev = kdev->dev;
  662. mutex_lock(&knav_dev_lock);
  663. if (num_desc > (region->num_desc - region->used_desc)) {
  664. dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
  665. region_id, name);
  666. ret = -ENOMEM;
  667. goto err_unlock;
  668. }
  669. /* Region maintains a sorted (by region offset) list of pools
  670. * use the first free slot which is large enough to accomodate
  671. * the request
  672. */
  673. last_offset = 0;
  674. slot_found = false;
  675. node = &region->pools;
  676. list_for_each_entry(pi, &region->pools, region_inst) {
  677. if ((pi->region_offset - last_offset) >= num_desc) {
  678. slot_found = true;
  679. break;
  680. }
  681. last_offset = pi->region_offset + pi->num_desc;
  682. }
  683. node = &pi->region_inst;
  684. if (slot_found) {
  685. pool->region = region;
  686. pool->num_desc = num_desc;
  687. pool->region_offset = last_offset;
  688. region->used_desc += num_desc;
  689. list_add_tail(&pool->list, &kdev->pools);
  690. list_add_tail(&pool->region_inst, node);
  691. } else {
  692. dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
  693. name, region_id);
  694. ret = -ENOMEM;
  695. goto err_unlock;
  696. }
  697. mutex_unlock(&knav_dev_lock);
  698. kdesc_fill_pool(pool);
  699. return pool;
  700. err_unlock:
  701. mutex_unlock(&knav_dev_lock);
  702. err:
  703. kfree(pool->name);
  704. devm_kfree(kdev->dev, pool);
  705. return ERR_PTR(ret);
  706. }
  707. EXPORT_SYMBOL_GPL(knav_pool_create);
  708. /**
  709. * knav_pool_destroy() - Free a pool of descriptors
  710. * @pool - pool handle
  711. */
  712. void knav_pool_destroy(void *ph)
  713. {
  714. struct knav_pool *pool = ph;
  715. if (!pool)
  716. return;
  717. if (!pool->region)
  718. return;
  719. kdesc_empty_pool(pool);
  720. mutex_lock(&knav_dev_lock);
  721. pool->region->used_desc -= pool->num_desc;
  722. list_del(&pool->region_inst);
  723. list_del(&pool->list);
  724. mutex_unlock(&knav_dev_lock);
  725. kfree(pool->name);
  726. devm_kfree(kdev->dev, pool);
  727. }
  728. EXPORT_SYMBOL_GPL(knav_pool_destroy);
  729. /**
  730. * knav_pool_desc_get() - Get a descriptor from the pool
  731. * @pool - pool handle
  732. *
  733. * Returns descriptor from the pool.
  734. */
  735. void *knav_pool_desc_get(void *ph)
  736. {
  737. struct knav_pool *pool = ph;
  738. dma_addr_t dma;
  739. unsigned size;
  740. void *data;
  741. dma = knav_queue_pop(pool->queue, &size);
  742. if (unlikely(!dma))
  743. return ERR_PTR(-ENOMEM);
  744. data = knav_pool_desc_dma_to_virt(pool, dma);
  745. return data;
  746. }
  747. EXPORT_SYMBOL_GPL(knav_pool_desc_get);
  748. /**
  749. * knav_pool_desc_put() - return a descriptor to the pool
  750. * @pool - pool handle
  751. */
  752. void knav_pool_desc_put(void *ph, void *desc)
  753. {
  754. struct knav_pool *pool = ph;
  755. dma_addr_t dma;
  756. dma = knav_pool_desc_virt_to_dma(pool, desc);
  757. knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
  758. }
  759. EXPORT_SYMBOL_GPL(knav_pool_desc_put);
  760. /**
  761. * knav_pool_desc_map() - Map descriptor for DMA transfer
  762. * @pool - pool handle
  763. * @desc - address of descriptor to map
  764. * @size - size of descriptor to map
  765. * @dma - DMA address return pointer
  766. * @dma_sz - adjusted return pointer
  767. *
  768. * Returns 0 on success, errno otherwise.
  769. */
  770. int knav_pool_desc_map(void *ph, void *desc, unsigned size,
  771. dma_addr_t *dma, unsigned *dma_sz)
  772. {
  773. struct knav_pool *pool = ph;
  774. *dma = knav_pool_desc_virt_to_dma(pool, desc);
  775. size = min(size, pool->region->desc_size);
  776. size = ALIGN(size, SMP_CACHE_BYTES);
  777. *dma_sz = size;
  778. dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
  779. /* Ensure the descriptor reaches to the memory */
  780. __iowmb();
  781. return 0;
  782. }
  783. EXPORT_SYMBOL_GPL(knav_pool_desc_map);
  784. /**
  785. * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
  786. * @pool - pool handle
  787. * @dma - DMA address of descriptor to unmap
  788. * @dma_sz - size of descriptor to unmap
  789. *
  790. * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
  791. * error values on return.
  792. */
  793. void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
  794. {
  795. struct knav_pool *pool = ph;
  796. unsigned desc_sz;
  797. void *desc;
  798. desc_sz = min(dma_sz, pool->region->desc_size);
  799. desc = knav_pool_desc_dma_to_virt(pool, dma);
  800. dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
  801. prefetch(desc);
  802. return desc;
  803. }
  804. EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
  805. /**
  806. * knav_pool_count() - Get the number of descriptors in pool.
  807. * @pool - pool handle
  808. * Returns number of elements in the pool.
  809. */
  810. int knav_pool_count(void *ph)
  811. {
  812. struct knav_pool *pool = ph;
  813. return knav_queue_get_count(pool->queue);
  814. }
  815. EXPORT_SYMBOL_GPL(knav_pool_count);
  816. static void knav_queue_setup_region(struct knav_device *kdev,
  817. struct knav_region *region)
  818. {
  819. unsigned hw_num_desc, hw_desc_size, size;
  820. struct knav_reg_region __iomem *regs;
  821. struct knav_qmgr_info *qmgr;
  822. struct knav_pool *pool;
  823. int id = region->id;
  824. struct page *page;
  825. /* unused region? */
  826. if (!region->num_desc) {
  827. dev_warn(kdev->dev, "unused region %s\n", region->name);
  828. return;
  829. }
  830. /* get hardware descriptor value */
  831. hw_num_desc = ilog2(region->num_desc - 1) + 1;
  832. /* did we force fit ourselves into nothingness? */
  833. if (region->num_desc < 32) {
  834. region->num_desc = 0;
  835. dev_warn(kdev->dev, "too few descriptors in region %s\n",
  836. region->name);
  837. return;
  838. }
  839. size = region->num_desc * region->desc_size;
  840. region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
  841. GFP_DMA32);
  842. if (!region->virt_start) {
  843. region->num_desc = 0;
  844. dev_err(kdev->dev, "memory alloc failed for region %s\n",
  845. region->name);
  846. return;
  847. }
  848. region->virt_end = region->virt_start + size;
  849. page = virt_to_page(region->virt_start);
  850. region->dma_start = dma_map_page(kdev->dev, page, 0, size,
  851. DMA_BIDIRECTIONAL);
  852. if (dma_mapping_error(kdev->dev, region->dma_start)) {
  853. dev_err(kdev->dev, "dma map failed for region %s\n",
  854. region->name);
  855. goto fail;
  856. }
  857. region->dma_end = region->dma_start + size;
  858. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  859. if (!pool) {
  860. dev_err(kdev->dev, "out of memory allocating dummy pool\n");
  861. goto fail;
  862. }
  863. pool->num_desc = 0;
  864. pool->region_offset = region->num_desc;
  865. list_add(&pool->region_inst, &region->pools);
  866. dev_dbg(kdev->dev,
  867. "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
  868. region->name, id, region->desc_size, region->num_desc,
  869. region->link_index, &region->dma_start, &region->dma_end,
  870. region->virt_start, region->virt_end);
  871. hw_desc_size = (region->desc_size / 16) - 1;
  872. hw_num_desc -= 5;
  873. for_each_qmgr(kdev, qmgr) {
  874. regs = qmgr->reg_region + id;
  875. writel_relaxed((u32)region->dma_start, &regs->base);
  876. writel_relaxed(region->link_index, &regs->start_index);
  877. writel_relaxed(hw_desc_size << 16 | hw_num_desc,
  878. &regs->size_count);
  879. }
  880. return;
  881. fail:
  882. if (region->dma_start)
  883. dma_unmap_page(kdev->dev, region->dma_start, size,
  884. DMA_BIDIRECTIONAL);
  885. if (region->virt_start)
  886. free_pages_exact(region->virt_start, size);
  887. region->num_desc = 0;
  888. return;
  889. }
  890. static const char *knav_queue_find_name(struct device_node *node)
  891. {
  892. const char *name;
  893. if (of_property_read_string(node, "label", &name) < 0)
  894. name = node->name;
  895. if (!name)
  896. name = "unknown";
  897. return name;
  898. }
  899. static int knav_queue_setup_regions(struct knav_device *kdev,
  900. struct device_node *regions)
  901. {
  902. struct device *dev = kdev->dev;
  903. struct knav_region *region;
  904. struct device_node *child;
  905. u32 temp[2];
  906. int ret;
  907. for_each_child_of_node(regions, child) {
  908. region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
  909. if (!region) {
  910. dev_err(dev, "out of memory allocating region\n");
  911. return -ENOMEM;
  912. }
  913. region->name = knav_queue_find_name(child);
  914. of_property_read_u32(child, "id", &region->id);
  915. ret = of_property_read_u32_array(child, "region-spec", temp, 2);
  916. if (!ret) {
  917. region->num_desc = temp[0];
  918. region->desc_size = temp[1];
  919. } else {
  920. dev_err(dev, "invalid region info %s\n", region->name);
  921. devm_kfree(dev, region);
  922. continue;
  923. }
  924. if (!of_get_property(child, "link-index", NULL)) {
  925. dev_err(dev, "No link info for %s\n", region->name);
  926. devm_kfree(dev, region);
  927. continue;
  928. }
  929. ret = of_property_read_u32(child, "link-index",
  930. &region->link_index);
  931. if (ret) {
  932. dev_err(dev, "link index not found for %s\n",
  933. region->name);
  934. devm_kfree(dev, region);
  935. continue;
  936. }
  937. INIT_LIST_HEAD(&region->pools);
  938. list_add_tail(&region->list, &kdev->regions);
  939. }
  940. if (list_empty(&kdev->regions)) {
  941. dev_err(dev, "no valid region information found\n");
  942. return -ENODEV;
  943. }
  944. /* Next, we run through the regions and set things up */
  945. for_each_region(kdev, region)
  946. knav_queue_setup_region(kdev, region);
  947. return 0;
  948. }
  949. static int knav_get_link_ram(struct knav_device *kdev,
  950. const char *name,
  951. struct knav_link_ram_block *block)
  952. {
  953. struct platform_device *pdev = to_platform_device(kdev->dev);
  954. struct device_node *node = pdev->dev.of_node;
  955. u32 temp[2];
  956. /*
  957. * Note: link ram resources are specified in "entry" sized units. In
  958. * reality, although entries are ~40bits in hardware, we treat them as
  959. * 64-bit entities here.
  960. *
  961. * For example, to specify the internal link ram for Keystone-I class
  962. * devices, we would set the linkram0 resource to 0x80000-0x83fff.
  963. *
  964. * This gets a bit weird when other link rams are used. For example,
  965. * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
  966. * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
  967. * which accounts for 64-bits per entry, for 16K entries.
  968. */
  969. if (!of_property_read_u32_array(node, name , temp, 2)) {
  970. if (temp[0]) {
  971. /*
  972. * queue_base specified => using internal or onchip
  973. * link ram WARNING - we do not "reserve" this block
  974. */
  975. block->dma = (dma_addr_t)temp[0];
  976. block->virt = NULL;
  977. block->size = temp[1];
  978. } else {
  979. block->size = temp[1];
  980. /* queue_base not specific => allocate requested size */
  981. block->virt = dmam_alloc_coherent(kdev->dev,
  982. 8 * block->size, &block->dma,
  983. GFP_KERNEL);
  984. if (!block->virt) {
  985. dev_err(kdev->dev, "failed to alloc linkram\n");
  986. return -ENOMEM;
  987. }
  988. }
  989. } else {
  990. return -ENODEV;
  991. }
  992. return 0;
  993. }
  994. static int knav_queue_setup_link_ram(struct knav_device *kdev)
  995. {
  996. struct knav_link_ram_block *block;
  997. struct knav_qmgr_info *qmgr;
  998. for_each_qmgr(kdev, qmgr) {
  999. block = &kdev->link_rams[0];
  1000. dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
  1001. &block->dma, block->virt, block->size);
  1002. writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
  1003. writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
  1004. block++;
  1005. if (!block->size)
  1006. continue;
  1007. dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
  1008. &block->dma, block->virt, block->size);
  1009. writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
  1010. }
  1011. return 0;
  1012. }
  1013. static int knav_setup_queue_range(struct knav_device *kdev,
  1014. struct device_node *node)
  1015. {
  1016. struct device *dev = kdev->dev;
  1017. struct knav_range_info *range;
  1018. struct knav_qmgr_info *qmgr;
  1019. u32 temp[2], start, end, id, index;
  1020. int ret, i;
  1021. range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
  1022. if (!range) {
  1023. dev_err(dev, "out of memory allocating range\n");
  1024. return -ENOMEM;
  1025. }
  1026. range->kdev = kdev;
  1027. range->name = knav_queue_find_name(node);
  1028. ret = of_property_read_u32_array(node, "qrange", temp, 2);
  1029. if (!ret) {
  1030. range->queue_base = temp[0] - kdev->base_id;
  1031. range->num_queues = temp[1];
  1032. } else {
  1033. dev_err(dev, "invalid queue range %s\n", range->name);
  1034. devm_kfree(dev, range);
  1035. return -EINVAL;
  1036. }
  1037. for (i = 0; i < RANGE_MAX_IRQS; i++) {
  1038. struct of_phandle_args oirq;
  1039. if (of_irq_parse_one(node, i, &oirq))
  1040. break;
  1041. range->irqs[i].irq = irq_create_of_mapping(&oirq);
  1042. if (range->irqs[i].irq == IRQ_NONE)
  1043. break;
  1044. range->num_irqs++;
  1045. if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
  1046. range->irqs[i].cpu_map =
  1047. (oirq.args[2] & 0x0000ff00) >> 8;
  1048. }
  1049. range->num_irqs = min(range->num_irqs, range->num_queues);
  1050. if (range->num_irqs)
  1051. range->flags |= RANGE_HAS_IRQ;
  1052. if (of_get_property(node, "qalloc-by-id", NULL))
  1053. range->flags |= RANGE_RESERVED;
  1054. if (of_get_property(node, "accumulator", NULL)) {
  1055. ret = knav_init_acc_range(kdev, node, range);
  1056. if (ret < 0) {
  1057. devm_kfree(dev, range);
  1058. return ret;
  1059. }
  1060. } else {
  1061. range->ops = &knav_gp_range_ops;
  1062. }
  1063. /* set threshold to 1, and flush out the queues */
  1064. for_each_qmgr(kdev, qmgr) {
  1065. start = max(qmgr->start_queue, range->queue_base);
  1066. end = min(qmgr->start_queue + qmgr->num_queues,
  1067. range->queue_base + range->num_queues);
  1068. for (id = start; id < end; id++) {
  1069. index = id - qmgr->start_queue;
  1070. writel_relaxed(THRESH_GTE | 1,
  1071. &qmgr->reg_peek[index].ptr_size_thresh);
  1072. writel_relaxed(0,
  1073. &qmgr->reg_push[index].ptr_size_thresh);
  1074. }
  1075. }
  1076. list_add_tail(&range->list, &kdev->queue_ranges);
  1077. dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
  1078. range->name, range->queue_base,
  1079. range->queue_base + range->num_queues - 1,
  1080. range->num_irqs,
  1081. (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
  1082. (range->flags & RANGE_RESERVED) ? ", reserved" : "",
  1083. (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
  1084. kdev->num_queues_in_use += range->num_queues;
  1085. return 0;
  1086. }
  1087. static int knav_setup_queue_pools(struct knav_device *kdev,
  1088. struct device_node *queue_pools)
  1089. {
  1090. struct device_node *type, *range;
  1091. int ret;
  1092. for_each_child_of_node(queue_pools, type) {
  1093. for_each_child_of_node(type, range) {
  1094. ret = knav_setup_queue_range(kdev, range);
  1095. /* return value ignored, we init the rest... */
  1096. }
  1097. }
  1098. /* ... and barf if they all failed! */
  1099. if (list_empty(&kdev->queue_ranges)) {
  1100. dev_err(kdev->dev, "no valid queue range found\n");
  1101. return -ENODEV;
  1102. }
  1103. return 0;
  1104. }
  1105. static void knav_free_queue_range(struct knav_device *kdev,
  1106. struct knav_range_info *range)
  1107. {
  1108. if (range->ops && range->ops->free_range)
  1109. range->ops->free_range(range);
  1110. list_del(&range->list);
  1111. devm_kfree(kdev->dev, range);
  1112. }
  1113. static void knav_free_queue_ranges(struct knav_device *kdev)
  1114. {
  1115. struct knav_range_info *range;
  1116. for (;;) {
  1117. range = first_queue_range(kdev);
  1118. if (!range)
  1119. break;
  1120. knav_free_queue_range(kdev, range);
  1121. }
  1122. }
  1123. static void knav_queue_free_regions(struct knav_device *kdev)
  1124. {
  1125. struct knav_region *region;
  1126. struct knav_pool *pool, *tmp;
  1127. unsigned size;
  1128. for (;;) {
  1129. region = first_region(kdev);
  1130. if (!region)
  1131. break;
  1132. list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
  1133. knav_pool_destroy(pool);
  1134. size = region->virt_end - region->virt_start;
  1135. if (size)
  1136. free_pages_exact(region->virt_start, size);
  1137. list_del(&region->list);
  1138. devm_kfree(kdev->dev, region);
  1139. }
  1140. }
  1141. static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
  1142. struct device_node *node, int index)
  1143. {
  1144. struct resource res;
  1145. void __iomem *regs;
  1146. int ret;
  1147. ret = of_address_to_resource(node, index, &res);
  1148. if (ret) {
  1149. dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
  1150. node->name, index);
  1151. return ERR_PTR(ret);
  1152. }
  1153. regs = devm_ioremap_resource(kdev->dev, &res);
  1154. if (IS_ERR(regs))
  1155. dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
  1156. index, node->name);
  1157. return regs;
  1158. }
  1159. static int knav_queue_init_qmgrs(struct knav_device *kdev,
  1160. struct device_node *qmgrs)
  1161. {
  1162. struct device *dev = kdev->dev;
  1163. struct knav_qmgr_info *qmgr;
  1164. struct device_node *child;
  1165. u32 temp[2];
  1166. int ret;
  1167. for_each_child_of_node(qmgrs, child) {
  1168. qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
  1169. if (!qmgr) {
  1170. dev_err(dev, "out of memory allocating qmgr\n");
  1171. return -ENOMEM;
  1172. }
  1173. ret = of_property_read_u32_array(child, "managed-queues",
  1174. temp, 2);
  1175. if (!ret) {
  1176. qmgr->start_queue = temp[0];
  1177. qmgr->num_queues = temp[1];
  1178. } else {
  1179. dev_err(dev, "invalid qmgr queue range\n");
  1180. devm_kfree(dev, qmgr);
  1181. continue;
  1182. }
  1183. dev_info(dev, "qmgr start queue %d, number of queues %d\n",
  1184. qmgr->start_queue, qmgr->num_queues);
  1185. qmgr->reg_peek =
  1186. knav_queue_map_reg(kdev, child,
  1187. KNAV_QUEUE_PEEK_REG_INDEX);
  1188. qmgr->reg_status =
  1189. knav_queue_map_reg(kdev, child,
  1190. KNAV_QUEUE_STATUS_REG_INDEX);
  1191. qmgr->reg_config =
  1192. knav_queue_map_reg(kdev, child,
  1193. KNAV_QUEUE_CONFIG_REG_INDEX);
  1194. qmgr->reg_region =
  1195. knav_queue_map_reg(kdev, child,
  1196. KNAV_QUEUE_REGION_REG_INDEX);
  1197. qmgr->reg_push =
  1198. knav_queue_map_reg(kdev, child,
  1199. KNAV_QUEUE_PUSH_REG_INDEX);
  1200. qmgr->reg_pop =
  1201. knav_queue_map_reg(kdev, child,
  1202. KNAV_QUEUE_POP_REG_INDEX);
  1203. if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
  1204. IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
  1205. IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
  1206. dev_err(dev, "failed to map qmgr regs\n");
  1207. if (!IS_ERR(qmgr->reg_peek))
  1208. devm_iounmap(dev, qmgr->reg_peek);
  1209. if (!IS_ERR(qmgr->reg_status))
  1210. devm_iounmap(dev, qmgr->reg_status);
  1211. if (!IS_ERR(qmgr->reg_config))
  1212. devm_iounmap(dev, qmgr->reg_config);
  1213. if (!IS_ERR(qmgr->reg_region))
  1214. devm_iounmap(dev, qmgr->reg_region);
  1215. if (!IS_ERR(qmgr->reg_push))
  1216. devm_iounmap(dev, qmgr->reg_push);
  1217. if (!IS_ERR(qmgr->reg_pop))
  1218. devm_iounmap(dev, qmgr->reg_pop);
  1219. devm_kfree(dev, qmgr);
  1220. continue;
  1221. }
  1222. list_add_tail(&qmgr->list, &kdev->qmgrs);
  1223. dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
  1224. qmgr->start_queue, qmgr->num_queues,
  1225. qmgr->reg_peek, qmgr->reg_status,
  1226. qmgr->reg_config, qmgr->reg_region,
  1227. qmgr->reg_push, qmgr->reg_pop);
  1228. }
  1229. return 0;
  1230. }
  1231. static int knav_queue_init_pdsps(struct knav_device *kdev,
  1232. struct device_node *pdsps)
  1233. {
  1234. struct device *dev = kdev->dev;
  1235. struct knav_pdsp_info *pdsp;
  1236. struct device_node *child;
  1237. for_each_child_of_node(pdsps, child) {
  1238. pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
  1239. if (!pdsp) {
  1240. dev_err(dev, "out of memory allocating pdsp\n");
  1241. return -ENOMEM;
  1242. }
  1243. pdsp->name = knav_queue_find_name(child);
  1244. pdsp->iram =
  1245. knav_queue_map_reg(kdev, child,
  1246. KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
  1247. pdsp->regs =
  1248. knav_queue_map_reg(kdev, child,
  1249. KNAV_QUEUE_PDSP_REGS_REG_INDEX);
  1250. pdsp->intd =
  1251. knav_queue_map_reg(kdev, child,
  1252. KNAV_QUEUE_PDSP_INTD_REG_INDEX);
  1253. pdsp->command =
  1254. knav_queue_map_reg(kdev, child,
  1255. KNAV_QUEUE_PDSP_CMD_REG_INDEX);
  1256. if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
  1257. IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
  1258. dev_err(dev, "failed to map pdsp %s regs\n",
  1259. pdsp->name);
  1260. if (!IS_ERR(pdsp->command))
  1261. devm_iounmap(dev, pdsp->command);
  1262. if (!IS_ERR(pdsp->iram))
  1263. devm_iounmap(dev, pdsp->iram);
  1264. if (!IS_ERR(pdsp->regs))
  1265. devm_iounmap(dev, pdsp->regs);
  1266. if (!IS_ERR(pdsp->intd))
  1267. devm_iounmap(dev, pdsp->intd);
  1268. devm_kfree(dev, pdsp);
  1269. continue;
  1270. }
  1271. of_property_read_u32(child, "id", &pdsp->id);
  1272. list_add_tail(&pdsp->list, &kdev->pdsps);
  1273. dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
  1274. pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
  1275. pdsp->intd);
  1276. }
  1277. return 0;
  1278. }
  1279. static int knav_queue_stop_pdsp(struct knav_device *kdev,
  1280. struct knav_pdsp_info *pdsp)
  1281. {
  1282. u32 val, timeout = 1000;
  1283. int ret;
  1284. val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
  1285. writel_relaxed(val, &pdsp->regs->control);
  1286. ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
  1287. PDSP_CTRL_RUNNING);
  1288. if (ret < 0) {
  1289. dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
  1290. return ret;
  1291. }
  1292. pdsp->loaded = false;
  1293. pdsp->started = false;
  1294. return 0;
  1295. }
  1296. static int knav_queue_load_pdsp(struct knav_device *kdev,
  1297. struct knav_pdsp_info *pdsp)
  1298. {
  1299. int i, ret, fwlen;
  1300. const struct firmware *fw;
  1301. bool found = false;
  1302. u32 *fwdata;
  1303. for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
  1304. if (knav_acc_firmwares[i]) {
  1305. ret = request_firmware_direct(&fw,
  1306. knav_acc_firmwares[i],
  1307. kdev->dev);
  1308. if (!ret) {
  1309. found = true;
  1310. break;
  1311. }
  1312. }
  1313. }
  1314. if (!found) {
  1315. dev_err(kdev->dev, "failed to get firmware for pdsp\n");
  1316. return -ENODEV;
  1317. }
  1318. dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
  1319. knav_acc_firmwares[i]);
  1320. writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
  1321. /* download the firmware */
  1322. fwdata = (u32 *)fw->data;
  1323. fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
  1324. for (i = 0; i < fwlen; i++)
  1325. writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
  1326. release_firmware(fw);
  1327. return 0;
  1328. }
  1329. static int knav_queue_start_pdsp(struct knav_device *kdev,
  1330. struct knav_pdsp_info *pdsp)
  1331. {
  1332. u32 val, timeout = 1000;
  1333. int ret;
  1334. /* write a command for sync */
  1335. writel_relaxed(0xffffffff, pdsp->command);
  1336. while (readl_relaxed(pdsp->command) != 0xffffffff)
  1337. cpu_relax();
  1338. /* soft reset the PDSP */
  1339. val = readl_relaxed(&pdsp->regs->control);
  1340. val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
  1341. writel_relaxed(val, &pdsp->regs->control);
  1342. /* enable pdsp */
  1343. val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
  1344. writel_relaxed(val, &pdsp->regs->control);
  1345. /* wait for command register to clear */
  1346. ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
  1347. if (ret < 0) {
  1348. dev_err(kdev->dev,
  1349. "timed out on pdsp %s command register wait\n",
  1350. pdsp->name);
  1351. return ret;
  1352. }
  1353. return 0;
  1354. }
  1355. static void knav_queue_stop_pdsps(struct knav_device *kdev)
  1356. {
  1357. struct knav_pdsp_info *pdsp;
  1358. /* disable all pdsps */
  1359. for_each_pdsp(kdev, pdsp)
  1360. knav_queue_stop_pdsp(kdev, pdsp);
  1361. }
  1362. static int knav_queue_start_pdsps(struct knav_device *kdev)
  1363. {
  1364. struct knav_pdsp_info *pdsp;
  1365. int ret;
  1366. knav_queue_stop_pdsps(kdev);
  1367. /* now load them all. We return success even if pdsp
  1368. * is not loaded as acc channels are optional on having
  1369. * firmware availability in the system. We set the loaded
  1370. * and stated flag and when initialize the acc range, check
  1371. * it and init the range only if pdsp is started.
  1372. */
  1373. for_each_pdsp(kdev, pdsp) {
  1374. ret = knav_queue_load_pdsp(kdev, pdsp);
  1375. if (!ret)
  1376. pdsp->loaded = true;
  1377. }
  1378. for_each_pdsp(kdev, pdsp) {
  1379. if (pdsp->loaded) {
  1380. ret = knav_queue_start_pdsp(kdev, pdsp);
  1381. if (!ret)
  1382. pdsp->started = true;
  1383. }
  1384. }
  1385. return 0;
  1386. }
  1387. static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
  1388. {
  1389. struct knav_qmgr_info *qmgr;
  1390. for_each_qmgr(kdev, qmgr) {
  1391. if ((id >= qmgr->start_queue) &&
  1392. (id < qmgr->start_queue + qmgr->num_queues))
  1393. return qmgr;
  1394. }
  1395. return NULL;
  1396. }
  1397. static int knav_queue_init_queue(struct knav_device *kdev,
  1398. struct knav_range_info *range,
  1399. struct knav_queue_inst *inst,
  1400. unsigned id)
  1401. {
  1402. char irq_name[KNAV_NAME_SIZE];
  1403. inst->qmgr = knav_find_qmgr(id);
  1404. if (!inst->qmgr)
  1405. return -1;
  1406. INIT_LIST_HEAD(&inst->handles);
  1407. inst->kdev = kdev;
  1408. inst->range = range;
  1409. inst->irq_num = -1;
  1410. inst->id = id;
  1411. scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
  1412. inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
  1413. if (range->ops && range->ops->init_queue)
  1414. return range->ops->init_queue(range, inst);
  1415. else
  1416. return 0;
  1417. }
  1418. static int knav_queue_init_queues(struct knav_device *kdev)
  1419. {
  1420. struct knav_range_info *range;
  1421. int size, id, base_idx;
  1422. int idx = 0, ret = 0;
  1423. /* how much do we need for instance data? */
  1424. size = sizeof(struct knav_queue_inst);
  1425. /* round this up to a power of 2, keep the index to instance
  1426. * arithmetic fast.
  1427. * */
  1428. kdev->inst_shift = order_base_2(size);
  1429. size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
  1430. kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
  1431. if (!kdev->instances)
  1432. return -ENOMEM;
  1433. for_each_queue_range(kdev, range) {
  1434. if (range->ops && range->ops->init_range)
  1435. range->ops->init_range(range);
  1436. base_idx = idx;
  1437. for (id = range->queue_base;
  1438. id < range->queue_base + range->num_queues; id++, idx++) {
  1439. ret = knav_queue_init_queue(kdev, range,
  1440. knav_queue_idx_to_inst(kdev, idx), id);
  1441. if (ret < 0)
  1442. return ret;
  1443. }
  1444. range->queue_base_inst =
  1445. knav_queue_idx_to_inst(kdev, base_idx);
  1446. }
  1447. return 0;
  1448. }
  1449. static int knav_queue_probe(struct platform_device *pdev)
  1450. {
  1451. struct device_node *node = pdev->dev.of_node;
  1452. struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
  1453. struct device *dev = &pdev->dev;
  1454. u32 temp[2];
  1455. int ret;
  1456. if (!node) {
  1457. dev_err(dev, "device tree info unavailable\n");
  1458. return -ENODEV;
  1459. }
  1460. kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
  1461. if (!kdev) {
  1462. dev_err(dev, "memory allocation failed\n");
  1463. return -ENOMEM;
  1464. }
  1465. platform_set_drvdata(pdev, kdev);
  1466. kdev->dev = dev;
  1467. INIT_LIST_HEAD(&kdev->queue_ranges);
  1468. INIT_LIST_HEAD(&kdev->qmgrs);
  1469. INIT_LIST_HEAD(&kdev->pools);
  1470. INIT_LIST_HEAD(&kdev->regions);
  1471. INIT_LIST_HEAD(&kdev->pdsps);
  1472. pm_runtime_enable(&pdev->dev);
  1473. ret = pm_runtime_get_sync(&pdev->dev);
  1474. if (ret < 0) {
  1475. dev_err(dev, "Failed to enable QMSS\n");
  1476. return ret;
  1477. }
  1478. if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
  1479. dev_err(dev, "queue-range not specified\n");
  1480. ret = -ENODEV;
  1481. goto err;
  1482. }
  1483. kdev->base_id = temp[0];
  1484. kdev->num_queues = temp[1];
  1485. /* Initialize queue managers using device tree configuration */
  1486. qmgrs = of_get_child_by_name(node, "qmgrs");
  1487. if (!qmgrs) {
  1488. dev_err(dev, "queue manager info not specified\n");
  1489. ret = -ENODEV;
  1490. goto err;
  1491. }
  1492. ret = knav_queue_init_qmgrs(kdev, qmgrs);
  1493. of_node_put(qmgrs);
  1494. if (ret)
  1495. goto err;
  1496. /* get pdsp configuration values from device tree */
  1497. pdsps = of_get_child_by_name(node, "pdsps");
  1498. if (pdsps) {
  1499. ret = knav_queue_init_pdsps(kdev, pdsps);
  1500. if (ret)
  1501. goto err;
  1502. ret = knav_queue_start_pdsps(kdev);
  1503. if (ret)
  1504. goto err;
  1505. }
  1506. of_node_put(pdsps);
  1507. /* get usable queue range values from device tree */
  1508. queue_pools = of_get_child_by_name(node, "queue-pools");
  1509. if (!queue_pools) {
  1510. dev_err(dev, "queue-pools not specified\n");
  1511. ret = -ENODEV;
  1512. goto err;
  1513. }
  1514. ret = knav_setup_queue_pools(kdev, queue_pools);
  1515. of_node_put(queue_pools);
  1516. if (ret)
  1517. goto err;
  1518. ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
  1519. if (ret) {
  1520. dev_err(kdev->dev, "could not setup linking ram\n");
  1521. goto err;
  1522. }
  1523. ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
  1524. if (ret) {
  1525. /*
  1526. * nothing really, we have one linking ram already, so we just
  1527. * live within our means
  1528. */
  1529. }
  1530. ret = knav_queue_setup_link_ram(kdev);
  1531. if (ret)
  1532. goto err;
  1533. regions = of_get_child_by_name(node, "descriptor-regions");
  1534. if (!regions) {
  1535. dev_err(dev, "descriptor-regions not specified\n");
  1536. goto err;
  1537. }
  1538. ret = knav_queue_setup_regions(kdev, regions);
  1539. of_node_put(regions);
  1540. if (ret)
  1541. goto err;
  1542. ret = knav_queue_init_queues(kdev);
  1543. if (ret < 0) {
  1544. dev_err(dev, "hwqueue initialization failed\n");
  1545. goto err;
  1546. }
  1547. debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
  1548. &knav_queue_debug_ops);
  1549. return 0;
  1550. err:
  1551. knav_queue_stop_pdsps(kdev);
  1552. knav_queue_free_regions(kdev);
  1553. knav_free_queue_ranges(kdev);
  1554. pm_runtime_put_sync(&pdev->dev);
  1555. pm_runtime_disable(&pdev->dev);
  1556. return ret;
  1557. }
  1558. static int knav_queue_remove(struct platform_device *pdev)
  1559. {
  1560. /* TODO: Free resources */
  1561. pm_runtime_put_sync(&pdev->dev);
  1562. pm_runtime_disable(&pdev->dev);
  1563. return 0;
  1564. }
  1565. /* Match table for of_platform binding */
  1566. static struct of_device_id keystone_qmss_of_match[] = {
  1567. { .compatible = "ti,keystone-navigator-qmss", },
  1568. {},
  1569. };
  1570. MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
  1571. static struct platform_driver keystone_qmss_driver = {
  1572. .probe = knav_queue_probe,
  1573. .remove = knav_queue_remove,
  1574. .driver = {
  1575. .name = "keystone-navigator-qmss",
  1576. .of_match_table = keystone_qmss_of_match,
  1577. },
  1578. };
  1579. module_platform_driver(keystone_qmss_driver);
  1580. MODULE_LICENSE("GPL v2");
  1581. MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
  1582. MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
  1583. MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");