scm_blk.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. /*
  2. * Block driver for s390 storage class memory.
  3. *
  4. * Copyright IBM Corp. 2012
  5. * Author(s): Sebastian Ott <sebott@linux.vnet.ibm.com>
  6. */
  7. #define KMSG_COMPONENT "scm_block"
  8. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  9. #include <linux/interrupt.h>
  10. #include <linux/spinlock.h>
  11. #include <linux/mempool.h>
  12. #include <linux/module.h>
  13. #include <linux/blkdev.h>
  14. #include <linux/blk-mq.h>
  15. #include <linux/genhd.h>
  16. #include <linux/slab.h>
  17. #include <linux/list.h>
  18. #include <asm/eadm.h>
  19. #include "scm_blk.h"
  20. debug_info_t *scm_debug;
  21. static int scm_major;
  22. static mempool_t *aidaw_pool;
  23. static DEFINE_SPINLOCK(list_lock);
  24. static LIST_HEAD(inactive_requests);
  25. static unsigned int nr_requests = 64;
  26. static unsigned int nr_requests_per_io = 8;
  27. static atomic_t nr_devices = ATOMIC_INIT(0);
  28. module_param(nr_requests, uint, S_IRUGO);
  29. MODULE_PARM_DESC(nr_requests, "Number of parallel requests.");
  30. module_param(nr_requests_per_io, uint, S_IRUGO);
  31. MODULE_PARM_DESC(nr_requests_per_io, "Number of requests per IO.");
  32. MODULE_DESCRIPTION("Block driver for s390 storage class memory.");
  33. MODULE_LICENSE("GPL");
  34. MODULE_ALIAS("scm:scmdev*");
  35. static void __scm_free_rq(struct scm_request *scmrq)
  36. {
  37. struct aob_rq_header *aobrq = to_aobrq(scmrq);
  38. free_page((unsigned long) scmrq->aob);
  39. kfree(scmrq->request);
  40. kfree(aobrq);
  41. }
  42. static void scm_free_rqs(void)
  43. {
  44. struct list_head *iter, *safe;
  45. struct scm_request *scmrq;
  46. spin_lock_irq(&list_lock);
  47. list_for_each_safe(iter, safe, &inactive_requests) {
  48. scmrq = list_entry(iter, struct scm_request, list);
  49. list_del(&scmrq->list);
  50. __scm_free_rq(scmrq);
  51. }
  52. spin_unlock_irq(&list_lock);
  53. mempool_destroy(aidaw_pool);
  54. }
  55. static int __scm_alloc_rq(void)
  56. {
  57. struct aob_rq_header *aobrq;
  58. struct scm_request *scmrq;
  59. aobrq = kzalloc(sizeof(*aobrq) + sizeof(*scmrq), GFP_KERNEL);
  60. if (!aobrq)
  61. return -ENOMEM;
  62. scmrq = (void *) aobrq->data;
  63. scmrq->aob = (void *) get_zeroed_page(GFP_DMA);
  64. if (!scmrq->aob)
  65. goto free;
  66. scmrq->request = kcalloc(nr_requests_per_io, sizeof(scmrq->request[0]),
  67. GFP_KERNEL);
  68. if (!scmrq->request)
  69. goto free;
  70. INIT_LIST_HEAD(&scmrq->list);
  71. spin_lock_irq(&list_lock);
  72. list_add(&scmrq->list, &inactive_requests);
  73. spin_unlock_irq(&list_lock);
  74. return 0;
  75. free:
  76. __scm_free_rq(scmrq);
  77. return -ENOMEM;
  78. }
  79. static int scm_alloc_rqs(unsigned int nrqs)
  80. {
  81. int ret = 0;
  82. aidaw_pool = mempool_create_page_pool(max(nrqs/8, 1U), 0);
  83. if (!aidaw_pool)
  84. return -ENOMEM;
  85. while (nrqs-- && !ret)
  86. ret = __scm_alloc_rq();
  87. return ret;
  88. }
  89. static struct scm_request *scm_request_fetch(void)
  90. {
  91. struct scm_request *scmrq = NULL;
  92. spin_lock_irq(&list_lock);
  93. if (list_empty(&inactive_requests))
  94. goto out;
  95. scmrq = list_first_entry(&inactive_requests, struct scm_request, list);
  96. list_del(&scmrq->list);
  97. out:
  98. spin_unlock_irq(&list_lock);
  99. return scmrq;
  100. }
  101. static void scm_request_done(struct scm_request *scmrq)
  102. {
  103. unsigned long flags;
  104. struct msb *msb;
  105. u64 aidaw;
  106. int i;
  107. for (i = 0; i < nr_requests_per_io && scmrq->request[i]; i++) {
  108. msb = &scmrq->aob->msb[i];
  109. aidaw = msb->data_addr;
  110. if ((msb->flags & MSB_FLAG_IDA) && aidaw &&
  111. IS_ALIGNED(aidaw, PAGE_SIZE))
  112. mempool_free(virt_to_page(aidaw), aidaw_pool);
  113. }
  114. spin_lock_irqsave(&list_lock, flags);
  115. list_add(&scmrq->list, &inactive_requests);
  116. spin_unlock_irqrestore(&list_lock, flags);
  117. }
  118. static bool scm_permit_request(struct scm_blk_dev *bdev, struct request *req)
  119. {
  120. return rq_data_dir(req) != WRITE || bdev->state != SCM_WR_PROHIBIT;
  121. }
  122. static inline struct aidaw *scm_aidaw_alloc(void)
  123. {
  124. struct page *page = mempool_alloc(aidaw_pool, GFP_ATOMIC);
  125. return page ? page_address(page) : NULL;
  126. }
  127. static inline unsigned long scm_aidaw_bytes(struct aidaw *aidaw)
  128. {
  129. unsigned long _aidaw = (unsigned long) aidaw;
  130. unsigned long bytes = ALIGN(_aidaw, PAGE_SIZE) - _aidaw;
  131. return (bytes / sizeof(*aidaw)) * PAGE_SIZE;
  132. }
  133. struct aidaw *scm_aidaw_fetch(struct scm_request *scmrq, unsigned int bytes)
  134. {
  135. struct aidaw *aidaw;
  136. if (scm_aidaw_bytes(scmrq->next_aidaw) >= bytes)
  137. return scmrq->next_aidaw;
  138. aidaw = scm_aidaw_alloc();
  139. if (aidaw)
  140. memset(aidaw, 0, PAGE_SIZE);
  141. return aidaw;
  142. }
  143. static int scm_request_prepare(struct scm_request *scmrq)
  144. {
  145. struct scm_blk_dev *bdev = scmrq->bdev;
  146. struct scm_device *scmdev = bdev->gendisk->private_data;
  147. int pos = scmrq->aob->request.msb_count;
  148. struct msb *msb = &scmrq->aob->msb[pos];
  149. struct request *req = scmrq->request[pos];
  150. struct req_iterator iter;
  151. struct aidaw *aidaw;
  152. struct bio_vec bv;
  153. aidaw = scm_aidaw_fetch(scmrq, blk_rq_bytes(req));
  154. if (!aidaw)
  155. return -ENOMEM;
  156. msb->bs = MSB_BS_4K;
  157. scmrq->aob->request.msb_count++;
  158. msb->scm_addr = scmdev->address + ((u64) blk_rq_pos(req) << 9);
  159. msb->oc = (rq_data_dir(req) == READ) ? MSB_OC_READ : MSB_OC_WRITE;
  160. msb->flags |= MSB_FLAG_IDA;
  161. msb->data_addr = (u64) aidaw;
  162. rq_for_each_segment(bv, req, iter) {
  163. WARN_ON(bv.bv_offset);
  164. msb->blk_count += bv.bv_len >> 12;
  165. aidaw->data_addr = (u64) page_address(bv.bv_page);
  166. aidaw++;
  167. }
  168. scmrq->next_aidaw = aidaw;
  169. return 0;
  170. }
  171. static inline void scm_request_set(struct scm_request *scmrq,
  172. struct request *req)
  173. {
  174. scmrq->request[scmrq->aob->request.msb_count] = req;
  175. }
  176. static inline void scm_request_init(struct scm_blk_dev *bdev,
  177. struct scm_request *scmrq)
  178. {
  179. struct aob_rq_header *aobrq = to_aobrq(scmrq);
  180. struct aob *aob = scmrq->aob;
  181. memset(scmrq->request, 0,
  182. nr_requests_per_io * sizeof(scmrq->request[0]));
  183. memset(aob, 0, sizeof(*aob));
  184. aobrq->scmdev = bdev->scmdev;
  185. aob->request.cmd_code = ARQB_CMD_MOVE;
  186. aob->request.data = (u64) aobrq;
  187. scmrq->bdev = bdev;
  188. scmrq->retries = 4;
  189. scmrq->error = BLK_STS_OK;
  190. /* We don't use all msbs - place aidaws at the end of the aob page. */
  191. scmrq->next_aidaw = (void *) &aob->msb[nr_requests_per_io];
  192. }
  193. static void scm_request_requeue(struct scm_request *scmrq)
  194. {
  195. struct scm_blk_dev *bdev = scmrq->bdev;
  196. int i;
  197. for (i = 0; i < nr_requests_per_io && scmrq->request[i]; i++)
  198. blk_mq_requeue_request(scmrq->request[i], false);
  199. atomic_dec(&bdev->queued_reqs);
  200. scm_request_done(scmrq);
  201. blk_mq_kick_requeue_list(bdev->rq);
  202. }
  203. static void scm_request_finish(struct scm_request *scmrq)
  204. {
  205. struct scm_blk_dev *bdev = scmrq->bdev;
  206. blk_status_t *error;
  207. int i;
  208. for (i = 0; i < nr_requests_per_io && scmrq->request[i]; i++) {
  209. error = blk_mq_rq_to_pdu(scmrq->request[i]);
  210. *error = scmrq->error;
  211. blk_mq_complete_request(scmrq->request[i]);
  212. }
  213. atomic_dec(&bdev->queued_reqs);
  214. scm_request_done(scmrq);
  215. }
  216. static void scm_request_start(struct scm_request *scmrq)
  217. {
  218. struct scm_blk_dev *bdev = scmrq->bdev;
  219. atomic_inc(&bdev->queued_reqs);
  220. if (eadm_start_aob(scmrq->aob)) {
  221. SCM_LOG(5, "no subchannel");
  222. scm_request_requeue(scmrq);
  223. }
  224. }
  225. struct scm_queue {
  226. struct scm_request *scmrq;
  227. spinlock_t lock;
  228. };
  229. static blk_status_t scm_blk_request(struct blk_mq_hw_ctx *hctx,
  230. const struct blk_mq_queue_data *qd)
  231. {
  232. struct scm_device *scmdev = hctx->queue->queuedata;
  233. struct scm_blk_dev *bdev = dev_get_drvdata(&scmdev->dev);
  234. struct scm_queue *sq = hctx->driver_data;
  235. struct request *req = qd->rq;
  236. struct scm_request *scmrq;
  237. spin_lock(&sq->lock);
  238. if (!scm_permit_request(bdev, req)) {
  239. spin_unlock(&sq->lock);
  240. return BLK_STS_RESOURCE;
  241. }
  242. scmrq = sq->scmrq;
  243. if (!scmrq) {
  244. scmrq = scm_request_fetch();
  245. if (!scmrq) {
  246. SCM_LOG(5, "no request");
  247. spin_unlock(&sq->lock);
  248. return BLK_STS_RESOURCE;
  249. }
  250. scm_request_init(bdev, scmrq);
  251. sq->scmrq = scmrq;
  252. }
  253. scm_request_set(scmrq, req);
  254. if (scm_request_prepare(scmrq)) {
  255. SCM_LOG(5, "aidaw alloc failed");
  256. scm_request_set(scmrq, NULL);
  257. if (scmrq->aob->request.msb_count)
  258. scm_request_start(scmrq);
  259. sq->scmrq = NULL;
  260. spin_unlock(&sq->lock);
  261. return BLK_STS_RESOURCE;
  262. }
  263. blk_mq_start_request(req);
  264. if (qd->last || scmrq->aob->request.msb_count == nr_requests_per_io) {
  265. scm_request_start(scmrq);
  266. sq->scmrq = NULL;
  267. }
  268. spin_unlock(&sq->lock);
  269. return BLK_STS_OK;
  270. }
  271. static int scm_blk_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  272. unsigned int idx)
  273. {
  274. struct scm_queue *qd = kzalloc(sizeof(*qd), GFP_KERNEL);
  275. if (!qd)
  276. return -ENOMEM;
  277. spin_lock_init(&qd->lock);
  278. hctx->driver_data = qd;
  279. return 0;
  280. }
  281. static void scm_blk_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int idx)
  282. {
  283. struct scm_queue *qd = hctx->driver_data;
  284. WARN_ON(qd->scmrq);
  285. kfree(hctx->driver_data);
  286. hctx->driver_data = NULL;
  287. }
  288. static void __scmrq_log_error(struct scm_request *scmrq)
  289. {
  290. struct aob *aob = scmrq->aob;
  291. if (scmrq->error == BLK_STS_TIMEOUT)
  292. SCM_LOG(1, "Request timeout");
  293. else {
  294. SCM_LOG(1, "Request error");
  295. SCM_LOG_HEX(1, &aob->response, sizeof(aob->response));
  296. }
  297. if (scmrq->retries)
  298. SCM_LOG(1, "Retry request");
  299. else
  300. pr_err("An I/O operation to SCM failed with rc=%d\n",
  301. scmrq->error);
  302. }
  303. static void scm_blk_handle_error(struct scm_request *scmrq)
  304. {
  305. struct scm_blk_dev *bdev = scmrq->bdev;
  306. unsigned long flags;
  307. if (scmrq->error != BLK_STS_IOERR)
  308. goto restart;
  309. /* For -EIO the response block is valid. */
  310. switch (scmrq->aob->response.eqc) {
  311. case EQC_WR_PROHIBIT:
  312. spin_lock_irqsave(&bdev->lock, flags);
  313. if (bdev->state != SCM_WR_PROHIBIT)
  314. pr_info("%lx: Write access to the SCM increment is suspended\n",
  315. (unsigned long) bdev->scmdev->address);
  316. bdev->state = SCM_WR_PROHIBIT;
  317. spin_unlock_irqrestore(&bdev->lock, flags);
  318. goto requeue;
  319. default:
  320. break;
  321. }
  322. restart:
  323. if (!eadm_start_aob(scmrq->aob))
  324. return;
  325. requeue:
  326. scm_request_requeue(scmrq);
  327. }
  328. void scm_blk_irq(struct scm_device *scmdev, void *data, blk_status_t error)
  329. {
  330. struct scm_request *scmrq = data;
  331. scmrq->error = error;
  332. if (error) {
  333. __scmrq_log_error(scmrq);
  334. if (scmrq->retries-- > 0) {
  335. scm_blk_handle_error(scmrq);
  336. return;
  337. }
  338. }
  339. scm_request_finish(scmrq);
  340. }
  341. static void scm_blk_request_done(struct request *req)
  342. {
  343. blk_status_t *error = blk_mq_rq_to_pdu(req);
  344. blk_mq_end_request(req, *error);
  345. }
  346. static const struct block_device_operations scm_blk_devops = {
  347. .owner = THIS_MODULE,
  348. };
  349. static const struct blk_mq_ops scm_mq_ops = {
  350. .queue_rq = scm_blk_request,
  351. .complete = scm_blk_request_done,
  352. .init_hctx = scm_blk_init_hctx,
  353. .exit_hctx = scm_blk_exit_hctx,
  354. };
  355. int scm_blk_dev_setup(struct scm_blk_dev *bdev, struct scm_device *scmdev)
  356. {
  357. unsigned int devindex, nr_max_blk;
  358. struct request_queue *rq;
  359. int len, ret;
  360. devindex = atomic_inc_return(&nr_devices) - 1;
  361. /* scma..scmz + scmaa..scmzz */
  362. if (devindex > 701) {
  363. ret = -ENODEV;
  364. goto out;
  365. }
  366. bdev->scmdev = scmdev;
  367. bdev->state = SCM_OPER;
  368. spin_lock_init(&bdev->lock);
  369. atomic_set(&bdev->queued_reqs, 0);
  370. bdev->tag_set.ops = &scm_mq_ops;
  371. bdev->tag_set.cmd_size = sizeof(blk_status_t);
  372. bdev->tag_set.nr_hw_queues = nr_requests;
  373. bdev->tag_set.queue_depth = nr_requests_per_io * nr_requests;
  374. bdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
  375. ret = blk_mq_alloc_tag_set(&bdev->tag_set);
  376. if (ret)
  377. goto out;
  378. rq = blk_mq_init_queue(&bdev->tag_set);
  379. if (IS_ERR(rq)) {
  380. ret = PTR_ERR(rq);
  381. goto out_tag;
  382. }
  383. bdev->rq = rq;
  384. nr_max_blk = min(scmdev->nr_max_block,
  385. (unsigned int) (PAGE_SIZE / sizeof(struct aidaw)));
  386. blk_queue_logical_block_size(rq, 1 << 12);
  387. blk_queue_max_hw_sectors(rq, nr_max_blk << 3); /* 8 * 512 = blk_size */
  388. blk_queue_max_segments(rq, nr_max_blk);
  389. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, rq);
  390. queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, rq);
  391. bdev->gendisk = alloc_disk(SCM_NR_PARTS);
  392. if (!bdev->gendisk) {
  393. ret = -ENOMEM;
  394. goto out_queue;
  395. }
  396. rq->queuedata = scmdev;
  397. bdev->gendisk->private_data = scmdev;
  398. bdev->gendisk->fops = &scm_blk_devops;
  399. bdev->gendisk->queue = rq;
  400. bdev->gendisk->major = scm_major;
  401. bdev->gendisk->first_minor = devindex * SCM_NR_PARTS;
  402. len = snprintf(bdev->gendisk->disk_name, DISK_NAME_LEN, "scm");
  403. if (devindex > 25) {
  404. len += snprintf(bdev->gendisk->disk_name + len,
  405. DISK_NAME_LEN - len, "%c",
  406. 'a' + (devindex / 26) - 1);
  407. devindex = devindex % 26;
  408. }
  409. snprintf(bdev->gendisk->disk_name + len, DISK_NAME_LEN - len, "%c",
  410. 'a' + devindex);
  411. /* 512 byte sectors */
  412. set_capacity(bdev->gendisk, scmdev->size >> 9);
  413. device_add_disk(&scmdev->dev, bdev->gendisk);
  414. return 0;
  415. out_queue:
  416. blk_cleanup_queue(rq);
  417. out_tag:
  418. blk_mq_free_tag_set(&bdev->tag_set);
  419. out:
  420. atomic_dec(&nr_devices);
  421. return ret;
  422. }
  423. void scm_blk_dev_cleanup(struct scm_blk_dev *bdev)
  424. {
  425. del_gendisk(bdev->gendisk);
  426. blk_cleanup_queue(bdev->gendisk->queue);
  427. blk_mq_free_tag_set(&bdev->tag_set);
  428. put_disk(bdev->gendisk);
  429. }
  430. void scm_blk_set_available(struct scm_blk_dev *bdev)
  431. {
  432. unsigned long flags;
  433. spin_lock_irqsave(&bdev->lock, flags);
  434. if (bdev->state == SCM_WR_PROHIBIT)
  435. pr_info("%lx: Write access to the SCM increment is restored\n",
  436. (unsigned long) bdev->scmdev->address);
  437. bdev->state = SCM_OPER;
  438. spin_unlock_irqrestore(&bdev->lock, flags);
  439. }
  440. static bool __init scm_blk_params_valid(void)
  441. {
  442. if (!nr_requests_per_io || nr_requests_per_io > 64)
  443. return false;
  444. return true;
  445. }
  446. static int __init scm_blk_init(void)
  447. {
  448. int ret = -EINVAL;
  449. if (!scm_blk_params_valid())
  450. goto out;
  451. ret = register_blkdev(0, "scm");
  452. if (ret < 0)
  453. goto out;
  454. scm_major = ret;
  455. ret = scm_alloc_rqs(nr_requests);
  456. if (ret)
  457. goto out_free;
  458. scm_debug = debug_register("scm_log", 16, 1, 16);
  459. if (!scm_debug) {
  460. ret = -ENOMEM;
  461. goto out_free;
  462. }
  463. debug_register_view(scm_debug, &debug_hex_ascii_view);
  464. debug_set_level(scm_debug, 2);
  465. ret = scm_drv_init();
  466. if (ret)
  467. goto out_dbf;
  468. return ret;
  469. out_dbf:
  470. debug_unregister(scm_debug);
  471. out_free:
  472. scm_free_rqs();
  473. unregister_blkdev(scm_major, "scm");
  474. out:
  475. return ret;
  476. }
  477. module_init(scm_blk_init);
  478. static void __exit scm_blk_cleanup(void)
  479. {
  480. scm_drv_cleanup();
  481. debug_unregister(scm_debug);
  482. scm_free_rqs();
  483. unregister_blkdev(scm_major, "scm");
  484. }
  485. module_exit(scm_blk_cleanup);