pwm-lpss.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. /*
  2. * Intel Low Power Subsystem PWM controller driver
  3. *
  4. * Copyright (C) 2014, Intel Corporation
  5. * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
  6. * Author: Chew Kean Ho <kean.ho.chew@intel.com>
  7. * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
  8. * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
  9. * Author: Alan Cox <alan@linux.intel.com>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License version 2 as
  13. * published by the Free Software Foundation.
  14. */
  15. #include <linux/delay.h>
  16. #include <linux/io.h>
  17. #include <linux/iopoll.h>
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/pm_runtime.h>
  21. #include <linux/time.h>
  22. #include "pwm-lpss.h"
  23. #define PWM 0x00000000
  24. #define PWM_ENABLE BIT(31)
  25. #define PWM_SW_UPDATE BIT(30)
  26. #define PWM_BASE_UNIT_SHIFT 8
  27. #define PWM_ON_TIME_DIV_MASK 0x000000ff
  28. /* Size of each PWM register space if multiple */
  29. #define PWM_SIZE 0x400
  30. struct pwm_lpss_chip {
  31. struct pwm_chip chip;
  32. void __iomem *regs;
  33. const struct pwm_lpss_boardinfo *info;
  34. };
  35. static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
  36. {
  37. return container_of(chip, struct pwm_lpss_chip, chip);
  38. }
  39. static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
  40. {
  41. struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
  42. return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
  43. }
  44. static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
  45. {
  46. struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
  47. writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
  48. }
  49. static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
  50. {
  51. struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
  52. const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
  53. const unsigned int ms = 500 * USEC_PER_MSEC;
  54. u32 val;
  55. int err;
  56. /*
  57. * PWM Configuration register has SW_UPDATE bit that is set when a new
  58. * configuration is written to the register. The bit is automatically
  59. * cleared at the start of the next output cycle by the IP block.
  60. *
  61. * If one writes a new configuration to the register while it still has
  62. * the bit enabled, PWM may freeze. That is, while one can still write
  63. * to the register, it won't have an effect. Thus, we try to sleep long
  64. * enough that the bit gets cleared and make sure the bit is not
  65. * enabled while we update the configuration.
  66. */
  67. err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
  68. if (err)
  69. dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
  70. return err;
  71. }
  72. static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
  73. {
  74. return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
  75. }
  76. static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
  77. int duty_ns, int period_ns)
  78. {
  79. unsigned long long on_time_div;
  80. unsigned long c = lpwm->info->clk_rate, base_unit_range;
  81. unsigned long long base_unit, freq = NSEC_PER_SEC;
  82. u32 ctrl;
  83. do_div(freq, period_ns);
  84. /*
  85. * The equation is:
  86. * base_unit = round(base_unit_range * freq / c)
  87. */
  88. base_unit_range = BIT(lpwm->info->base_unit_bits) - 1;
  89. freq *= base_unit_range;
  90. base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
  91. on_time_div = 255ULL * duty_ns;
  92. do_div(on_time_div, period_ns);
  93. on_time_div = 255ULL - on_time_div;
  94. ctrl = pwm_lpss_read(pwm);
  95. ctrl &= ~PWM_ON_TIME_DIV_MASK;
  96. ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT);
  97. base_unit &= base_unit_range;
  98. ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
  99. ctrl |= on_time_div;
  100. pwm_lpss_write(pwm, ctrl);
  101. }
  102. static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
  103. {
  104. if (cond)
  105. pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
  106. }
  107. static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
  108. struct pwm_state *state)
  109. {
  110. struct pwm_lpss_chip *lpwm = to_lpwm(chip);
  111. int ret;
  112. if (state->enabled) {
  113. if (!pwm_is_enabled(pwm)) {
  114. pm_runtime_get_sync(chip->dev);
  115. ret = pwm_lpss_is_updating(pwm);
  116. if (ret) {
  117. pm_runtime_put(chip->dev);
  118. return ret;
  119. }
  120. pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
  121. pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_SW_UPDATE);
  122. pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
  123. ret = pwm_lpss_wait_for_update(pwm);
  124. if (ret) {
  125. pm_runtime_put(chip->dev);
  126. return ret;
  127. }
  128. pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
  129. } else {
  130. ret = pwm_lpss_is_updating(pwm);
  131. if (ret)
  132. return ret;
  133. pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
  134. pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_SW_UPDATE);
  135. return pwm_lpss_wait_for_update(pwm);
  136. }
  137. } else if (pwm_is_enabled(pwm)) {
  138. pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
  139. pm_runtime_put(chip->dev);
  140. }
  141. return 0;
  142. }
  143. static const struct pwm_ops pwm_lpss_ops = {
  144. .apply = pwm_lpss_apply,
  145. .owner = THIS_MODULE,
  146. };
  147. struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
  148. const struct pwm_lpss_boardinfo *info)
  149. {
  150. struct pwm_lpss_chip *lpwm;
  151. unsigned long c;
  152. int ret;
  153. lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
  154. if (!lpwm)
  155. return ERR_PTR(-ENOMEM);
  156. lpwm->regs = devm_ioremap_resource(dev, r);
  157. if (IS_ERR(lpwm->regs))
  158. return ERR_CAST(lpwm->regs);
  159. lpwm->info = info;
  160. c = lpwm->info->clk_rate;
  161. if (!c)
  162. return ERR_PTR(-EINVAL);
  163. lpwm->chip.dev = dev;
  164. lpwm->chip.ops = &pwm_lpss_ops;
  165. lpwm->chip.base = -1;
  166. lpwm->chip.npwm = info->npwm;
  167. ret = pwmchip_add(&lpwm->chip);
  168. if (ret) {
  169. dev_err(dev, "failed to add PWM chip: %d\n", ret);
  170. return ERR_PTR(ret);
  171. }
  172. return lpwm;
  173. }
  174. EXPORT_SYMBOL_GPL(pwm_lpss_probe);
  175. int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
  176. {
  177. return pwmchip_remove(&lpwm->chip);
  178. }
  179. EXPORT_SYMBOL_GPL(pwm_lpss_remove);
  180. MODULE_DESCRIPTION("PWM driver for Intel LPSS");
  181. MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
  182. MODULE_LICENSE("GPL v2");