core.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280
  1. /*
  2. * Core driver for the pin control subsystem
  3. *
  4. * Copyright (C) 2011-2012 ST-Ericsson SA
  5. * Written on behalf of Linaro for ST-Ericsson
  6. * Based on bits of regulator core, gpio core and clk core
  7. *
  8. * Author: Linus Walleij <linus.walleij@linaro.org>
  9. *
  10. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11. *
  12. * License terms: GNU General Public License (GPL) version 2
  13. */
  14. #define pr_fmt(fmt) "pinctrl core: " fmt
  15. #include <linux/kernel.h>
  16. #include <linux/kref.h>
  17. #include <linux/export.h>
  18. #include <linux/init.h>
  19. #include <linux/device.h>
  20. #include <linux/slab.h>
  21. #include <linux/err.h>
  22. #include <linux/list.h>
  23. #include <linux/sysfs.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/pinctrl/consumer.h>
  27. #include <linux/pinctrl/pinctrl.h>
  28. #include <linux/pinctrl/machine.h>
  29. #ifdef CONFIG_GPIOLIB
  30. #include <asm-generic/gpio.h>
  31. #endif
  32. #include "core.h"
  33. #include "devicetree.h"
  34. #include "pinmux.h"
  35. #include "pinconf.h"
  36. static bool pinctrl_dummy_state;
  37. /* Mutex taken to protect pinctrl_list */
  38. static DEFINE_MUTEX(pinctrl_list_mutex);
  39. /* Mutex taken to protect pinctrl_maps */
  40. DEFINE_MUTEX(pinctrl_maps_mutex);
  41. /* Mutex taken to protect pinctrldev_list */
  42. static DEFINE_MUTEX(pinctrldev_list_mutex);
  43. /* Global list of pin control devices (struct pinctrl_dev) */
  44. static LIST_HEAD(pinctrldev_list);
  45. /* List of pin controller handles (struct pinctrl) */
  46. static LIST_HEAD(pinctrl_list);
  47. /* List of pinctrl maps (struct pinctrl_maps) */
  48. LIST_HEAD(pinctrl_maps);
  49. /**
  50. * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  51. *
  52. * Usually this function is called by platforms without pinctrl driver support
  53. * but run with some shared drivers using pinctrl APIs.
  54. * After calling this function, the pinctrl core will return successfully
  55. * with creating a dummy state for the driver to keep going smoothly.
  56. */
  57. void pinctrl_provide_dummies(void)
  58. {
  59. pinctrl_dummy_state = true;
  60. }
  61. const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  62. {
  63. /* We're not allowed to register devices without name */
  64. return pctldev->desc->name;
  65. }
  66. EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  67. const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  68. {
  69. return dev_name(pctldev->dev);
  70. }
  71. EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  72. void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  73. {
  74. return pctldev->driver_data;
  75. }
  76. EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  77. /**
  78. * get_pinctrl_dev_from_devname() - look up pin controller device
  79. * @devname: the name of a device instance, as returned by dev_name()
  80. *
  81. * Looks up a pin control device matching a certain device name or pure device
  82. * pointer, the pure device pointer will take precedence.
  83. */
  84. struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
  85. {
  86. struct pinctrl_dev *pctldev = NULL;
  87. if (!devname)
  88. return NULL;
  89. mutex_lock(&pinctrldev_list_mutex);
  90. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  91. if (!strcmp(dev_name(pctldev->dev), devname)) {
  92. /* Matched on device name */
  93. mutex_unlock(&pinctrldev_list_mutex);
  94. return pctldev;
  95. }
  96. }
  97. mutex_unlock(&pinctrldev_list_mutex);
  98. return NULL;
  99. }
  100. struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
  101. {
  102. struct pinctrl_dev *pctldev;
  103. mutex_lock(&pinctrldev_list_mutex);
  104. list_for_each_entry(pctldev, &pinctrldev_list, node)
  105. if (pctldev->dev->of_node == np) {
  106. mutex_unlock(&pinctrldev_list_mutex);
  107. return pctldev;
  108. }
  109. mutex_unlock(&pinctrldev_list_mutex);
  110. return NULL;
  111. }
  112. /**
  113. * pin_get_from_name() - look up a pin number from a name
  114. * @pctldev: the pin control device to lookup the pin on
  115. * @name: the name of the pin to look up
  116. */
  117. int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
  118. {
  119. unsigned i, pin;
  120. /* The pin number can be retrived from the pin controller descriptor */
  121. for (i = 0; i < pctldev->desc->npins; i++) {
  122. struct pin_desc *desc;
  123. pin = pctldev->desc->pins[i].number;
  124. desc = pin_desc_get(pctldev, pin);
  125. /* Pin space may be sparse */
  126. if (desc && !strcmp(name, desc->name))
  127. return pin;
  128. }
  129. return -EINVAL;
  130. }
  131. /**
  132. * pin_get_name_from_id() - look up a pin name from a pin id
  133. * @pctldev: the pin control device to lookup the pin on
  134. * @name: the name of the pin to look up
  135. */
  136. const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
  137. {
  138. const struct pin_desc *desc;
  139. desc = pin_desc_get(pctldev, pin);
  140. if (!desc) {
  141. dev_err(pctldev->dev, "failed to get pin(%d) name\n",
  142. pin);
  143. return NULL;
  144. }
  145. return desc->name;
  146. }
  147. /**
  148. * pin_is_valid() - check if pin exists on controller
  149. * @pctldev: the pin control device to check the pin on
  150. * @pin: pin to check, use the local pin controller index number
  151. *
  152. * This tells us whether a certain pin exist on a certain pin controller or
  153. * not. Pin lists may be sparse, so some pins may not exist.
  154. */
  155. bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
  156. {
  157. struct pin_desc *pindesc;
  158. if (pin < 0)
  159. return false;
  160. mutex_lock(&pctldev->mutex);
  161. pindesc = pin_desc_get(pctldev, pin);
  162. mutex_unlock(&pctldev->mutex);
  163. return pindesc != NULL;
  164. }
  165. EXPORT_SYMBOL_GPL(pin_is_valid);
  166. /* Deletes a range of pin descriptors */
  167. static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
  168. const struct pinctrl_pin_desc *pins,
  169. unsigned num_pins)
  170. {
  171. int i;
  172. for (i = 0; i < num_pins; i++) {
  173. struct pin_desc *pindesc;
  174. pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
  175. pins[i].number);
  176. if (pindesc) {
  177. radix_tree_delete(&pctldev->pin_desc_tree,
  178. pins[i].number);
  179. if (pindesc->dynamic_name)
  180. kfree(pindesc->name);
  181. }
  182. kfree(pindesc);
  183. }
  184. }
  185. static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
  186. const struct pinctrl_pin_desc *pin)
  187. {
  188. struct pin_desc *pindesc;
  189. pindesc = pin_desc_get(pctldev, pin->number);
  190. if (pindesc) {
  191. dev_err(pctldev->dev, "pin %d already registered\n",
  192. pin->number);
  193. return -EINVAL;
  194. }
  195. pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
  196. if (!pindesc)
  197. return -ENOMEM;
  198. /* Set owner */
  199. pindesc->pctldev = pctldev;
  200. /* Copy basic pin info */
  201. if (pin->name) {
  202. pindesc->name = pin->name;
  203. } else {
  204. pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
  205. if (!pindesc->name) {
  206. kfree(pindesc);
  207. return -ENOMEM;
  208. }
  209. pindesc->dynamic_name = true;
  210. }
  211. pindesc->drv_data = pin->drv_data;
  212. radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
  213. pr_debug("registered pin %d (%s) on %s\n",
  214. pin->number, pindesc->name, pctldev->desc->name);
  215. return 0;
  216. }
  217. static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
  218. const struct pinctrl_pin_desc *pins,
  219. unsigned num_descs)
  220. {
  221. unsigned i;
  222. int ret = 0;
  223. for (i = 0; i < num_descs; i++) {
  224. ret = pinctrl_register_one_pin(pctldev, &pins[i]);
  225. if (ret)
  226. return ret;
  227. }
  228. return 0;
  229. }
  230. /**
  231. * gpio_to_pin() - GPIO range GPIO number to pin number translation
  232. * @range: GPIO range used for the translation
  233. * @gpio: gpio pin to translate to a pin number
  234. *
  235. * Finds the pin number for a given GPIO using the specified GPIO range
  236. * as a base for translation. The distinction between linear GPIO ranges
  237. * and pin list based GPIO ranges is managed correctly by this function.
  238. *
  239. * This function assumes the gpio is part of the specified GPIO range, use
  240. * only after making sure this is the case (e.g. by calling it on the
  241. * result of successful pinctrl_get_device_gpio_range calls)!
  242. */
  243. static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
  244. unsigned int gpio)
  245. {
  246. unsigned int offset = gpio - range->base;
  247. if (range->pins)
  248. return range->pins[offset];
  249. else
  250. return range->pin_base + offset;
  251. }
  252. /**
  253. * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
  254. * @pctldev: pin controller device to check
  255. * @gpio: gpio pin to check taken from the global GPIO pin space
  256. *
  257. * Tries to match a GPIO pin number to the ranges handled by a certain pin
  258. * controller, return the range or NULL
  259. */
  260. static struct pinctrl_gpio_range *
  261. pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
  262. {
  263. struct pinctrl_gpio_range *range = NULL;
  264. mutex_lock(&pctldev->mutex);
  265. /* Loop over the ranges */
  266. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  267. /* Check if we're in the valid range */
  268. if (gpio >= range->base &&
  269. gpio < range->base + range->npins) {
  270. mutex_unlock(&pctldev->mutex);
  271. return range;
  272. }
  273. }
  274. mutex_unlock(&pctldev->mutex);
  275. return NULL;
  276. }
  277. /**
  278. * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
  279. * the same GPIO chip are in range
  280. * @gpio: gpio pin to check taken from the global GPIO pin space
  281. *
  282. * This function is complement of pinctrl_match_gpio_range(). If the return
  283. * value of pinctrl_match_gpio_range() is NULL, this function could be used
  284. * to check whether pinctrl device is ready or not. Maybe some GPIO pins
  285. * of the same GPIO chip don't have back-end pinctrl interface.
  286. * If the return value is true, it means that pinctrl device is ready & the
  287. * certain GPIO pin doesn't have back-end pinctrl device. If the return value
  288. * is false, it means that pinctrl device may not be ready.
  289. */
  290. #ifdef CONFIG_GPIOLIB
  291. static bool pinctrl_ready_for_gpio_range(unsigned gpio)
  292. {
  293. struct pinctrl_dev *pctldev;
  294. struct pinctrl_gpio_range *range = NULL;
  295. struct gpio_chip *chip = gpio_to_chip(gpio);
  296. if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
  297. return false;
  298. mutex_lock(&pinctrldev_list_mutex);
  299. /* Loop over the pin controllers */
  300. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  301. /* Loop over the ranges */
  302. mutex_lock(&pctldev->mutex);
  303. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  304. /* Check if any gpio range overlapped with gpio chip */
  305. if (range->base + range->npins - 1 < chip->base ||
  306. range->base > chip->base + chip->ngpio - 1)
  307. continue;
  308. mutex_unlock(&pctldev->mutex);
  309. mutex_unlock(&pinctrldev_list_mutex);
  310. return true;
  311. }
  312. mutex_unlock(&pctldev->mutex);
  313. }
  314. mutex_unlock(&pinctrldev_list_mutex);
  315. return false;
  316. }
  317. #else
  318. static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
  319. #endif
  320. /**
  321. * pinctrl_get_device_gpio_range() - find device for GPIO range
  322. * @gpio: the pin to locate the pin controller for
  323. * @outdev: the pin control device if found
  324. * @outrange: the GPIO range if found
  325. *
  326. * Find the pin controller handling a certain GPIO pin from the pinspace of
  327. * the GPIO subsystem, return the device and the matching GPIO range. Returns
  328. * -EPROBE_DEFER if the GPIO range could not be found in any device since it
  329. * may still have not been registered.
  330. */
  331. static int pinctrl_get_device_gpio_range(unsigned gpio,
  332. struct pinctrl_dev **outdev,
  333. struct pinctrl_gpio_range **outrange)
  334. {
  335. struct pinctrl_dev *pctldev = NULL;
  336. mutex_lock(&pinctrldev_list_mutex);
  337. /* Loop over the pin controllers */
  338. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  339. struct pinctrl_gpio_range *range;
  340. range = pinctrl_match_gpio_range(pctldev, gpio);
  341. if (range) {
  342. *outdev = pctldev;
  343. *outrange = range;
  344. mutex_unlock(&pinctrldev_list_mutex);
  345. return 0;
  346. }
  347. }
  348. mutex_unlock(&pinctrldev_list_mutex);
  349. return -EPROBE_DEFER;
  350. }
  351. /**
  352. * pinctrl_add_gpio_range() - register a GPIO range for a controller
  353. * @pctldev: pin controller device to add the range to
  354. * @range: the GPIO range to add
  355. *
  356. * This adds a range of GPIOs to be handled by a certain pin controller. Call
  357. * this to register handled ranges after registering your pin controller.
  358. */
  359. void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
  360. struct pinctrl_gpio_range *range)
  361. {
  362. mutex_lock(&pctldev->mutex);
  363. list_add_tail(&range->node, &pctldev->gpio_ranges);
  364. mutex_unlock(&pctldev->mutex);
  365. }
  366. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
  367. void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
  368. struct pinctrl_gpio_range *ranges,
  369. unsigned nranges)
  370. {
  371. int i;
  372. for (i = 0; i < nranges; i++)
  373. pinctrl_add_gpio_range(pctldev, &ranges[i]);
  374. }
  375. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
  376. struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
  377. struct pinctrl_gpio_range *range)
  378. {
  379. struct pinctrl_dev *pctldev;
  380. pctldev = get_pinctrl_dev_from_devname(devname);
  381. /*
  382. * If we can't find this device, let's assume that is because
  383. * it has not probed yet, so the driver trying to register this
  384. * range need to defer probing.
  385. */
  386. if (!pctldev) {
  387. return ERR_PTR(-EPROBE_DEFER);
  388. }
  389. pinctrl_add_gpio_range(pctldev, range);
  390. return pctldev;
  391. }
  392. EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
  393. int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
  394. const unsigned **pins, unsigned *num_pins)
  395. {
  396. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  397. int gs;
  398. if (!pctlops->get_group_pins)
  399. return -EINVAL;
  400. gs = pinctrl_get_group_selector(pctldev, pin_group);
  401. if (gs < 0)
  402. return gs;
  403. return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
  404. }
  405. EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
  406. struct pinctrl_gpio_range *
  407. pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
  408. unsigned int pin)
  409. {
  410. struct pinctrl_gpio_range *range;
  411. /* Loop over the ranges */
  412. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  413. /* Check if we're in the valid range */
  414. if (range->pins) {
  415. int a;
  416. for (a = 0; a < range->npins; a++) {
  417. if (range->pins[a] == pin)
  418. return range;
  419. }
  420. } else if (pin >= range->pin_base &&
  421. pin < range->pin_base + range->npins)
  422. return range;
  423. }
  424. return NULL;
  425. }
  426. EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
  427. /**
  428. * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
  429. * @pctldev: the pin controller device to look in
  430. * @pin: a controller-local number to find the range for
  431. */
  432. struct pinctrl_gpio_range *
  433. pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
  434. unsigned int pin)
  435. {
  436. struct pinctrl_gpio_range *range;
  437. mutex_lock(&pctldev->mutex);
  438. range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
  439. mutex_unlock(&pctldev->mutex);
  440. return range;
  441. }
  442. EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
  443. /**
  444. * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
  445. * @pctldev: pin controller device to remove the range from
  446. * @range: the GPIO range to remove
  447. */
  448. void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
  449. struct pinctrl_gpio_range *range)
  450. {
  451. mutex_lock(&pctldev->mutex);
  452. list_del(&range->node);
  453. mutex_unlock(&pctldev->mutex);
  454. }
  455. EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
  456. #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
  457. /**
  458. * pinctrl_generic_get_group_count() - returns the number of pin groups
  459. * @pctldev: pin controller device
  460. */
  461. int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
  462. {
  463. return pctldev->num_groups;
  464. }
  465. EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
  466. /**
  467. * pinctrl_generic_get_group_name() - returns the name of a pin group
  468. * @pctldev: pin controller device
  469. * @selector: group number
  470. */
  471. const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
  472. unsigned int selector)
  473. {
  474. struct group_desc *group;
  475. group = radix_tree_lookup(&pctldev->pin_group_tree,
  476. selector);
  477. if (!group)
  478. return NULL;
  479. return group->name;
  480. }
  481. EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
  482. /**
  483. * pinctrl_generic_get_group_pins() - gets the pin group pins
  484. * @pctldev: pin controller device
  485. * @selector: group number
  486. * @pins: pins in the group
  487. * @num_pins: number of pins in the group
  488. */
  489. int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
  490. unsigned int selector,
  491. const unsigned int **pins,
  492. unsigned int *num_pins)
  493. {
  494. struct group_desc *group;
  495. group = radix_tree_lookup(&pctldev->pin_group_tree,
  496. selector);
  497. if (!group) {
  498. dev_err(pctldev->dev, "%s could not find pingroup%i\n",
  499. __func__, selector);
  500. return -EINVAL;
  501. }
  502. *pins = group->pins;
  503. *num_pins = group->num_pins;
  504. return 0;
  505. }
  506. EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
  507. /**
  508. * pinctrl_generic_get_group() - returns a pin group based on the number
  509. * @pctldev: pin controller device
  510. * @gselector: group number
  511. */
  512. struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
  513. unsigned int selector)
  514. {
  515. struct group_desc *group;
  516. group = radix_tree_lookup(&pctldev->pin_group_tree,
  517. selector);
  518. if (!group)
  519. return NULL;
  520. return group;
  521. }
  522. EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
  523. /**
  524. * pinctrl_generic_add_group() - adds a new pin group
  525. * @pctldev: pin controller device
  526. * @name: name of the pin group
  527. * @pins: pins in the pin group
  528. * @num_pins: number of pins in the pin group
  529. * @data: pin controller driver specific data
  530. *
  531. * Note that the caller must take care of locking.
  532. */
  533. int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
  534. int *pins, int num_pins, void *data)
  535. {
  536. struct group_desc *group;
  537. group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
  538. if (!group)
  539. return -ENOMEM;
  540. group->name = name;
  541. group->pins = pins;
  542. group->num_pins = num_pins;
  543. group->data = data;
  544. radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
  545. group);
  546. pctldev->num_groups++;
  547. return 0;
  548. }
  549. EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
  550. /**
  551. * pinctrl_generic_remove_group() - removes a numbered pin group
  552. * @pctldev: pin controller device
  553. * @selector: group number
  554. *
  555. * Note that the caller must take care of locking.
  556. */
  557. int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
  558. unsigned int selector)
  559. {
  560. struct group_desc *group;
  561. group = radix_tree_lookup(&pctldev->pin_group_tree,
  562. selector);
  563. if (!group)
  564. return -ENOENT;
  565. radix_tree_delete(&pctldev->pin_group_tree, selector);
  566. devm_kfree(pctldev->dev, group);
  567. pctldev->num_groups--;
  568. return 0;
  569. }
  570. EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
  571. /**
  572. * pinctrl_generic_free_groups() - removes all pin groups
  573. * @pctldev: pin controller device
  574. *
  575. * Note that the caller must take care of locking. The pinctrl groups
  576. * are allocated with devm_kzalloc() so no need to free them here.
  577. */
  578. static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
  579. {
  580. struct radix_tree_iter iter;
  581. void __rcu **slot;
  582. radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
  583. radix_tree_delete(&pctldev->pin_group_tree, iter.index);
  584. pctldev->num_groups = 0;
  585. }
  586. #else
  587. static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
  588. {
  589. }
  590. #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
  591. /**
  592. * pinctrl_get_group_selector() - returns the group selector for a group
  593. * @pctldev: the pin controller handling the group
  594. * @pin_group: the pin group to look up
  595. */
  596. int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
  597. const char *pin_group)
  598. {
  599. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  600. unsigned ngroups = pctlops->get_groups_count(pctldev);
  601. unsigned group_selector = 0;
  602. while (group_selector < ngroups) {
  603. const char *gname = pctlops->get_group_name(pctldev,
  604. group_selector);
  605. if (!strcmp(gname, pin_group)) {
  606. dev_dbg(pctldev->dev,
  607. "found group selector %u for %s\n",
  608. group_selector,
  609. pin_group);
  610. return group_selector;
  611. }
  612. group_selector++;
  613. }
  614. dev_err(pctldev->dev, "does not have pin group %s\n",
  615. pin_group);
  616. return -EINVAL;
  617. }
  618. /**
  619. * pinctrl_request_gpio() - request a single pin to be used as GPIO
  620. * @gpio: the GPIO pin number from the GPIO subsystem number space
  621. *
  622. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  623. * as part of their gpio_request() semantics, platforms and individual drivers
  624. * shall *NOT* request GPIO pins to be muxed in.
  625. */
  626. int pinctrl_request_gpio(unsigned gpio)
  627. {
  628. struct pinctrl_dev *pctldev;
  629. struct pinctrl_gpio_range *range;
  630. int ret;
  631. int pin;
  632. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  633. if (ret) {
  634. if (pinctrl_ready_for_gpio_range(gpio))
  635. ret = 0;
  636. return ret;
  637. }
  638. mutex_lock(&pctldev->mutex);
  639. /* Convert to the pin controllers number space */
  640. pin = gpio_to_pin(range, gpio);
  641. ret = pinmux_request_gpio(pctldev, range, pin, gpio);
  642. mutex_unlock(&pctldev->mutex);
  643. return ret;
  644. }
  645. EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
  646. /**
  647. * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
  648. * @gpio: the GPIO pin number from the GPIO subsystem number space
  649. *
  650. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  651. * as part of their gpio_free() semantics, platforms and individual drivers
  652. * shall *NOT* request GPIO pins to be muxed out.
  653. */
  654. void pinctrl_free_gpio(unsigned gpio)
  655. {
  656. struct pinctrl_dev *pctldev;
  657. struct pinctrl_gpio_range *range;
  658. int ret;
  659. int pin;
  660. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  661. if (ret) {
  662. return;
  663. }
  664. mutex_lock(&pctldev->mutex);
  665. /* Convert to the pin controllers number space */
  666. pin = gpio_to_pin(range, gpio);
  667. pinmux_free_gpio(pctldev, pin, range);
  668. mutex_unlock(&pctldev->mutex);
  669. }
  670. EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
  671. static int pinctrl_gpio_direction(unsigned gpio, bool input)
  672. {
  673. struct pinctrl_dev *pctldev;
  674. struct pinctrl_gpio_range *range;
  675. int ret;
  676. int pin;
  677. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  678. if (ret) {
  679. return ret;
  680. }
  681. mutex_lock(&pctldev->mutex);
  682. /* Convert to the pin controllers number space */
  683. pin = gpio_to_pin(range, gpio);
  684. ret = pinmux_gpio_direction(pctldev, range, pin, input);
  685. mutex_unlock(&pctldev->mutex);
  686. return ret;
  687. }
  688. /**
  689. * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
  690. * @gpio: the GPIO pin number from the GPIO subsystem number space
  691. *
  692. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  693. * as part of their gpio_direction_input() semantics, platforms and individual
  694. * drivers shall *NOT* touch pin control GPIO calls.
  695. */
  696. int pinctrl_gpio_direction_input(unsigned gpio)
  697. {
  698. return pinctrl_gpio_direction(gpio, true);
  699. }
  700. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
  701. /**
  702. * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
  703. * @gpio: the GPIO pin number from the GPIO subsystem number space
  704. *
  705. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  706. * as part of their gpio_direction_output() semantics, platforms and individual
  707. * drivers shall *NOT* touch pin control GPIO calls.
  708. */
  709. int pinctrl_gpio_direction_output(unsigned gpio)
  710. {
  711. return pinctrl_gpio_direction(gpio, false);
  712. }
  713. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
  714. /**
  715. * pinctrl_gpio_set_config() - Apply config to given GPIO pin
  716. * @gpio: the GPIO pin number from the GPIO subsystem number space
  717. * @config: the configuration to apply to the GPIO
  718. *
  719. * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
  720. * they need to call the underlying pin controller to change GPIO config
  721. * (for example set debounce time).
  722. */
  723. int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
  724. {
  725. unsigned long configs[] = { config };
  726. struct pinctrl_gpio_range *range;
  727. struct pinctrl_dev *pctldev;
  728. int ret, pin;
  729. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  730. if (ret)
  731. return ret;
  732. mutex_lock(&pctldev->mutex);
  733. pin = gpio_to_pin(range, gpio);
  734. ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
  735. mutex_unlock(&pctldev->mutex);
  736. return ret;
  737. }
  738. EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
  739. static struct pinctrl_state *find_state(struct pinctrl *p,
  740. const char *name)
  741. {
  742. struct pinctrl_state *state;
  743. list_for_each_entry(state, &p->states, node)
  744. if (!strcmp(state->name, name))
  745. return state;
  746. return NULL;
  747. }
  748. static struct pinctrl_state *create_state(struct pinctrl *p,
  749. const char *name)
  750. {
  751. struct pinctrl_state *state;
  752. state = kzalloc(sizeof(*state), GFP_KERNEL);
  753. if (!state)
  754. return ERR_PTR(-ENOMEM);
  755. state->name = name;
  756. INIT_LIST_HEAD(&state->settings);
  757. list_add_tail(&state->node, &p->states);
  758. return state;
  759. }
  760. static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
  761. const struct pinctrl_map *map)
  762. {
  763. struct pinctrl_state *state;
  764. struct pinctrl_setting *setting;
  765. int ret;
  766. state = find_state(p, map->name);
  767. if (!state)
  768. state = create_state(p, map->name);
  769. if (IS_ERR(state))
  770. return PTR_ERR(state);
  771. if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
  772. return 0;
  773. setting = kzalloc(sizeof(*setting), GFP_KERNEL);
  774. if (!setting)
  775. return -ENOMEM;
  776. setting->type = map->type;
  777. if (pctldev)
  778. setting->pctldev = pctldev;
  779. else
  780. setting->pctldev =
  781. get_pinctrl_dev_from_devname(map->ctrl_dev_name);
  782. if (!setting->pctldev) {
  783. kfree(setting);
  784. /* Do not defer probing of hogs (circular loop) */
  785. if (!strcmp(map->ctrl_dev_name, map->dev_name))
  786. return -ENODEV;
  787. /*
  788. * OK let us guess that the driver is not there yet, and
  789. * let's defer obtaining this pinctrl handle to later...
  790. */
  791. dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
  792. map->ctrl_dev_name);
  793. return -EPROBE_DEFER;
  794. }
  795. setting->dev_name = map->dev_name;
  796. switch (map->type) {
  797. case PIN_MAP_TYPE_MUX_GROUP:
  798. ret = pinmux_map_to_setting(map, setting);
  799. break;
  800. case PIN_MAP_TYPE_CONFIGS_PIN:
  801. case PIN_MAP_TYPE_CONFIGS_GROUP:
  802. ret = pinconf_map_to_setting(map, setting);
  803. break;
  804. default:
  805. ret = -EINVAL;
  806. break;
  807. }
  808. if (ret < 0) {
  809. kfree(setting);
  810. return ret;
  811. }
  812. list_add_tail(&setting->node, &state->settings);
  813. return 0;
  814. }
  815. static struct pinctrl *find_pinctrl(struct device *dev)
  816. {
  817. struct pinctrl *p;
  818. mutex_lock(&pinctrl_list_mutex);
  819. list_for_each_entry(p, &pinctrl_list, node)
  820. if (p->dev == dev) {
  821. mutex_unlock(&pinctrl_list_mutex);
  822. return p;
  823. }
  824. mutex_unlock(&pinctrl_list_mutex);
  825. return NULL;
  826. }
  827. static void pinctrl_free(struct pinctrl *p, bool inlist);
  828. static struct pinctrl *create_pinctrl(struct device *dev,
  829. struct pinctrl_dev *pctldev)
  830. {
  831. struct pinctrl *p;
  832. const char *devname;
  833. struct pinctrl_maps *maps_node;
  834. int i;
  835. const struct pinctrl_map *map;
  836. int ret;
  837. /*
  838. * create the state cookie holder struct pinctrl for each
  839. * mapping, this is what consumers will get when requesting
  840. * a pin control handle with pinctrl_get()
  841. */
  842. p = kzalloc(sizeof(*p), GFP_KERNEL);
  843. if (!p)
  844. return ERR_PTR(-ENOMEM);
  845. p->dev = dev;
  846. INIT_LIST_HEAD(&p->states);
  847. INIT_LIST_HEAD(&p->dt_maps);
  848. ret = pinctrl_dt_to_map(p, pctldev);
  849. if (ret < 0) {
  850. kfree(p);
  851. return ERR_PTR(ret);
  852. }
  853. devname = dev_name(dev);
  854. mutex_lock(&pinctrl_maps_mutex);
  855. /* Iterate over the pin control maps to locate the right ones */
  856. for_each_maps(maps_node, i, map) {
  857. /* Map must be for this device */
  858. if (strcmp(map->dev_name, devname))
  859. continue;
  860. /*
  861. * If pctldev is not null, we are claiming hog for it,
  862. * that means, setting that is served by pctldev by itself.
  863. *
  864. * Thus we must skip map that is for this device but is served
  865. * by other device.
  866. */
  867. if (pctldev &&
  868. strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
  869. continue;
  870. ret = add_setting(p, pctldev, map);
  871. /*
  872. * At this point the adding of a setting may:
  873. *
  874. * - Defer, if the pinctrl device is not yet available
  875. * - Fail, if the pinctrl device is not yet available,
  876. * AND the setting is a hog. We cannot defer that, since
  877. * the hog will kick in immediately after the device
  878. * is registered.
  879. *
  880. * If the error returned was not -EPROBE_DEFER then we
  881. * accumulate the errors to see if we end up with
  882. * an -EPROBE_DEFER later, as that is the worst case.
  883. */
  884. if (ret == -EPROBE_DEFER) {
  885. pinctrl_free(p, false);
  886. mutex_unlock(&pinctrl_maps_mutex);
  887. return ERR_PTR(ret);
  888. }
  889. }
  890. mutex_unlock(&pinctrl_maps_mutex);
  891. if (ret < 0) {
  892. /* If some other error than deferral occurred, return here */
  893. pinctrl_free(p, false);
  894. return ERR_PTR(ret);
  895. }
  896. kref_init(&p->users);
  897. /* Add the pinctrl handle to the global list */
  898. mutex_lock(&pinctrl_list_mutex);
  899. list_add_tail(&p->node, &pinctrl_list);
  900. mutex_unlock(&pinctrl_list_mutex);
  901. return p;
  902. }
  903. /**
  904. * pinctrl_get() - retrieves the pinctrl handle for a device
  905. * @dev: the device to obtain the handle for
  906. */
  907. struct pinctrl *pinctrl_get(struct device *dev)
  908. {
  909. struct pinctrl *p;
  910. if (WARN_ON(!dev))
  911. return ERR_PTR(-EINVAL);
  912. /*
  913. * See if somebody else (such as the device core) has already
  914. * obtained a handle to the pinctrl for this device. In that case,
  915. * return another pointer to it.
  916. */
  917. p = find_pinctrl(dev);
  918. if (p) {
  919. dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
  920. kref_get(&p->users);
  921. return p;
  922. }
  923. return create_pinctrl(dev, NULL);
  924. }
  925. EXPORT_SYMBOL_GPL(pinctrl_get);
  926. static void pinctrl_free_setting(bool disable_setting,
  927. struct pinctrl_setting *setting)
  928. {
  929. switch (setting->type) {
  930. case PIN_MAP_TYPE_MUX_GROUP:
  931. if (disable_setting)
  932. pinmux_disable_setting(setting);
  933. pinmux_free_setting(setting);
  934. break;
  935. case PIN_MAP_TYPE_CONFIGS_PIN:
  936. case PIN_MAP_TYPE_CONFIGS_GROUP:
  937. pinconf_free_setting(setting);
  938. break;
  939. default:
  940. break;
  941. }
  942. }
  943. static void pinctrl_free(struct pinctrl *p, bool inlist)
  944. {
  945. struct pinctrl_state *state, *n1;
  946. struct pinctrl_setting *setting, *n2;
  947. mutex_lock(&pinctrl_list_mutex);
  948. list_for_each_entry_safe(state, n1, &p->states, node) {
  949. list_for_each_entry_safe(setting, n2, &state->settings, node) {
  950. pinctrl_free_setting(state == p->state, setting);
  951. list_del(&setting->node);
  952. kfree(setting);
  953. }
  954. list_del(&state->node);
  955. kfree(state);
  956. }
  957. pinctrl_dt_free_maps(p);
  958. if (inlist)
  959. list_del(&p->node);
  960. kfree(p);
  961. mutex_unlock(&pinctrl_list_mutex);
  962. }
  963. /**
  964. * pinctrl_release() - release the pinctrl handle
  965. * @kref: the kref in the pinctrl being released
  966. */
  967. static void pinctrl_release(struct kref *kref)
  968. {
  969. struct pinctrl *p = container_of(kref, struct pinctrl, users);
  970. pinctrl_free(p, true);
  971. }
  972. /**
  973. * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
  974. * @p: the pinctrl handle to release
  975. */
  976. void pinctrl_put(struct pinctrl *p)
  977. {
  978. kref_put(&p->users, pinctrl_release);
  979. }
  980. EXPORT_SYMBOL_GPL(pinctrl_put);
  981. /**
  982. * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
  983. * @p: the pinctrl handle to retrieve the state from
  984. * @name: the state name to retrieve
  985. */
  986. struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
  987. const char *name)
  988. {
  989. struct pinctrl_state *state;
  990. state = find_state(p, name);
  991. if (!state) {
  992. if (pinctrl_dummy_state) {
  993. /* create dummy state */
  994. dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
  995. name);
  996. state = create_state(p, name);
  997. } else
  998. state = ERR_PTR(-ENODEV);
  999. }
  1000. return state;
  1001. }
  1002. EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
  1003. /**
  1004. * pinctrl_select_state() - select/activate/program a pinctrl state to HW
  1005. * @p: the pinctrl handle for the device that requests configuration
  1006. * @state: the state handle to select/activate/program
  1007. */
  1008. int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
  1009. {
  1010. struct pinctrl_setting *setting, *setting2;
  1011. struct pinctrl_state *old_state = p->state;
  1012. int ret;
  1013. if (p->state == state)
  1014. return 0;
  1015. if (p->state) {
  1016. /*
  1017. * For each pinmux setting in the old state, forget SW's record
  1018. * of mux owner for that pingroup. Any pingroups which are
  1019. * still owned by the new state will be re-acquired by the call
  1020. * to pinmux_enable_setting() in the loop below.
  1021. */
  1022. list_for_each_entry(setting, &p->state->settings, node) {
  1023. if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
  1024. continue;
  1025. pinmux_disable_setting(setting);
  1026. }
  1027. }
  1028. p->state = NULL;
  1029. /* Apply all the settings for the new state */
  1030. list_for_each_entry(setting, &state->settings, node) {
  1031. switch (setting->type) {
  1032. case PIN_MAP_TYPE_MUX_GROUP:
  1033. ret = pinmux_enable_setting(setting);
  1034. break;
  1035. case PIN_MAP_TYPE_CONFIGS_PIN:
  1036. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1037. ret = pinconf_apply_setting(setting);
  1038. break;
  1039. default:
  1040. ret = -EINVAL;
  1041. break;
  1042. }
  1043. if (ret < 0) {
  1044. goto unapply_new_state;
  1045. }
  1046. }
  1047. p->state = state;
  1048. return 0;
  1049. unapply_new_state:
  1050. dev_err(p->dev, "Error applying setting, reverse things back\n");
  1051. list_for_each_entry(setting2, &state->settings, node) {
  1052. if (&setting2->node == &setting->node)
  1053. break;
  1054. /*
  1055. * All we can do here is pinmux_disable_setting.
  1056. * That means that some pins are muxed differently now
  1057. * than they were before applying the setting (We can't
  1058. * "unmux a pin"!), but it's not a big deal since the pins
  1059. * are free to be muxed by another apply_setting.
  1060. */
  1061. if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
  1062. pinmux_disable_setting(setting2);
  1063. }
  1064. /* There's no infinite recursive loop here because p->state is NULL */
  1065. if (old_state)
  1066. pinctrl_select_state(p, old_state);
  1067. return ret;
  1068. }
  1069. EXPORT_SYMBOL_GPL(pinctrl_select_state);
  1070. static void devm_pinctrl_release(struct device *dev, void *res)
  1071. {
  1072. pinctrl_put(*(struct pinctrl **)res);
  1073. }
  1074. /**
  1075. * struct devm_pinctrl_get() - Resource managed pinctrl_get()
  1076. * @dev: the device to obtain the handle for
  1077. *
  1078. * If there is a need to explicitly destroy the returned struct pinctrl,
  1079. * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
  1080. */
  1081. struct pinctrl *devm_pinctrl_get(struct device *dev)
  1082. {
  1083. struct pinctrl **ptr, *p;
  1084. ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
  1085. if (!ptr)
  1086. return ERR_PTR(-ENOMEM);
  1087. p = pinctrl_get(dev);
  1088. if (!IS_ERR(p)) {
  1089. *ptr = p;
  1090. devres_add(dev, ptr);
  1091. } else {
  1092. devres_free(ptr);
  1093. }
  1094. return p;
  1095. }
  1096. EXPORT_SYMBOL_GPL(devm_pinctrl_get);
  1097. static int devm_pinctrl_match(struct device *dev, void *res, void *data)
  1098. {
  1099. struct pinctrl **p = res;
  1100. return *p == data;
  1101. }
  1102. /**
  1103. * devm_pinctrl_put() - Resource managed pinctrl_put()
  1104. * @p: the pinctrl handle to release
  1105. *
  1106. * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
  1107. * this function will not need to be called and the resource management
  1108. * code will ensure that the resource is freed.
  1109. */
  1110. void devm_pinctrl_put(struct pinctrl *p)
  1111. {
  1112. WARN_ON(devres_release(p->dev, devm_pinctrl_release,
  1113. devm_pinctrl_match, p));
  1114. }
  1115. EXPORT_SYMBOL_GPL(devm_pinctrl_put);
  1116. int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
  1117. bool dup)
  1118. {
  1119. int i, ret;
  1120. struct pinctrl_maps *maps_node;
  1121. pr_debug("add %u pinctrl maps\n", num_maps);
  1122. /* First sanity check the new mapping */
  1123. for (i = 0; i < num_maps; i++) {
  1124. if (!maps[i].dev_name) {
  1125. pr_err("failed to register map %s (%d): no device given\n",
  1126. maps[i].name, i);
  1127. return -EINVAL;
  1128. }
  1129. if (!maps[i].name) {
  1130. pr_err("failed to register map %d: no map name given\n",
  1131. i);
  1132. return -EINVAL;
  1133. }
  1134. if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
  1135. !maps[i].ctrl_dev_name) {
  1136. pr_err("failed to register map %s (%d): no pin control device given\n",
  1137. maps[i].name, i);
  1138. return -EINVAL;
  1139. }
  1140. switch (maps[i].type) {
  1141. case PIN_MAP_TYPE_DUMMY_STATE:
  1142. break;
  1143. case PIN_MAP_TYPE_MUX_GROUP:
  1144. ret = pinmux_validate_map(&maps[i], i);
  1145. if (ret < 0)
  1146. return ret;
  1147. break;
  1148. case PIN_MAP_TYPE_CONFIGS_PIN:
  1149. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1150. ret = pinconf_validate_map(&maps[i], i);
  1151. if (ret < 0)
  1152. return ret;
  1153. break;
  1154. default:
  1155. pr_err("failed to register map %s (%d): invalid type given\n",
  1156. maps[i].name, i);
  1157. return -EINVAL;
  1158. }
  1159. }
  1160. maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
  1161. if (!maps_node)
  1162. return -ENOMEM;
  1163. maps_node->num_maps = num_maps;
  1164. if (dup) {
  1165. maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
  1166. GFP_KERNEL);
  1167. if (!maps_node->maps) {
  1168. kfree(maps_node);
  1169. return -ENOMEM;
  1170. }
  1171. } else {
  1172. maps_node->maps = maps;
  1173. }
  1174. mutex_lock(&pinctrl_maps_mutex);
  1175. list_add_tail(&maps_node->node, &pinctrl_maps);
  1176. mutex_unlock(&pinctrl_maps_mutex);
  1177. return 0;
  1178. }
  1179. /**
  1180. * pinctrl_register_mappings() - register a set of pin controller mappings
  1181. * @maps: the pincontrol mappings table to register. This should probably be
  1182. * marked with __initdata so it can be discarded after boot. This
  1183. * function will perform a shallow copy for the mapping entries.
  1184. * @num_maps: the number of maps in the mapping table
  1185. */
  1186. int pinctrl_register_mappings(const struct pinctrl_map *maps,
  1187. unsigned num_maps)
  1188. {
  1189. return pinctrl_register_map(maps, num_maps, true);
  1190. }
  1191. void pinctrl_unregister_map(const struct pinctrl_map *map)
  1192. {
  1193. struct pinctrl_maps *maps_node;
  1194. mutex_lock(&pinctrl_maps_mutex);
  1195. list_for_each_entry(maps_node, &pinctrl_maps, node) {
  1196. if (maps_node->maps == map) {
  1197. list_del(&maps_node->node);
  1198. kfree(maps_node);
  1199. mutex_unlock(&pinctrl_maps_mutex);
  1200. return;
  1201. }
  1202. }
  1203. mutex_unlock(&pinctrl_maps_mutex);
  1204. }
  1205. /**
  1206. * pinctrl_force_sleep() - turn a given controller device into sleep state
  1207. * @pctldev: pin controller device
  1208. */
  1209. int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
  1210. {
  1211. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
  1212. return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
  1213. return 0;
  1214. }
  1215. EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
  1216. /**
  1217. * pinctrl_force_default() - turn a given controller device into default state
  1218. * @pctldev: pin controller device
  1219. */
  1220. int pinctrl_force_default(struct pinctrl_dev *pctldev)
  1221. {
  1222. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
  1223. return pinctrl_select_state(pctldev->p, pctldev->hog_default);
  1224. return 0;
  1225. }
  1226. EXPORT_SYMBOL_GPL(pinctrl_force_default);
  1227. /**
  1228. * pinctrl_init_done() - tell pinctrl probe is done
  1229. *
  1230. * We'll use this time to switch the pins from "init" to "default" unless the
  1231. * driver selected some other state.
  1232. *
  1233. * @dev: device to that's done probing
  1234. */
  1235. int pinctrl_init_done(struct device *dev)
  1236. {
  1237. struct dev_pin_info *pins = dev->pins;
  1238. int ret;
  1239. if (!pins)
  1240. return 0;
  1241. if (IS_ERR(pins->init_state))
  1242. return 0; /* No such state */
  1243. if (pins->p->state != pins->init_state)
  1244. return 0; /* Not at init anyway */
  1245. if (IS_ERR(pins->default_state))
  1246. return 0; /* No default state */
  1247. ret = pinctrl_select_state(pins->p, pins->default_state);
  1248. if (ret)
  1249. dev_err(dev, "failed to activate default pinctrl state\n");
  1250. return ret;
  1251. }
  1252. #ifdef CONFIG_PM
  1253. /**
  1254. * pinctrl_pm_select_state() - select pinctrl state for PM
  1255. * @dev: device to select default state for
  1256. * @state: state to set
  1257. */
  1258. static int pinctrl_pm_select_state(struct device *dev,
  1259. struct pinctrl_state *state)
  1260. {
  1261. struct dev_pin_info *pins = dev->pins;
  1262. int ret;
  1263. if (IS_ERR(state))
  1264. return 0; /* No such state */
  1265. ret = pinctrl_select_state(pins->p, state);
  1266. if (ret)
  1267. dev_err(dev, "failed to activate pinctrl state %s\n",
  1268. state->name);
  1269. return ret;
  1270. }
  1271. /**
  1272. * pinctrl_pm_select_default_state() - select default pinctrl state for PM
  1273. * @dev: device to select default state for
  1274. */
  1275. int pinctrl_pm_select_default_state(struct device *dev)
  1276. {
  1277. if (!dev->pins)
  1278. return 0;
  1279. return pinctrl_pm_select_state(dev, dev->pins->default_state);
  1280. }
  1281. EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
  1282. /**
  1283. * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
  1284. * @dev: device to select sleep state for
  1285. */
  1286. int pinctrl_pm_select_sleep_state(struct device *dev)
  1287. {
  1288. if (!dev->pins)
  1289. return 0;
  1290. return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
  1291. }
  1292. EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
  1293. /**
  1294. * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
  1295. * @dev: device to select idle state for
  1296. */
  1297. int pinctrl_pm_select_idle_state(struct device *dev)
  1298. {
  1299. if (!dev->pins)
  1300. return 0;
  1301. return pinctrl_pm_select_state(dev, dev->pins->idle_state);
  1302. }
  1303. EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
  1304. #endif
  1305. #ifdef CONFIG_DEBUG_FS
  1306. static int pinctrl_pins_show(struct seq_file *s, void *what)
  1307. {
  1308. struct pinctrl_dev *pctldev = s->private;
  1309. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1310. unsigned i, pin;
  1311. seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
  1312. mutex_lock(&pctldev->mutex);
  1313. /* The pin number can be retrived from the pin controller descriptor */
  1314. for (i = 0; i < pctldev->desc->npins; i++) {
  1315. struct pin_desc *desc;
  1316. pin = pctldev->desc->pins[i].number;
  1317. desc = pin_desc_get(pctldev, pin);
  1318. /* Pin space may be sparse */
  1319. if (!desc)
  1320. continue;
  1321. seq_printf(s, "pin %d (%s) ", pin, desc->name);
  1322. /* Driver-specific info per pin */
  1323. if (ops->pin_dbg_show)
  1324. ops->pin_dbg_show(pctldev, s, pin);
  1325. seq_puts(s, "\n");
  1326. }
  1327. mutex_unlock(&pctldev->mutex);
  1328. return 0;
  1329. }
  1330. static int pinctrl_groups_show(struct seq_file *s, void *what)
  1331. {
  1332. struct pinctrl_dev *pctldev = s->private;
  1333. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1334. unsigned ngroups, selector = 0;
  1335. mutex_lock(&pctldev->mutex);
  1336. ngroups = ops->get_groups_count(pctldev);
  1337. seq_puts(s, "registered pin groups:\n");
  1338. while (selector < ngroups) {
  1339. const unsigned *pins = NULL;
  1340. unsigned num_pins = 0;
  1341. const char *gname = ops->get_group_name(pctldev, selector);
  1342. const char *pname;
  1343. int ret = 0;
  1344. int i;
  1345. if (ops->get_group_pins)
  1346. ret = ops->get_group_pins(pctldev, selector,
  1347. &pins, &num_pins);
  1348. if (ret)
  1349. seq_printf(s, "%s [ERROR GETTING PINS]\n",
  1350. gname);
  1351. else {
  1352. seq_printf(s, "group: %s\n", gname);
  1353. for (i = 0; i < num_pins; i++) {
  1354. pname = pin_get_name(pctldev, pins[i]);
  1355. if (WARN_ON(!pname)) {
  1356. mutex_unlock(&pctldev->mutex);
  1357. return -EINVAL;
  1358. }
  1359. seq_printf(s, "pin %d (%s)\n", pins[i], pname);
  1360. }
  1361. seq_puts(s, "\n");
  1362. }
  1363. selector++;
  1364. }
  1365. mutex_unlock(&pctldev->mutex);
  1366. return 0;
  1367. }
  1368. static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
  1369. {
  1370. struct pinctrl_dev *pctldev = s->private;
  1371. struct pinctrl_gpio_range *range = NULL;
  1372. seq_puts(s, "GPIO ranges handled:\n");
  1373. mutex_lock(&pctldev->mutex);
  1374. /* Loop over the ranges */
  1375. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  1376. if (range->pins) {
  1377. int a;
  1378. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
  1379. range->id, range->name,
  1380. range->base, (range->base + range->npins - 1));
  1381. for (a = 0; a < range->npins - 1; a++)
  1382. seq_printf(s, "%u, ", range->pins[a]);
  1383. seq_printf(s, "%u}\n", range->pins[a]);
  1384. }
  1385. else
  1386. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
  1387. range->id, range->name,
  1388. range->base, (range->base + range->npins - 1),
  1389. range->pin_base,
  1390. (range->pin_base + range->npins - 1));
  1391. }
  1392. mutex_unlock(&pctldev->mutex);
  1393. return 0;
  1394. }
  1395. static int pinctrl_devices_show(struct seq_file *s, void *what)
  1396. {
  1397. struct pinctrl_dev *pctldev;
  1398. seq_puts(s, "name [pinmux] [pinconf]\n");
  1399. mutex_lock(&pinctrldev_list_mutex);
  1400. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  1401. seq_printf(s, "%s ", pctldev->desc->name);
  1402. if (pctldev->desc->pmxops)
  1403. seq_puts(s, "yes ");
  1404. else
  1405. seq_puts(s, "no ");
  1406. if (pctldev->desc->confops)
  1407. seq_puts(s, "yes");
  1408. else
  1409. seq_puts(s, "no");
  1410. seq_puts(s, "\n");
  1411. }
  1412. mutex_unlock(&pinctrldev_list_mutex);
  1413. return 0;
  1414. }
  1415. static inline const char *map_type(enum pinctrl_map_type type)
  1416. {
  1417. static const char * const names[] = {
  1418. "INVALID",
  1419. "DUMMY_STATE",
  1420. "MUX_GROUP",
  1421. "CONFIGS_PIN",
  1422. "CONFIGS_GROUP",
  1423. };
  1424. if (type >= ARRAY_SIZE(names))
  1425. return "UNKNOWN";
  1426. return names[type];
  1427. }
  1428. static int pinctrl_maps_show(struct seq_file *s, void *what)
  1429. {
  1430. struct pinctrl_maps *maps_node;
  1431. int i;
  1432. const struct pinctrl_map *map;
  1433. seq_puts(s, "Pinctrl maps:\n");
  1434. mutex_lock(&pinctrl_maps_mutex);
  1435. for_each_maps(maps_node, i, map) {
  1436. seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
  1437. map->dev_name, map->name, map_type(map->type),
  1438. map->type);
  1439. if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
  1440. seq_printf(s, "controlling device %s\n",
  1441. map->ctrl_dev_name);
  1442. switch (map->type) {
  1443. case PIN_MAP_TYPE_MUX_GROUP:
  1444. pinmux_show_map(s, map);
  1445. break;
  1446. case PIN_MAP_TYPE_CONFIGS_PIN:
  1447. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1448. pinconf_show_map(s, map);
  1449. break;
  1450. default:
  1451. break;
  1452. }
  1453. seq_putc(s, '\n');
  1454. }
  1455. mutex_unlock(&pinctrl_maps_mutex);
  1456. return 0;
  1457. }
  1458. static int pinctrl_show(struct seq_file *s, void *what)
  1459. {
  1460. struct pinctrl *p;
  1461. struct pinctrl_state *state;
  1462. struct pinctrl_setting *setting;
  1463. seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
  1464. mutex_lock(&pinctrl_list_mutex);
  1465. list_for_each_entry(p, &pinctrl_list, node) {
  1466. seq_printf(s, "device: %s current state: %s\n",
  1467. dev_name(p->dev),
  1468. p->state ? p->state->name : "none");
  1469. list_for_each_entry(state, &p->states, node) {
  1470. seq_printf(s, " state: %s\n", state->name);
  1471. list_for_each_entry(setting, &state->settings, node) {
  1472. struct pinctrl_dev *pctldev = setting->pctldev;
  1473. seq_printf(s, " type: %s controller %s ",
  1474. map_type(setting->type),
  1475. pinctrl_dev_get_name(pctldev));
  1476. switch (setting->type) {
  1477. case PIN_MAP_TYPE_MUX_GROUP:
  1478. pinmux_show_setting(s, setting);
  1479. break;
  1480. case PIN_MAP_TYPE_CONFIGS_PIN:
  1481. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1482. pinconf_show_setting(s, setting);
  1483. break;
  1484. default:
  1485. break;
  1486. }
  1487. }
  1488. }
  1489. }
  1490. mutex_unlock(&pinctrl_list_mutex);
  1491. return 0;
  1492. }
  1493. static int pinctrl_pins_open(struct inode *inode, struct file *file)
  1494. {
  1495. return single_open(file, pinctrl_pins_show, inode->i_private);
  1496. }
  1497. static int pinctrl_groups_open(struct inode *inode, struct file *file)
  1498. {
  1499. return single_open(file, pinctrl_groups_show, inode->i_private);
  1500. }
  1501. static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
  1502. {
  1503. return single_open(file, pinctrl_gpioranges_show, inode->i_private);
  1504. }
  1505. static int pinctrl_devices_open(struct inode *inode, struct file *file)
  1506. {
  1507. return single_open(file, pinctrl_devices_show, NULL);
  1508. }
  1509. static int pinctrl_maps_open(struct inode *inode, struct file *file)
  1510. {
  1511. return single_open(file, pinctrl_maps_show, NULL);
  1512. }
  1513. static int pinctrl_open(struct inode *inode, struct file *file)
  1514. {
  1515. return single_open(file, pinctrl_show, NULL);
  1516. }
  1517. static const struct file_operations pinctrl_pins_ops = {
  1518. .open = pinctrl_pins_open,
  1519. .read = seq_read,
  1520. .llseek = seq_lseek,
  1521. .release = single_release,
  1522. };
  1523. static const struct file_operations pinctrl_groups_ops = {
  1524. .open = pinctrl_groups_open,
  1525. .read = seq_read,
  1526. .llseek = seq_lseek,
  1527. .release = single_release,
  1528. };
  1529. static const struct file_operations pinctrl_gpioranges_ops = {
  1530. .open = pinctrl_gpioranges_open,
  1531. .read = seq_read,
  1532. .llseek = seq_lseek,
  1533. .release = single_release,
  1534. };
  1535. static const struct file_operations pinctrl_devices_ops = {
  1536. .open = pinctrl_devices_open,
  1537. .read = seq_read,
  1538. .llseek = seq_lseek,
  1539. .release = single_release,
  1540. };
  1541. static const struct file_operations pinctrl_maps_ops = {
  1542. .open = pinctrl_maps_open,
  1543. .read = seq_read,
  1544. .llseek = seq_lseek,
  1545. .release = single_release,
  1546. };
  1547. static const struct file_operations pinctrl_ops = {
  1548. .open = pinctrl_open,
  1549. .read = seq_read,
  1550. .llseek = seq_lseek,
  1551. .release = single_release,
  1552. };
  1553. static struct dentry *debugfs_root;
  1554. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1555. {
  1556. struct dentry *device_root;
  1557. device_root = debugfs_create_dir(dev_name(pctldev->dev),
  1558. debugfs_root);
  1559. pctldev->device_root = device_root;
  1560. if (IS_ERR(device_root) || !device_root) {
  1561. pr_warn("failed to create debugfs directory for %s\n",
  1562. dev_name(pctldev->dev));
  1563. return;
  1564. }
  1565. debugfs_create_file("pins", S_IFREG | S_IRUGO,
  1566. device_root, pctldev, &pinctrl_pins_ops);
  1567. debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
  1568. device_root, pctldev, &pinctrl_groups_ops);
  1569. debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
  1570. device_root, pctldev, &pinctrl_gpioranges_ops);
  1571. if (pctldev->desc->pmxops)
  1572. pinmux_init_device_debugfs(device_root, pctldev);
  1573. if (pctldev->desc->confops)
  1574. pinconf_init_device_debugfs(device_root, pctldev);
  1575. }
  1576. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1577. {
  1578. debugfs_remove_recursive(pctldev->device_root);
  1579. }
  1580. static void pinctrl_init_debugfs(void)
  1581. {
  1582. debugfs_root = debugfs_create_dir("pinctrl", NULL);
  1583. if (IS_ERR(debugfs_root) || !debugfs_root) {
  1584. pr_warn("failed to create debugfs directory\n");
  1585. debugfs_root = NULL;
  1586. return;
  1587. }
  1588. debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
  1589. debugfs_root, NULL, &pinctrl_devices_ops);
  1590. debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
  1591. debugfs_root, NULL, &pinctrl_maps_ops);
  1592. debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
  1593. debugfs_root, NULL, &pinctrl_ops);
  1594. }
  1595. #else /* CONFIG_DEBUG_FS */
  1596. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1597. {
  1598. }
  1599. static void pinctrl_init_debugfs(void)
  1600. {
  1601. }
  1602. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1603. {
  1604. }
  1605. #endif
  1606. static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
  1607. {
  1608. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1609. if (!ops ||
  1610. !ops->get_groups_count ||
  1611. !ops->get_group_name)
  1612. return -EINVAL;
  1613. return 0;
  1614. }
  1615. /**
  1616. * pinctrl_init_controller() - init a pin controller device
  1617. * @pctldesc: descriptor for this pin controller
  1618. * @dev: parent device for this pin controller
  1619. * @driver_data: private pin controller data for this pin controller
  1620. */
  1621. static struct pinctrl_dev *
  1622. pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
  1623. void *driver_data)
  1624. {
  1625. struct pinctrl_dev *pctldev;
  1626. int ret;
  1627. if (!pctldesc)
  1628. return ERR_PTR(-EINVAL);
  1629. if (!pctldesc->name)
  1630. return ERR_PTR(-EINVAL);
  1631. pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
  1632. if (!pctldev)
  1633. return ERR_PTR(-ENOMEM);
  1634. /* Initialize pin control device struct */
  1635. pctldev->owner = pctldesc->owner;
  1636. pctldev->desc = pctldesc;
  1637. pctldev->driver_data = driver_data;
  1638. INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
  1639. #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
  1640. INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
  1641. #endif
  1642. #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
  1643. INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
  1644. #endif
  1645. INIT_LIST_HEAD(&pctldev->gpio_ranges);
  1646. INIT_LIST_HEAD(&pctldev->node);
  1647. pctldev->dev = dev;
  1648. mutex_init(&pctldev->mutex);
  1649. /* check core ops for sanity */
  1650. ret = pinctrl_check_ops(pctldev);
  1651. if (ret) {
  1652. dev_err(dev, "pinctrl ops lacks necessary functions\n");
  1653. goto out_err;
  1654. }
  1655. /* If we're implementing pinmuxing, check the ops for sanity */
  1656. if (pctldesc->pmxops) {
  1657. ret = pinmux_check_ops(pctldev);
  1658. if (ret)
  1659. goto out_err;
  1660. }
  1661. /* If we're implementing pinconfig, check the ops for sanity */
  1662. if (pctldesc->confops) {
  1663. ret = pinconf_check_ops(pctldev);
  1664. if (ret)
  1665. goto out_err;
  1666. }
  1667. /* Register all the pins */
  1668. dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
  1669. ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
  1670. if (ret) {
  1671. dev_err(dev, "error during pin registration\n");
  1672. pinctrl_free_pindescs(pctldev, pctldesc->pins,
  1673. pctldesc->npins);
  1674. goto out_err;
  1675. }
  1676. return pctldev;
  1677. out_err:
  1678. mutex_destroy(&pctldev->mutex);
  1679. kfree(pctldev);
  1680. return ERR_PTR(ret);
  1681. }
  1682. static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
  1683. {
  1684. pctldev->p = create_pinctrl(pctldev->dev, pctldev);
  1685. if (PTR_ERR(pctldev->p) == -ENODEV) {
  1686. dev_dbg(pctldev->dev, "no hogs found\n");
  1687. return 0;
  1688. }
  1689. if (IS_ERR(pctldev->p)) {
  1690. dev_err(pctldev->dev, "error claiming hogs: %li\n",
  1691. PTR_ERR(pctldev->p));
  1692. return PTR_ERR(pctldev->p);
  1693. }
  1694. kref_get(&pctldev->p->users);
  1695. pctldev->hog_default =
  1696. pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
  1697. if (IS_ERR(pctldev->hog_default)) {
  1698. dev_dbg(pctldev->dev,
  1699. "failed to lookup the default state\n");
  1700. } else {
  1701. if (pinctrl_select_state(pctldev->p,
  1702. pctldev->hog_default))
  1703. dev_err(pctldev->dev,
  1704. "failed to select default state\n");
  1705. }
  1706. pctldev->hog_sleep =
  1707. pinctrl_lookup_state(pctldev->p,
  1708. PINCTRL_STATE_SLEEP);
  1709. if (IS_ERR(pctldev->hog_sleep))
  1710. dev_dbg(pctldev->dev,
  1711. "failed to lookup the sleep state\n");
  1712. return 0;
  1713. }
  1714. int pinctrl_enable(struct pinctrl_dev *pctldev)
  1715. {
  1716. int error;
  1717. error = pinctrl_claim_hogs(pctldev);
  1718. if (error) {
  1719. dev_err(pctldev->dev, "could not claim hogs: %i\n",
  1720. error);
  1721. mutex_destroy(&pctldev->mutex);
  1722. kfree(pctldev);
  1723. return error;
  1724. }
  1725. mutex_lock(&pinctrldev_list_mutex);
  1726. list_add_tail(&pctldev->node, &pinctrldev_list);
  1727. mutex_unlock(&pinctrldev_list_mutex);
  1728. pinctrl_init_device_debugfs(pctldev);
  1729. return 0;
  1730. }
  1731. EXPORT_SYMBOL_GPL(pinctrl_enable);
  1732. /**
  1733. * pinctrl_register() - register a pin controller device
  1734. * @pctldesc: descriptor for this pin controller
  1735. * @dev: parent device for this pin controller
  1736. * @driver_data: private pin controller data for this pin controller
  1737. *
  1738. * Note that pinctrl_register() is known to have problems as the pin
  1739. * controller driver functions are called before the driver has a
  1740. * struct pinctrl_dev handle. To avoid issues later on, please use the
  1741. * new pinctrl_register_and_init() below instead.
  1742. */
  1743. struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
  1744. struct device *dev, void *driver_data)
  1745. {
  1746. struct pinctrl_dev *pctldev;
  1747. int error;
  1748. pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
  1749. if (IS_ERR(pctldev))
  1750. return pctldev;
  1751. error = pinctrl_enable(pctldev);
  1752. if (error)
  1753. return ERR_PTR(error);
  1754. return pctldev;
  1755. }
  1756. EXPORT_SYMBOL_GPL(pinctrl_register);
  1757. /**
  1758. * pinctrl_register_and_init() - register and init pin controller device
  1759. * @pctldesc: descriptor for this pin controller
  1760. * @dev: parent device for this pin controller
  1761. * @driver_data: private pin controller data for this pin controller
  1762. * @pctldev: pin controller device
  1763. *
  1764. * Note that pinctrl_enable() still needs to be manually called after
  1765. * this once the driver is ready.
  1766. */
  1767. int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
  1768. struct device *dev, void *driver_data,
  1769. struct pinctrl_dev **pctldev)
  1770. {
  1771. struct pinctrl_dev *p;
  1772. p = pinctrl_init_controller(pctldesc, dev, driver_data);
  1773. if (IS_ERR(p))
  1774. return PTR_ERR(p);
  1775. /*
  1776. * We have pinctrl_start() call functions in the pin controller
  1777. * driver with create_pinctrl() for at least dt_node_to_map(). So
  1778. * let's make sure pctldev is properly initialized for the
  1779. * pin controller driver before we do anything.
  1780. */
  1781. *pctldev = p;
  1782. return 0;
  1783. }
  1784. EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
  1785. /**
  1786. * pinctrl_unregister() - unregister pinmux
  1787. * @pctldev: pin controller to unregister
  1788. *
  1789. * Called by pinmux drivers to unregister a pinmux.
  1790. */
  1791. void pinctrl_unregister(struct pinctrl_dev *pctldev)
  1792. {
  1793. struct pinctrl_gpio_range *range, *n;
  1794. if (!pctldev)
  1795. return;
  1796. mutex_lock(&pctldev->mutex);
  1797. pinctrl_remove_device_debugfs(pctldev);
  1798. mutex_unlock(&pctldev->mutex);
  1799. if (!IS_ERR_OR_NULL(pctldev->p))
  1800. pinctrl_put(pctldev->p);
  1801. mutex_lock(&pinctrldev_list_mutex);
  1802. mutex_lock(&pctldev->mutex);
  1803. /* TODO: check that no pinmuxes are still active? */
  1804. list_del(&pctldev->node);
  1805. pinmux_generic_free_functions(pctldev);
  1806. pinctrl_generic_free_groups(pctldev);
  1807. /* Destroy descriptor tree */
  1808. pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
  1809. pctldev->desc->npins);
  1810. /* remove gpio ranges map */
  1811. list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
  1812. list_del(&range->node);
  1813. mutex_unlock(&pctldev->mutex);
  1814. mutex_destroy(&pctldev->mutex);
  1815. kfree(pctldev);
  1816. mutex_unlock(&pinctrldev_list_mutex);
  1817. }
  1818. EXPORT_SYMBOL_GPL(pinctrl_unregister);
  1819. static void devm_pinctrl_dev_release(struct device *dev, void *res)
  1820. {
  1821. struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
  1822. pinctrl_unregister(pctldev);
  1823. }
  1824. static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
  1825. {
  1826. struct pctldev **r = res;
  1827. if (WARN_ON(!r || !*r))
  1828. return 0;
  1829. return *r == data;
  1830. }
  1831. /**
  1832. * devm_pinctrl_register() - Resource managed version of pinctrl_register().
  1833. * @dev: parent device for this pin controller
  1834. * @pctldesc: descriptor for this pin controller
  1835. * @driver_data: private pin controller data for this pin controller
  1836. *
  1837. * Returns an error pointer if pincontrol register failed. Otherwise
  1838. * it returns valid pinctrl handle.
  1839. *
  1840. * The pinctrl device will be automatically released when the device is unbound.
  1841. */
  1842. struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
  1843. struct pinctrl_desc *pctldesc,
  1844. void *driver_data)
  1845. {
  1846. struct pinctrl_dev **ptr, *pctldev;
  1847. ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
  1848. if (!ptr)
  1849. return ERR_PTR(-ENOMEM);
  1850. pctldev = pinctrl_register(pctldesc, dev, driver_data);
  1851. if (IS_ERR(pctldev)) {
  1852. devres_free(ptr);
  1853. return pctldev;
  1854. }
  1855. *ptr = pctldev;
  1856. devres_add(dev, ptr);
  1857. return pctldev;
  1858. }
  1859. EXPORT_SYMBOL_GPL(devm_pinctrl_register);
  1860. /**
  1861. * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
  1862. * @dev: parent device for this pin controller
  1863. * @pctldesc: descriptor for this pin controller
  1864. * @driver_data: private pin controller data for this pin controller
  1865. *
  1866. * Returns an error pointer if pincontrol register failed. Otherwise
  1867. * it returns valid pinctrl handle.
  1868. *
  1869. * The pinctrl device will be automatically released when the device is unbound.
  1870. */
  1871. int devm_pinctrl_register_and_init(struct device *dev,
  1872. struct pinctrl_desc *pctldesc,
  1873. void *driver_data,
  1874. struct pinctrl_dev **pctldev)
  1875. {
  1876. struct pinctrl_dev **ptr;
  1877. int error;
  1878. ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
  1879. if (!ptr)
  1880. return -ENOMEM;
  1881. error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
  1882. if (error) {
  1883. devres_free(ptr);
  1884. return error;
  1885. }
  1886. *ptr = *pctldev;
  1887. devres_add(dev, ptr);
  1888. return 0;
  1889. }
  1890. EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
  1891. /**
  1892. * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
  1893. * @dev: device for which which resource was allocated
  1894. * @pctldev: the pinctrl device to unregister.
  1895. */
  1896. void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
  1897. {
  1898. WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
  1899. devm_pinctrl_dev_match, pctldev));
  1900. }
  1901. EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
  1902. static int __init pinctrl_init(void)
  1903. {
  1904. pr_info("initialized pinctrl subsystem\n");
  1905. pinctrl_init_debugfs();
  1906. return 0;
  1907. }
  1908. /* init early since many drivers really need to initialized pinmux early */
  1909. core_initcall(pinctrl_init);