zd_mac.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551
  1. /* ZD1211 USB-WLAN driver for Linux
  2. *
  3. * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
  4. * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
  5. * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
  6. * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  20. */
  21. #include <linux/netdevice.h>
  22. #include <linux/etherdevice.h>
  23. #include <linux/slab.h>
  24. #include <linux/usb.h>
  25. #include <linux/jiffies.h>
  26. #include <net/ieee80211_radiotap.h>
  27. #include "zd_def.h"
  28. #include "zd_chip.h"
  29. #include "zd_mac.h"
  30. #include "zd_rf.h"
  31. struct zd_reg_alpha2_map {
  32. u32 reg;
  33. char alpha2[2];
  34. };
  35. static struct zd_reg_alpha2_map reg_alpha2_map[] = {
  36. { ZD_REGDOMAIN_FCC, "US" },
  37. { ZD_REGDOMAIN_IC, "CA" },
  38. { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
  39. { ZD_REGDOMAIN_JAPAN, "JP" },
  40. { ZD_REGDOMAIN_JAPAN_2, "JP" },
  41. { ZD_REGDOMAIN_JAPAN_3, "JP" },
  42. { ZD_REGDOMAIN_SPAIN, "ES" },
  43. { ZD_REGDOMAIN_FRANCE, "FR" },
  44. };
  45. /* This table contains the hardware specific values for the modulation rates. */
  46. static const struct ieee80211_rate zd_rates[] = {
  47. { .bitrate = 10,
  48. .hw_value = ZD_CCK_RATE_1M, },
  49. { .bitrate = 20,
  50. .hw_value = ZD_CCK_RATE_2M,
  51. .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
  52. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  53. { .bitrate = 55,
  54. .hw_value = ZD_CCK_RATE_5_5M,
  55. .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
  56. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  57. { .bitrate = 110,
  58. .hw_value = ZD_CCK_RATE_11M,
  59. .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
  60. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  61. { .bitrate = 60,
  62. .hw_value = ZD_OFDM_RATE_6M,
  63. .flags = 0 },
  64. { .bitrate = 90,
  65. .hw_value = ZD_OFDM_RATE_9M,
  66. .flags = 0 },
  67. { .bitrate = 120,
  68. .hw_value = ZD_OFDM_RATE_12M,
  69. .flags = 0 },
  70. { .bitrate = 180,
  71. .hw_value = ZD_OFDM_RATE_18M,
  72. .flags = 0 },
  73. { .bitrate = 240,
  74. .hw_value = ZD_OFDM_RATE_24M,
  75. .flags = 0 },
  76. { .bitrate = 360,
  77. .hw_value = ZD_OFDM_RATE_36M,
  78. .flags = 0 },
  79. { .bitrate = 480,
  80. .hw_value = ZD_OFDM_RATE_48M,
  81. .flags = 0 },
  82. { .bitrate = 540,
  83. .hw_value = ZD_OFDM_RATE_54M,
  84. .flags = 0 },
  85. };
  86. /*
  87. * Zydas retry rates table. Each line is listed in the same order as
  88. * in zd_rates[] and contains all the rate used when a packet is sent
  89. * starting with a given rates. Let's consider an example :
  90. *
  91. * "11 Mbits : 4, 3, 2, 1, 0" means :
  92. * - packet is sent using 4 different rates
  93. * - 1st rate is index 3 (ie 11 Mbits)
  94. * - 2nd rate is index 2 (ie 5.5 Mbits)
  95. * - 3rd rate is index 1 (ie 2 Mbits)
  96. * - 4th rate is index 0 (ie 1 Mbits)
  97. */
  98. static const struct tx_retry_rate zd_retry_rates[] = {
  99. { /* 1 Mbits */ 1, { 0 }},
  100. { /* 2 Mbits */ 2, { 1, 0 }},
  101. { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
  102. { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
  103. { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
  104. { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
  105. { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
  106. { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
  107. { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
  108. { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
  109. { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
  110. { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
  111. };
  112. static const struct ieee80211_channel zd_channels[] = {
  113. { .center_freq = 2412, .hw_value = 1 },
  114. { .center_freq = 2417, .hw_value = 2 },
  115. { .center_freq = 2422, .hw_value = 3 },
  116. { .center_freq = 2427, .hw_value = 4 },
  117. { .center_freq = 2432, .hw_value = 5 },
  118. { .center_freq = 2437, .hw_value = 6 },
  119. { .center_freq = 2442, .hw_value = 7 },
  120. { .center_freq = 2447, .hw_value = 8 },
  121. { .center_freq = 2452, .hw_value = 9 },
  122. { .center_freq = 2457, .hw_value = 10 },
  123. { .center_freq = 2462, .hw_value = 11 },
  124. { .center_freq = 2467, .hw_value = 12 },
  125. { .center_freq = 2472, .hw_value = 13 },
  126. { .center_freq = 2484, .hw_value = 14 },
  127. };
  128. static void housekeeping_init(struct zd_mac *mac);
  129. static void housekeeping_enable(struct zd_mac *mac);
  130. static void housekeeping_disable(struct zd_mac *mac);
  131. static void beacon_init(struct zd_mac *mac);
  132. static void beacon_enable(struct zd_mac *mac);
  133. static void beacon_disable(struct zd_mac *mac);
  134. static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
  135. static int zd_mac_config_beacon(struct ieee80211_hw *hw,
  136. struct sk_buff *beacon, bool in_intr);
  137. static int zd_reg2alpha2(u8 regdomain, char *alpha2)
  138. {
  139. unsigned int i;
  140. struct zd_reg_alpha2_map *reg_map;
  141. for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
  142. reg_map = &reg_alpha2_map[i];
  143. if (regdomain == reg_map->reg) {
  144. alpha2[0] = reg_map->alpha2[0];
  145. alpha2[1] = reg_map->alpha2[1];
  146. return 0;
  147. }
  148. }
  149. return 1;
  150. }
  151. static int zd_check_signal(struct ieee80211_hw *hw, int signal)
  152. {
  153. struct zd_mac *mac = zd_hw_mac(hw);
  154. dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
  155. "%s: signal value from device not in range 0..100, "
  156. "but %d.\n", __func__, signal);
  157. if (signal < 0)
  158. signal = 0;
  159. else if (signal > 100)
  160. signal = 100;
  161. return signal;
  162. }
  163. int zd_mac_preinit_hw(struct ieee80211_hw *hw)
  164. {
  165. int r;
  166. u8 addr[ETH_ALEN];
  167. struct zd_mac *mac = zd_hw_mac(hw);
  168. r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
  169. if (r)
  170. return r;
  171. SET_IEEE80211_PERM_ADDR(hw, addr);
  172. return 0;
  173. }
  174. int zd_mac_init_hw(struct ieee80211_hw *hw)
  175. {
  176. int r;
  177. struct zd_mac *mac = zd_hw_mac(hw);
  178. struct zd_chip *chip = &mac->chip;
  179. char alpha2[2];
  180. u8 default_regdomain;
  181. r = zd_chip_enable_int(chip);
  182. if (r)
  183. goto out;
  184. r = zd_chip_init_hw(chip);
  185. if (r)
  186. goto disable_int;
  187. ZD_ASSERT(!irqs_disabled());
  188. r = zd_read_regdomain(chip, &default_regdomain);
  189. if (r)
  190. goto disable_int;
  191. spin_lock_irq(&mac->lock);
  192. mac->regdomain = mac->default_regdomain = default_regdomain;
  193. spin_unlock_irq(&mac->lock);
  194. /* We must inform the device that we are doing encryption/decryption in
  195. * software at the moment. */
  196. r = zd_set_encryption_type(chip, ENC_SNIFFER);
  197. if (r)
  198. goto disable_int;
  199. r = zd_reg2alpha2(mac->regdomain, alpha2);
  200. if (r)
  201. goto disable_int;
  202. r = regulatory_hint(hw->wiphy, alpha2);
  203. disable_int:
  204. zd_chip_disable_int(chip);
  205. out:
  206. return r;
  207. }
  208. void zd_mac_clear(struct zd_mac *mac)
  209. {
  210. flush_workqueue(zd_workqueue);
  211. zd_chip_clear(&mac->chip);
  212. ZD_ASSERT(!spin_is_locked(&mac->lock));
  213. ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
  214. }
  215. static int set_rx_filter(struct zd_mac *mac)
  216. {
  217. unsigned long flags;
  218. u32 filter = STA_RX_FILTER;
  219. spin_lock_irqsave(&mac->lock, flags);
  220. if (mac->pass_ctrl)
  221. filter |= RX_FILTER_CTRL;
  222. spin_unlock_irqrestore(&mac->lock, flags);
  223. return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
  224. }
  225. static int set_mac_and_bssid(struct zd_mac *mac)
  226. {
  227. int r;
  228. if (!mac->vif)
  229. return -1;
  230. r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
  231. if (r)
  232. return r;
  233. /* Vendor driver after setting MAC either sets BSSID for AP or
  234. * filter for other modes.
  235. */
  236. if (mac->type != NL80211_IFTYPE_AP)
  237. return set_rx_filter(mac);
  238. else
  239. return zd_write_bssid(&mac->chip, mac->vif->addr);
  240. }
  241. static int set_mc_hash(struct zd_mac *mac)
  242. {
  243. struct zd_mc_hash hash;
  244. zd_mc_clear(&hash);
  245. return zd_chip_set_multicast_hash(&mac->chip, &hash);
  246. }
  247. int zd_op_start(struct ieee80211_hw *hw)
  248. {
  249. struct zd_mac *mac = zd_hw_mac(hw);
  250. struct zd_chip *chip = &mac->chip;
  251. struct zd_usb *usb = &chip->usb;
  252. int r;
  253. if (!usb->initialized) {
  254. r = zd_usb_init_hw(usb);
  255. if (r)
  256. goto out;
  257. }
  258. r = zd_chip_enable_int(chip);
  259. if (r < 0)
  260. goto out;
  261. r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
  262. if (r < 0)
  263. goto disable_int;
  264. r = set_rx_filter(mac);
  265. if (r)
  266. goto disable_int;
  267. r = set_mc_hash(mac);
  268. if (r)
  269. goto disable_int;
  270. /* Wait after setting the multicast hash table and powering on
  271. * the radio otherwise interface bring up will fail. This matches
  272. * what the vendor driver did.
  273. */
  274. msleep(10);
  275. r = zd_chip_switch_radio_on(chip);
  276. if (r < 0) {
  277. dev_err(zd_chip_dev(chip),
  278. "%s: failed to set radio on\n", __func__);
  279. goto disable_int;
  280. }
  281. r = zd_chip_enable_rxtx(chip);
  282. if (r < 0)
  283. goto disable_radio;
  284. r = zd_chip_enable_hwint(chip);
  285. if (r < 0)
  286. goto disable_rxtx;
  287. housekeeping_enable(mac);
  288. beacon_enable(mac);
  289. set_bit(ZD_DEVICE_RUNNING, &mac->flags);
  290. return 0;
  291. disable_rxtx:
  292. zd_chip_disable_rxtx(chip);
  293. disable_radio:
  294. zd_chip_switch_radio_off(chip);
  295. disable_int:
  296. zd_chip_disable_int(chip);
  297. out:
  298. return r;
  299. }
  300. void zd_op_stop(struct ieee80211_hw *hw)
  301. {
  302. struct zd_mac *mac = zd_hw_mac(hw);
  303. struct zd_chip *chip = &mac->chip;
  304. struct sk_buff *skb;
  305. struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
  306. clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
  307. /* The order here deliberately is a little different from the open()
  308. * method, since we need to make sure there is no opportunity for RX
  309. * frames to be processed by mac80211 after we have stopped it.
  310. */
  311. zd_chip_disable_rxtx(chip);
  312. beacon_disable(mac);
  313. housekeeping_disable(mac);
  314. flush_workqueue(zd_workqueue);
  315. zd_chip_disable_hwint(chip);
  316. zd_chip_switch_radio_off(chip);
  317. zd_chip_disable_int(chip);
  318. while ((skb = skb_dequeue(ack_wait_queue)))
  319. dev_kfree_skb_any(skb);
  320. }
  321. int zd_restore_settings(struct zd_mac *mac)
  322. {
  323. struct sk_buff *beacon;
  324. struct zd_mc_hash multicast_hash;
  325. unsigned int short_preamble;
  326. int r, beacon_interval, beacon_period;
  327. u8 channel;
  328. dev_dbg_f(zd_mac_dev(mac), "\n");
  329. spin_lock_irq(&mac->lock);
  330. multicast_hash = mac->multicast_hash;
  331. short_preamble = mac->short_preamble;
  332. beacon_interval = mac->beacon.interval;
  333. beacon_period = mac->beacon.period;
  334. channel = mac->channel;
  335. spin_unlock_irq(&mac->lock);
  336. r = set_mac_and_bssid(mac);
  337. if (r < 0) {
  338. dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
  339. return r;
  340. }
  341. r = zd_chip_set_channel(&mac->chip, channel);
  342. if (r < 0) {
  343. dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
  344. r);
  345. return r;
  346. }
  347. set_rts_cts(mac, short_preamble);
  348. r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
  349. if (r < 0) {
  350. dev_dbg_f(zd_mac_dev(mac),
  351. "zd_chip_set_multicast_hash failed, %d\n", r);
  352. return r;
  353. }
  354. if (mac->type == NL80211_IFTYPE_MESH_POINT ||
  355. mac->type == NL80211_IFTYPE_ADHOC ||
  356. mac->type == NL80211_IFTYPE_AP) {
  357. if (mac->vif != NULL) {
  358. beacon = ieee80211_beacon_get(mac->hw, mac->vif);
  359. if (beacon)
  360. zd_mac_config_beacon(mac->hw, beacon, false);
  361. }
  362. zd_set_beacon_interval(&mac->chip, beacon_interval,
  363. beacon_period, mac->type);
  364. spin_lock_irq(&mac->lock);
  365. mac->beacon.last_update = jiffies;
  366. spin_unlock_irq(&mac->lock);
  367. }
  368. return 0;
  369. }
  370. /**
  371. * zd_mac_tx_status - reports tx status of a packet if required
  372. * @hw - a &struct ieee80211_hw pointer
  373. * @skb - a sk-buffer
  374. * @flags: extra flags to set in the TX status info
  375. * @ackssi: ACK signal strength
  376. * @success - True for successful transmission of the frame
  377. *
  378. * This information calls ieee80211_tx_status_irqsafe() if required by the
  379. * control information. It copies the control information into the status
  380. * information.
  381. *
  382. * If no status information has been requested, the skb is freed.
  383. */
  384. static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
  385. int ackssi, struct tx_status *tx_status)
  386. {
  387. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  388. int i;
  389. int success = 1, retry = 1;
  390. int first_idx;
  391. const struct tx_retry_rate *retries;
  392. ieee80211_tx_info_clear_status(info);
  393. if (tx_status) {
  394. success = !tx_status->failure;
  395. retry = tx_status->retry + success;
  396. }
  397. if (success) {
  398. /* success */
  399. info->flags |= IEEE80211_TX_STAT_ACK;
  400. } else {
  401. /* failure */
  402. info->flags &= ~IEEE80211_TX_STAT_ACK;
  403. }
  404. first_idx = info->status.rates[0].idx;
  405. ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
  406. retries = &zd_retry_rates[first_idx];
  407. ZD_ASSERT(1 <= retry && retry <= retries->count);
  408. info->status.rates[0].idx = retries->rate[0];
  409. info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
  410. for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
  411. info->status.rates[i].idx = retries->rate[i];
  412. info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
  413. }
  414. for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
  415. info->status.rates[i].idx = retries->rate[retry - 1];
  416. info->status.rates[i].count = 1; // (success ? 1:2);
  417. }
  418. if (i<IEEE80211_TX_MAX_RATES)
  419. info->status.rates[i].idx = -1; /* terminate */
  420. info->status.ack_signal = zd_check_signal(hw, ackssi);
  421. ieee80211_tx_status_irqsafe(hw, skb);
  422. }
  423. /**
  424. * zd_mac_tx_failed - callback for failed frames
  425. * @dev: the mac80211 wireless device
  426. *
  427. * This function is called if a frame couldn't be successfully
  428. * transferred. The first frame from the tx queue, will be selected and
  429. * reported as error to the upper layers.
  430. */
  431. void zd_mac_tx_failed(struct urb *urb)
  432. {
  433. struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
  434. struct zd_mac *mac = zd_hw_mac(hw);
  435. struct sk_buff_head *q = &mac->ack_wait_queue;
  436. struct sk_buff *skb;
  437. struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
  438. unsigned long flags;
  439. int success = !tx_status->failure;
  440. int retry = tx_status->retry + success;
  441. int found = 0;
  442. int i, position = 0;
  443. q = &mac->ack_wait_queue;
  444. spin_lock_irqsave(&q->lock, flags);
  445. skb_queue_walk(q, skb) {
  446. struct ieee80211_hdr *tx_hdr;
  447. struct ieee80211_tx_info *info;
  448. int first_idx, final_idx;
  449. const struct tx_retry_rate *retries;
  450. u8 final_rate;
  451. position ++;
  452. /* if the hardware reports a failure and we had a 802.11 ACK
  453. * pending, then we skip the first skb when searching for a
  454. * matching frame */
  455. if (tx_status->failure && mac->ack_pending &&
  456. skb_queue_is_first(q, skb)) {
  457. continue;
  458. }
  459. tx_hdr = (struct ieee80211_hdr *)skb->data;
  460. /* we skip all frames not matching the reported destination */
  461. if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
  462. continue;
  463. /* we skip all frames not matching the reported final rate */
  464. info = IEEE80211_SKB_CB(skb);
  465. first_idx = info->status.rates[0].idx;
  466. ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
  467. retries = &zd_retry_rates[first_idx];
  468. if (retry <= 0 || retry > retries->count)
  469. continue;
  470. final_idx = retries->rate[retry - 1];
  471. final_rate = zd_rates[final_idx].hw_value;
  472. if (final_rate != tx_status->rate) {
  473. continue;
  474. }
  475. found = 1;
  476. break;
  477. }
  478. if (found) {
  479. for (i=1; i<=position; i++) {
  480. skb = __skb_dequeue(q);
  481. zd_mac_tx_status(hw, skb,
  482. mac->ack_pending ? mac->ack_signal : 0,
  483. i == position ? tx_status : NULL);
  484. mac->ack_pending = 0;
  485. }
  486. }
  487. spin_unlock_irqrestore(&q->lock, flags);
  488. }
  489. /**
  490. * zd_mac_tx_to_dev - callback for USB layer
  491. * @skb: a &sk_buff pointer
  492. * @error: error value, 0 if transmission successful
  493. *
  494. * Informs the MAC layer that the frame has successfully transferred to the
  495. * device. If an ACK is required and the transfer to the device has been
  496. * successful, the packets are put on the @ack_wait_queue with
  497. * the control set removed.
  498. */
  499. void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
  500. {
  501. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  502. struct ieee80211_hw *hw = info->rate_driver_data[0];
  503. struct zd_mac *mac = zd_hw_mac(hw);
  504. ieee80211_tx_info_clear_status(info);
  505. skb_pull(skb, sizeof(struct zd_ctrlset));
  506. if (unlikely(error ||
  507. (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
  508. /*
  509. * FIXME : do we need to fill in anything ?
  510. */
  511. ieee80211_tx_status_irqsafe(hw, skb);
  512. } else {
  513. struct sk_buff_head *q = &mac->ack_wait_queue;
  514. skb_queue_tail(q, skb);
  515. while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
  516. zd_mac_tx_status(hw, skb_dequeue(q),
  517. mac->ack_pending ? mac->ack_signal : 0,
  518. NULL);
  519. mac->ack_pending = 0;
  520. }
  521. }
  522. }
  523. static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
  524. {
  525. /* ZD_PURE_RATE() must be used to remove the modulation type flag of
  526. * the zd-rate values.
  527. */
  528. static const u8 rate_divisor[] = {
  529. [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
  530. [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
  531. /* Bits must be doubled. */
  532. [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
  533. [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
  534. [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
  535. [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
  536. [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
  537. [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
  538. [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
  539. [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
  540. [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
  541. [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
  542. };
  543. u32 bits = (u32)tx_length * 8;
  544. u32 divisor;
  545. divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
  546. if (divisor == 0)
  547. return -EINVAL;
  548. switch (zd_rate) {
  549. case ZD_CCK_RATE_5_5M:
  550. bits = (2*bits) + 10; /* round up to the next integer */
  551. break;
  552. case ZD_CCK_RATE_11M:
  553. if (service) {
  554. u32 t = bits % 11;
  555. *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
  556. if (0 < t && t <= 3) {
  557. *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
  558. }
  559. }
  560. bits += 10; /* round up to the next integer */
  561. break;
  562. }
  563. return bits/divisor;
  564. }
  565. static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
  566. struct ieee80211_hdr *header,
  567. struct ieee80211_tx_info *info)
  568. {
  569. /*
  570. * CONTROL TODO:
  571. * - if backoff needed, enable bit 0
  572. * - if burst (backoff not needed) disable bit 0
  573. */
  574. cs->control = 0;
  575. /* First fragment */
  576. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  577. cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
  578. /* No ACK expected (multicast, etc.) */
  579. if (info->flags & IEEE80211_TX_CTL_NO_ACK)
  580. cs->control |= ZD_CS_NO_ACK;
  581. /* PS-POLL */
  582. if (ieee80211_is_pspoll(header->frame_control))
  583. cs->control |= ZD_CS_PS_POLL_FRAME;
  584. if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
  585. cs->control |= ZD_CS_RTS;
  586. if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
  587. cs->control |= ZD_CS_SELF_CTS;
  588. /* FIXME: Management frame? */
  589. }
  590. static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
  591. {
  592. if (!mac->beacon.cur_beacon)
  593. return false;
  594. if (mac->beacon.cur_beacon->len != beacon->len)
  595. return false;
  596. return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
  597. }
  598. static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
  599. {
  600. ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
  601. kfree_skb(mac->beacon.cur_beacon);
  602. mac->beacon.cur_beacon = NULL;
  603. }
  604. static void zd_mac_free_cur_beacon(struct zd_mac *mac)
  605. {
  606. mutex_lock(&mac->chip.mutex);
  607. zd_mac_free_cur_beacon_locked(mac);
  608. mutex_unlock(&mac->chip.mutex);
  609. }
  610. static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
  611. bool in_intr)
  612. {
  613. struct zd_mac *mac = zd_hw_mac(hw);
  614. int r, ret, num_cmds, req_pos = 0;
  615. u32 tmp, j = 0;
  616. /* 4 more bytes for tail CRC */
  617. u32 full_len = beacon->len + 4;
  618. unsigned long end_jiffies, message_jiffies;
  619. struct zd_ioreq32 *ioreqs;
  620. mutex_lock(&mac->chip.mutex);
  621. /* Check if hw already has this beacon. */
  622. if (zd_mac_match_cur_beacon(mac, beacon)) {
  623. r = 0;
  624. goto out_nofree;
  625. }
  626. /* Alloc memory for full beacon write at once. */
  627. num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
  628. ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
  629. if (!ioreqs) {
  630. r = -ENOMEM;
  631. goto out_nofree;
  632. }
  633. r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
  634. if (r < 0)
  635. goto out;
  636. r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
  637. if (r < 0)
  638. goto release_sema;
  639. if (in_intr && tmp & 0x2) {
  640. r = -EBUSY;
  641. goto release_sema;
  642. }
  643. end_jiffies = jiffies + HZ / 2; /*~500ms*/
  644. message_jiffies = jiffies + HZ / 10; /*~100ms*/
  645. while (tmp & 0x2) {
  646. r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
  647. if (r < 0)
  648. goto release_sema;
  649. if (time_is_before_eq_jiffies(message_jiffies)) {
  650. message_jiffies = jiffies + HZ / 10;
  651. dev_err(zd_mac_dev(mac),
  652. "CR_BCN_FIFO_SEMAPHORE not ready\n");
  653. if (time_is_before_eq_jiffies(end_jiffies)) {
  654. dev_err(zd_mac_dev(mac),
  655. "Giving up beacon config.\n");
  656. r = -ETIMEDOUT;
  657. goto reset_device;
  658. }
  659. }
  660. msleep(20);
  661. }
  662. ioreqs[req_pos].addr = CR_BCN_FIFO;
  663. ioreqs[req_pos].value = full_len - 1;
  664. req_pos++;
  665. if (zd_chip_is_zd1211b(&mac->chip)) {
  666. ioreqs[req_pos].addr = CR_BCN_LENGTH;
  667. ioreqs[req_pos].value = full_len - 1;
  668. req_pos++;
  669. }
  670. for (j = 0 ; j < beacon->len; j++) {
  671. ioreqs[req_pos].addr = CR_BCN_FIFO;
  672. ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
  673. req_pos++;
  674. }
  675. for (j = 0; j < 4; j++) {
  676. ioreqs[req_pos].addr = CR_BCN_FIFO;
  677. ioreqs[req_pos].value = 0x0;
  678. req_pos++;
  679. }
  680. BUG_ON(req_pos != num_cmds);
  681. r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
  682. release_sema:
  683. /*
  684. * Try very hard to release device beacon semaphore, as otherwise
  685. * device/driver can be left in unusable state.
  686. */
  687. end_jiffies = jiffies + HZ / 2; /*~500ms*/
  688. ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
  689. while (ret < 0) {
  690. if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
  691. ret = -ETIMEDOUT;
  692. break;
  693. }
  694. msleep(20);
  695. ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
  696. }
  697. if (ret < 0)
  698. dev_err(zd_mac_dev(mac), "Could not release "
  699. "CR_BCN_FIFO_SEMAPHORE!\n");
  700. if (r < 0 || ret < 0) {
  701. if (r >= 0)
  702. r = ret;
  703. /* We don't know if beacon was written successfully or not,
  704. * so clear current. */
  705. zd_mac_free_cur_beacon_locked(mac);
  706. goto out;
  707. }
  708. /* Beacon has now been written successfully, update current. */
  709. zd_mac_free_cur_beacon_locked(mac);
  710. mac->beacon.cur_beacon = beacon;
  711. beacon = NULL;
  712. /* 802.11b/g 2.4G CCK 1Mb
  713. * 802.11a, not yet implemented, uses different values (see GPL vendor
  714. * driver)
  715. */
  716. r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
  717. CR_BCN_PLCP_CFG);
  718. out:
  719. kfree(ioreqs);
  720. out_nofree:
  721. kfree_skb(beacon);
  722. mutex_unlock(&mac->chip.mutex);
  723. return r;
  724. reset_device:
  725. zd_mac_free_cur_beacon_locked(mac);
  726. kfree_skb(beacon);
  727. mutex_unlock(&mac->chip.mutex);
  728. kfree(ioreqs);
  729. /* semaphore stuck, reset device to avoid fw freeze later */
  730. dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
  731. "resetting device...");
  732. usb_queue_reset_device(mac->chip.usb.intf);
  733. return r;
  734. }
  735. static int fill_ctrlset(struct zd_mac *mac,
  736. struct sk_buff *skb)
  737. {
  738. int r;
  739. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  740. unsigned int frag_len = skb->len + FCS_LEN;
  741. unsigned int packet_length;
  742. struct ieee80211_rate *txrate;
  743. struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
  744. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  745. ZD_ASSERT(frag_len <= 0xffff);
  746. /*
  747. * Firmware computes the duration itself (for all frames except PSPoll)
  748. * and needs the field set to 0 at input, otherwise firmware messes up
  749. * duration_id and sets bits 14 and 15 on.
  750. */
  751. if (!ieee80211_is_pspoll(hdr->frame_control))
  752. hdr->duration_id = 0;
  753. txrate = ieee80211_get_tx_rate(mac->hw, info);
  754. cs->modulation = txrate->hw_value;
  755. if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  756. cs->modulation = txrate->hw_value_short;
  757. cs->tx_length = cpu_to_le16(frag_len);
  758. cs_set_control(mac, cs, hdr, info);
  759. packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
  760. ZD_ASSERT(packet_length <= 0xffff);
  761. /* ZD1211B: Computing the length difference this way, gives us
  762. * flexibility to compute the packet length.
  763. */
  764. cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
  765. packet_length - frag_len : packet_length);
  766. /*
  767. * CURRENT LENGTH:
  768. * - transmit frame length in microseconds
  769. * - seems to be derived from frame length
  770. * - see Cal_Us_Service() in zdinlinef.h
  771. * - if macp->bTxBurstEnable is enabled, then multiply by 4
  772. * - bTxBurstEnable is never set in the vendor driver
  773. *
  774. * SERVICE:
  775. * - "for PLCP configuration"
  776. * - always 0 except in some situations at 802.11b 11M
  777. * - see line 53 of zdinlinef.h
  778. */
  779. cs->service = 0;
  780. r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
  781. le16_to_cpu(cs->tx_length));
  782. if (r < 0)
  783. return r;
  784. cs->current_length = cpu_to_le16(r);
  785. cs->next_frame_length = 0;
  786. return 0;
  787. }
  788. /**
  789. * zd_op_tx - transmits a network frame to the device
  790. *
  791. * @dev: mac80211 hardware device
  792. * @skb: socket buffer
  793. * @control: the control structure
  794. *
  795. * This function transmit an IEEE 802.11 network frame to the device. The
  796. * control block of the skbuff will be initialized. If necessary the incoming
  797. * mac80211 queues will be stopped.
  798. */
  799. static void zd_op_tx(struct ieee80211_hw *hw,
  800. struct ieee80211_tx_control *control,
  801. struct sk_buff *skb)
  802. {
  803. struct zd_mac *mac = zd_hw_mac(hw);
  804. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  805. int r;
  806. r = fill_ctrlset(mac, skb);
  807. if (r)
  808. goto fail;
  809. info->rate_driver_data[0] = hw;
  810. r = zd_usb_tx(&mac->chip.usb, skb);
  811. if (r)
  812. goto fail;
  813. return;
  814. fail:
  815. dev_kfree_skb(skb);
  816. }
  817. /**
  818. * filter_ack - filters incoming packets for acknowledgements
  819. * @dev: the mac80211 device
  820. * @rx_hdr: received header
  821. * @stats: the status for the received packet
  822. *
  823. * This functions looks for ACK packets and tries to match them with the
  824. * frames in the tx queue. If a match is found the frame will be dequeued and
  825. * the upper layers is informed about the successful transmission. If
  826. * mac80211 queues have been stopped and the number of frames still to be
  827. * transmitted is low the queues will be opened again.
  828. *
  829. * Returns 1 if the frame was an ACK, 0 if it was ignored.
  830. */
  831. static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
  832. struct ieee80211_rx_status *stats)
  833. {
  834. struct zd_mac *mac = zd_hw_mac(hw);
  835. struct sk_buff *skb;
  836. struct sk_buff_head *q;
  837. unsigned long flags;
  838. int found = 0;
  839. int i, position = 0;
  840. if (!ieee80211_is_ack(rx_hdr->frame_control))
  841. return 0;
  842. q = &mac->ack_wait_queue;
  843. spin_lock_irqsave(&q->lock, flags);
  844. skb_queue_walk(q, skb) {
  845. struct ieee80211_hdr *tx_hdr;
  846. position ++;
  847. if (mac->ack_pending && skb_queue_is_first(q, skb))
  848. continue;
  849. tx_hdr = (struct ieee80211_hdr *)skb->data;
  850. if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
  851. {
  852. found = 1;
  853. break;
  854. }
  855. }
  856. if (found) {
  857. for (i=1; i<position; i++) {
  858. skb = __skb_dequeue(q);
  859. zd_mac_tx_status(hw, skb,
  860. mac->ack_pending ? mac->ack_signal : 0,
  861. NULL);
  862. mac->ack_pending = 0;
  863. }
  864. mac->ack_pending = 1;
  865. mac->ack_signal = stats->signal;
  866. /* Prevent pending tx-packet on AP-mode */
  867. if (mac->type == NL80211_IFTYPE_AP) {
  868. skb = __skb_dequeue(q);
  869. zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
  870. mac->ack_pending = 0;
  871. }
  872. }
  873. spin_unlock_irqrestore(&q->lock, flags);
  874. return 1;
  875. }
  876. int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
  877. {
  878. struct zd_mac *mac = zd_hw_mac(hw);
  879. struct ieee80211_rx_status stats;
  880. const struct rx_status *status;
  881. struct sk_buff *skb;
  882. int bad_frame = 0;
  883. __le16 fc;
  884. int need_padding;
  885. int i;
  886. u8 rate;
  887. if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
  888. FCS_LEN + sizeof(struct rx_status))
  889. return -EINVAL;
  890. memset(&stats, 0, sizeof(stats));
  891. /* Note about pass_failed_fcs and pass_ctrl access below:
  892. * mac locking intentionally omitted here, as this is the only unlocked
  893. * reader and the only writer is configure_filter. Plus, if there were
  894. * any races accessing these variables, it wouldn't really matter.
  895. * If mac80211 ever provides a way for us to access filter flags
  896. * from outside configure_filter, we could improve on this. Also, this
  897. * situation may change once we implement some kind of DMA-into-skb
  898. * RX path. */
  899. /* Caller has to ensure that length >= sizeof(struct rx_status). */
  900. status = (struct rx_status *)
  901. (buffer + (length - sizeof(struct rx_status)));
  902. if (status->frame_status & ZD_RX_ERROR) {
  903. if (mac->pass_failed_fcs &&
  904. (status->frame_status & ZD_RX_CRC32_ERROR)) {
  905. stats.flag |= RX_FLAG_FAILED_FCS_CRC;
  906. bad_frame = 1;
  907. } else {
  908. return -EINVAL;
  909. }
  910. }
  911. stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
  912. stats.band = NL80211_BAND_2GHZ;
  913. stats.signal = zd_check_signal(hw, status->signal_strength);
  914. rate = zd_rx_rate(buffer, status);
  915. /* todo: return index in the big switches in zd_rx_rate instead */
  916. for (i = 0; i < mac->band.n_bitrates; i++)
  917. if (rate == mac->band.bitrates[i].hw_value)
  918. stats.rate_idx = i;
  919. length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
  920. buffer += ZD_PLCP_HEADER_SIZE;
  921. /* Except for bad frames, filter each frame to see if it is an ACK, in
  922. * which case our internal TX tracking is updated. Normally we then
  923. * bail here as there's no need to pass ACKs on up to the stack, but
  924. * there is also the case where the stack has requested us to pass
  925. * control frames on up (pass_ctrl) which we must consider. */
  926. if (!bad_frame &&
  927. filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
  928. && !mac->pass_ctrl)
  929. return 0;
  930. fc = get_unaligned((__le16*)buffer);
  931. need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
  932. skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
  933. if (skb == NULL)
  934. return -ENOMEM;
  935. if (need_padding) {
  936. /* Make sure the payload data is 4 byte aligned. */
  937. skb_reserve(skb, 2);
  938. }
  939. /* FIXME : could we avoid this big memcpy ? */
  940. skb_put_data(skb, buffer, length);
  941. memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
  942. ieee80211_rx_irqsafe(hw, skb);
  943. return 0;
  944. }
  945. static int zd_op_add_interface(struct ieee80211_hw *hw,
  946. struct ieee80211_vif *vif)
  947. {
  948. struct zd_mac *mac = zd_hw_mac(hw);
  949. /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
  950. if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
  951. return -EOPNOTSUPP;
  952. switch (vif->type) {
  953. case NL80211_IFTYPE_MONITOR:
  954. case NL80211_IFTYPE_MESH_POINT:
  955. case NL80211_IFTYPE_STATION:
  956. case NL80211_IFTYPE_ADHOC:
  957. case NL80211_IFTYPE_AP:
  958. mac->type = vif->type;
  959. break;
  960. default:
  961. return -EOPNOTSUPP;
  962. }
  963. mac->vif = vif;
  964. return set_mac_and_bssid(mac);
  965. }
  966. static void zd_op_remove_interface(struct ieee80211_hw *hw,
  967. struct ieee80211_vif *vif)
  968. {
  969. struct zd_mac *mac = zd_hw_mac(hw);
  970. mac->type = NL80211_IFTYPE_UNSPECIFIED;
  971. mac->vif = NULL;
  972. zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
  973. zd_write_mac_addr(&mac->chip, NULL);
  974. zd_mac_free_cur_beacon(mac);
  975. }
  976. static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
  977. {
  978. struct zd_mac *mac = zd_hw_mac(hw);
  979. struct ieee80211_conf *conf = &hw->conf;
  980. spin_lock_irq(&mac->lock);
  981. mac->channel = conf->chandef.chan->hw_value;
  982. spin_unlock_irq(&mac->lock);
  983. return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
  984. }
  985. static void zd_beacon_done(struct zd_mac *mac)
  986. {
  987. struct sk_buff *skb, *beacon;
  988. if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
  989. return;
  990. if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
  991. return;
  992. /*
  993. * Send out buffered broad- and multicast frames.
  994. */
  995. while (!ieee80211_queue_stopped(mac->hw, 0)) {
  996. skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
  997. if (!skb)
  998. break;
  999. zd_op_tx(mac->hw, NULL, skb);
  1000. }
  1001. /*
  1002. * Fetch next beacon so that tim_count is updated.
  1003. */
  1004. beacon = ieee80211_beacon_get(mac->hw, mac->vif);
  1005. if (beacon)
  1006. zd_mac_config_beacon(mac->hw, beacon, true);
  1007. spin_lock_irq(&mac->lock);
  1008. mac->beacon.last_update = jiffies;
  1009. spin_unlock_irq(&mac->lock);
  1010. }
  1011. static void zd_process_intr(struct work_struct *work)
  1012. {
  1013. u16 int_status;
  1014. unsigned long flags;
  1015. struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
  1016. spin_lock_irqsave(&mac->lock, flags);
  1017. int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
  1018. spin_unlock_irqrestore(&mac->lock, flags);
  1019. if (int_status & INT_CFG_NEXT_BCN) {
  1020. /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
  1021. zd_beacon_done(mac);
  1022. } else {
  1023. dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
  1024. }
  1025. zd_chip_enable_hwint(&mac->chip);
  1026. }
  1027. static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
  1028. struct netdev_hw_addr_list *mc_list)
  1029. {
  1030. struct zd_mac *mac = zd_hw_mac(hw);
  1031. struct zd_mc_hash hash;
  1032. struct netdev_hw_addr *ha;
  1033. zd_mc_clear(&hash);
  1034. netdev_hw_addr_list_for_each(ha, mc_list) {
  1035. dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
  1036. zd_mc_add_addr(&hash, ha->addr);
  1037. }
  1038. return hash.low | ((u64)hash.high << 32);
  1039. }
  1040. #define SUPPORTED_FIF_FLAGS \
  1041. (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
  1042. FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
  1043. static void zd_op_configure_filter(struct ieee80211_hw *hw,
  1044. unsigned int changed_flags,
  1045. unsigned int *new_flags,
  1046. u64 multicast)
  1047. {
  1048. struct zd_mc_hash hash = {
  1049. .low = multicast,
  1050. .high = multicast >> 32,
  1051. };
  1052. struct zd_mac *mac = zd_hw_mac(hw);
  1053. unsigned long flags;
  1054. int r;
  1055. /* Only deal with supported flags */
  1056. changed_flags &= SUPPORTED_FIF_FLAGS;
  1057. *new_flags &= SUPPORTED_FIF_FLAGS;
  1058. /*
  1059. * If multicast parameter (as returned by zd_op_prepare_multicast)
  1060. * has changed, no bit in changed_flags is set. To handle this
  1061. * situation, we do not return if changed_flags is 0. If we do so,
  1062. * we will have some issue with IPv6 which uses multicast for link
  1063. * layer address resolution.
  1064. */
  1065. if (*new_flags & FIF_ALLMULTI)
  1066. zd_mc_add_all(&hash);
  1067. spin_lock_irqsave(&mac->lock, flags);
  1068. mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
  1069. mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
  1070. mac->multicast_hash = hash;
  1071. spin_unlock_irqrestore(&mac->lock, flags);
  1072. zd_chip_set_multicast_hash(&mac->chip, &hash);
  1073. if (changed_flags & FIF_CONTROL) {
  1074. r = set_rx_filter(mac);
  1075. if (r)
  1076. dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
  1077. }
  1078. /* no handling required for FIF_OTHER_BSS as we don't currently
  1079. * do BSSID filtering */
  1080. /* FIXME: in future it would be nice to enable the probe response
  1081. * filter (so that the driver doesn't see them) until
  1082. * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
  1083. * have to schedule work to enable prbresp reception, which might
  1084. * happen too late. For now we'll just listen and forward them all the
  1085. * time. */
  1086. }
  1087. static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
  1088. {
  1089. mutex_lock(&mac->chip.mutex);
  1090. zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
  1091. mutex_unlock(&mac->chip.mutex);
  1092. }
  1093. static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
  1094. struct ieee80211_vif *vif,
  1095. struct ieee80211_bss_conf *bss_conf,
  1096. u32 changes)
  1097. {
  1098. struct zd_mac *mac = zd_hw_mac(hw);
  1099. int associated;
  1100. dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
  1101. if (mac->type == NL80211_IFTYPE_MESH_POINT ||
  1102. mac->type == NL80211_IFTYPE_ADHOC ||
  1103. mac->type == NL80211_IFTYPE_AP) {
  1104. associated = true;
  1105. if (changes & BSS_CHANGED_BEACON) {
  1106. struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
  1107. if (beacon) {
  1108. zd_chip_disable_hwint(&mac->chip);
  1109. zd_mac_config_beacon(hw, beacon, false);
  1110. zd_chip_enable_hwint(&mac->chip);
  1111. }
  1112. }
  1113. if (changes & BSS_CHANGED_BEACON_ENABLED) {
  1114. u16 interval = 0;
  1115. u8 period = 0;
  1116. if (bss_conf->enable_beacon) {
  1117. period = bss_conf->dtim_period;
  1118. interval = bss_conf->beacon_int;
  1119. }
  1120. spin_lock_irq(&mac->lock);
  1121. mac->beacon.period = period;
  1122. mac->beacon.interval = interval;
  1123. mac->beacon.last_update = jiffies;
  1124. spin_unlock_irq(&mac->lock);
  1125. zd_set_beacon_interval(&mac->chip, interval, period,
  1126. mac->type);
  1127. }
  1128. } else
  1129. associated = is_valid_ether_addr(bss_conf->bssid);
  1130. spin_lock_irq(&mac->lock);
  1131. mac->associated = associated;
  1132. spin_unlock_irq(&mac->lock);
  1133. /* TODO: do hardware bssid filtering */
  1134. if (changes & BSS_CHANGED_ERP_PREAMBLE) {
  1135. spin_lock_irq(&mac->lock);
  1136. mac->short_preamble = bss_conf->use_short_preamble;
  1137. spin_unlock_irq(&mac->lock);
  1138. set_rts_cts(mac, bss_conf->use_short_preamble);
  1139. }
  1140. }
  1141. static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
  1142. {
  1143. struct zd_mac *mac = zd_hw_mac(hw);
  1144. return zd_chip_get_tsf(&mac->chip);
  1145. }
  1146. static const struct ieee80211_ops zd_ops = {
  1147. .tx = zd_op_tx,
  1148. .start = zd_op_start,
  1149. .stop = zd_op_stop,
  1150. .add_interface = zd_op_add_interface,
  1151. .remove_interface = zd_op_remove_interface,
  1152. .config = zd_op_config,
  1153. .prepare_multicast = zd_op_prepare_multicast,
  1154. .configure_filter = zd_op_configure_filter,
  1155. .bss_info_changed = zd_op_bss_info_changed,
  1156. .get_tsf = zd_op_get_tsf,
  1157. };
  1158. struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
  1159. {
  1160. struct zd_mac *mac;
  1161. struct ieee80211_hw *hw;
  1162. hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
  1163. if (!hw) {
  1164. dev_dbg_f(&intf->dev, "out of memory\n");
  1165. return NULL;
  1166. }
  1167. mac = zd_hw_mac(hw);
  1168. memset(mac, 0, sizeof(*mac));
  1169. spin_lock_init(&mac->lock);
  1170. mac->hw = hw;
  1171. mac->type = NL80211_IFTYPE_UNSPECIFIED;
  1172. memcpy(mac->channels, zd_channels, sizeof(zd_channels));
  1173. memcpy(mac->rates, zd_rates, sizeof(zd_rates));
  1174. mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
  1175. mac->band.bitrates = mac->rates;
  1176. mac->band.n_channels = ARRAY_SIZE(zd_channels);
  1177. mac->band.channels = mac->channels;
  1178. hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
  1179. ieee80211_hw_set(hw, MFP_CAPABLE);
  1180. ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
  1181. ieee80211_hw_set(hw, RX_INCLUDES_FCS);
  1182. ieee80211_hw_set(hw, SIGNAL_UNSPEC);
  1183. hw->wiphy->interface_modes =
  1184. BIT(NL80211_IFTYPE_MESH_POINT) |
  1185. BIT(NL80211_IFTYPE_STATION) |
  1186. BIT(NL80211_IFTYPE_ADHOC) |
  1187. BIT(NL80211_IFTYPE_AP);
  1188. wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
  1189. hw->max_signal = 100;
  1190. hw->queues = 1;
  1191. hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
  1192. /*
  1193. * Tell mac80211 that we support multi rate retries
  1194. */
  1195. hw->max_rates = IEEE80211_TX_MAX_RATES;
  1196. hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
  1197. skb_queue_head_init(&mac->ack_wait_queue);
  1198. mac->ack_pending = 0;
  1199. zd_chip_init(&mac->chip, hw, intf);
  1200. housekeeping_init(mac);
  1201. beacon_init(mac);
  1202. INIT_WORK(&mac->process_intr, zd_process_intr);
  1203. SET_IEEE80211_DEV(hw, &intf->dev);
  1204. return hw;
  1205. }
  1206. #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
  1207. static void beacon_watchdog_handler(struct work_struct *work)
  1208. {
  1209. struct zd_mac *mac =
  1210. container_of(work, struct zd_mac, beacon.watchdog_work.work);
  1211. struct sk_buff *beacon;
  1212. unsigned long timeout;
  1213. int interval, period;
  1214. if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
  1215. goto rearm;
  1216. if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
  1217. goto rearm;
  1218. spin_lock_irq(&mac->lock);
  1219. interval = mac->beacon.interval;
  1220. period = mac->beacon.period;
  1221. timeout = mac->beacon.last_update +
  1222. msecs_to_jiffies(interval * 1024 / 1000) * 3;
  1223. spin_unlock_irq(&mac->lock);
  1224. if (interval > 0 && time_is_before_jiffies(timeout)) {
  1225. dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
  1226. "restarting. "
  1227. "(interval: %d, dtim: %d)\n",
  1228. interval, period);
  1229. zd_chip_disable_hwint(&mac->chip);
  1230. beacon = ieee80211_beacon_get(mac->hw, mac->vif);
  1231. if (beacon) {
  1232. zd_mac_free_cur_beacon(mac);
  1233. zd_mac_config_beacon(mac->hw, beacon, false);
  1234. }
  1235. zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
  1236. zd_chip_enable_hwint(&mac->chip);
  1237. spin_lock_irq(&mac->lock);
  1238. mac->beacon.last_update = jiffies;
  1239. spin_unlock_irq(&mac->lock);
  1240. }
  1241. rearm:
  1242. queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
  1243. BEACON_WATCHDOG_DELAY);
  1244. }
  1245. static void beacon_init(struct zd_mac *mac)
  1246. {
  1247. INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
  1248. }
  1249. static void beacon_enable(struct zd_mac *mac)
  1250. {
  1251. dev_dbg_f(zd_mac_dev(mac), "\n");
  1252. mac->beacon.last_update = jiffies;
  1253. queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
  1254. BEACON_WATCHDOG_DELAY);
  1255. }
  1256. static void beacon_disable(struct zd_mac *mac)
  1257. {
  1258. dev_dbg_f(zd_mac_dev(mac), "\n");
  1259. cancel_delayed_work_sync(&mac->beacon.watchdog_work);
  1260. zd_mac_free_cur_beacon(mac);
  1261. }
  1262. #define LINK_LED_WORK_DELAY HZ
  1263. static void link_led_handler(struct work_struct *work)
  1264. {
  1265. struct zd_mac *mac =
  1266. container_of(work, struct zd_mac, housekeeping.link_led_work.work);
  1267. struct zd_chip *chip = &mac->chip;
  1268. int is_associated;
  1269. int r;
  1270. if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
  1271. goto requeue;
  1272. spin_lock_irq(&mac->lock);
  1273. is_associated = mac->associated;
  1274. spin_unlock_irq(&mac->lock);
  1275. r = zd_chip_control_leds(chip,
  1276. is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
  1277. if (r)
  1278. dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
  1279. requeue:
  1280. queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
  1281. LINK_LED_WORK_DELAY);
  1282. }
  1283. static void housekeeping_init(struct zd_mac *mac)
  1284. {
  1285. INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
  1286. }
  1287. static void housekeeping_enable(struct zd_mac *mac)
  1288. {
  1289. dev_dbg_f(zd_mac_dev(mac), "\n");
  1290. queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
  1291. 0);
  1292. }
  1293. static void housekeeping_disable(struct zd_mac *mac)
  1294. {
  1295. dev_dbg_f(zd_mac_dev(mac), "\n");
  1296. cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
  1297. zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
  1298. }