eeprom_9287.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <asm/unaligned.h>
  17. #include "hw.h"
  18. #include "ar9002_phy.h"
  19. #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
  20. static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  21. {
  22. u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
  23. return (version & AR5416_EEP_VER_MAJOR_MASK) >>
  24. AR5416_EEP_VER_MAJOR_SHIFT;
  25. }
  26. static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  27. {
  28. u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
  29. return version & AR5416_EEP_VER_MINOR_MASK;
  30. }
  31. static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  32. {
  33. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  34. u16 *eep_data;
  35. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  36. eep_data = (u16 *)eep;
  37. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  38. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
  39. return false;
  40. eep_data++;
  41. }
  42. return true;
  43. }
  44. static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
  45. {
  46. u16 *eep_data = (u16 *)&ah->eeprom.map9287;
  47. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
  48. AR9287_HTC_EEP_START_LOC,
  49. SIZE_EEPROM_AR9287);
  50. return true;
  51. }
  52. static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  53. {
  54. struct ath_common *common = ath9k_hw_common(ah);
  55. if (!ath9k_hw_use_flash(ah)) {
  56. ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
  57. }
  58. if (common->bus_ops->ath_bus_type == ATH_USB)
  59. return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
  60. else
  61. return __ath9k_hw_ar9287_fill_eeprom(ah);
  62. }
  63. #ifdef CONFIG_ATH9K_COMMON_DEBUG
  64. static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
  65. struct modal_eep_ar9287_header *modal_hdr)
  66. {
  67. PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
  68. PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
  69. PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
  70. PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
  71. PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
  72. PR_EEP("Switch Settle", modal_hdr->switchSettling);
  73. PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
  74. PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
  75. PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
  76. PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
  77. PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
  78. PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
  79. PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
  80. PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
  81. PR_EEP("CCA Threshold)", modal_hdr->thresh62);
  82. PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
  83. PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
  84. PR_EEP("xpdGain", modal_hdr->xpdGain);
  85. PR_EEP("External PD", modal_hdr->xpd);
  86. PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
  87. PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
  88. PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
  89. PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
  90. PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
  91. PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
  92. PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
  93. PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
  94. PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
  95. PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
  96. PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
  97. PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
  98. PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
  99. PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
  100. PR_EEP("AR92x7 Version", modal_hdr->version);
  101. PR_EEP("DriverBias1", modal_hdr->db1);
  102. PR_EEP("DriverBias2", modal_hdr->db1);
  103. PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
  104. PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
  105. PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
  106. PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
  107. return len;
  108. }
  109. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  110. u8 *buf, u32 len, u32 size)
  111. {
  112. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  113. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  114. u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
  115. if (!dump_base_hdr) {
  116. len += scnprintf(buf + len, size - len,
  117. "%20s :\n", "2GHz modal Header");
  118. len = ar9287_dump_modal_eeprom(buf, len, size,
  119. &eep->modalHeader);
  120. goto out;
  121. }
  122. PR_EEP("Major Version", ath9k_hw_ar9287_get_eeprom_ver(ah));
  123. PR_EEP("Minor Version", ath9k_hw_ar9287_get_eeprom_rev(ah));
  124. PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
  125. PR_EEP("Length", le16_to_cpu(pBase->length));
  126. PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
  127. PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
  128. PR_EEP("TX Mask", pBase->txMask);
  129. PR_EEP("RX Mask", pBase->rxMask);
  130. PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
  131. PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
  132. PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
  133. AR5416_OPFLAGS_N_2G_HT20));
  134. PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
  135. AR5416_OPFLAGS_N_2G_HT40));
  136. PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
  137. AR5416_OPFLAGS_N_5G_HT20));
  138. PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
  139. AR5416_OPFLAGS_N_5G_HT40));
  140. PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
  141. PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
  142. PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
  143. PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
  144. PR_EEP("Power Table Offset", pBase->pwrTableOffset);
  145. PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
  146. len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
  147. pBase->macAddr);
  148. out:
  149. if (len > size)
  150. len = size;
  151. return len;
  152. }
  153. #else
  154. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  155. u8 *buf, u32 len, u32 size)
  156. {
  157. return 0;
  158. }
  159. #endif
  160. static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
  161. {
  162. u32 el;
  163. int i, err;
  164. bool need_swap;
  165. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  166. err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_AR9287);
  167. if (err)
  168. return err;
  169. if (need_swap)
  170. el = swab16((__force u16)eep->baseEepHeader.length);
  171. else
  172. el = le16_to_cpu(eep->baseEepHeader.length);
  173. el = min(el / sizeof(u16), SIZE_EEPROM_AR9287);
  174. if (!ath9k_hw_nvram_validate_checksum(ah, el))
  175. return -EINVAL;
  176. if (need_swap) {
  177. EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
  178. EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
  179. EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
  180. EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
  181. EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
  182. EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
  183. EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
  184. EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
  185. EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon);
  186. for (i = 0; i < AR9287_MAX_CHAINS; i++)
  187. EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]);
  188. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
  189. EEPROM_FIELD_SWAB16(
  190. eep->modalHeader.spurChans[i].spurChan);
  191. }
  192. if (!ath9k_hw_nvram_check_version(ah, AR9287_EEP_VER,
  193. AR5416_EEP_NO_BACK_VER))
  194. return -EINVAL;
  195. return 0;
  196. }
  197. #undef SIZE_EEPROM_AR9287
  198. static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
  199. enum eeprom_param param)
  200. {
  201. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  202. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  203. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  204. u16 ver_minor = ath9k_hw_ar9287_get_eeprom_rev(ah);
  205. switch (param) {
  206. case EEP_NFTHRESH_2:
  207. return pModal->noiseFloorThreshCh[0];
  208. case EEP_MAC_LSW:
  209. return get_unaligned_be16(pBase->macAddr);
  210. case EEP_MAC_MID:
  211. return get_unaligned_be16(pBase->macAddr + 2);
  212. case EEP_MAC_MSW:
  213. return get_unaligned_be16(pBase->macAddr + 4);
  214. case EEP_REG_0:
  215. return le16_to_cpu(pBase->regDmn[0]);
  216. case EEP_OP_CAP:
  217. return le16_to_cpu(pBase->deviceCap);
  218. case EEP_OP_MODE:
  219. return pBase->opCapFlags;
  220. case EEP_RF_SILENT:
  221. return le16_to_cpu(pBase->rfSilent);
  222. case EEP_TX_MASK:
  223. return pBase->txMask;
  224. case EEP_RX_MASK:
  225. return pBase->rxMask;
  226. case EEP_DEV_TYPE:
  227. return pBase->deviceType;
  228. case EEP_OL_PWRCTRL:
  229. return pBase->openLoopPwrCntl;
  230. case EEP_TEMPSENSE_SLOPE:
  231. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  232. return pBase->tempSensSlope;
  233. else
  234. return 0;
  235. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  236. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  237. return pBase->tempSensSlopePalOn;
  238. else
  239. return 0;
  240. case EEP_ANTENNA_GAIN_2G:
  241. return max_t(u8, pModal->antennaGainCh[0],
  242. pModal->antennaGainCh[1]);
  243. default:
  244. return 0;
  245. }
  246. }
  247. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  248. struct ath9k_channel *chan,
  249. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  250. u8 *pCalChans, u16 availPiers, int8_t *pPwr)
  251. {
  252. u16 idxL = 0, idxR = 0, numPiers;
  253. bool match;
  254. struct chan_centers centers;
  255. ath9k_hw_get_channel_centers(ah, chan, &centers);
  256. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  257. if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
  258. break;
  259. }
  260. match = ath9k_hw_get_lower_upper_index(
  261. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  262. pCalChans, numPiers, &idxL, &idxR);
  263. if (match) {
  264. *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  265. } else {
  266. *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  267. (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  268. }
  269. }
  270. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  271. int32_t txPower, u16 chain)
  272. {
  273. u32 tmpVal;
  274. u32 a;
  275. /* Enable OLPC for chain 0 */
  276. tmpVal = REG_READ(ah, 0xa270);
  277. tmpVal = tmpVal & 0xFCFFFFFF;
  278. tmpVal = tmpVal | (0x3 << 24);
  279. REG_WRITE(ah, 0xa270, tmpVal);
  280. /* Enable OLPC for chain 1 */
  281. tmpVal = REG_READ(ah, 0xb270);
  282. tmpVal = tmpVal & 0xFCFFFFFF;
  283. tmpVal = tmpVal | (0x3 << 24);
  284. REG_WRITE(ah, 0xb270, tmpVal);
  285. /* Write the OLPC ref power for chain 0 */
  286. if (chain == 0) {
  287. tmpVal = REG_READ(ah, 0xa398);
  288. tmpVal = tmpVal & 0xff00ffff;
  289. a = (txPower)&0xff;
  290. tmpVal = tmpVal | (a << 16);
  291. REG_WRITE(ah, 0xa398, tmpVal);
  292. }
  293. /* Write the OLPC ref power for chain 1 */
  294. if (chain == 1) {
  295. tmpVal = REG_READ(ah, 0xb398);
  296. tmpVal = tmpVal & 0xff00ffff;
  297. a = (txPower)&0xff;
  298. tmpVal = tmpVal | (a << 16);
  299. REG_WRITE(ah, 0xb398, tmpVal);
  300. }
  301. }
  302. static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
  303. struct ath9k_channel *chan)
  304. {
  305. struct cal_data_per_freq_ar9287 *pRawDataset;
  306. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  307. u8 *pCalBChans = NULL;
  308. u16 pdGainOverlap_t2;
  309. u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  310. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  311. u16 numPiers = 0, i, j;
  312. u16 numXpdGain, xpdMask;
  313. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
  314. u32 reg32, regOffset, regChainOffset, regval;
  315. int16_t diff = 0;
  316. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  317. xpdMask = pEepData->modalHeader.xpdGain;
  318. if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
  319. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  320. else
  321. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  322. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  323. if (IS_CHAN_2GHZ(chan)) {
  324. pCalBChans = pEepData->calFreqPier2G;
  325. numPiers = AR9287_NUM_2G_CAL_PIERS;
  326. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  327. pRawDatasetOpenLoop =
  328. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
  329. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  330. }
  331. }
  332. numXpdGain = 0;
  333. /* Calculate the value of xpdgains from the xpdGain Mask */
  334. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  335. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  336. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  337. break;
  338. xpdGainValues[numXpdGain] =
  339. (u16)(AR5416_PD_GAINS_IN_MASK-i);
  340. numXpdGain++;
  341. }
  342. }
  343. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  344. (numXpdGain - 1) & 0x3);
  345. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  346. xpdGainValues[0]);
  347. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  348. xpdGainValues[1]);
  349. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  350. xpdGainValues[2]);
  351. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  352. regChainOffset = i * 0x1000;
  353. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  354. pRawDatasetOpenLoop =
  355. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
  356. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  357. int8_t txPower;
  358. ar9287_eeprom_get_tx_gain_index(ah, chan,
  359. pRawDatasetOpenLoop,
  360. pCalBChans, numPiers,
  361. &txPower);
  362. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  363. } else {
  364. pRawDataset =
  365. (struct cal_data_per_freq_ar9287 *)
  366. pEepData->calPierData2G[i];
  367. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  368. pRawDataset,
  369. pCalBChans, numPiers,
  370. pdGainOverlap_t2,
  371. gainBoundaries,
  372. pdadcValues,
  373. numXpdGain);
  374. }
  375. ENABLE_REGWRITE_BUFFER(ah);
  376. if (i == 0) {
  377. if (!ath9k_hw_ar9287_get_eeprom(ah,
  378. EEP_OL_PWRCTRL)) {
  379. regval = SM(pdGainOverlap_t2,
  380. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  381. | SM(gainBoundaries[0],
  382. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  383. | SM(gainBoundaries[1],
  384. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  385. | SM(gainBoundaries[2],
  386. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  387. | SM(gainBoundaries[3],
  388. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
  389. REG_WRITE(ah,
  390. AR_PHY_TPCRG5 + regChainOffset,
  391. regval);
  392. }
  393. }
  394. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  395. pEepData->baseEepHeader.pwrTableOffset) {
  396. diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
  397. (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  398. diff *= 2;
  399. for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
  400. pdadcValues[j] = pdadcValues[j+diff];
  401. for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
  402. j < AR5416_NUM_PDADC_VALUES; j++)
  403. pdadcValues[j] =
  404. pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
  405. }
  406. if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  407. regOffset = AR_PHY_BASE +
  408. (672 << 2) + regChainOffset;
  409. for (j = 0; j < 32; j++) {
  410. reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
  411. REG_WRITE(ah, regOffset, reg32);
  412. regOffset += 4;
  413. }
  414. }
  415. REGWRITE_BUFFER_FLUSH(ah);
  416. }
  417. }
  418. }
  419. static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
  420. struct ath9k_channel *chan,
  421. int16_t *ratesArray,
  422. u16 cfgCtl,
  423. u16 antenna_reduction,
  424. u16 powerLimit)
  425. {
  426. #define CMP_CTL \
  427. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  428. pEepData->ctlIndex[i])
  429. #define CMP_NO_CTL \
  430. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  431. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  432. u16 twiceMaxEdgePower;
  433. int i;
  434. struct cal_ctl_data_ar9287 *rep;
  435. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  436. targetPowerCck = {0, {0, 0, 0, 0} };
  437. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  438. targetPowerCckExt = {0, {0, 0, 0, 0} };
  439. struct cal_target_power_ht targetPowerHt20,
  440. targetPowerHt40 = {0, {0, 0, 0, 0} };
  441. u16 scaledPower = 0, minCtlPower;
  442. static const u16 ctlModesFor11g[] = {
  443. CTL_11B, CTL_11G, CTL_2GHT20,
  444. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  445. };
  446. u16 numCtlModes = 0;
  447. const u16 *pCtlMode = NULL;
  448. u16 ctlMode, freq;
  449. struct chan_centers centers;
  450. int tx_chainmask;
  451. u16 twiceMinEdgePower;
  452. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  453. tx_chainmask = ah->txchainmask;
  454. ath9k_hw_get_channel_centers(ah, chan, &centers);
  455. scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
  456. antenna_reduction);
  457. /*
  458. * Get TX power from EEPROM.
  459. */
  460. if (IS_CHAN_2GHZ(chan)) {
  461. /* CTL_11B, CTL_11G, CTL_2GHT20 */
  462. numCtlModes =
  463. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  464. pCtlMode = ctlModesFor11g;
  465. ath9k_hw_get_legacy_target_powers(ah, chan,
  466. pEepData->calTargetPowerCck,
  467. AR9287_NUM_2G_CCK_TARGET_POWERS,
  468. &targetPowerCck, 4, false);
  469. ath9k_hw_get_legacy_target_powers(ah, chan,
  470. pEepData->calTargetPower2G,
  471. AR9287_NUM_2G_20_TARGET_POWERS,
  472. &targetPowerOfdm, 4, false);
  473. ath9k_hw_get_target_powers(ah, chan,
  474. pEepData->calTargetPower2GHT20,
  475. AR9287_NUM_2G_20_TARGET_POWERS,
  476. &targetPowerHt20, 8, false);
  477. if (IS_CHAN_HT40(chan)) {
  478. /* All 2G CTLs */
  479. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  480. ath9k_hw_get_target_powers(ah, chan,
  481. pEepData->calTargetPower2GHT40,
  482. AR9287_NUM_2G_40_TARGET_POWERS,
  483. &targetPowerHt40, 8, true);
  484. ath9k_hw_get_legacy_target_powers(ah, chan,
  485. pEepData->calTargetPowerCck,
  486. AR9287_NUM_2G_CCK_TARGET_POWERS,
  487. &targetPowerCckExt, 4, true);
  488. ath9k_hw_get_legacy_target_powers(ah, chan,
  489. pEepData->calTargetPower2G,
  490. AR9287_NUM_2G_20_TARGET_POWERS,
  491. &targetPowerOfdmExt, 4, true);
  492. }
  493. }
  494. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  495. bool isHt40CtlMode =
  496. (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
  497. if (isHt40CtlMode)
  498. freq = centers.synth_center;
  499. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  500. freq = centers.ext_center;
  501. else
  502. freq = centers.ctl_center;
  503. twiceMaxEdgePower = MAX_RATE_POWER;
  504. /* Walk through the CTL indices stored in EEPROM */
  505. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  506. struct cal_ctl_edges *pRdEdgesPower;
  507. /*
  508. * Compare test group from regulatory channel list
  509. * with test mode from pCtlMode list
  510. */
  511. if (CMP_CTL || CMP_NO_CTL) {
  512. rep = &(pEepData->ctlData[i]);
  513. pRdEdgesPower =
  514. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
  515. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  516. pRdEdgesPower,
  517. IS_CHAN_2GHZ(chan),
  518. AR5416_NUM_BAND_EDGES);
  519. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  520. twiceMaxEdgePower = min(twiceMaxEdgePower,
  521. twiceMinEdgePower);
  522. } else {
  523. twiceMaxEdgePower = twiceMinEdgePower;
  524. break;
  525. }
  526. }
  527. }
  528. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  529. /* Apply ctl mode to correct target power set */
  530. switch (pCtlMode[ctlMode]) {
  531. case CTL_11B:
  532. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  533. targetPowerCck.tPow2x[i] =
  534. (u8)min((u16)targetPowerCck.tPow2x[i],
  535. minCtlPower);
  536. }
  537. break;
  538. case CTL_11A:
  539. case CTL_11G:
  540. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  541. targetPowerOfdm.tPow2x[i] =
  542. (u8)min((u16)targetPowerOfdm.tPow2x[i],
  543. minCtlPower);
  544. }
  545. break;
  546. case CTL_5GHT20:
  547. case CTL_2GHT20:
  548. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  549. targetPowerHt20.tPow2x[i] =
  550. (u8)min((u16)targetPowerHt20.tPow2x[i],
  551. minCtlPower);
  552. }
  553. break;
  554. case CTL_11B_EXT:
  555. targetPowerCckExt.tPow2x[0] =
  556. (u8)min((u16)targetPowerCckExt.tPow2x[0],
  557. minCtlPower);
  558. break;
  559. case CTL_11A_EXT:
  560. case CTL_11G_EXT:
  561. targetPowerOfdmExt.tPow2x[0] =
  562. (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
  563. minCtlPower);
  564. break;
  565. case CTL_5GHT40:
  566. case CTL_2GHT40:
  567. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  568. targetPowerHt40.tPow2x[i] =
  569. (u8)min((u16)targetPowerHt40.tPow2x[i],
  570. minCtlPower);
  571. }
  572. break;
  573. default:
  574. break;
  575. }
  576. }
  577. /* Now set the rates array */
  578. ratesArray[rate6mb] =
  579. ratesArray[rate9mb] =
  580. ratesArray[rate12mb] =
  581. ratesArray[rate18mb] =
  582. ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
  583. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  584. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  585. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  586. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  587. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  588. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  589. if (IS_CHAN_2GHZ(chan)) {
  590. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  591. ratesArray[rate2s] =
  592. ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  593. ratesArray[rate5_5s] =
  594. ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  595. ratesArray[rate11s] =
  596. ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  597. }
  598. if (IS_CHAN_HT40(chan)) {
  599. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  600. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  601. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  602. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  603. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  604. if (IS_CHAN_2GHZ(chan))
  605. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  606. }
  607. #undef CMP_CTL
  608. #undef CMP_NO_CTL
  609. }
  610. static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
  611. struct ath9k_channel *chan, u16 cfgCtl,
  612. u8 twiceAntennaReduction,
  613. u8 powerLimit, bool test)
  614. {
  615. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  616. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  617. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  618. int16_t ratesArray[Ar5416RateSize];
  619. u8 ht40PowerIncForPdadc = 2;
  620. int i;
  621. memset(ratesArray, 0, sizeof(ratesArray));
  622. if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
  623. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  624. ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
  625. &ratesArray[0], cfgCtl,
  626. twiceAntennaReduction,
  627. powerLimit);
  628. ath9k_hw_set_ar9287_power_cal_table(ah, chan);
  629. regulatory->max_power_level = 0;
  630. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  631. if (ratesArray[i] > MAX_RATE_POWER)
  632. ratesArray[i] = MAX_RATE_POWER;
  633. if (ratesArray[i] > regulatory->max_power_level)
  634. regulatory->max_power_level = ratesArray[i];
  635. }
  636. ath9k_hw_update_regulatory_maxpower(ah);
  637. if (test)
  638. return;
  639. for (i = 0; i < Ar5416RateSize; i++)
  640. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  641. ENABLE_REGWRITE_BUFFER(ah);
  642. /* OFDM power per rate */
  643. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  644. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  645. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  646. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  647. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  648. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  649. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  650. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  651. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  652. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  653. /* CCK power per rate */
  654. if (IS_CHAN_2GHZ(chan)) {
  655. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  656. ATH9K_POW_SM(ratesArray[rate2s], 24)
  657. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  658. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  659. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  660. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  661. ATH9K_POW_SM(ratesArray[rate11s], 24)
  662. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  663. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  664. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  665. }
  666. /* HT20 power per rate */
  667. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  668. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  669. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  670. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  671. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  672. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  673. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  674. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  675. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  676. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  677. /* HT40 power per rate */
  678. if (IS_CHAN_HT40(chan)) {
  679. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  680. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  681. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  682. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  683. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  684. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  685. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  686. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  687. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  688. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  689. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  690. } else {
  691. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  692. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  693. ht40PowerIncForPdadc, 24)
  694. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  695. ht40PowerIncForPdadc, 16)
  696. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  697. ht40PowerIncForPdadc, 8)
  698. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  699. ht40PowerIncForPdadc, 0));
  700. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  701. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  702. ht40PowerIncForPdadc, 24)
  703. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  704. ht40PowerIncForPdadc, 16)
  705. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  706. ht40PowerIncForPdadc, 8)
  707. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  708. ht40PowerIncForPdadc, 0));
  709. }
  710. /* Dup/Ext power per rate */
  711. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  712. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  713. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  714. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  715. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  716. }
  717. /* TPC initializations */
  718. if (ah->tpc_enabled) {
  719. int ht40_delta;
  720. ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
  721. ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
  722. /* Enable TPC */
  723. REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
  724. MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
  725. } else {
  726. /* Disable TPC */
  727. REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
  728. }
  729. REGWRITE_BUFFER_FLUSH(ah);
  730. }
  731. static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
  732. struct ath9k_channel *chan)
  733. {
  734. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  735. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  736. u32 regChainOffset, regval;
  737. u8 txRxAttenLocal;
  738. int i;
  739. pModal = &eep->modalHeader;
  740. REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon));
  741. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  742. regChainOffset = i * 0x1000;
  743. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  744. le32_to_cpu(pModal->antCtrlChain[i]));
  745. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  746. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  747. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  748. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  749. SM(pModal->iqCalICh[i],
  750. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  751. SM(pModal->iqCalQCh[i],
  752. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  753. txRxAttenLocal = pModal->txRxAttenCh[i];
  754. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  755. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  756. pModal->bswMargin[i]);
  757. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  758. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  759. pModal->bswAtten[i]);
  760. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  761. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  762. txRxAttenLocal);
  763. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  764. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  765. pModal->rxTxMarginCh[i]);
  766. }
  767. if (IS_CHAN_HT40(chan))
  768. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  769. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  770. else
  771. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  772. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  773. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  774. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  775. REG_WRITE(ah, AR_PHY_RF_CTL4,
  776. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  777. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  778. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  779. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  780. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  781. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  782. REG_RMW_FIELD(ah, AR_PHY_CCA,
  783. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  784. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  785. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  786. regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
  787. regval &= ~(AR9287_AN_RF2G3_DB1 |
  788. AR9287_AN_RF2G3_DB2 |
  789. AR9287_AN_RF2G3_OB_CCK |
  790. AR9287_AN_RF2G3_OB_PSK |
  791. AR9287_AN_RF2G3_OB_QAM |
  792. AR9287_AN_RF2G3_OB_PAL_OFF);
  793. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  794. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  795. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  796. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  797. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  798. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  799. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
  800. regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
  801. regval &= ~(AR9287_AN_RF2G3_DB1 |
  802. AR9287_AN_RF2G3_DB2 |
  803. AR9287_AN_RF2G3_OB_CCK |
  804. AR9287_AN_RF2G3_OB_PSK |
  805. AR9287_AN_RF2G3_OB_QAM |
  806. AR9287_AN_RF2G3_OB_PAL_OFF);
  807. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  808. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  809. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  810. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  811. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  812. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  813. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
  814. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  815. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  816. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  817. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  818. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  819. AR9287_AN_TOP2_XPABIAS_LVL,
  820. AR9287_AN_TOP2_XPABIAS_LVL_S,
  821. pModal->xpaBiasLvl);
  822. }
  823. static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
  824. u16 i, bool is2GHz)
  825. {
  826. __le16 spur_ch = ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
  827. return le16_to_cpu(spur_ch);
  828. }
  829. static u8 ath9k_hw_ar9287_get_eepmisc(struct ath_hw *ah)
  830. {
  831. return ah->eeprom.map9287.baseEepHeader.eepMisc;
  832. }
  833. const struct eeprom_ops eep_ar9287_ops = {
  834. .check_eeprom = ath9k_hw_ar9287_check_eeprom,
  835. .get_eeprom = ath9k_hw_ar9287_get_eeprom,
  836. .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
  837. .dump_eeprom = ath9k_hw_ar9287_dump_eeprom,
  838. .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
  839. .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
  840. .set_board_values = ath9k_hw_ar9287_set_board_values,
  841. .set_txpower = ath9k_hw_ar9287_set_txpower,
  842. .get_spur_channel = ath9k_hw_ar9287_get_spur_channel,
  843. .get_eepmisc = ath9k_hw_ar9287_get_eepmisc
  844. };