eeprom_4k.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <asm/unaligned.h>
  17. #include "hw.h"
  18. #include "ar9002_phy.h"
  19. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  20. {
  21. u16 version = le16_to_cpu(ah->eeprom.map4k.baseEepHeader.version);
  22. return (version & AR5416_EEP_VER_MAJOR_MASK) >>
  23. AR5416_EEP_VER_MAJOR_SHIFT;
  24. }
  25. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  26. {
  27. u16 version = le16_to_cpu(ah->eeprom.map4k.baseEepHeader.version);
  28. return version & AR5416_EEP_VER_MINOR_MASK;
  29. }
  30. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  31. static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  32. {
  33. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  34. int addr, eep_start_loc = 64;
  35. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  36. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
  37. return false;
  38. eep_data++;
  39. }
  40. return true;
  41. }
  42. static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
  43. {
  44. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  45. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
  46. return true;
  47. }
  48. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  49. {
  50. struct ath_common *common = ath9k_hw_common(ah);
  51. if (!ath9k_hw_use_flash(ah)) {
  52. ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
  53. }
  54. if (common->bus_ops->ath_bus_type == ATH_USB)
  55. return __ath9k_hw_usb_4k_fill_eeprom(ah);
  56. else
  57. return __ath9k_hw_4k_fill_eeprom(ah);
  58. }
  59. #ifdef CONFIG_ATH9K_COMMON_DEBUG
  60. static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
  61. struct modal_eep_4k_header *modal_hdr)
  62. {
  63. PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
  64. PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
  65. PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
  66. PR_EEP("Switch Settle", modal_hdr->switchSettling);
  67. PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
  68. PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
  69. PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
  70. PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
  71. PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
  72. PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
  73. PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
  74. PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
  75. PR_EEP("CCA Threshold)", modal_hdr->thresh62);
  76. PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
  77. PR_EEP("xpdGain", modal_hdr->xpdGain);
  78. PR_EEP("External PD", modal_hdr->xpd);
  79. PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
  80. PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
  81. PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
  82. PR_EEP("O/D Bias Version", modal_hdr->version);
  83. PR_EEP("CCK OutputBias", modal_hdr->ob_0);
  84. PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
  85. PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
  86. PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
  87. PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
  88. PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
  89. PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
  90. PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
  91. PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
  92. PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
  93. PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
  94. PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
  95. PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
  96. PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
  97. PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
  98. PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
  99. PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
  100. PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
  101. PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
  102. PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
  103. PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
  104. PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
  105. PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
  106. PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
  107. PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
  108. PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
  109. PR_EEP("TX Diversity", modal_hdr->tx_diversity);
  110. return len;
  111. }
  112. static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  113. u8 *buf, u32 len, u32 size)
  114. {
  115. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  116. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  117. u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
  118. if (!dump_base_hdr) {
  119. len += scnprintf(buf + len, size - len,
  120. "%20s :\n", "2GHz modal Header");
  121. len = ath9k_dump_4k_modal_eeprom(buf, len, size,
  122. &eep->modalHeader);
  123. goto out;
  124. }
  125. PR_EEP("Major Version", ath9k_hw_4k_get_eeprom_ver(ah));
  126. PR_EEP("Minor Version", ath9k_hw_4k_get_eeprom_rev(ah));
  127. PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
  128. PR_EEP("Length", le16_to_cpu(pBase->length));
  129. PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
  130. PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
  131. PR_EEP("TX Mask", pBase->txMask);
  132. PR_EEP("RX Mask", pBase->rxMask);
  133. PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
  134. PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
  135. PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
  136. AR5416_OPFLAGS_N_2G_HT20));
  137. PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
  138. AR5416_OPFLAGS_N_2G_HT40));
  139. PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
  140. AR5416_OPFLAGS_N_5G_HT20));
  141. PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
  142. AR5416_OPFLAGS_N_5G_HT40));
  143. PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
  144. PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
  145. PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
  146. PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
  147. PR_EEP("TX Gain type", pBase->txGainType);
  148. len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
  149. pBase->macAddr);
  150. out:
  151. if (len > size)
  152. len = size;
  153. return len;
  154. }
  155. #else
  156. static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  157. u8 *buf, u32 len, u32 size)
  158. {
  159. return 0;
  160. }
  161. #endif
  162. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  163. {
  164. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  165. u32 el;
  166. bool need_swap;
  167. int i, err;
  168. err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_4K);
  169. if (err)
  170. return err;
  171. if (need_swap)
  172. el = swab16((__force u16)eep->baseEepHeader.length);
  173. else
  174. el = le16_to_cpu(eep->baseEepHeader.length);
  175. el = min(el / sizeof(u16), SIZE_EEPROM_4K);
  176. if (!ath9k_hw_nvram_validate_checksum(ah, el))
  177. return -EINVAL;
  178. if (need_swap) {
  179. EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
  180. EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
  181. EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
  182. EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
  183. EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
  184. EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
  185. EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
  186. EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
  187. EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon);
  188. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++)
  189. EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]);
  190. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
  191. EEPROM_FIELD_SWAB16(
  192. eep->modalHeader.spurChans[i].spurChan);
  193. }
  194. if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER,
  195. AR5416_EEP_NO_BACK_VER))
  196. return -EINVAL;
  197. return 0;
  198. }
  199. #undef SIZE_EEPROM_4K
  200. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  201. enum eeprom_param param)
  202. {
  203. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  204. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  205. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  206. switch (param) {
  207. case EEP_NFTHRESH_2:
  208. return pModal->noiseFloorThreshCh[0];
  209. case EEP_MAC_LSW:
  210. return get_unaligned_be16(pBase->macAddr);
  211. case EEP_MAC_MID:
  212. return get_unaligned_be16(pBase->macAddr + 2);
  213. case EEP_MAC_MSW:
  214. return get_unaligned_be16(pBase->macAddr + 4);
  215. case EEP_REG_0:
  216. return le16_to_cpu(pBase->regDmn[0]);
  217. case EEP_OP_CAP:
  218. return le16_to_cpu(pBase->deviceCap);
  219. case EEP_OP_MODE:
  220. return pBase->opCapFlags;
  221. case EEP_RF_SILENT:
  222. return le16_to_cpu(pBase->rfSilent);
  223. case EEP_OB_2:
  224. return pModal->ob_0;
  225. case EEP_DB_2:
  226. return pModal->db1_1;
  227. case EEP_TX_MASK:
  228. return pBase->txMask;
  229. case EEP_RX_MASK:
  230. return pBase->rxMask;
  231. case EEP_FRAC_N_5G:
  232. return 0;
  233. case EEP_PWR_TABLE_OFFSET:
  234. return AR5416_PWR_TABLE_OFFSET_DB;
  235. case EEP_MODAL_VER:
  236. return pModal->version;
  237. case EEP_ANT_DIV_CTL1:
  238. return pModal->antdiv_ctl1;
  239. case EEP_TXGAIN_TYPE:
  240. return pBase->txGainType;
  241. case EEP_ANTENNA_GAIN_2G:
  242. return pModal->antennaGainCh[0];
  243. default:
  244. return 0;
  245. }
  246. }
  247. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  248. struct ath9k_channel *chan)
  249. {
  250. struct ath_common *common = ath9k_hw_common(ah);
  251. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  252. struct cal_data_per_freq_4k *pRawDataset;
  253. u8 *pCalBChans = NULL;
  254. u16 pdGainOverlap_t2;
  255. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  256. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  257. u16 numPiers, i, j;
  258. u16 numXpdGain, xpdMask;
  259. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  260. u32 reg32, regOffset, regChainOffset;
  261. xpdMask = pEepData->modalHeader.xpdGain;
  262. if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2)
  263. pdGainOverlap_t2 =
  264. pEepData->modalHeader.pdGainOverlap;
  265. else
  266. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  267. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  268. pCalBChans = pEepData->calFreqPier2G;
  269. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  270. numXpdGain = 0;
  271. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  272. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  273. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  274. break;
  275. xpdGainValues[numXpdGain] =
  276. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  277. numXpdGain++;
  278. }
  279. }
  280. ENABLE_REG_RMW_BUFFER(ah);
  281. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  282. (numXpdGain - 1) & 0x3);
  283. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  284. xpdGainValues[0]);
  285. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  286. xpdGainValues[1]);
  287. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  288. REG_RMW_BUFFER_FLUSH(ah);
  289. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  290. regChainOffset = i * 0x1000;
  291. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  292. pRawDataset = pEepData->calPierData2G[i];
  293. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  294. pRawDataset, pCalBChans,
  295. numPiers, pdGainOverlap_t2,
  296. gainBoundaries,
  297. pdadcValues, numXpdGain);
  298. ENABLE_REGWRITE_BUFFER(ah);
  299. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  300. SM(pdGainOverlap_t2,
  301. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  302. | SM(gainBoundaries[0],
  303. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  304. | SM(gainBoundaries[1],
  305. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  306. | SM(gainBoundaries[2],
  307. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  308. | SM(gainBoundaries[3],
  309. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  310. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  311. for (j = 0; j < 32; j++) {
  312. reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
  313. REG_WRITE(ah, regOffset, reg32);
  314. ath_dbg(common, EEPROM,
  315. "PDADC (%d,%4x): %4.4x %8.8x\n",
  316. i, regChainOffset, regOffset,
  317. reg32);
  318. ath_dbg(common, EEPROM,
  319. "PDADC: Chain %d | "
  320. "PDADC %3d Value %3d | "
  321. "PDADC %3d Value %3d | "
  322. "PDADC %3d Value %3d | "
  323. "PDADC %3d Value %3d |\n",
  324. i, 4 * j, pdadcValues[4 * j],
  325. 4 * j + 1, pdadcValues[4 * j + 1],
  326. 4 * j + 2, pdadcValues[4 * j + 2],
  327. 4 * j + 3, pdadcValues[4 * j + 3]);
  328. regOffset += 4;
  329. }
  330. REGWRITE_BUFFER_FLUSH(ah);
  331. }
  332. }
  333. }
  334. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  335. struct ath9k_channel *chan,
  336. int16_t *ratesArray,
  337. u16 cfgCtl,
  338. u16 antenna_reduction,
  339. u16 powerLimit)
  340. {
  341. #define CMP_TEST_GRP \
  342. (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  343. pEepData->ctlIndex[i]) \
  344. || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  345. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  346. int i;
  347. u16 twiceMinEdgePower;
  348. u16 twiceMaxEdgePower;
  349. u16 scaledPower = 0, minCtlPower;
  350. u16 numCtlModes;
  351. const u16 *pCtlMode;
  352. u16 ctlMode, freq;
  353. struct chan_centers centers;
  354. struct cal_ctl_data_4k *rep;
  355. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  356. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  357. 0, { 0, 0, 0, 0}
  358. };
  359. struct cal_target_power_leg targetPowerOfdmExt = {
  360. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  361. 0, { 0, 0, 0, 0 }
  362. };
  363. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  364. 0, {0, 0, 0, 0}
  365. };
  366. static const u16 ctlModesFor11g[] = {
  367. CTL_11B, CTL_11G, CTL_2GHT20,
  368. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  369. };
  370. ath9k_hw_get_channel_centers(ah, chan, &centers);
  371. scaledPower = powerLimit - antenna_reduction;
  372. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  373. pCtlMode = ctlModesFor11g;
  374. ath9k_hw_get_legacy_target_powers(ah, chan,
  375. pEepData->calTargetPowerCck,
  376. AR5416_NUM_2G_CCK_TARGET_POWERS,
  377. &targetPowerCck, 4, false);
  378. ath9k_hw_get_legacy_target_powers(ah, chan,
  379. pEepData->calTargetPower2G,
  380. AR5416_NUM_2G_20_TARGET_POWERS,
  381. &targetPowerOfdm, 4, false);
  382. ath9k_hw_get_target_powers(ah, chan,
  383. pEepData->calTargetPower2GHT20,
  384. AR5416_NUM_2G_20_TARGET_POWERS,
  385. &targetPowerHt20, 8, false);
  386. if (IS_CHAN_HT40(chan)) {
  387. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  388. ath9k_hw_get_target_powers(ah, chan,
  389. pEepData->calTargetPower2GHT40,
  390. AR5416_NUM_2G_40_TARGET_POWERS,
  391. &targetPowerHt40, 8, true);
  392. ath9k_hw_get_legacy_target_powers(ah, chan,
  393. pEepData->calTargetPowerCck,
  394. AR5416_NUM_2G_CCK_TARGET_POWERS,
  395. &targetPowerCckExt, 4, true);
  396. ath9k_hw_get_legacy_target_powers(ah, chan,
  397. pEepData->calTargetPower2G,
  398. AR5416_NUM_2G_20_TARGET_POWERS,
  399. &targetPowerOfdmExt, 4, true);
  400. }
  401. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  402. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  403. (pCtlMode[ctlMode] == CTL_2GHT40);
  404. if (isHt40CtlMode)
  405. freq = centers.synth_center;
  406. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  407. freq = centers.ext_center;
  408. else
  409. freq = centers.ctl_center;
  410. twiceMaxEdgePower = MAX_RATE_POWER;
  411. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  412. pEepData->ctlIndex[i]; i++) {
  413. if (CMP_TEST_GRP) {
  414. rep = &(pEepData->ctlData[i]);
  415. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  416. freq,
  417. rep->ctlEdges[
  418. ar5416_get_ntxchains(ah->txchainmask) - 1],
  419. IS_CHAN_2GHZ(chan),
  420. AR5416_EEP4K_NUM_BAND_EDGES);
  421. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  422. twiceMaxEdgePower =
  423. min(twiceMaxEdgePower,
  424. twiceMinEdgePower);
  425. } else {
  426. twiceMaxEdgePower = twiceMinEdgePower;
  427. break;
  428. }
  429. }
  430. }
  431. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  432. switch (pCtlMode[ctlMode]) {
  433. case CTL_11B:
  434. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  435. targetPowerCck.tPow2x[i] =
  436. min((u16)targetPowerCck.tPow2x[i],
  437. minCtlPower);
  438. }
  439. break;
  440. case CTL_11G:
  441. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  442. targetPowerOfdm.tPow2x[i] =
  443. min((u16)targetPowerOfdm.tPow2x[i],
  444. minCtlPower);
  445. }
  446. break;
  447. case CTL_2GHT20:
  448. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  449. targetPowerHt20.tPow2x[i] =
  450. min((u16)targetPowerHt20.tPow2x[i],
  451. minCtlPower);
  452. }
  453. break;
  454. case CTL_11B_EXT:
  455. targetPowerCckExt.tPow2x[0] =
  456. min((u16)targetPowerCckExt.tPow2x[0],
  457. minCtlPower);
  458. break;
  459. case CTL_11G_EXT:
  460. targetPowerOfdmExt.tPow2x[0] =
  461. min((u16)targetPowerOfdmExt.tPow2x[0],
  462. minCtlPower);
  463. break;
  464. case CTL_2GHT40:
  465. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  466. targetPowerHt40.tPow2x[i] =
  467. min((u16)targetPowerHt40.tPow2x[i],
  468. minCtlPower);
  469. }
  470. break;
  471. default:
  472. break;
  473. }
  474. }
  475. ratesArray[rate6mb] =
  476. ratesArray[rate9mb] =
  477. ratesArray[rate12mb] =
  478. ratesArray[rate18mb] =
  479. ratesArray[rate24mb] =
  480. targetPowerOfdm.tPow2x[0];
  481. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  482. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  483. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  484. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  485. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  486. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  487. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  488. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  489. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  490. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  491. if (IS_CHAN_HT40(chan)) {
  492. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  493. ratesArray[rateHt40_0 + i] =
  494. targetPowerHt40.tPow2x[i];
  495. }
  496. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  497. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  498. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  499. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  500. }
  501. #undef CMP_TEST_GRP
  502. }
  503. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  504. struct ath9k_channel *chan,
  505. u16 cfgCtl,
  506. u8 twiceAntennaReduction,
  507. u8 powerLimit, bool test)
  508. {
  509. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  510. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  511. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  512. int16_t ratesArray[Ar5416RateSize];
  513. u8 ht40PowerIncForPdadc = 2;
  514. int i;
  515. memset(ratesArray, 0, sizeof(ratesArray));
  516. if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2)
  517. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  518. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  519. &ratesArray[0], cfgCtl,
  520. twiceAntennaReduction,
  521. powerLimit);
  522. ath9k_hw_set_4k_power_cal_table(ah, chan);
  523. regulatory->max_power_level = 0;
  524. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  525. if (ratesArray[i] > MAX_RATE_POWER)
  526. ratesArray[i] = MAX_RATE_POWER;
  527. if (ratesArray[i] > regulatory->max_power_level)
  528. regulatory->max_power_level = ratesArray[i];
  529. }
  530. if (test)
  531. return;
  532. for (i = 0; i < Ar5416RateSize; i++)
  533. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
  534. ENABLE_REGWRITE_BUFFER(ah);
  535. /* OFDM power per rate */
  536. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  537. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  538. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  539. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  540. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  541. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  542. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  543. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  544. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  545. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  546. /* CCK power per rate */
  547. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  548. ATH9K_POW_SM(ratesArray[rate2s], 24)
  549. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  550. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  551. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  552. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  553. ATH9K_POW_SM(ratesArray[rate11s], 24)
  554. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  555. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  556. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  557. /* HT20 power per rate */
  558. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  559. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  560. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  561. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  562. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  563. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  564. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  565. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  566. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  567. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  568. /* HT40 power per rate */
  569. if (IS_CHAN_HT40(chan)) {
  570. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  571. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  572. ht40PowerIncForPdadc, 24)
  573. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  574. ht40PowerIncForPdadc, 16)
  575. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  576. ht40PowerIncForPdadc, 8)
  577. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  578. ht40PowerIncForPdadc, 0));
  579. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  580. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  581. ht40PowerIncForPdadc, 24)
  582. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  583. ht40PowerIncForPdadc, 16)
  584. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  585. ht40PowerIncForPdadc, 8)
  586. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  587. ht40PowerIncForPdadc, 0));
  588. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  589. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  590. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  591. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  592. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  593. }
  594. /* TPC initializations */
  595. if (ah->tpc_enabled) {
  596. int ht40_delta;
  597. ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
  598. ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
  599. /* Enable TPC */
  600. REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
  601. MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
  602. } else {
  603. /* Disable TPC */
  604. REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
  605. }
  606. REGWRITE_BUFFER_FLUSH(ah);
  607. }
  608. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  609. struct modal_eep_4k_header *pModal,
  610. struct ar5416_eeprom_4k *eep,
  611. u8 txRxAttenLocal)
  612. {
  613. ENABLE_REG_RMW_BUFFER(ah);
  614. REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0,
  615. le32_to_cpu(pModal->antCtrlChain[0]), 0);
  616. REG_RMW(ah, AR_PHY_TIMING_CTRL4(0),
  617. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  618. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF),
  619. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF);
  620. if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) {
  621. txRxAttenLocal = pModal->txRxAttenCh[0];
  622. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  623. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  624. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  625. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  626. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  627. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  628. pModal->xatten2Margin[0]);
  629. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  630. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  631. /* Set the block 1 value to block 0 value */
  632. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  633. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  634. pModal->bswMargin[0]);
  635. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  636. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  637. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  638. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  639. pModal->xatten2Margin[0]);
  640. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  641. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  642. pModal->xatten2Db[0]);
  643. }
  644. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  645. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  646. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  647. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  648. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  649. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  650. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  651. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  652. REG_RMW_BUFFER_FLUSH(ah);
  653. }
  654. /*
  655. * Read EEPROM header info and program the device for correct operation
  656. * given the channel value.
  657. */
  658. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  659. struct ath9k_channel *chan)
  660. {
  661. struct ath9k_hw_capabilities *pCap = &ah->caps;
  662. struct modal_eep_4k_header *pModal;
  663. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  664. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  665. u8 txRxAttenLocal;
  666. u8 ob[5], db1[5], db2[5];
  667. u8 ant_div_control1, ant_div_control2;
  668. u8 bb_desired_scale;
  669. u32 regVal;
  670. pModal = &eep->modalHeader;
  671. txRxAttenLocal = 23;
  672. REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon));
  673. /* Single chain for 4K EEPROM*/
  674. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  675. /* Initialize Ant Diversity settings from EEPROM */
  676. if (pModal->version >= 3) {
  677. ant_div_control1 = pModal->antdiv_ctl1;
  678. ant_div_control2 = pModal->antdiv_ctl2;
  679. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  680. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  681. regVal |= SM(ant_div_control1,
  682. AR_PHY_9285_ANT_DIV_CTL);
  683. regVal |= SM(ant_div_control2,
  684. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  685. regVal |= SM((ant_div_control2 >> 2),
  686. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  687. regVal |= SM((ant_div_control1 >> 1),
  688. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  689. regVal |= SM((ant_div_control1 >> 2),
  690. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  691. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  692. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  693. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  694. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  695. regVal |= SM((ant_div_control1 >> 3),
  696. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  697. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  698. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  699. if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
  700. /*
  701. * If diversity combining is enabled,
  702. * set MAIN to LNA1 and ALT to LNA2 initially.
  703. */
  704. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  705. regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
  706. AR_PHY_9285_ANT_DIV_ALT_LNACONF));
  707. regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
  708. AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
  709. regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
  710. AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
  711. regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
  712. regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
  713. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  714. }
  715. }
  716. if (pModal->version >= 2) {
  717. ob[0] = pModal->ob_0;
  718. ob[1] = pModal->ob_1;
  719. ob[2] = pModal->ob_2;
  720. ob[3] = pModal->ob_3;
  721. ob[4] = pModal->ob_4;
  722. db1[0] = pModal->db1_0;
  723. db1[1] = pModal->db1_1;
  724. db1[2] = pModal->db1_2;
  725. db1[3] = pModal->db1_3;
  726. db1[4] = pModal->db1_4;
  727. db2[0] = pModal->db2_0;
  728. db2[1] = pModal->db2_1;
  729. db2[2] = pModal->db2_2;
  730. db2[3] = pModal->db2_3;
  731. db2[4] = pModal->db2_4;
  732. } else if (pModal->version == 1) {
  733. ob[0] = pModal->ob_0;
  734. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  735. db1[0] = pModal->db1_0;
  736. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  737. db2[0] = pModal->db2_0;
  738. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  739. } else {
  740. int i;
  741. for (i = 0; i < 5; i++) {
  742. ob[i] = pModal->ob_0;
  743. db1[i] = pModal->db1_0;
  744. db2[i] = pModal->db1_0;
  745. }
  746. }
  747. ENABLE_REG_RMW_BUFFER(ah);
  748. if (AR_SREV_9271(ah)) {
  749. ath9k_hw_analog_shift_rmw(ah,
  750. AR9285_AN_RF2G3,
  751. AR9271_AN_RF2G3_OB_cck,
  752. AR9271_AN_RF2G3_OB_cck_S,
  753. ob[0]);
  754. ath9k_hw_analog_shift_rmw(ah,
  755. AR9285_AN_RF2G3,
  756. AR9271_AN_RF2G3_OB_psk,
  757. AR9271_AN_RF2G3_OB_psk_S,
  758. ob[1]);
  759. ath9k_hw_analog_shift_rmw(ah,
  760. AR9285_AN_RF2G3,
  761. AR9271_AN_RF2G3_OB_qam,
  762. AR9271_AN_RF2G3_OB_qam_S,
  763. ob[2]);
  764. ath9k_hw_analog_shift_rmw(ah,
  765. AR9285_AN_RF2G3,
  766. AR9271_AN_RF2G3_DB_1,
  767. AR9271_AN_RF2G3_DB_1_S,
  768. db1[0]);
  769. ath9k_hw_analog_shift_rmw(ah,
  770. AR9285_AN_RF2G4,
  771. AR9271_AN_RF2G4_DB_2,
  772. AR9271_AN_RF2G4_DB_2_S,
  773. db2[0]);
  774. } else {
  775. ath9k_hw_analog_shift_rmw(ah,
  776. AR9285_AN_RF2G3,
  777. AR9285_AN_RF2G3_OB_0,
  778. AR9285_AN_RF2G3_OB_0_S,
  779. ob[0]);
  780. ath9k_hw_analog_shift_rmw(ah,
  781. AR9285_AN_RF2G3,
  782. AR9285_AN_RF2G3_OB_1,
  783. AR9285_AN_RF2G3_OB_1_S,
  784. ob[1]);
  785. ath9k_hw_analog_shift_rmw(ah,
  786. AR9285_AN_RF2G3,
  787. AR9285_AN_RF2G3_OB_2,
  788. AR9285_AN_RF2G3_OB_2_S,
  789. ob[2]);
  790. ath9k_hw_analog_shift_rmw(ah,
  791. AR9285_AN_RF2G3,
  792. AR9285_AN_RF2G3_OB_3,
  793. AR9285_AN_RF2G3_OB_3_S,
  794. ob[3]);
  795. ath9k_hw_analog_shift_rmw(ah,
  796. AR9285_AN_RF2G3,
  797. AR9285_AN_RF2G3_OB_4,
  798. AR9285_AN_RF2G3_OB_4_S,
  799. ob[4]);
  800. ath9k_hw_analog_shift_rmw(ah,
  801. AR9285_AN_RF2G3,
  802. AR9285_AN_RF2G3_DB1_0,
  803. AR9285_AN_RF2G3_DB1_0_S,
  804. db1[0]);
  805. ath9k_hw_analog_shift_rmw(ah,
  806. AR9285_AN_RF2G3,
  807. AR9285_AN_RF2G3_DB1_1,
  808. AR9285_AN_RF2G3_DB1_1_S,
  809. db1[1]);
  810. ath9k_hw_analog_shift_rmw(ah,
  811. AR9285_AN_RF2G3,
  812. AR9285_AN_RF2G3_DB1_2,
  813. AR9285_AN_RF2G3_DB1_2_S,
  814. db1[2]);
  815. ath9k_hw_analog_shift_rmw(ah,
  816. AR9285_AN_RF2G4,
  817. AR9285_AN_RF2G4_DB1_3,
  818. AR9285_AN_RF2G4_DB1_3_S,
  819. db1[3]);
  820. ath9k_hw_analog_shift_rmw(ah,
  821. AR9285_AN_RF2G4,
  822. AR9285_AN_RF2G4_DB1_4,
  823. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  824. ath9k_hw_analog_shift_rmw(ah,
  825. AR9285_AN_RF2G4,
  826. AR9285_AN_RF2G4_DB2_0,
  827. AR9285_AN_RF2G4_DB2_0_S,
  828. db2[0]);
  829. ath9k_hw_analog_shift_rmw(ah,
  830. AR9285_AN_RF2G4,
  831. AR9285_AN_RF2G4_DB2_1,
  832. AR9285_AN_RF2G4_DB2_1_S,
  833. db2[1]);
  834. ath9k_hw_analog_shift_rmw(ah,
  835. AR9285_AN_RF2G4,
  836. AR9285_AN_RF2G4_DB2_2,
  837. AR9285_AN_RF2G4_DB2_2_S,
  838. db2[2]);
  839. ath9k_hw_analog_shift_rmw(ah,
  840. AR9285_AN_RF2G4,
  841. AR9285_AN_RF2G4_DB2_3,
  842. AR9285_AN_RF2G4_DB2_3_S,
  843. db2[3]);
  844. ath9k_hw_analog_shift_rmw(ah,
  845. AR9285_AN_RF2G4,
  846. AR9285_AN_RF2G4_DB2_4,
  847. AR9285_AN_RF2G4_DB2_4_S,
  848. db2[4]);
  849. }
  850. REG_RMW_BUFFER_FLUSH(ah);
  851. ENABLE_REG_RMW_BUFFER(ah);
  852. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  853. pModal->switchSettling);
  854. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  855. pModal->adcDesiredSize);
  856. REG_RMW(ah, AR_PHY_RF_CTL4,
  857. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  858. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  859. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  860. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON), 0);
  861. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  862. pModal->txEndToRxOn);
  863. if (AR_SREV_9271_10(ah))
  864. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  865. pModal->txEndToRxOn);
  866. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  867. pModal->thresh62);
  868. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  869. pModal->thresh62);
  870. if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2) {
  871. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  872. pModal->txFrameToDataStart);
  873. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  874. pModal->txFrameToPaOn);
  875. }
  876. if (ath9k_hw_4k_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) {
  877. if (IS_CHAN_HT40(chan))
  878. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  879. AR_PHY_SETTLING_SWITCH,
  880. pModal->swSettleHt40);
  881. }
  882. REG_RMW_BUFFER_FLUSH(ah);
  883. bb_desired_scale = (pModal->bb_scale_smrt_antenna &
  884. EEP_4K_BB_DESIRED_SCALE_MASK);
  885. if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
  886. u32 pwrctrl, mask, clr;
  887. mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
  888. pwrctrl = mask * bb_desired_scale;
  889. clr = mask * 0x1f;
  890. ENABLE_REG_RMW_BUFFER(ah);
  891. REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
  892. REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
  893. REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
  894. mask = BIT(0)|BIT(5)|BIT(15);
  895. pwrctrl = mask * bb_desired_scale;
  896. clr = mask * 0x1f;
  897. REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
  898. mask = BIT(0)|BIT(5);
  899. pwrctrl = mask * bb_desired_scale;
  900. clr = mask * 0x1f;
  901. REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
  902. REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
  903. REG_RMW_BUFFER_FLUSH(ah);
  904. }
  905. }
  906. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  907. {
  908. return le16_to_cpu(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan);
  909. }
  910. static u8 ath9k_hw_4k_get_eepmisc(struct ath_hw *ah)
  911. {
  912. return ah->eeprom.map4k.baseEepHeader.eepMisc;
  913. }
  914. const struct eeprom_ops eep_4k_ops = {
  915. .check_eeprom = ath9k_hw_4k_check_eeprom,
  916. .get_eeprom = ath9k_hw_4k_get_eeprom,
  917. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  918. .dump_eeprom = ath9k_hw_4k_dump_eeprom,
  919. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  920. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  921. .set_board_values = ath9k_hw_4k_set_board_values,
  922. .set_txpower = ath9k_hw_4k_set_txpower,
  923. .get_spur_channel = ath9k_hw_4k_get_spur_channel,
  924. .get_eepmisc = ath9k_hw_4k_get_eepmisc
  925. };