htt_tx.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/etherdevice.h>
  18. #include "htt.h"
  19. #include "mac.h"
  20. #include "hif.h"
  21. #include "txrx.h"
  22. #include "debug.h"
  23. static u8 ath10k_htt_tx_txq_calc_size(size_t count)
  24. {
  25. int exp;
  26. int factor;
  27. exp = 0;
  28. factor = count >> 7;
  29. while (factor >= 64 && exp < 4) {
  30. factor >>= 3;
  31. exp++;
  32. }
  33. if (exp == 4)
  34. return 0xff;
  35. if (count > 0)
  36. factor = max(1, factor);
  37. return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
  38. SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
  39. }
  40. static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  41. struct ieee80211_txq *txq)
  42. {
  43. struct ath10k *ar = hw->priv;
  44. struct ath10k_sta *arsta;
  45. struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
  46. unsigned long frame_cnt;
  47. unsigned long byte_cnt;
  48. int idx;
  49. u32 bit;
  50. u16 peer_id;
  51. u8 tid;
  52. u8 count;
  53. lockdep_assert_held(&ar->htt.tx_lock);
  54. if (!ar->htt.tx_q_state.enabled)
  55. return;
  56. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  57. return;
  58. if (txq->sta) {
  59. arsta = (void *)txq->sta->drv_priv;
  60. peer_id = arsta->peer_id;
  61. } else {
  62. peer_id = arvif->peer_id;
  63. }
  64. tid = txq->tid;
  65. bit = BIT(peer_id % 32);
  66. idx = peer_id / 32;
  67. ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
  68. count = ath10k_htt_tx_txq_calc_size(byte_cnt);
  69. if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
  70. unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
  71. ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
  72. peer_id, tid);
  73. return;
  74. }
  75. ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
  76. ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
  77. ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
  78. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
  79. peer_id, tid, count);
  80. }
  81. static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
  82. {
  83. u32 seq;
  84. size_t size;
  85. lockdep_assert_held(&ar->htt.tx_lock);
  86. if (!ar->htt.tx_q_state.enabled)
  87. return;
  88. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  89. return;
  90. seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
  91. seq++;
  92. ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
  93. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
  94. seq);
  95. size = sizeof(*ar->htt.tx_q_state.vaddr);
  96. dma_sync_single_for_device(ar->dev,
  97. ar->htt.tx_q_state.paddr,
  98. size,
  99. DMA_TO_DEVICE);
  100. }
  101. void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  102. struct ieee80211_txq *txq)
  103. {
  104. struct ath10k *ar = hw->priv;
  105. spin_lock_bh(&ar->htt.tx_lock);
  106. __ath10k_htt_tx_txq_recalc(hw, txq);
  107. spin_unlock_bh(&ar->htt.tx_lock);
  108. }
  109. void ath10k_htt_tx_txq_sync(struct ath10k *ar)
  110. {
  111. spin_lock_bh(&ar->htt.tx_lock);
  112. __ath10k_htt_tx_txq_sync(ar);
  113. spin_unlock_bh(&ar->htt.tx_lock);
  114. }
  115. void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
  116. struct ieee80211_txq *txq)
  117. {
  118. struct ath10k *ar = hw->priv;
  119. spin_lock_bh(&ar->htt.tx_lock);
  120. __ath10k_htt_tx_txq_recalc(hw, txq);
  121. __ath10k_htt_tx_txq_sync(ar);
  122. spin_unlock_bh(&ar->htt.tx_lock);
  123. }
  124. void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
  125. {
  126. lockdep_assert_held(&htt->tx_lock);
  127. htt->num_pending_tx--;
  128. if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
  129. ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  130. }
  131. int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
  132. {
  133. lockdep_assert_held(&htt->tx_lock);
  134. if (htt->num_pending_tx >= htt->max_num_pending_tx)
  135. return -EBUSY;
  136. htt->num_pending_tx++;
  137. if (htt->num_pending_tx == htt->max_num_pending_tx)
  138. ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  139. return 0;
  140. }
  141. int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
  142. bool is_presp)
  143. {
  144. struct ath10k *ar = htt->ar;
  145. lockdep_assert_held(&htt->tx_lock);
  146. if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
  147. return 0;
  148. if (is_presp &&
  149. ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
  150. return -EBUSY;
  151. htt->num_pending_mgmt_tx++;
  152. return 0;
  153. }
  154. void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
  155. {
  156. lockdep_assert_held(&htt->tx_lock);
  157. if (!htt->ar->hw_params.max_probe_resp_desc_thres)
  158. return;
  159. htt->num_pending_mgmt_tx--;
  160. }
  161. int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
  162. {
  163. struct ath10k *ar = htt->ar;
  164. int ret;
  165. lockdep_assert_held(&htt->tx_lock);
  166. ret = idr_alloc(&htt->pending_tx, skb, 0,
  167. htt->max_num_pending_tx, GFP_ATOMIC);
  168. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
  169. return ret;
  170. }
  171. void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
  172. {
  173. struct ath10k *ar = htt->ar;
  174. lockdep_assert_held(&htt->tx_lock);
  175. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
  176. idr_remove(&htt->pending_tx, msdu_id);
  177. }
  178. static void ath10k_htt_tx_free_cont_txbuf(struct ath10k_htt *htt)
  179. {
  180. struct ath10k *ar = htt->ar;
  181. size_t size;
  182. if (!htt->txbuf.vaddr)
  183. return;
  184. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  185. dma_free_coherent(ar->dev, size, htt->txbuf.vaddr, htt->txbuf.paddr);
  186. htt->txbuf.vaddr = NULL;
  187. }
  188. static int ath10k_htt_tx_alloc_cont_txbuf(struct ath10k_htt *htt)
  189. {
  190. struct ath10k *ar = htt->ar;
  191. size_t size;
  192. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  193. htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size, &htt->txbuf.paddr,
  194. GFP_KERNEL);
  195. if (!htt->txbuf.vaddr)
  196. return -ENOMEM;
  197. return 0;
  198. }
  199. static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
  200. {
  201. size_t size;
  202. if (!htt->frag_desc.vaddr)
  203. return;
  204. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  205. dma_free_coherent(htt->ar->dev,
  206. size,
  207. htt->frag_desc.vaddr,
  208. htt->frag_desc.paddr);
  209. htt->frag_desc.vaddr = NULL;
  210. }
  211. static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
  212. {
  213. struct ath10k *ar = htt->ar;
  214. size_t size;
  215. if (!ar->hw_params.continuous_frag_desc)
  216. return 0;
  217. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  218. htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
  219. &htt->frag_desc.paddr,
  220. GFP_KERNEL);
  221. if (!htt->frag_desc.vaddr)
  222. return -ENOMEM;
  223. return 0;
  224. }
  225. static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
  226. {
  227. struct ath10k *ar = htt->ar;
  228. size_t size;
  229. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  230. ar->running_fw->fw_file.fw_features))
  231. return;
  232. size = sizeof(*htt->tx_q_state.vaddr);
  233. dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
  234. kfree(htt->tx_q_state.vaddr);
  235. }
  236. static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
  237. {
  238. struct ath10k *ar = htt->ar;
  239. size_t size;
  240. int ret;
  241. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  242. ar->running_fw->fw_file.fw_features))
  243. return 0;
  244. htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
  245. htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
  246. htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
  247. size = sizeof(*htt->tx_q_state.vaddr);
  248. htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
  249. if (!htt->tx_q_state.vaddr)
  250. return -ENOMEM;
  251. htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
  252. size, DMA_TO_DEVICE);
  253. ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
  254. if (ret) {
  255. ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
  256. kfree(htt->tx_q_state.vaddr);
  257. return -EIO;
  258. }
  259. return 0;
  260. }
  261. static void ath10k_htt_tx_free_txdone_fifo(struct ath10k_htt *htt)
  262. {
  263. WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
  264. kfifo_free(&htt->txdone_fifo);
  265. }
  266. static int ath10k_htt_tx_alloc_txdone_fifo(struct ath10k_htt *htt)
  267. {
  268. int ret;
  269. size_t size;
  270. size = roundup_pow_of_two(htt->max_num_pending_tx);
  271. ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
  272. return ret;
  273. }
  274. static int ath10k_htt_tx_alloc_buf(struct ath10k_htt *htt)
  275. {
  276. struct ath10k *ar = htt->ar;
  277. int ret;
  278. ret = ath10k_htt_tx_alloc_cont_txbuf(htt);
  279. if (ret) {
  280. ath10k_err(ar, "failed to alloc cont tx buffer: %d\n", ret);
  281. return ret;
  282. }
  283. ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
  284. if (ret) {
  285. ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
  286. goto free_txbuf;
  287. }
  288. ret = ath10k_htt_tx_alloc_txq(htt);
  289. if (ret) {
  290. ath10k_err(ar, "failed to alloc txq: %d\n", ret);
  291. goto free_frag_desc;
  292. }
  293. ret = ath10k_htt_tx_alloc_txdone_fifo(htt);
  294. if (ret) {
  295. ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
  296. goto free_txq;
  297. }
  298. return 0;
  299. free_txq:
  300. ath10k_htt_tx_free_txq(htt);
  301. free_frag_desc:
  302. ath10k_htt_tx_free_cont_frag_desc(htt);
  303. free_txbuf:
  304. ath10k_htt_tx_free_cont_txbuf(htt);
  305. return ret;
  306. }
  307. int ath10k_htt_tx_start(struct ath10k_htt *htt)
  308. {
  309. struct ath10k *ar = htt->ar;
  310. int ret;
  311. ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
  312. htt->max_num_pending_tx);
  313. spin_lock_init(&htt->tx_lock);
  314. idr_init(&htt->pending_tx);
  315. if (htt->tx_mem_allocated)
  316. return 0;
  317. ret = ath10k_htt_tx_alloc_buf(htt);
  318. if (ret)
  319. goto free_idr_pending_tx;
  320. htt->tx_mem_allocated = true;
  321. return 0;
  322. free_idr_pending_tx:
  323. idr_destroy(&htt->pending_tx);
  324. return ret;
  325. }
  326. static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
  327. {
  328. struct ath10k *ar = ctx;
  329. struct ath10k_htt *htt = &ar->htt;
  330. struct htt_tx_done tx_done = {0};
  331. ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
  332. tx_done.msdu_id = msdu_id;
  333. tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
  334. ath10k_txrx_tx_unref(htt, &tx_done);
  335. return 0;
  336. }
  337. void ath10k_htt_tx_destroy(struct ath10k_htt *htt)
  338. {
  339. if (!htt->tx_mem_allocated)
  340. return;
  341. ath10k_htt_tx_free_cont_txbuf(htt);
  342. ath10k_htt_tx_free_txq(htt);
  343. ath10k_htt_tx_free_cont_frag_desc(htt);
  344. ath10k_htt_tx_free_txdone_fifo(htt);
  345. htt->tx_mem_allocated = false;
  346. }
  347. void ath10k_htt_tx_stop(struct ath10k_htt *htt)
  348. {
  349. idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
  350. idr_destroy(&htt->pending_tx);
  351. }
  352. void ath10k_htt_tx_free(struct ath10k_htt *htt)
  353. {
  354. ath10k_htt_tx_stop(htt);
  355. ath10k_htt_tx_destroy(htt);
  356. }
  357. void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  358. {
  359. dev_kfree_skb_any(skb);
  360. }
  361. void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  362. {
  363. dev_kfree_skb_any(skb);
  364. }
  365. EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
  366. int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
  367. {
  368. struct ath10k *ar = htt->ar;
  369. struct sk_buff *skb;
  370. struct htt_cmd *cmd;
  371. int len = 0;
  372. int ret;
  373. len += sizeof(cmd->hdr);
  374. len += sizeof(cmd->ver_req);
  375. skb = ath10k_htc_alloc_skb(ar, len);
  376. if (!skb)
  377. return -ENOMEM;
  378. skb_put(skb, len);
  379. cmd = (struct htt_cmd *)skb->data;
  380. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
  381. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  382. if (ret) {
  383. dev_kfree_skb_any(skb);
  384. return ret;
  385. }
  386. return 0;
  387. }
  388. int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
  389. {
  390. struct ath10k *ar = htt->ar;
  391. struct htt_stats_req *req;
  392. struct sk_buff *skb;
  393. struct htt_cmd *cmd;
  394. int len = 0, ret;
  395. len += sizeof(cmd->hdr);
  396. len += sizeof(cmd->stats_req);
  397. skb = ath10k_htc_alloc_skb(ar, len);
  398. if (!skb)
  399. return -ENOMEM;
  400. skb_put(skb, len);
  401. cmd = (struct htt_cmd *)skb->data;
  402. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
  403. req = &cmd->stats_req;
  404. memset(req, 0, sizeof(*req));
  405. /* currently we support only max 8 bit masks so no need to worry
  406. * about endian support
  407. */
  408. req->upload_types[0] = mask;
  409. req->reset_types[0] = mask;
  410. req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
  411. req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
  412. req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
  413. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  414. if (ret) {
  415. ath10k_warn(ar, "failed to send htt type stats request: %d",
  416. ret);
  417. dev_kfree_skb_any(skb);
  418. return ret;
  419. }
  420. return 0;
  421. }
  422. int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
  423. {
  424. struct ath10k *ar = htt->ar;
  425. struct sk_buff *skb;
  426. struct htt_cmd *cmd;
  427. struct htt_frag_desc_bank_cfg *cfg;
  428. int ret, size;
  429. u8 info;
  430. if (!ar->hw_params.continuous_frag_desc)
  431. return 0;
  432. if (!htt->frag_desc.paddr) {
  433. ath10k_warn(ar, "invalid frag desc memory\n");
  434. return -EINVAL;
  435. }
  436. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
  437. skb = ath10k_htc_alloc_skb(ar, size);
  438. if (!skb)
  439. return -ENOMEM;
  440. skb_put(skb, size);
  441. cmd = (struct htt_cmd *)skb->data;
  442. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  443. info = 0;
  444. info |= SM(htt->tx_q_state.type,
  445. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  446. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  447. ar->running_fw->fw_file.fw_features))
  448. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  449. cfg = &cmd->frag_desc_bank_cfg;
  450. cfg->info = info;
  451. cfg->num_banks = 1;
  452. cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
  453. cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
  454. cfg->bank_id[0].bank_min_id = 0;
  455. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  456. 1);
  457. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  458. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  459. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  460. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  461. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  462. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  463. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  464. if (ret) {
  465. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  466. ret);
  467. dev_kfree_skb_any(skb);
  468. return ret;
  469. }
  470. return 0;
  471. }
  472. int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
  473. {
  474. struct ath10k *ar = htt->ar;
  475. struct sk_buff *skb;
  476. struct htt_cmd *cmd;
  477. struct htt_rx_ring_setup_ring *ring;
  478. const int num_rx_ring = 1;
  479. u16 flags;
  480. u32 fw_idx;
  481. int len;
  482. int ret;
  483. /*
  484. * the HW expects the buffer to be an integral number of 4-byte
  485. * "words"
  486. */
  487. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  488. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  489. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
  490. + (sizeof(*ring) * num_rx_ring);
  491. skb = ath10k_htc_alloc_skb(ar, len);
  492. if (!skb)
  493. return -ENOMEM;
  494. skb_put(skb, len);
  495. cmd = (struct htt_cmd *)skb->data;
  496. ring = &cmd->rx_setup.rings[0];
  497. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  498. cmd->rx_setup.hdr.num_rings = 1;
  499. /* FIXME: do we need all of this? */
  500. flags = 0;
  501. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  502. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  503. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  504. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  505. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  506. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  507. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  508. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  509. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  510. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  511. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  512. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  513. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  514. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  515. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  516. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  517. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  518. ring->fw_idx_shadow_reg_paddr =
  519. __cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
  520. ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
  521. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  522. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  523. ring->flags = __cpu_to_le16(flags);
  524. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  525. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  526. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  527. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  528. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  529. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  530. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  531. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  532. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  533. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  534. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  535. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  536. #undef desc_offset
  537. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  538. if (ret) {
  539. dev_kfree_skb_any(skb);
  540. return ret;
  541. }
  542. return 0;
  543. }
  544. int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
  545. u8 max_subfrms_ampdu,
  546. u8 max_subfrms_amsdu)
  547. {
  548. struct ath10k *ar = htt->ar;
  549. struct htt_aggr_conf *aggr_conf;
  550. struct sk_buff *skb;
  551. struct htt_cmd *cmd;
  552. int len;
  553. int ret;
  554. /* Firmware defaults are: amsdu = 3 and ampdu = 64 */
  555. if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
  556. return -EINVAL;
  557. if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
  558. return -EINVAL;
  559. len = sizeof(cmd->hdr);
  560. len += sizeof(cmd->aggr_conf);
  561. skb = ath10k_htc_alloc_skb(ar, len);
  562. if (!skb)
  563. return -ENOMEM;
  564. skb_put(skb, len);
  565. cmd = (struct htt_cmd *)skb->data;
  566. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
  567. aggr_conf = &cmd->aggr_conf;
  568. aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
  569. aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
  570. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
  571. aggr_conf->max_num_amsdu_subframes,
  572. aggr_conf->max_num_ampdu_subframes);
  573. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  574. if (ret) {
  575. dev_kfree_skb_any(skb);
  576. return ret;
  577. }
  578. return 0;
  579. }
  580. int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
  581. __le32 token,
  582. __le16 fetch_seq_num,
  583. struct htt_tx_fetch_record *records,
  584. size_t num_records)
  585. {
  586. struct sk_buff *skb;
  587. struct htt_cmd *cmd;
  588. const u16 resp_id = 0;
  589. int len = 0;
  590. int ret;
  591. /* Response IDs are echo-ed back only for host driver convienence
  592. * purposes. They aren't used for anything in the driver yet so use 0.
  593. */
  594. len += sizeof(cmd->hdr);
  595. len += sizeof(cmd->tx_fetch_resp);
  596. len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
  597. skb = ath10k_htc_alloc_skb(ar, len);
  598. if (!skb)
  599. return -ENOMEM;
  600. skb_put(skb, len);
  601. cmd = (struct htt_cmd *)skb->data;
  602. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
  603. cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
  604. cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
  605. cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
  606. cmd->tx_fetch_resp.token = token;
  607. memcpy(cmd->tx_fetch_resp.records, records,
  608. sizeof(records[0]) * num_records);
  609. ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
  610. if (ret) {
  611. ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
  612. goto err_free_skb;
  613. }
  614. return 0;
  615. err_free_skb:
  616. dev_kfree_skb_any(skb);
  617. return ret;
  618. }
  619. static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
  620. {
  621. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  622. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  623. struct ath10k_vif *arvif;
  624. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
  625. return ar->scan.vdev_id;
  626. } else if (cb->vif) {
  627. arvif = (void *)cb->vif->drv_priv;
  628. return arvif->vdev_id;
  629. } else if (ar->monitor_started) {
  630. return ar->monitor_vdev_id;
  631. } else {
  632. return 0;
  633. }
  634. }
  635. static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
  636. {
  637. struct ieee80211_hdr *hdr = (void *)skb->data;
  638. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  639. if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
  640. return HTT_DATA_TX_EXT_TID_MGMT;
  641. else if (cb->flags & ATH10K_SKB_F_QOS)
  642. return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
  643. else
  644. return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
  645. }
  646. int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  647. {
  648. struct ath10k *ar = htt->ar;
  649. struct device *dev = ar->dev;
  650. struct sk_buff *txdesc = NULL;
  651. struct htt_cmd *cmd;
  652. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  653. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  654. int len = 0;
  655. int msdu_id = -1;
  656. int res;
  657. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  658. len += sizeof(cmd->hdr);
  659. len += sizeof(cmd->mgmt_tx);
  660. spin_lock_bh(&htt->tx_lock);
  661. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  662. spin_unlock_bh(&htt->tx_lock);
  663. if (res < 0)
  664. goto err;
  665. msdu_id = res;
  666. if ((ieee80211_is_action(hdr->frame_control) ||
  667. ieee80211_is_deauth(hdr->frame_control) ||
  668. ieee80211_is_disassoc(hdr->frame_control)) &&
  669. ieee80211_has_protected(hdr->frame_control)) {
  670. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  671. }
  672. txdesc = ath10k_htc_alloc_skb(ar, len);
  673. if (!txdesc) {
  674. res = -ENOMEM;
  675. goto err_free_msdu_id;
  676. }
  677. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  678. DMA_TO_DEVICE);
  679. res = dma_mapping_error(dev, skb_cb->paddr);
  680. if (res) {
  681. res = -EIO;
  682. goto err_free_txdesc;
  683. }
  684. skb_put(txdesc, len);
  685. cmd = (struct htt_cmd *)txdesc->data;
  686. memset(cmd, 0, len);
  687. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
  688. cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
  689. cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
  690. cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
  691. cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
  692. memcpy(cmd->mgmt_tx.hdr, msdu->data,
  693. min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
  694. res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
  695. if (res)
  696. goto err_unmap_msdu;
  697. return 0;
  698. err_unmap_msdu:
  699. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  700. err_free_txdesc:
  701. dev_kfree_skb_any(txdesc);
  702. err_free_msdu_id:
  703. spin_lock_bh(&htt->tx_lock);
  704. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  705. spin_unlock_bh(&htt->tx_lock);
  706. err:
  707. return res;
  708. }
  709. int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
  710. struct sk_buff *msdu)
  711. {
  712. struct ath10k *ar = htt->ar;
  713. struct device *dev = ar->dev;
  714. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  715. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  716. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  717. struct ath10k_hif_sg_item sg_items[2];
  718. struct ath10k_htt_txbuf *txbuf;
  719. struct htt_data_tx_desc_frag *frags;
  720. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  721. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  722. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  723. int prefetch_len;
  724. int res;
  725. u8 flags0 = 0;
  726. u16 msdu_id, flags1 = 0;
  727. u16 freq = 0;
  728. u32 frags_paddr = 0;
  729. u32 txbuf_paddr;
  730. struct htt_msdu_ext_desc *ext_desc = NULL;
  731. spin_lock_bh(&htt->tx_lock);
  732. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  733. spin_unlock_bh(&htt->tx_lock);
  734. if (res < 0)
  735. goto err;
  736. msdu_id = res;
  737. prefetch_len = min(htt->prefetch_len, msdu->len);
  738. prefetch_len = roundup(prefetch_len, 4);
  739. txbuf = &htt->txbuf.vaddr[msdu_id];
  740. txbuf_paddr = htt->txbuf.paddr +
  741. (sizeof(struct ath10k_htt_txbuf) * msdu_id);
  742. if ((ieee80211_is_action(hdr->frame_control) ||
  743. ieee80211_is_deauth(hdr->frame_control) ||
  744. ieee80211_is_disassoc(hdr->frame_control)) &&
  745. ieee80211_has_protected(hdr->frame_control)) {
  746. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  747. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  748. txmode == ATH10K_HW_TXRX_RAW &&
  749. ieee80211_has_protected(hdr->frame_control)) {
  750. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  751. }
  752. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  753. DMA_TO_DEVICE);
  754. res = dma_mapping_error(dev, skb_cb->paddr);
  755. if (res) {
  756. res = -EIO;
  757. goto err_free_msdu_id;
  758. }
  759. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  760. freq = ar->scan.roc_freq;
  761. switch (txmode) {
  762. case ATH10K_HW_TXRX_RAW:
  763. case ATH10K_HW_TXRX_NATIVE_WIFI:
  764. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  765. /* pass through */
  766. case ATH10K_HW_TXRX_ETHERNET:
  767. if (ar->hw_params.continuous_frag_desc) {
  768. memset(&htt->frag_desc.vaddr[msdu_id], 0,
  769. sizeof(struct htt_msdu_ext_desc));
  770. frags = (struct htt_data_tx_desc_frag *)
  771. &htt->frag_desc.vaddr[msdu_id].frags;
  772. ext_desc = &htt->frag_desc.vaddr[msdu_id];
  773. frags[0].tword_addr.paddr_lo =
  774. __cpu_to_le32(skb_cb->paddr);
  775. frags[0].tword_addr.paddr_hi = 0;
  776. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  777. frags_paddr = htt->frag_desc.paddr +
  778. (sizeof(struct htt_msdu_ext_desc) * msdu_id);
  779. } else {
  780. frags = txbuf->frags;
  781. frags[0].dword_addr.paddr =
  782. __cpu_to_le32(skb_cb->paddr);
  783. frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
  784. frags[1].dword_addr.paddr = 0;
  785. frags[1].dword_addr.len = 0;
  786. frags_paddr = txbuf_paddr;
  787. }
  788. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  789. break;
  790. case ATH10K_HW_TXRX_MGMT:
  791. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  792. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  793. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  794. frags_paddr = skb_cb->paddr;
  795. break;
  796. }
  797. /* Normally all commands go through HTC which manages tx credits for
  798. * each endpoint and notifies when tx is completed.
  799. *
  800. * HTT endpoint is creditless so there's no need to care about HTC
  801. * flags. In that case it is trivial to fill the HTC header here.
  802. *
  803. * MSDU transmission is considered completed upon HTT event. This
  804. * implies no relevant resources can be freed until after the event is
  805. * received. That's why HTC tx completion handler itself is ignored by
  806. * setting NULL to transfer_context for all sg items.
  807. *
  808. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  809. * as it's a waste of resources. By bypassing HTC it is possible to
  810. * avoid extra memory allocations, compress data structures and thus
  811. * improve performance.
  812. */
  813. txbuf->htc_hdr.eid = htt->eid;
  814. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  815. sizeof(txbuf->cmd_tx) +
  816. prefetch_len);
  817. txbuf->htc_hdr.flags = 0;
  818. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  819. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  820. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  821. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  822. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  823. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  824. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  825. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  826. if (ar->hw_params.continuous_frag_desc)
  827. ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
  828. }
  829. /* Prevent firmware from sending up tx inspection requests. There's
  830. * nothing ath10k can do with frames requested for inspection so force
  831. * it to simply rely a regular tx completion with discard status.
  832. */
  833. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  834. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  835. txbuf->cmd_tx.flags0 = flags0;
  836. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  837. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  838. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  839. txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
  840. if (ath10k_mac_tx_frm_has_freq(ar)) {
  841. txbuf->cmd_tx.offchan_tx.peerid =
  842. __cpu_to_le16(HTT_INVALID_PEERID);
  843. txbuf->cmd_tx.offchan_tx.freq =
  844. __cpu_to_le16(freq);
  845. } else {
  846. txbuf->cmd_tx.peerid =
  847. __cpu_to_le32(HTT_INVALID_PEERID);
  848. }
  849. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  850. ath10k_dbg(ar, ATH10K_DBG_HTT,
  851. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
  852. flags0, flags1, msdu->len, msdu_id, frags_paddr,
  853. (u32)skb_cb->paddr, vdev_id, tid, freq);
  854. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  855. msdu->data, msdu->len);
  856. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  857. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  858. sg_items[0].transfer_id = 0;
  859. sg_items[0].transfer_context = NULL;
  860. sg_items[0].vaddr = &txbuf->htc_hdr;
  861. sg_items[0].paddr = txbuf_paddr +
  862. sizeof(txbuf->frags);
  863. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  864. sizeof(txbuf->cmd_hdr) +
  865. sizeof(txbuf->cmd_tx);
  866. sg_items[1].transfer_id = 0;
  867. sg_items[1].transfer_context = NULL;
  868. sg_items[1].vaddr = msdu->data;
  869. sg_items[1].paddr = skb_cb->paddr;
  870. sg_items[1].len = prefetch_len;
  871. res = ath10k_hif_tx_sg(htt->ar,
  872. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  873. sg_items, ARRAY_SIZE(sg_items));
  874. if (res)
  875. goto err_unmap_msdu;
  876. return 0;
  877. err_unmap_msdu:
  878. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  879. err_free_msdu_id:
  880. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  881. err:
  882. return res;
  883. }