vrf.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453
  1. /*
  2. * vrf.c: device driver to encapsulate a VRF space
  3. *
  4. * Copyright (c) 2015 Cumulus Networks. All rights reserved.
  5. * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
  6. * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
  7. *
  8. * Based on dummy, team and ipvlan drivers
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ip.h>
  20. #include <linux/init.h>
  21. #include <linux/moduleparam.h>
  22. #include <linux/netfilter.h>
  23. #include <linux/rtnetlink.h>
  24. #include <net/rtnetlink.h>
  25. #include <linux/u64_stats_sync.h>
  26. #include <linux/hashtable.h>
  27. #include <linux/inetdevice.h>
  28. #include <net/arp.h>
  29. #include <net/ip.h>
  30. #include <net/ip_fib.h>
  31. #include <net/ip6_fib.h>
  32. #include <net/ip6_route.h>
  33. #include <net/route.h>
  34. #include <net/addrconf.h>
  35. #include <net/l3mdev.h>
  36. #include <net/fib_rules.h>
  37. #include <net/netns/generic.h>
  38. #define DRV_NAME "vrf"
  39. #define DRV_VERSION "1.0"
  40. #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
  41. static unsigned int vrf_net_id;
  42. struct net_vrf {
  43. struct rtable __rcu *rth;
  44. struct rt6_info __rcu *rt6;
  45. u32 tb_id;
  46. };
  47. struct pcpu_dstats {
  48. u64 tx_pkts;
  49. u64 tx_bytes;
  50. u64 tx_drps;
  51. u64 rx_pkts;
  52. u64 rx_bytes;
  53. u64 rx_drps;
  54. struct u64_stats_sync syncp;
  55. };
  56. static void vrf_rx_stats(struct net_device *dev, int len)
  57. {
  58. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  59. u64_stats_update_begin(&dstats->syncp);
  60. dstats->rx_pkts++;
  61. dstats->rx_bytes += len;
  62. u64_stats_update_end(&dstats->syncp);
  63. }
  64. static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  65. {
  66. vrf_dev->stats.tx_errors++;
  67. kfree_skb(skb);
  68. }
  69. static void vrf_get_stats64(struct net_device *dev,
  70. struct rtnl_link_stats64 *stats)
  71. {
  72. int i;
  73. for_each_possible_cpu(i) {
  74. const struct pcpu_dstats *dstats;
  75. u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  76. unsigned int start;
  77. dstats = per_cpu_ptr(dev->dstats, i);
  78. do {
  79. start = u64_stats_fetch_begin_irq(&dstats->syncp);
  80. tbytes = dstats->tx_bytes;
  81. tpkts = dstats->tx_pkts;
  82. tdrops = dstats->tx_drps;
  83. rbytes = dstats->rx_bytes;
  84. rpkts = dstats->rx_pkts;
  85. } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  86. stats->tx_bytes += tbytes;
  87. stats->tx_packets += tpkts;
  88. stats->tx_dropped += tdrops;
  89. stats->rx_bytes += rbytes;
  90. stats->rx_packets += rpkts;
  91. }
  92. }
  93. /* by default VRF devices do not have a qdisc and are expected
  94. * to be created with only a single queue.
  95. */
  96. static bool qdisc_tx_is_default(const struct net_device *dev)
  97. {
  98. struct netdev_queue *txq;
  99. struct Qdisc *qdisc;
  100. if (dev->num_tx_queues > 1)
  101. return false;
  102. txq = netdev_get_tx_queue(dev, 0);
  103. qdisc = rcu_access_pointer(txq->qdisc);
  104. return !qdisc->enqueue;
  105. }
  106. /* Local traffic destined to local address. Reinsert the packet to rx
  107. * path, similar to loopback handling.
  108. */
  109. static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
  110. struct dst_entry *dst)
  111. {
  112. int len = skb->len;
  113. skb_orphan(skb);
  114. skb_dst_set(skb, dst);
  115. skb_dst_force(skb);
  116. /* set pkt_type to avoid skb hitting packet taps twice -
  117. * once on Tx and again in Rx processing
  118. */
  119. skb->pkt_type = PACKET_LOOPBACK;
  120. skb->protocol = eth_type_trans(skb, dev);
  121. if (likely(netif_rx(skb) == NET_RX_SUCCESS))
  122. vrf_rx_stats(dev, len);
  123. else
  124. this_cpu_inc(dev->dstats->rx_drps);
  125. return NETDEV_TX_OK;
  126. }
  127. #if IS_ENABLED(CONFIG_IPV6)
  128. static int vrf_ip6_local_out(struct net *net, struct sock *sk,
  129. struct sk_buff *skb)
  130. {
  131. int err;
  132. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
  133. sk, skb, NULL, skb_dst(skb)->dev, dst_output);
  134. if (likely(err == 1))
  135. err = dst_output(net, sk, skb);
  136. return err;
  137. }
  138. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  139. struct net_device *dev)
  140. {
  141. const struct ipv6hdr *iph = ipv6_hdr(skb);
  142. struct net *net = dev_net(skb->dev);
  143. struct flowi6 fl6 = {
  144. /* needed to match OIF rule */
  145. .flowi6_oif = dev->ifindex,
  146. .flowi6_iif = LOOPBACK_IFINDEX,
  147. .daddr = iph->daddr,
  148. .saddr = iph->saddr,
  149. .flowlabel = ip6_flowinfo(iph),
  150. .flowi6_mark = skb->mark,
  151. .flowi6_proto = iph->nexthdr,
  152. .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
  153. };
  154. int ret = NET_XMIT_DROP;
  155. struct dst_entry *dst;
  156. struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
  157. dst = ip6_route_output(net, NULL, &fl6);
  158. if (dst == dst_null)
  159. goto err;
  160. skb_dst_drop(skb);
  161. /* if dst.dev is loopback or the VRF device again this is locally
  162. * originated traffic destined to a local address. Short circuit
  163. * to Rx path
  164. */
  165. if (dst->dev == dev)
  166. return vrf_local_xmit(skb, dev, dst);
  167. skb_dst_set(skb, dst);
  168. /* strip the ethernet header added for pass through VRF device */
  169. __skb_pull(skb, skb_network_offset(skb));
  170. ret = vrf_ip6_local_out(net, skb->sk, skb);
  171. if (unlikely(net_xmit_eval(ret)))
  172. dev->stats.tx_errors++;
  173. else
  174. ret = NET_XMIT_SUCCESS;
  175. return ret;
  176. err:
  177. vrf_tx_error(dev, skb);
  178. return NET_XMIT_DROP;
  179. }
  180. #else
  181. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  182. struct net_device *dev)
  183. {
  184. vrf_tx_error(dev, skb);
  185. return NET_XMIT_DROP;
  186. }
  187. #endif
  188. /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
  189. static int vrf_ip_local_out(struct net *net, struct sock *sk,
  190. struct sk_buff *skb)
  191. {
  192. int err;
  193. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  194. skb, NULL, skb_dst(skb)->dev, dst_output);
  195. if (likely(err == 1))
  196. err = dst_output(net, sk, skb);
  197. return err;
  198. }
  199. static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
  200. struct net_device *vrf_dev)
  201. {
  202. struct iphdr *ip4h = ip_hdr(skb);
  203. int ret = NET_XMIT_DROP;
  204. struct flowi4 fl4 = {
  205. /* needed to match OIF rule */
  206. .flowi4_oif = vrf_dev->ifindex,
  207. .flowi4_iif = LOOPBACK_IFINDEX,
  208. .flowi4_tos = RT_TOS(ip4h->tos),
  209. .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
  210. .flowi4_proto = ip4h->protocol,
  211. .daddr = ip4h->daddr,
  212. .saddr = ip4h->saddr,
  213. };
  214. struct net *net = dev_net(vrf_dev);
  215. struct rtable *rt;
  216. rt = ip_route_output_flow(net, &fl4, NULL);
  217. if (IS_ERR(rt))
  218. goto err;
  219. skb_dst_drop(skb);
  220. /* if dst.dev is loopback or the VRF device again this is locally
  221. * originated traffic destined to a local address. Short circuit
  222. * to Rx path
  223. */
  224. if (rt->dst.dev == vrf_dev)
  225. return vrf_local_xmit(skb, vrf_dev, &rt->dst);
  226. skb_dst_set(skb, &rt->dst);
  227. /* strip the ethernet header added for pass through VRF device */
  228. __skb_pull(skb, skb_network_offset(skb));
  229. if (!ip4h->saddr) {
  230. ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
  231. RT_SCOPE_LINK);
  232. }
  233. ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
  234. if (unlikely(net_xmit_eval(ret)))
  235. vrf_dev->stats.tx_errors++;
  236. else
  237. ret = NET_XMIT_SUCCESS;
  238. out:
  239. return ret;
  240. err:
  241. vrf_tx_error(vrf_dev, skb);
  242. goto out;
  243. }
  244. static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
  245. {
  246. switch (skb->protocol) {
  247. case htons(ETH_P_IP):
  248. return vrf_process_v4_outbound(skb, dev);
  249. case htons(ETH_P_IPV6):
  250. return vrf_process_v6_outbound(skb, dev);
  251. default:
  252. vrf_tx_error(dev, skb);
  253. return NET_XMIT_DROP;
  254. }
  255. }
  256. static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
  257. {
  258. int len = skb->len;
  259. netdev_tx_t ret = is_ip_tx_frame(skb, dev);
  260. if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
  261. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  262. u64_stats_update_begin(&dstats->syncp);
  263. dstats->tx_pkts++;
  264. dstats->tx_bytes += len;
  265. u64_stats_update_end(&dstats->syncp);
  266. } else {
  267. this_cpu_inc(dev->dstats->tx_drps);
  268. }
  269. return ret;
  270. }
  271. static int vrf_finish_direct(struct net *net, struct sock *sk,
  272. struct sk_buff *skb)
  273. {
  274. struct net_device *vrf_dev = skb->dev;
  275. if (!list_empty(&vrf_dev->ptype_all) &&
  276. likely(skb_headroom(skb) >= ETH_HLEN)) {
  277. struct ethhdr *eth = skb_push(skb, ETH_HLEN);
  278. ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
  279. eth_zero_addr(eth->h_dest);
  280. eth->h_proto = skb->protocol;
  281. rcu_read_lock_bh();
  282. dev_queue_xmit_nit(skb, vrf_dev);
  283. rcu_read_unlock_bh();
  284. skb_pull(skb, ETH_HLEN);
  285. }
  286. return 1;
  287. }
  288. #if IS_ENABLED(CONFIG_IPV6)
  289. /* modelled after ip6_finish_output2 */
  290. static int vrf_finish_output6(struct net *net, struct sock *sk,
  291. struct sk_buff *skb)
  292. {
  293. struct dst_entry *dst = skb_dst(skb);
  294. struct net_device *dev = dst->dev;
  295. struct neighbour *neigh;
  296. struct in6_addr *nexthop;
  297. int ret;
  298. nf_reset(skb);
  299. skb->protocol = htons(ETH_P_IPV6);
  300. skb->dev = dev;
  301. rcu_read_lock_bh();
  302. nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
  303. neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
  304. if (unlikely(!neigh))
  305. neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
  306. if (!IS_ERR(neigh)) {
  307. sock_confirm_neigh(skb, neigh);
  308. ret = neigh_output(neigh, skb);
  309. rcu_read_unlock_bh();
  310. return ret;
  311. }
  312. rcu_read_unlock_bh();
  313. IP6_INC_STATS(dev_net(dst->dev),
  314. ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
  315. kfree_skb(skb);
  316. return -EINVAL;
  317. }
  318. /* modelled after ip6_output */
  319. static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
  320. {
  321. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  322. net, sk, skb, NULL, skb_dst(skb)->dev,
  323. vrf_finish_output6,
  324. !(IP6CB(skb)->flags & IP6SKB_REROUTED));
  325. }
  326. /* set dst on skb to send packet to us via dev_xmit path. Allows
  327. * packet to go through device based features such as qdisc, netfilter
  328. * hooks and packet sockets with skb->dev set to vrf device.
  329. */
  330. static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
  331. struct sk_buff *skb)
  332. {
  333. struct net_vrf *vrf = netdev_priv(vrf_dev);
  334. struct dst_entry *dst = NULL;
  335. struct rt6_info *rt6;
  336. rcu_read_lock();
  337. rt6 = rcu_dereference(vrf->rt6);
  338. if (likely(rt6)) {
  339. dst = &rt6->dst;
  340. dst_hold(dst);
  341. }
  342. rcu_read_unlock();
  343. if (unlikely(!dst)) {
  344. vrf_tx_error(vrf_dev, skb);
  345. return NULL;
  346. }
  347. skb_dst_drop(skb);
  348. skb_dst_set(skb, dst);
  349. return skb;
  350. }
  351. static int vrf_output6_direct(struct net *net, struct sock *sk,
  352. struct sk_buff *skb)
  353. {
  354. skb->protocol = htons(ETH_P_IPV6);
  355. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  356. net, sk, skb, NULL, skb->dev,
  357. vrf_finish_direct,
  358. !(IPCB(skb)->flags & IPSKB_REROUTED));
  359. }
  360. static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
  361. struct sock *sk,
  362. struct sk_buff *skb)
  363. {
  364. struct net *net = dev_net(vrf_dev);
  365. int err;
  366. skb->dev = vrf_dev;
  367. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
  368. skb, NULL, vrf_dev, vrf_output6_direct);
  369. if (likely(err == 1))
  370. err = vrf_output6_direct(net, sk, skb);
  371. /* reset skb device */
  372. if (likely(err == 1))
  373. nf_reset(skb);
  374. else
  375. skb = NULL;
  376. return skb;
  377. }
  378. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  379. struct sock *sk,
  380. struct sk_buff *skb)
  381. {
  382. /* don't divert link scope packets */
  383. if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
  384. return skb;
  385. if (qdisc_tx_is_default(vrf_dev))
  386. return vrf_ip6_out_direct(vrf_dev, sk, skb);
  387. return vrf_ip6_out_redirect(vrf_dev, skb);
  388. }
  389. /* holding rtnl */
  390. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  391. {
  392. struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
  393. struct net *net = dev_net(dev);
  394. struct dst_entry *dst;
  395. RCU_INIT_POINTER(vrf->rt6, NULL);
  396. synchronize_rcu();
  397. /* move dev in dst's to loopback so this VRF device can be deleted
  398. * - based on dst_ifdown
  399. */
  400. if (rt6) {
  401. dst = &rt6->dst;
  402. dev_put(dst->dev);
  403. dst->dev = net->loopback_dev;
  404. dev_hold(dst->dev);
  405. dst_release(dst);
  406. }
  407. }
  408. static int vrf_rt6_create(struct net_device *dev)
  409. {
  410. int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
  411. struct net_vrf *vrf = netdev_priv(dev);
  412. struct net *net = dev_net(dev);
  413. struct fib6_table *rt6i_table;
  414. struct rt6_info *rt6;
  415. int rc = -ENOMEM;
  416. /* IPv6 can be CONFIG enabled and then disabled runtime */
  417. if (!ipv6_mod_enabled())
  418. return 0;
  419. rt6i_table = fib6_new_table(net, vrf->tb_id);
  420. if (!rt6i_table)
  421. goto out;
  422. /* create a dst for routing packets out a VRF device */
  423. rt6 = ip6_dst_alloc(net, dev, flags);
  424. if (!rt6)
  425. goto out;
  426. rt6->rt6i_table = rt6i_table;
  427. rt6->dst.output = vrf_output6;
  428. rcu_assign_pointer(vrf->rt6, rt6);
  429. rc = 0;
  430. out:
  431. return rc;
  432. }
  433. #else
  434. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  435. struct sock *sk,
  436. struct sk_buff *skb)
  437. {
  438. return skb;
  439. }
  440. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  441. {
  442. }
  443. static int vrf_rt6_create(struct net_device *dev)
  444. {
  445. return 0;
  446. }
  447. #endif
  448. /* modelled after ip_finish_output2 */
  449. static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  450. {
  451. struct dst_entry *dst = skb_dst(skb);
  452. struct rtable *rt = (struct rtable *)dst;
  453. struct net_device *dev = dst->dev;
  454. unsigned int hh_len = LL_RESERVED_SPACE(dev);
  455. struct neighbour *neigh;
  456. u32 nexthop;
  457. int ret = -EINVAL;
  458. nf_reset(skb);
  459. /* Be paranoid, rather than too clever. */
  460. if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
  461. struct sk_buff *skb2;
  462. skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
  463. if (!skb2) {
  464. ret = -ENOMEM;
  465. goto err;
  466. }
  467. if (skb->sk)
  468. skb_set_owner_w(skb2, skb->sk);
  469. consume_skb(skb);
  470. skb = skb2;
  471. }
  472. rcu_read_lock_bh();
  473. nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
  474. neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
  475. if (unlikely(!neigh))
  476. neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
  477. if (!IS_ERR(neigh)) {
  478. sock_confirm_neigh(skb, neigh);
  479. ret = neigh_output(neigh, skb);
  480. }
  481. rcu_read_unlock_bh();
  482. err:
  483. if (unlikely(ret < 0))
  484. vrf_tx_error(skb->dev, skb);
  485. return ret;
  486. }
  487. static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  488. {
  489. struct net_device *dev = skb_dst(skb)->dev;
  490. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
  491. skb->dev = dev;
  492. skb->protocol = htons(ETH_P_IP);
  493. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  494. net, sk, skb, NULL, dev,
  495. vrf_finish_output,
  496. !(IPCB(skb)->flags & IPSKB_REROUTED));
  497. }
  498. /* set dst on skb to send packet to us via dev_xmit path. Allows
  499. * packet to go through device based features such as qdisc, netfilter
  500. * hooks and packet sockets with skb->dev set to vrf device.
  501. */
  502. static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
  503. struct sk_buff *skb)
  504. {
  505. struct net_vrf *vrf = netdev_priv(vrf_dev);
  506. struct dst_entry *dst = NULL;
  507. struct rtable *rth;
  508. rcu_read_lock();
  509. rth = rcu_dereference(vrf->rth);
  510. if (likely(rth)) {
  511. dst = &rth->dst;
  512. dst_hold(dst);
  513. }
  514. rcu_read_unlock();
  515. if (unlikely(!dst)) {
  516. vrf_tx_error(vrf_dev, skb);
  517. return NULL;
  518. }
  519. skb_dst_drop(skb);
  520. skb_dst_set(skb, dst);
  521. return skb;
  522. }
  523. static int vrf_output_direct(struct net *net, struct sock *sk,
  524. struct sk_buff *skb)
  525. {
  526. skb->protocol = htons(ETH_P_IP);
  527. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  528. net, sk, skb, NULL, skb->dev,
  529. vrf_finish_direct,
  530. !(IPCB(skb)->flags & IPSKB_REROUTED));
  531. }
  532. static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
  533. struct sock *sk,
  534. struct sk_buff *skb)
  535. {
  536. struct net *net = dev_net(vrf_dev);
  537. int err;
  538. skb->dev = vrf_dev;
  539. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  540. skb, NULL, vrf_dev, vrf_output_direct);
  541. if (likely(err == 1))
  542. err = vrf_output_direct(net, sk, skb);
  543. /* reset skb device */
  544. if (likely(err == 1))
  545. nf_reset(skb);
  546. else
  547. skb = NULL;
  548. return skb;
  549. }
  550. static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
  551. struct sock *sk,
  552. struct sk_buff *skb)
  553. {
  554. /* don't divert multicast */
  555. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  556. return skb;
  557. if (qdisc_tx_is_default(vrf_dev))
  558. return vrf_ip_out_direct(vrf_dev, sk, skb);
  559. return vrf_ip_out_redirect(vrf_dev, skb);
  560. }
  561. /* called with rcu lock held */
  562. static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
  563. struct sock *sk,
  564. struct sk_buff *skb,
  565. u16 proto)
  566. {
  567. switch (proto) {
  568. case AF_INET:
  569. return vrf_ip_out(vrf_dev, sk, skb);
  570. case AF_INET6:
  571. return vrf_ip6_out(vrf_dev, sk, skb);
  572. }
  573. return skb;
  574. }
  575. /* holding rtnl */
  576. static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
  577. {
  578. struct rtable *rth = rtnl_dereference(vrf->rth);
  579. struct net *net = dev_net(dev);
  580. struct dst_entry *dst;
  581. RCU_INIT_POINTER(vrf->rth, NULL);
  582. synchronize_rcu();
  583. /* move dev in dst's to loopback so this VRF device can be deleted
  584. * - based on dst_ifdown
  585. */
  586. if (rth) {
  587. dst = &rth->dst;
  588. dev_put(dst->dev);
  589. dst->dev = net->loopback_dev;
  590. dev_hold(dst->dev);
  591. dst_release(dst);
  592. }
  593. }
  594. static int vrf_rtable_create(struct net_device *dev)
  595. {
  596. struct net_vrf *vrf = netdev_priv(dev);
  597. struct rtable *rth;
  598. if (!fib_new_table(dev_net(dev), vrf->tb_id))
  599. return -ENOMEM;
  600. /* create a dst for routing packets out through a VRF device */
  601. rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
  602. if (!rth)
  603. return -ENOMEM;
  604. rth->dst.output = vrf_output;
  605. rth->rt_table_id = vrf->tb_id;
  606. rcu_assign_pointer(vrf->rth, rth);
  607. return 0;
  608. }
  609. /**************************** device handling ********************/
  610. /* cycle interface to flush neighbor cache and move routes across tables */
  611. static void cycle_netdev(struct net_device *dev)
  612. {
  613. unsigned int flags = dev->flags;
  614. int ret;
  615. if (!netif_running(dev))
  616. return;
  617. ret = dev_change_flags(dev, flags & ~IFF_UP);
  618. if (ret >= 0)
  619. ret = dev_change_flags(dev, flags);
  620. if (ret < 0) {
  621. netdev_err(dev,
  622. "Failed to cycle device %s; route tables might be wrong!\n",
  623. dev->name);
  624. }
  625. }
  626. static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
  627. {
  628. int ret;
  629. /* do not allow loopback device to be enslaved to a VRF.
  630. * The vrf device acts as the loopback for the vrf.
  631. */
  632. if (port_dev == dev_net(dev)->loopback_dev)
  633. return -EOPNOTSUPP;
  634. port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
  635. ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
  636. if (ret < 0)
  637. goto err;
  638. cycle_netdev(port_dev);
  639. return 0;
  640. err:
  641. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  642. return ret;
  643. }
  644. static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
  645. {
  646. if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
  647. return -EINVAL;
  648. return do_vrf_add_slave(dev, port_dev);
  649. }
  650. /* inverse of do_vrf_add_slave */
  651. static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  652. {
  653. netdev_upper_dev_unlink(port_dev, dev);
  654. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  655. cycle_netdev(port_dev);
  656. return 0;
  657. }
  658. static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  659. {
  660. return do_vrf_del_slave(dev, port_dev);
  661. }
  662. static void vrf_dev_uninit(struct net_device *dev)
  663. {
  664. struct net_vrf *vrf = netdev_priv(dev);
  665. vrf_rtable_release(dev, vrf);
  666. vrf_rt6_release(dev, vrf);
  667. free_percpu(dev->dstats);
  668. dev->dstats = NULL;
  669. }
  670. static int vrf_dev_init(struct net_device *dev)
  671. {
  672. struct net_vrf *vrf = netdev_priv(dev);
  673. dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
  674. if (!dev->dstats)
  675. goto out_nomem;
  676. /* create the default dst which points back to us */
  677. if (vrf_rtable_create(dev) != 0)
  678. goto out_stats;
  679. if (vrf_rt6_create(dev) != 0)
  680. goto out_rth;
  681. dev->flags = IFF_MASTER | IFF_NOARP;
  682. /* MTU is irrelevant for VRF device; set to 64k similar to lo */
  683. dev->mtu = 64 * 1024;
  684. /* similarly, oper state is irrelevant; set to up to avoid confusion */
  685. dev->operstate = IF_OPER_UP;
  686. netdev_lockdep_set_classes(dev);
  687. return 0;
  688. out_rth:
  689. vrf_rtable_release(dev, vrf);
  690. out_stats:
  691. free_percpu(dev->dstats);
  692. dev->dstats = NULL;
  693. out_nomem:
  694. return -ENOMEM;
  695. }
  696. static const struct net_device_ops vrf_netdev_ops = {
  697. .ndo_init = vrf_dev_init,
  698. .ndo_uninit = vrf_dev_uninit,
  699. .ndo_start_xmit = vrf_xmit,
  700. .ndo_get_stats64 = vrf_get_stats64,
  701. .ndo_add_slave = vrf_add_slave,
  702. .ndo_del_slave = vrf_del_slave,
  703. };
  704. static u32 vrf_fib_table(const struct net_device *dev)
  705. {
  706. struct net_vrf *vrf = netdev_priv(dev);
  707. return vrf->tb_id;
  708. }
  709. static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
  710. {
  711. kfree_skb(skb);
  712. return 0;
  713. }
  714. static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
  715. struct sk_buff *skb,
  716. struct net_device *dev)
  717. {
  718. struct net *net = dev_net(dev);
  719. if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
  720. skb = NULL; /* kfree_skb(skb) handled by nf code */
  721. return skb;
  722. }
  723. #if IS_ENABLED(CONFIG_IPV6)
  724. /* neighbor handling is done with actual device; do not want
  725. * to flip skb->dev for those ndisc packets. This really fails
  726. * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
  727. * a start.
  728. */
  729. static bool ipv6_ndisc_frame(const struct sk_buff *skb)
  730. {
  731. const struct ipv6hdr *iph = ipv6_hdr(skb);
  732. bool rc = false;
  733. if (iph->nexthdr == NEXTHDR_ICMP) {
  734. const struct icmp6hdr *icmph;
  735. struct icmp6hdr _icmph;
  736. icmph = skb_header_pointer(skb, sizeof(*iph),
  737. sizeof(_icmph), &_icmph);
  738. if (!icmph)
  739. goto out;
  740. switch (icmph->icmp6_type) {
  741. case NDISC_ROUTER_SOLICITATION:
  742. case NDISC_ROUTER_ADVERTISEMENT:
  743. case NDISC_NEIGHBOUR_SOLICITATION:
  744. case NDISC_NEIGHBOUR_ADVERTISEMENT:
  745. case NDISC_REDIRECT:
  746. rc = true;
  747. break;
  748. }
  749. }
  750. out:
  751. return rc;
  752. }
  753. static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
  754. const struct net_device *dev,
  755. struct flowi6 *fl6,
  756. int ifindex,
  757. int flags)
  758. {
  759. struct net_vrf *vrf = netdev_priv(dev);
  760. struct fib6_table *table = NULL;
  761. struct rt6_info *rt6;
  762. rcu_read_lock();
  763. /* fib6_table does not have a refcnt and can not be freed */
  764. rt6 = rcu_dereference(vrf->rt6);
  765. if (likely(rt6))
  766. table = rt6->rt6i_table;
  767. rcu_read_unlock();
  768. if (!table)
  769. return NULL;
  770. return ip6_pol_route(net, table, ifindex, fl6, flags);
  771. }
  772. static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
  773. int ifindex)
  774. {
  775. const struct ipv6hdr *iph = ipv6_hdr(skb);
  776. struct flowi6 fl6 = {
  777. .flowi6_iif = ifindex,
  778. .flowi6_mark = skb->mark,
  779. .flowi6_proto = iph->nexthdr,
  780. .daddr = iph->daddr,
  781. .saddr = iph->saddr,
  782. .flowlabel = ip6_flowinfo(iph),
  783. };
  784. struct net *net = dev_net(vrf_dev);
  785. struct rt6_info *rt6;
  786. rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
  787. RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
  788. if (unlikely(!rt6))
  789. return;
  790. if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
  791. return;
  792. skb_dst_set(skb, &rt6->dst);
  793. }
  794. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  795. struct sk_buff *skb)
  796. {
  797. int orig_iif = skb->skb_iif;
  798. bool need_strict;
  799. /* loopback traffic; do not push through packet taps again.
  800. * Reset pkt_type for upper layers to process skb
  801. */
  802. if (skb->pkt_type == PACKET_LOOPBACK) {
  803. skb->dev = vrf_dev;
  804. skb->skb_iif = vrf_dev->ifindex;
  805. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  806. skb->pkt_type = PACKET_HOST;
  807. goto out;
  808. }
  809. /* if packet is NDISC or addressed to multicast or link-local
  810. * then keep the ingress interface
  811. */
  812. need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
  813. if (!ipv6_ndisc_frame(skb) && !need_strict) {
  814. vrf_rx_stats(vrf_dev, skb->len);
  815. skb->dev = vrf_dev;
  816. skb->skb_iif = vrf_dev->ifindex;
  817. if (!list_empty(&vrf_dev->ptype_all)) {
  818. skb_push(skb, skb->mac_len);
  819. dev_queue_xmit_nit(skb, vrf_dev);
  820. skb_pull(skb, skb->mac_len);
  821. }
  822. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  823. }
  824. if (need_strict)
  825. vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
  826. skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
  827. out:
  828. return skb;
  829. }
  830. #else
  831. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  832. struct sk_buff *skb)
  833. {
  834. return skb;
  835. }
  836. #endif
  837. static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
  838. struct sk_buff *skb)
  839. {
  840. skb->dev = vrf_dev;
  841. skb->skb_iif = vrf_dev->ifindex;
  842. IPCB(skb)->flags |= IPSKB_L3SLAVE;
  843. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  844. goto out;
  845. /* loopback traffic; do not push through packet taps again.
  846. * Reset pkt_type for upper layers to process skb
  847. */
  848. if (skb->pkt_type == PACKET_LOOPBACK) {
  849. skb->pkt_type = PACKET_HOST;
  850. goto out;
  851. }
  852. vrf_rx_stats(vrf_dev, skb->len);
  853. if (!list_empty(&vrf_dev->ptype_all)) {
  854. skb_push(skb, skb->mac_len);
  855. dev_queue_xmit_nit(skb, vrf_dev);
  856. skb_pull(skb, skb->mac_len);
  857. }
  858. skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
  859. out:
  860. return skb;
  861. }
  862. /* called with rcu lock held */
  863. static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
  864. struct sk_buff *skb,
  865. u16 proto)
  866. {
  867. switch (proto) {
  868. case AF_INET:
  869. return vrf_ip_rcv(vrf_dev, skb);
  870. case AF_INET6:
  871. return vrf_ip6_rcv(vrf_dev, skb);
  872. }
  873. return skb;
  874. }
  875. #if IS_ENABLED(CONFIG_IPV6)
  876. /* send to link-local or multicast address via interface enslaved to
  877. * VRF device. Force lookup to VRF table without changing flow struct
  878. */
  879. static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
  880. struct flowi6 *fl6)
  881. {
  882. struct net *net = dev_net(dev);
  883. int flags = RT6_LOOKUP_F_IFACE;
  884. struct dst_entry *dst = NULL;
  885. struct rt6_info *rt;
  886. /* VRF device does not have a link-local address and
  887. * sending packets to link-local or mcast addresses over
  888. * a VRF device does not make sense
  889. */
  890. if (fl6->flowi6_oif == dev->ifindex) {
  891. dst = &net->ipv6.ip6_null_entry->dst;
  892. dst_hold(dst);
  893. return dst;
  894. }
  895. if (!ipv6_addr_any(&fl6->saddr))
  896. flags |= RT6_LOOKUP_F_HAS_SADDR;
  897. rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
  898. if (rt)
  899. dst = &rt->dst;
  900. return dst;
  901. }
  902. #endif
  903. static const struct l3mdev_ops vrf_l3mdev_ops = {
  904. .l3mdev_fib_table = vrf_fib_table,
  905. .l3mdev_l3_rcv = vrf_l3_rcv,
  906. .l3mdev_l3_out = vrf_l3_out,
  907. #if IS_ENABLED(CONFIG_IPV6)
  908. .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
  909. #endif
  910. };
  911. static void vrf_get_drvinfo(struct net_device *dev,
  912. struct ethtool_drvinfo *info)
  913. {
  914. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  915. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  916. }
  917. static const struct ethtool_ops vrf_ethtool_ops = {
  918. .get_drvinfo = vrf_get_drvinfo,
  919. };
  920. static inline size_t vrf_fib_rule_nl_size(void)
  921. {
  922. size_t sz;
  923. sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
  924. sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
  925. sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
  926. return sz;
  927. }
  928. static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
  929. {
  930. struct fib_rule_hdr *frh;
  931. struct nlmsghdr *nlh;
  932. struct sk_buff *skb;
  933. int err;
  934. if (family == AF_INET6 && !ipv6_mod_enabled())
  935. return 0;
  936. skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
  937. if (!skb)
  938. return -ENOMEM;
  939. nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
  940. if (!nlh)
  941. goto nla_put_failure;
  942. /* rule only needs to appear once */
  943. nlh->nlmsg_flags |= NLM_F_EXCL;
  944. frh = nlmsg_data(nlh);
  945. memset(frh, 0, sizeof(*frh));
  946. frh->family = family;
  947. frh->action = FR_ACT_TO_TBL;
  948. if (nla_put_u32(skb, FRA_L3MDEV, 1))
  949. goto nla_put_failure;
  950. if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
  951. goto nla_put_failure;
  952. nlmsg_end(skb, nlh);
  953. /* fib_nl_{new,del}rule handling looks for net from skb->sk */
  954. skb->sk = dev_net(dev)->rtnl;
  955. if (add_it) {
  956. err = fib_nl_newrule(skb, nlh, NULL);
  957. if (err == -EEXIST)
  958. err = 0;
  959. } else {
  960. err = fib_nl_delrule(skb, nlh, NULL);
  961. if (err == -ENOENT)
  962. err = 0;
  963. }
  964. nlmsg_free(skb);
  965. return err;
  966. nla_put_failure:
  967. nlmsg_free(skb);
  968. return -EMSGSIZE;
  969. }
  970. static int vrf_add_fib_rules(const struct net_device *dev)
  971. {
  972. int err;
  973. err = vrf_fib_rule(dev, AF_INET, true);
  974. if (err < 0)
  975. goto out_err;
  976. err = vrf_fib_rule(dev, AF_INET6, true);
  977. if (err < 0)
  978. goto ipv6_err;
  979. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  980. err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
  981. if (err < 0)
  982. goto ipmr_err;
  983. #endif
  984. return 0;
  985. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  986. ipmr_err:
  987. vrf_fib_rule(dev, AF_INET6, false);
  988. #endif
  989. ipv6_err:
  990. vrf_fib_rule(dev, AF_INET, false);
  991. out_err:
  992. netdev_err(dev, "Failed to add FIB rules.\n");
  993. return err;
  994. }
  995. static void vrf_setup(struct net_device *dev)
  996. {
  997. ether_setup(dev);
  998. /* Initialize the device structure. */
  999. dev->netdev_ops = &vrf_netdev_ops;
  1000. dev->l3mdev_ops = &vrf_l3mdev_ops;
  1001. dev->ethtool_ops = &vrf_ethtool_ops;
  1002. dev->needs_free_netdev = true;
  1003. /* Fill in device structure with ethernet-generic values. */
  1004. eth_hw_addr_random(dev);
  1005. /* don't acquire vrf device's netif_tx_lock when transmitting */
  1006. dev->features |= NETIF_F_LLTX;
  1007. /* don't allow vrf devices to change network namespaces. */
  1008. dev->features |= NETIF_F_NETNS_LOCAL;
  1009. /* does not make sense for a VLAN to be added to a vrf device */
  1010. dev->features |= NETIF_F_VLAN_CHALLENGED;
  1011. /* enable offload features */
  1012. dev->features |= NETIF_F_GSO_SOFTWARE;
  1013. dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
  1014. dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
  1015. dev->hw_features = dev->features;
  1016. dev->hw_enc_features = dev->features;
  1017. /* default to no qdisc; user can add if desired */
  1018. dev->priv_flags |= IFF_NO_QUEUE;
  1019. }
  1020. static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
  1021. struct netlink_ext_ack *extack)
  1022. {
  1023. if (tb[IFLA_ADDRESS]) {
  1024. if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
  1025. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1026. return -EINVAL;
  1027. }
  1028. if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
  1029. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1030. return -EADDRNOTAVAIL;
  1031. }
  1032. }
  1033. return 0;
  1034. }
  1035. static void vrf_dellink(struct net_device *dev, struct list_head *head)
  1036. {
  1037. struct net_device *port_dev;
  1038. struct list_head *iter;
  1039. netdev_for_each_lower_dev(dev, port_dev, iter)
  1040. vrf_del_slave(dev, port_dev);
  1041. unregister_netdevice_queue(dev, head);
  1042. }
  1043. static int vrf_newlink(struct net *src_net, struct net_device *dev,
  1044. struct nlattr *tb[], struct nlattr *data[],
  1045. struct netlink_ext_ack *extack)
  1046. {
  1047. struct net_vrf *vrf = netdev_priv(dev);
  1048. bool *add_fib_rules;
  1049. struct net *net;
  1050. int err;
  1051. if (!data || !data[IFLA_VRF_TABLE]) {
  1052. NL_SET_ERR_MSG(extack, "VRF table id is missing");
  1053. return -EINVAL;
  1054. }
  1055. vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
  1056. if (vrf->tb_id == RT_TABLE_UNSPEC) {
  1057. NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
  1058. "Invalid VRF table id");
  1059. return -EINVAL;
  1060. }
  1061. dev->priv_flags |= IFF_L3MDEV_MASTER;
  1062. err = register_netdevice(dev);
  1063. if (err)
  1064. goto out;
  1065. net = dev_net(dev);
  1066. add_fib_rules = net_generic(net, vrf_net_id);
  1067. if (*add_fib_rules) {
  1068. err = vrf_add_fib_rules(dev);
  1069. if (err) {
  1070. unregister_netdevice(dev);
  1071. goto out;
  1072. }
  1073. *add_fib_rules = false;
  1074. }
  1075. out:
  1076. return err;
  1077. }
  1078. static size_t vrf_nl_getsize(const struct net_device *dev)
  1079. {
  1080. return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
  1081. }
  1082. static int vrf_fillinfo(struct sk_buff *skb,
  1083. const struct net_device *dev)
  1084. {
  1085. struct net_vrf *vrf = netdev_priv(dev);
  1086. return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
  1087. }
  1088. static size_t vrf_get_slave_size(const struct net_device *bond_dev,
  1089. const struct net_device *slave_dev)
  1090. {
  1091. return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
  1092. }
  1093. static int vrf_fill_slave_info(struct sk_buff *skb,
  1094. const struct net_device *vrf_dev,
  1095. const struct net_device *slave_dev)
  1096. {
  1097. struct net_vrf *vrf = netdev_priv(vrf_dev);
  1098. if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
  1099. return -EMSGSIZE;
  1100. return 0;
  1101. }
  1102. static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
  1103. [IFLA_VRF_TABLE] = { .type = NLA_U32 },
  1104. };
  1105. static struct rtnl_link_ops vrf_link_ops __read_mostly = {
  1106. .kind = DRV_NAME,
  1107. .priv_size = sizeof(struct net_vrf),
  1108. .get_size = vrf_nl_getsize,
  1109. .policy = vrf_nl_policy,
  1110. .validate = vrf_validate,
  1111. .fill_info = vrf_fillinfo,
  1112. .get_slave_size = vrf_get_slave_size,
  1113. .fill_slave_info = vrf_fill_slave_info,
  1114. .newlink = vrf_newlink,
  1115. .dellink = vrf_dellink,
  1116. .setup = vrf_setup,
  1117. .maxtype = IFLA_VRF_MAX,
  1118. };
  1119. static int vrf_device_event(struct notifier_block *unused,
  1120. unsigned long event, void *ptr)
  1121. {
  1122. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1123. /* only care about unregister events to drop slave references */
  1124. if (event == NETDEV_UNREGISTER) {
  1125. struct net_device *vrf_dev;
  1126. if (!netif_is_l3_slave(dev))
  1127. goto out;
  1128. vrf_dev = netdev_master_upper_dev_get(dev);
  1129. vrf_del_slave(vrf_dev, dev);
  1130. }
  1131. out:
  1132. return NOTIFY_DONE;
  1133. }
  1134. static struct notifier_block vrf_notifier_block __read_mostly = {
  1135. .notifier_call = vrf_device_event,
  1136. };
  1137. /* Initialize per network namespace state */
  1138. static int __net_init vrf_netns_init(struct net *net)
  1139. {
  1140. bool *add_fib_rules = net_generic(net, vrf_net_id);
  1141. *add_fib_rules = true;
  1142. return 0;
  1143. }
  1144. static struct pernet_operations vrf_net_ops __net_initdata = {
  1145. .init = vrf_netns_init,
  1146. .id = &vrf_net_id,
  1147. .size = sizeof(bool),
  1148. };
  1149. static int __init vrf_init_module(void)
  1150. {
  1151. int rc;
  1152. register_netdevice_notifier(&vrf_notifier_block);
  1153. rc = register_pernet_subsys(&vrf_net_ops);
  1154. if (rc < 0)
  1155. goto error;
  1156. rc = rtnl_link_register(&vrf_link_ops);
  1157. if (rc < 0) {
  1158. unregister_pernet_subsys(&vrf_net_ops);
  1159. goto error;
  1160. }
  1161. return 0;
  1162. error:
  1163. unregister_netdevice_notifier(&vrf_notifier_block);
  1164. return rc;
  1165. }
  1166. module_init(vrf_init_module);
  1167. MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
  1168. MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
  1169. MODULE_LICENSE("GPL");
  1170. MODULE_ALIAS_RTNL_LINK(DRV_NAME);
  1171. MODULE_VERSION(DRV_VERSION);